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Genomics-assisted characterization 
of a breeding collection of Apios 
americana, an edible tuberous 
legume
Vikas Belamkar1,2,†, Andrew D. Farmer3, Nathan T. Weeks4, Scott R. Kalberer4, 
William J. Blackmon5,‡ & Steven B. Cannon2,4

For species with potential as new crops, rapid improvement may be facilitated by new genomic 
methods. Apios (Apios americana Medik.), once a staple food source of Native American Indians, 
produces protein-rich tubers, tolerates a wide range of soils, and symbiotically fixes nitrogen. We report 
the first high-quality de novo transcriptome assembly, an expression atlas, and a set of 58,154 SNP and 
39,609 gene expression markers (GEMs) for characterization of a breeding collection. Both SNPs and 
GEMs identify six genotypic clusters in the collection. Transcripts mapped to the Phaseolus vulgaris 
genome–another phaseoloid legume with the same chromosome number–provide provisional genetic 
locations for 46,852 SNPs. Linkage disequilibrium decays within 10 kb (based on the provisional genetic 
locations), consistent with outcrossing reproduction. SNPs and GEMs identify more than 21 marker-
trait associations for at least 11 traits. This study demonstrates a holistic approach for mining plant 
collections to accelerate crop improvement.

Many un- or semi-domesticated edible plants have valuable characteristics not found in existing widely cultivated 
crops. Such underutilized plants include those adapted to extreme or unusual climatic conditions and soil types; 
they may also possess resistance against a range of biotic and abiotic stresses. However, the domestication of any 
new species remains a formidable challenge.

Happily, there are recent examples of rapid progress and success for a few underexploited crops. Quinoa 
(Chenopodium quinoa) breeding has rapidly progressed in the last 4 to 5 years, along with its recent wide accept-
ance as a food on the world market1–3. Perennial grains are being explored as a means to reduce soil degradation 
and water contamination4. DeHaan’s research at The Land Institute to domesticate perennial intermediate wheat 
grass (Kernza™ ; Thinopyrum intermedium) has been quite successful, with yields increasing by ~77% following 
two rounds of phenotypic selection5. These examples show that rapid improvement of underused crops is feasible.

Apios (Apios americana Medik.) is a candidate crop that merits further investigation. Apios is a perennial 
legume that produces a podded fruit aboveground (as do most other legume crops), which is edible but with 
small seeds and variable fruit set. More importantly for agricultural use, starchy tubers develop from swellings 
on stolons (modified subterranean stems) as observed in the potato6. Apios tubers have a relatively high protein 
content for a tuber (11 to 14% on dry defatted basis), long shelf life when stored at ~4 °C (> 1 yr), high amounts 
of novel isoflavones with suspected health benefits, and low levels of reducing sugars6. Apios tubers are pleasant 
to taste, easy to cook and are rich in carbohydrates, proteins, iron and dietary fiber7. Recently, a novel isoflavone 
(genistein-7-O-gentiobioside) has been identified in the tubers. It is deglycosylated to produce the isoflavone 
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genistein8. In northern Japan, where Apios is grown as a food crop, apios powder (dried powdered tuber) is used 
in cookies, donuts, dumplings and bread because of the tuber’s nutritional benefits7.

Apios is native to the temperate central and eastern regions of North America, and can thrive in varied growth 
conditions found in a range of habitats. It grows along the banks of creeks, rivers, and lakes, but can also be grown 
on well-drained farmland. The versatility of Apios is enhanced by its ability to form root nodules containing 
symbiotic rhizobia that fix atmospheric nitrogen9. Both diploid (2n =  2x =  22) and triploid (2n =  3x =  33)10 pop-
ulations exist in the wild11. Triploids are sterile and propagate only asexually via tubers, whereas diploids appear 
to be generally fertile and may propagate either clonally by tubers or sexually via seeds11. The flowers have a 
complex structure and pollination is achieved when visiting insects set off an explosive tripping mechanism11,12. 
Bruneau and Anderson11 observed low fruit set in many diploid plants; they attributed these results to partial 
self-incompatibility and suggested an outcrossing mode of sexual reproduction in Apios11.

Historically, Apios was a staple tuber crop for many North American Indian cultures who kept it in a 
semi-cultivated state near their habitations, and it was well known as an emergency food to early European colo-
nists13. Although Apios continued to be consumed by indigenous peoples and wild plant foragers in the centuries 
that followed, it has remained largely obscure and failed to achieve mainstream acceptance. Apios was reevaluated 
by Blackmon and Reynolds from 1985–1994 with the objectives of introducing it to cultivation and developing 
superior cultivars14,15. They collected and characterized wild germplasm, facilitated open pollinations, selected 
progeny with desirable agronomic traits, and then repeated the cycles of pollinations and selection (Fig. 1)14,15. 
Their breeding effort has lead to improved genotypes that are high yielding, with a number of additional favorable 
characteristics (e.g., reduced stolon lengths and tuber-to-tuber spacing). In the 21st century we have restarted the 
research program of Blackmon and Reynolds, recently completing a rigorous phenotypic evaluation of genotypes 
originating from their breeding program6. We have reported these results showing how the various genotypes 
perform across multiple years and in differing locations and growing conditions6.

In the present study, we have generated extensive genomic resources using RNA-Seq and combined them with 
the previously generated phenotypic data. The goals of this study are as follows: (1) Building a de novo reference 
transcriptome assembly; (2) Developing a gene expression catalog; (3) Identifying SNPs, gene expression markers 
(GEMs), and genotyping the collection using RNA-Seq; (4) Investigating heterozygosity, pedigree and population 

Figure 1. Breeding strategy and pedigree of the Apios americana collection. (a) Breeding strategy utilized 
by Dr. Blackmon and Mr. Reynolds during 1985–1994 at Louisiana State University Agricultural Experiment 
Station in Baton Rouge, LA, for developing elite genotypes used in this study. This information is based on an 
interpretation of the field books of Dr. Blackmon and Mr. Reynolds. (b) Partial maternal lineage information 
that was traced from the field books for 35 of the 53 genotypes. The genotypes that produced seeds were 
recorded as maternal parents, and the genotypes that were growing close to the maternal parent were recorded 
as likely paternal parents. Hence, there are usually multiple paternal parents listed for a genotype. The genotypes 
in bold are the ones that exist in the collection used in this study.
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structure; (5) Examining linkage disequilibrium; (6) Identifying marker-trait associations using SNPs and gene 
expression markers; and (7) Combining phenotypic and genetic data to assist in making parental selections for 
subsequent cultivar development. The results obtained in this study will have broader implications for other 
plants with limited genomic resources, as well as for staple crops that can be further mined for crop diversity and 
cultivar development.

Results
Development and evaluation of an Apios breeding collection. The plant material used in this study 
derives from Blackmon and Reynolds’s breeding program from 1985–1994 (Fig. 1). Field books of the breeding 
program described collection of germplasm, pollinations performed, and phenotypic selections of ~20,000 plants 
(Fig. 1a). Of those selections, 53 genotypes remained as of 2010–of which 52 were carried forward for use in the 
present study. Partial pedigree information was traceable for 35 of the 53 (Fig. 1b). “Good-performing” genotypes 
were repeatedly favored during breeding and this resulted in primary founder genotypes. For instance, genotype 
“034” contributed to 22 of the 52, and “006” to 8 of the 52 (Fig. 1b). Genotype 034 performed consistently under 
different growing conditions, and therefore was selected for release in the late 1980s. All of the genotypes were 
derived through pollinations, and thus are likely to be diploids. Twenty-five of the 53 genotypes tested using flow 
cytometry had an average genome size of 1644 ±  34 Mb, whereas wild accessions collected from Iowa, New York, 
and Quebec in Canada had an average genome size of 2380 ±  28 Mb (Supplementary Table 1). The genome size 
of the genotypes in the Blackmon and Reynolds collection is approximately two-thirds the average genome size 
of the wild accessions. This result suggests that our particular wild accessions are triploids, whereas the Blackmon 
and Reynolds genotypes are diploids. These genome size estimates are comparable to the results previously pub-
lished16. Recent field evaluation of the 53 genotypes from the Blackmon and Reynolds collection found high 
amounts of phenotypic diversity for 18 of the 20 traits measured6. The REML-based least square (LS) means 
generated for each trait from that phenotyping study6 are used in this work.

De novo transcriptome assembly, annotation and expression catalog. A transcriptome assembly 
for A. americana was built by sequencing 14 above- and belowground samples, from six tissues, from genotype 
2127 (Supplementary Data 1). Sequencing of the 14 samples on Illumina GAIIx/HiSeq generated ~210 million 
reads, which were then assembled into 96,560 transcripts, and 48,615 components (generally corresponding with 
genes) (Table 1). The length of the transcripts ranged from 201 to 15,850 bp, with an average of 1,173 bp, and 
N50 of 1,863 bp (Supplementary Fig. 1)–statistics on par with other de novo transcriptome assemblies published 
to date17–21. This transcriptome assembly project is deposited at DDBJ/EMBL/GenBank under the accession 
GEHN00000000. The version described in this article is the first version, GEHN01000000. More than 14% of 
the transcripts in the assembly are nearly full-length as judged by alignment coverage with soybean and com-
mon bean peptides (at > 80% coverage, 14,905 (15.4%) for soybean and 14,084 (14.6%) for common bean). The 

Metric Count

Sequencing reads

 Total number of reads 210,018,551

 Total number of nucleotides (Gbp) 11.7

 Total number of nucleotides used (Gbp) 11.5

 Total number of nucleotides unused (Gbp) 0.2

De novo transcriptome assembly

 Number of putative transcripts 96,560

 Number of components (generally correspond with genes) 48,615

 Number of components with splice variants 11,215

 N50 1,863

 Total number of nucleotides in the assembly (bp) 113,238,654

Peptides

 Number of peptides (alternative splice variants included) 60,880

 Number of peptides (alternative splice variants excluded) 23,691

Annotation of peptides (alternative splice variants excluded)

 Swiss-Prot 16,711

 Pfam-A 17,087

 Signal peptide 2,240

 Transmembrane helices 5,847

 eggNOG (evolutionary genealogy of genes) 13,524

 Gene Ontology 15,647

Expression

 Number of transcripts expressed in at least one tissue 56,735

 Number of components expressed in at least one tissue 28,738

Table 1.  Statistics of the Apios americana transcriptome assembly built using accession 2127.
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percentage of transcripts matching other legumes with genome sequences and annotations, and Arabidopsis, 
ranged from 61.1% to 67.5%, and the percentage of peptides from legume species and Arabidopsis that matched 
to an Apios transcript (allowing only one match per Apios transcript) ranged from 32.4% to 66% (Supplementary 
Fig. 2; Supplementary Data 2). The percentage of Apios transcripts matching Phaseolus vulgaris proteins is 66.5%, 
while the percentage of P. vulgaris proteins matching Apios transcripts is 66% (Supplementary Fig. 2). This nearly 
one-to-one match between two-thirds of the Apios transcripts and common bean peptides suggests relative com-
pleteness of the Apios transcriptome assembly. Extraction of the putative coding regions from the transcripts 
generated 23,691 unique peptides (Supplementary Data 3). Greater than 70% of these peptides were assigned 
a function using Swiss-Prot and Pfam databases, and > 57% assignments were made using eggNOG and Gene 
Ontology (Table 1; Supplementary Data 4).

We also constructed a gene expression catalog, using an average of 14.6 million reads from each of the 11 
samples–including six tissues, each with two biological replicates except for flower, which had one sample 
(Supplementary Table 2). Nearly 90% of the quality-trimmed reads from these samples could be mapped back to 
the assembly (Supplementary Table 2). We found 56,735 transcripts (Supplementary Data 5), and 28,738 com-
ponents (Supplementary Data 6) expressed in at least one of the 11 samples. A heat map utilizing expression of 
1,000 transcripts with highest variances clustered the samples into two primary subgroups: one consisting of the 
aboveground tissues, and the other of belowground tissues (Fig. 2).

Marker discovery, validation and genotyping. The 52 genotypes were grown for three months under 
field conditions. Four plants grown from four independent seed tubers represented biological replicates for an 
accession. A young leaf close to the shoot tip was collected from each of the four plants and pooled for RNA iso-
lation. The leaf samples from all the accessions were sampled on the same day within a two-hour window, and at 
mid-day to minimize the effect of environmental differences on gene expression and to provide relatively uniform 
staging of tissues. Leaf transcriptomes were sequenced on Illumina Hi-Seq, giving 1.32 billion reads, with an aver-
age of 25.3 million reads per genotype (Table 2; Supplementary Data 1). Additionally, transcriptome sequencing 
of the pooled (shoot and root tissue) samples from four genotypes (as biological replicates), grown for 1.5 months 
under greenhouse conditions, generated 45.71 million reads. On an average, > 88.6% of the reads from each of the 
56 samples could be mapped to the transcriptome assembly (Supplementary Data 7). Using stringent filtering cri-
teria (Methods), 58,154 high-quality SNP markers were identified, in 9,338 components (Table 2; Supplementary 
Data 8). The average reproducibility of the 58,154 high-quality SNP markers tested using four biological replicates 
was 90.6% (Table 2; Supplementary Table 3). This value is comparable to the reproducibility (78% to 92.9%) 
observed in other recent studies22–26. The allele frequency of the G and C alleles was slightly higher in the data-
set than the A and T alleles, which is expected, considering the sequences’ transcribed origin (Supplementary 
Table 4). The percentage of missing SNPs per accession was on average 1.5%, and the average heterozygosity 

Figure 2. Heat map of the normalized RNA-Seq data showing expression of transcripts in six tissues of 
accession 2127. The normalized RNA-Seq data is in log2 scale. One thousand transcripts with highest variances 
across the 11 samples were utilized to make the heat map. Letters R1 and R2 represent replicates 1 and 2 of the 
corresponding tissues. The aboveground and belowground tissues clustered separately and are highlighted in 
green and brown color respectively.
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per accession was 37.6 (Supplementary Data 9 and 10). Reads from each of the 52 genotypes mapped to the 
reference assembly provided 39,609 transcripts that were expressed in at least one genotype. These were used as 
gene-expression-markers (GEMs) for structure and association analyses (Supplementary Data 11 and 12).

Diversity, inbreeding and pedigree. We estimated two measures of diversity: (1) the average pair-wise 
divergence among genotypes, or nucleotide diversity per bp, π  (pi), was 0.35; and (2) the expected number of 
polymorphic sites per nucleotide, or expectation of π , θ  (theta), was 0.22. These values are somewhat higher than 
that of four soybean populations (including elite North American soybean cultivars, Asian landrace founders of 
these elite cultivars, other Asian landraces, and accessions of the wild progenitor species Glycine soja27). Tajima’s 
D was 2.16. Tajima’s D is a normalized measure of the difference between observed (π ) and expected (θ ) nucleo-
tide diversity. A large positive value of this measurement suggests either that selection has maintained variation 
in the population, or that the population has contracted–either of which may have occurred during development 
of this breeding collection.

Inbreeding coefficient estimates for each genotype are analogous to the proportion of heterozygous loci in each 
genotype, but in the opposite direction–that is, the correlation coefficient is − 1.0 between the inbreeding coeffi-
cients and heterozygosity of each genotype (Supplementary Data 10). The inbreeding coefficients estimated for 
each genotype ranged from − 0.22 to 0.15, with an average of − 0.07–which indicates the generally high heterozy-
gosity of genotypes in the collection (Supplementary Data 10). In fact, inbreeding coefficient values of only five 
of the genotypes (accessions 1718, 1846, 2148, 2153 and 2170) were positive, indicating that these genotypes are 
more homozygous than the average of the population28. A statistically significant (P =  0.0004, r =  − 0.47) negative 
correlation was observed between inbreeding coefficients and “number of tubers/plant” (Supplementary Table 5; 
Supplementary Fig. 3). Positive correlations were observed between inbreeding coefficients and three phenotypic 
traits: leaflets measured 2 months after planting (P =  0.0071, r =  0.37), mother tuber weight (P =  0.0089, r =  0.36), 
and mother tuber width (P =  0.019, r =  0.32).

Using estimates of Identity-by-Descent (IBD) and the proportion of IBD values, we identified parent-child 
or half-sib relationships between 24 pairs of genotypes (Supplementary Table 6). Of the 24 pairs, nine pairs were 
validated using the partial pedigree information available for genotypes (Fig. 1b); one pair (807 and 2003) had 
conflicting results between IBD analysis and known pedigree information; and the remaining 14 pairs identified 
by IBD analysis did not have prior pedigree information. All of the pairs identified in the IBD analysis were also 
identified by fastSTRUCTURE (described in the next section) either by inspecting the proportion of genomes 
shared, or the clustering of genotypes in the same group.

Population structure. We analyzed the structure using five approaches (see Methods for details). These 
identified at least six clusters (Fig. 3). Bayesian analysis implemented using the program fastSTRUCTURE sug-
gested five (k =  5) to seven (k =  7) clusters (Fig. 3a). The main difference between K =  5 and K =  6 is the inclusion 
of an additional cluster comprised of genotypes 784, 2012, 2019 and 2219. Genotype 784 is the maternal parent 
of the genotypes 2012 and 2019 (Fig. 1b), so the additional cluster in K =  6 is reasonable. In the case of K =  7, the 
additional cluster is formed by splitting the fifth cluster of K =  6. The fifth cluster in K =  6 comprises individuals 
that are admixed; these split to give the additional cluster in K =  7. However, the admixed individuals have > 60% 
proportion of membership in K =  6, and there is insufficient basis for splitting this cluster. Hence, there are at least 
six clusters in the collection based on the variational Bayesian analysis conducted using fastSTRUCTURE. In the 
maximum likelihood approach, fastSTRUCTURE clusters 2, 3, 4, and 6 remained intact, whereas the admixed 
individuals from clusters 1 and 5 split up and re-grouped with the other clusters (Fig. 3b). Similar results were 
observed in the IBS and Ward’s clustering approaches with the exception that the fifth cluster split into two clusters 

Metric Count

Number of accessions in the Apios collection 52

Total number of reads generated 1,315,730,442

Average number of reads generated per accession 25,302,509

Average % of reads mapped to the assembly per accession 89.5

Average % of reads mapped uniquely to the assembly per accession 61.4

Number of variants (SNP and Indels) identified with base criteria 1,582,730

Number of variants identified (base criteria +  read depth ≥  5) 299,145

Number of SNPs identified (base criteria +  read depth ≥  5) 271,170

Number of SNPs (base criteria +  read depth ≥  5 +  MAF ≥  0.1 +  Maximum missing percentage ≤  10%) 58,154

Average % reproducibility of SNPs (tested using 4 biological replicates) 90.6

Number of components (a.k.a genes) harboring SNPs 9,338

% of components in the assembly harboring SNPs 19.2

Average accessions missing per SNP (%) 1.5

Average heterozygous accessions per SNP (%) 37.5

Number of gene expression markers identified 39,609

Table 2.  Discovery of variants across 52 genotypes in the collection. Base criteria: At least 2 reads calling 
variant within at least 1 accession; ≥ 20% of the reads calling the variant allele in that sample; and average 
quality of bases calling the variant is ≥ 10).
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as opposed to three in the maximum likelihood approach (Supplementary Fig. 4). The PCA identified six clusters, 
but a seventh cluster was formed which comprised individuals from clusters 1, 2 and 5 (Supplementary Fig. 5).  
Interestingly, GEMs also identified similar patterns of structure (Fig. 4). The four clusters (2, 3, 4, and 6) remained 
intact, and the same was true for cluster 1 that contained a few admixed individuals. However, in the GEM-based 
analysis, cluster 5 was split up and individuals were re-grouped with other clusters. In summary, the SNP and 
GEM markers identify at least six clusters–of which five remain intact in fastSTRUCTURE and GEM-based 

Figure 3. Population structure. (a) Population structure using variational Bayesian framework–implemented 
in the program fastSTRUCTURE. The possible 5, 6 or 7 clusters (K =  5, 6 or 7) identified are shown. The Y-axis 
represents the proportion of membership of a genotype to the respective cluster, and the X-axis indicates 
genotypes in the collection. (b) Phylogeny built using maximum likelihood implemented in the package 
SNPhylo. Numbers 1 to 6 represent the clusters identified in Fig. 3a.
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phylogenies. Four of the clusters are consistent across all the five approaches. As a final step, we compared the 
performance of each of the five approaches in accurately clustering the genotypes based on the pedigree, and the 
highest success was obtained using fastSTRUCTURE (Supplementary Table 7).

Linkage disequilibrium (LD). We investigated linkage disequilibrium by mapping the Apios transcripts 
to P. vulgaris chromosomes, under the assumption that the Apios and P. vulgaris chromosomes are generally 
syntenic–an assumption that we believe is warranted considering that most species in the Milletieae tribe have 
11 chromosomes29,30, and various divergent species in the Phaseoleae have strongly collinear chromosomes31,32. 
We were able to place 46,852 of the 58,154 Apios SNP markers. These SNPs are distributed along each of the 11 
chromosomes, with enrichment toward the chromosome ends (Fig. 5a). The enrichment at the chromosomal 
ends is undoubtedly because the SNPs are derived from transcripts, and the chromosome ends are gene rich33. 
The number of SNPs averaged 4,259 per chromosome (Supplementary Fig. 6). The decay of LD was investigated 
at different r2 thresholds, as well as along each chromosome, across the genome, and along the transcripts (Fig. 5b 
and Supplementary Table 8). On average, LD extends up to 10 to 15 kb (at r2 ≤  0.15) across the genome. Although 
LD decays rapidly across the genome, it is well known that the extent of LD varies in different regions of the 
genome. Using a sliding window of 2 Mb along each chromosome, we identified 4,222 haplotype blocks (see 
Methods for details on haplotype block), averaging 7.4 kb in size. The distribution of haplotype blocks along each 
of the chromosomes indicated enrichment of large haplotype blocks in the pericentromeric regions–this result is 
unsurprising, because pericentromeric regions experience lower rates of recombination (Fig. 5c). The two largest 
haplotype blocks (~1,500 kb) were in pericentromeric regions on chromosomes 5 and 10. In summary, mapping 
of Apios SNPs to the P. vulgaris chromosomes provided putative location information for ~81% of the SNPs; and 
using these SNPs, LD was found to decay substantially within 10–15 kb.

Marker-trait associations. We performed association analysis using five linear mixed models (see 
Methods), and implemented them in two packages. We inspected the performance of each of the mixed model 
by using quantile-quantile (QQ) plots. Based on the QQ plots, the most successful model (implemented in the 
GCTA package) accounted for population structure, using a familial relatedness matrix (Supplementary Fig. 7).  
For 19 of the 20 traits, it was apparent that incorporating the familial relatedness matrix in the mixed model 

Figure 4. Population structure derived from gene expression markers (GEMs). Phylogeny built using 
1,000 GEMs (in log2 scale) that show highest variances across the 52 samples. A Euclidean distance matrix was 
utilized followed by hierarchical clustering with Ward’s linkage. Numbers 1 to 6 represent the clusters identified 
in Fig. 3a.
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Figure 5. Genome-wide SNP distribution, linkage disequilibrium and haplotype blocks. (a) Distribution 
of SNPs identified in the Apios collection along the 11 Phaseolus vulgaris chromosomes. Apios transcripts were 
mapped to the Phaseolus vulgaris genome assembly (version 1.0), and location information was retrieved for 
46,852 of the 58,154 SNP markers. (b) Decay of linkage disequilibrium along each of the putative chromosomes, 
across the genome, and transcripts. (c) Distribution of haplotype blocks along each of the chromosomes. The 
black dashed genotypes represent pericentromeric start and end coordinates of each of the chromosomes 
obtained from the P. vulgaris genome.
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analysis performed the best. For one of the traits (child tuber weight), two mixed models performed equally 
well. These two models accounted either for subpopulations and familial relatedness together, or just familial 
relatedness (Supplementary Fig. 7). Thus, for marker-trait associations, we proceeded with incorporating the 
familial relatedness to account for population structure, and the mixed model analysis performed in the GCTA 
package. This method identified twenty-one SNP markers to be associated with 14 phenotypic traits, including 
six aboveground and eight belowground traits (Table 3). Each marker associated with a trait originated from a 
different transcript. Additional details (favorable allele, allele frequency, effect size, and annotation of the tran-
script containing the SNP) are provided in Table 3. The marker-trait associations are also displayed in Manhattan 
plots (Supplementary Fig. 8). We also evaluated potential parental selections for the purpose of further cultivar 
improvement. We identified genotypes that contained beneficial alleles with large effect sizes for yield-related 
traits (Supplementary Table 9). Many of these genotypes were among the top 10% of the performers in field 
evaluations6.

Marker-trait associations using gene expression markers (GEMs). The reads from the leaf tran-
scriptome from each genotype were mapped to 92,092 transcript assemblies out of the 96,560 transcript assem-
blies in the de novo reference assembly. A normalized expression dataset was generated from these mappings 
(Supplementary Data 11). The normalized expression dataset was further filtered for transcripts expressed 
(expression value of greater than or equal to 2) in at least one genotype, which yielded 39,609 transcripts, or GEMs 
across the collection (Supplementary Data 12). The regression analysis performed using GEMs, and filtered by 
applying Bonferroni correction (adj-P <  0.0000013), resulted in 34 GEM-trait associations (Supplementary  
Figs 9 and 10). Six of these GEM-trait associations were excluded because they violated the linearity assumption 
of linear regression analysis (Supplementary Figs 9 and 10). Finally, 28 GEM-trait associations were identified for 

Trait SNP Reference transcript Position Chr1 Position2 Alleles3 Freq4 Effect5 SE6 P-value Annotation7

First leaf emergence S_23737486 comp54771_c0_seq1 1,673 04 43,022,415 A/G 0.23 0.16 0.04 8.71E-05 Serine/threonine protein kinase

Ground to first leaf S_4036060 comp43747_c0_seq1 1,279 NA8 NA C/T 0.21 1.35 0.33 3.84E-05 Succinyl-CoA ligase [ADP-
forming] subunit alpha-2

Ground to first leaf S_8354256 comp48670_c0_seq1 510 09 21,384,837 T/C 0.18 1.65 0.39 2.12E-05 Ubiquitin-fold modifier-
conjugating enzyme

Ground to first leaf S_12390026 comp50830_c0_seq2 355 01 269,531 T/C 0.16 1.39 0.35 5.47E-05 Glutathione S-transferase

Ground to first leaf S_17227020 comp52764_c0_seq3 354 NA NA C/T 0.12 1.32 0.34 9.52E-05 PAP2 superfamily

Leaflets-2 months S_11450514 comp50326_c0_seq1 552 10 43,192,696 A/T 0.50 -0.44 0.11 7.39E-05 StAR-related lipid transfer 
protein

Plant vigor S_23474932 comp54688_c0_seq2 1,435 03 30,967,083 G/A 0.15 0.39 0.09 3.26E-05 NA

Stem diameter-5 months S_30601377 comp56353_c0_seq1 1,880 02 47,724,772 A/T 0.33 -0.35 0.09 9.09E-05 Synaptotagmin-5

SPAD S_31213411 comp56475_c0_seq1 2,559 05 14,781,013 G/T 0.46 0.97 0.25 9.82E-05 Nuclear pore complex protein 
Nup98-Nup96

Yield/plant S_806532 comp29700_c0_seq1 260 NA NA T/C 0.20 97.65 23.40 3.02E-05 Glutaredoxin-C2

Tubers/plant S_25048846 comp55124_c0_seq4 465 05 9,906,844 T/C 0.46 -9.91 2.54 9.73E-05 NA

Tubers/plant S_41908941 comp58209_c0_seq1 117 01 50,369,688 T/A 0.48 -14.07 3.23 1.32E-05 Clathrin heavy chain 2; 
endocytosis

Stolon length S_7515611 comp48154_c1_seq1 805 05 43,471 T/C 0.27 -9.89 2.54 9.78E-05  Deoxynucleoside kinases

Stolon length S_14498332 comp51702_c0_seq1 1,505 03 40,709,216 G/A 0.24 -10.22 2.55 6.35E-05 RNA processing and splicing; 
WW domain-binding protein

Stolon length S_17413318 comp52828_c0_seq1 183 NA NA T/A 0.26 -9.05 2.19 3.71E-05 NA

Mother tuber weight S_18970167 comp53339_c0_seq2 904 08 57,655,132 T/C 0.48 -85.81 20.86 3.88E-05 Glucose-6-phosphate 
transmembrane transporter

Mother tuber length S_25933856 comp55332_c0_seq1 1,714 02 499,012 G/A 0.38 0.79 0.20 6.22E-05 Regulator of nonsense 
transcripts

Mother tuber width S_23095079 comp54598_c3_seq1 295 10 39,313,260 C/T 0.19 -0.90 0.23 9.28E-05 Pectinesterase

Child tuber weight S_12121278 comp50661_c0_seq1 1,089 02 45,978,408 A/C 0.12 15.30 3.59 2.00E-05 PC-Esterase GDSL/SGNH-like 
Acyl-Esterase

Child tuber weight S_28587045 comp55916_c1_seq1 1,482 08 7,701,745 T/A 0.15 11.83 3.03 9.55E-05 BTB/POZ domain-containing 
protein; signal transduction

Child tuber length S_12121278 comp50661_c0_seq1 1,089 02 45,978,408 A/C 0.12 0.96 0.24 6.62E-05 PC-Esterase GDSL/SGNH-like 
Acyl-Esterase

Child tuber length S_30406303 comp56304_c4_seq2 1,682 06 29,252,859 G/A 0.13 0.74 0.19 7.84E-05 Zinc finger CCCH; DNA 
binding; photomorphogenesis

Table 3.  Marker-trait associations identified in the collection using SNP-based association analysis. 1Chr 
represents chromosomal location of SNP on Phaseolus vulgaris genome. 2Position represents location of SNP 
on Phaseolus vulgaris genome. 3Effective allele/other allele at the SNP location. 4Frequency of effective allele in 
the collection. 5SNP effect corresponding to the effective allele. 6Standard error associated with the SNP effect. 
7Annotation of reference transcript containing the SNP marker. 8NA represents information not available. SNPs 
associated with multiple traits are in bold.
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four aboveground and five belowground traits (Table 4 and Supplementary Figs 11 and 12). Nine GEM-trait asso-
ciations (Fig. 6) are particularly interesting, and can be broadly classified into three categories–(1) The expression 
of isoforms of the same gene are correlated with the same trait, but one of the isoforms is positively correlated 
with that trait while the other one is negatively correlated. This may suggest an autoregulatory feedback mecha-
nism, or opposite roles in controlling the phenotype by these isoforms; (2) Transcripts are expressed only in the 
five highest-performing genotypes (excepting one outlier), whereas the rest of the genotypes showed no expres-
sion, suggesting the transcripts’ possible role in improved performance of the genotypes for the respective trait; 
and (3) A transcript has lower expression (~FPKM <  20) in genotypes that produce shorter child tubers, and 
has higher expression (~FPKM >  40) in genotypes that produce longer child tubers, suggesting the role of the 
transcript in regulating child tuber length. Overall, association analysis conducted using GEMs has revealed 
candidate genes for several traits.

Discussion
Mining the diversity of plant collections is critical for developing cultivars. Evaluation of the breeding collection 
produced by Blackmon and Reynolds’ work has revealed Apios germplasm exhibiting significant improvements 
in key traits–for example, tuber yields of more than 1,500 g per plant for elite genotypes6. Nevertheless, despite 
~10 years of phenotypic selection, statistical estimates of diversity (π  and θ ) indicate that significant nucleotide 
diversity remains in the collection. Thus, the Blackmon and Reynolds collection has potential for continued 
improvement and cultivar development.

Apios is clonally propagated through tubers similar to many tuber crops, such as potato, cassava, sweet potato, 
and yams. Tuber crops are often highly heterozygous and exhibit hybrid vigor34. An advantage of clonal propa-
gation is that once a superior hybrid is identified, it can be fixed and propagated in the heterotic state. The down-
side is that high heterozygosity makes these crops vulnerable to inbreeding depression, since self-pollination 
will generally increase the proportion of homozygous (and presumably often deleterious) alleles. In this study, 
a strong negative correlation was observed between “inbreeding coefficients estimated for each genotype” and 
tubers produced per plant. Conversely, positive correlations were observed between inbreeding coefficients and 
leaflets measured 2 months after planting, mother tuber weight, and mother tuber width. The trait for leaflets 
recorded 2 months after planting is highly correlated with mother tuber weight and length, and higher values of 
these three phenotypic traits have previously been shown to be correlated with a “stout” tuber phenotype–i.e., one 
large mother tuber with just a few or no associated child tubers6. Thus, it seems that in Apios, higher heterozygo-
sity is associated with genotypes that produce many child tubers (and generally higher yield) rather than a large 
mother/seed tuber; and lower heterozygosity is associated with genotypes that produce a large mother tuber/seed 
tuber at the expense of child tubers. These patterns may reflect hybrid vigor, with the heterotic state generally 
being higher-yielding and partitioning more biomass into many child tubers. If yield gains are associated with 
heterosis, then Apios may be susceptible to inbreeding depression when forced to self-pollinate or when crosses 
are made between genetically related genotypes.

Understanding the population structure is useful for effectively utilizing genotypes for breeding purposes. We 
find clear population structure in the collection, with approximately six genotypic clusters. Interestingly, classifi-
cation on the basis of gene expression (using GEMs) was consistent with classification based on SNP genotyping: 
five of the six groups identified by fastSTRUCTURE remained intact in the phylogeny generated using GEMs. 
This validates the GEMs and suggests that gene expression data can be effectively used as molecular markers for 
understanding the population structure, and its accuracy may be comparable with SNP-based methods.

A clear understanding of pollination biology is essential for performing hybridization experiments. According 
to Bruneau and Anderson11, Apios flowers are predominantly out-crossing. Although self-pollination may occur 
when the plants are made to self, the success rate is quite low. Based on the Index of Self-Incompatibility (ISI), the 
authors suggest existence of partial self-incompatibility with characteristics of a gametophytic self-incompatibility 
system. We find LD in the Apios collection generally decaying within 10 to 15 kb. Linkage disequilibrium extend-
ing to such small distances is mainly observed in cross-pollinating species35,36. In self-pollinating species, the 
effective recombination rate is severely reduced, leading to increased LD. Hence, the LD results obtained in this 
study suggest out-crossing biology, consistent with observations made about the pollination by Bruneau and 
Anderson11.

Marker-trait associations identified using association analysis can be utilized in at least two ways: (1) imple-
mentation of marker-assisted selection (MAS) in a breeding program; (2) identification of potential parents con-
taining favorable alleles (i.e. parental selections). The high heterozygosity and clear population structure in our 
dataset prompted us to test different models and packages for association analysis. Of the five models tested, the 
one that best accounted for population structure incorporated “familial relatedness” in the mixed model and 
was implemented in the GCTA package. This also appeared to give the most reliable results, based on QQ-plots. 
Controlling for population structure by incorporating “familial relatedness” has recently been shown to be helpful 
in association analysis involving highly structured populations with admixture37. One of the limitations of our 
study in performing association analysis is the relatively small population size (52 individuals). A similar popula-
tion size (53 individuals) had been used in a study in Brasssica napus, and the marker-trait association identified 
and validated38. Nonetheless, marker-trait associations identified in this study should be considered cautiously, 
and will require validation using another germplasm collection or bi-parental populations grown in multiple 
environments.

SNP markers used in this study are from the transcribed regions, and this allows for preliminary verifica-
tion of marker-trait associations using the annotations of the transcripts containing SNPs of interest. A few 
of the marker-trait associations for which there are suggestive transcript annotations are: (1) S_23737486 
(SNP)/comp54771_c0_seq1 (transcript; a serine/threonine protein kinase), associated with “weeks to first leaf 
emergence.” This enzyme has been previously shown to regulate seedling germination39,40. (2) S_23095079/
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comp54598_c3_seq1 (Pectinesterase, a widely studied enzyme in fruits, and a key enzyme in potato involved in 
regulating firmness of the tubers41,42) associated with mother tuber width. (3) S_18970167/comp53339_c0_seq2 
(a glucose-6-phosphate transmembrane transporter that catalyses the transfer of glucose-6-phosphate from one 
side of the membrane to the other), associated with mother tuber width. A study conducted in potato links the 
glucose-6-phosphate transmembrane transporter to tuber size. Sucrose is the major form of sugar transported to 
tubers from green tissues; unloading and subsequent mobilization of sucrose during tuber initiation and enlarge-
ment involves conversion of sucrose to fructose-6-phosphate through a glucose-6-phosphate intermediate43. 
Increased sucrose mobilization in the cytosol of the photosynthate sink has been shown to increase tuber number 
and reduce tuber size. On the other hand, a rise in sucrose mobilization in the apoplast increases tuber size and 
decreases tuber number44.

Selection of parents is the first key step in cultivar development. In our previous study6, we had recommended 
potential candidate parents and crossing schemes based only on phenotypic evaluations. The first scheme was sug-
gested for development of high-yielding genotypes, and involved the utilization of the top 10% of high-yielding 
genotypes to make a “good x good” cross. The genotypes that comprised the top 10% in each of the four envi-
ronments include accessions 1972, 2191, 898, 2127, 1849, 2155, 2201, 1970, and 20656. Using the population 
structure results from this study, we can now identify genotypes that are the most genetically diverse, reducing 

Trait Transcript Chr1 Start2 Estimate3 SE4 t-value5 P-value Adj-r2 Annotations

Internode length comp56323_c0_seq5 NA6 NA − 2.74 0.46 − 5.99 2.26E-07 0.41 NA

Stem diameter–2 
months comp57243_c2_seq2 02 3,455,626 73.48 13.0 5.65 7.57E-07 0.38 RNA-binding protein 8A; mRNA processing

comp52044_c2_seq3 10 42,053,143 − 13.38 2.35 − 5.69 6.68E-07 0.38 Heat shock 70 kDa protein 15/Molecular chaperone

Leaflets–2 months comp49135_c0_seq1 10 6,001,220 11.10 1.56 7.10 4.24E-09 0.49 CER1-like 1/Fatty acid hydroxylase

comp55774_c3_seq6 05 34,676,406 − 4.11 0.72 − 5.72 5.92E-07 0.38 NA

Leaflets–5 months comp52098_c0_seq1 02 33,390,379 45.40 6.89 6.59 2.59E-08 0.45 Geranylgeranyl pyrophosphate synthase

comp52098_c0_seq2 02 33,390,379 − 45.56 7.62 − 5.98 2.35E-07 0.41 Geranylgeranyl pyrophosphate synthase

Yield/plant comp57301_c0_seq1 08 51,938,872 0.02 0.00 6.96 6.96E-09 0.48 GDSL esterase/lipase At1g71250; Geranylgeranyl 
reductase, choloroplastic

comp55913_c0_seq2 08 52,258,272 0.03 0.00 6.70 1.80E-08 0.46 Integral membrane protein; Late exocytosis, Golgi 
transport

comp49849_c0_seq1 05 30,357,198 0.04 0.01 6.48 3.93E-08 0.45 NA; Possesses a signal peptide cleavage site

comp45738_c0_seq1 05 28,501,950 0.64 0.11 6.11 1.50E-07 0.42 14-3-3-like protein B

comp32096_c0_seq1 05 20,713,186 − 0.03 0.01 -5.76 5.17E-07 0.39 Uncharacterized protein At1g18480; Calcineurin-like 
phosphoesterase

comp55939_c2_seq5 03 23,432,180 0.01 0.00 5.73 5.83E-07 0.38 UDP-glucose flavonoid 3-O-glucosyltransferase 7

comp45738_c0_seq2 05 28,501,950 − 0.69 0.12 − 5.57 1.01E-06 0.37 14-3-3-like protein B

Tubers/plant comp52843_c0_seq8 07 38,262,470 0.46 0.07 6.25 8.83E-08 0.43 ADP-ribosylation factor GTPase-activating protein 
AGD7

comp57897_c0_seq2 08 4,984,724 0.60 0.11 5.66 7.42E-07 0.38 N-terminal kinase-like protein

comp53873_c0_seq2 08 9,973,071 0.40 0.07 5.58 9.71E-07 0.37 Ferrochelatase-2, chloroplastic

comp46887_c0_seq3 09 21,886,278 0.24 0.04 5.58 9.94E-07 0.37 NA

comp54966_c0_seq3 11 8,691,266 − 0.94 0.17 − 5.56 1.06E-06 0.37 Nucleoside-diphosphate-sugar epimerases; UDP-
glucuronic acid oxidase

Mother tuber length comp57964_c0_seq4 07 41,689,316 − 4.11 0.68 − 6.07 1.70E-07 0.41 Mannosylglycoprotein endo-beta-mannosidase; 
Carbohydrate metabolism

Child tuber weight comp55913_c0_seq2 08 52,258,272 0.21 0.04 5.75 5.34E-07 0.39 Integral membrane protein; Late exocytosis, Golgi 
transport

Child tuber length comp55913_c0_seq2 08 52,258,272 3.41 0.50 6.79 1.26E-08 0.47 Integral membrane protein; Late exocytosis, Golgi 
transport

comp57351_c3_seq6 02 47,947,761 19.12 2.83 6.76 1.42E-08 0.47 Jasmonate ZIM domain-containing protein 3; JA 
signaling pathway

comp55939_c2_seq5 03 23,432,180 1.72 0.29 5.93 2.80E-07 0.40 UDP-glucose flavonoid 3-O-glucosyltransferase 7

comp56129_c4_seq6 NA NA 8.05 1.36 5.92 2.87E-07 0.40 NA

comp56118_c0_seq1 02 43,809,153 2.12 0.37 5.72 6.02E-07 0.38 NA

comp57301_c0_seq1 08 51,938,872 2.38 0.42 5.71 6.13E-07 0.38 GDSL esterase/lipase At1g71250; Geranylgeranyl 
reductase, choloroplastic

comp57243_c2_seq2 02 3,455,626 31.05 5.45 5.70 6.40E-07 0.38 RNA-binding protein 8A; mRNA processing

Table 4.  Marker-trait associations identified in the collection using gene expression markers. 1Chr 
represents chromosomal location of transcript on Phaseolus vulgaris genome. 2Start represents start position 
of the transcript mapped to Phaseolus vulgaris genome. 3Estimate obtained from linear regression analysis. 
4Standard error associated with the estimate. 5t-value is from a test with null hypothesis that the estimate is 
equal to zero (no effect). 6NA represents information not available. Transcripts associated with multiple traits 
are in bold.
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the likelihood of inbreeding depression, and promoting hybrid vigor. We may now recommend hybridizations 
between the genotypes in genetically distinct clusters: cluster 1–2191; cluster 2: 1972, 1849, and 2155; cluster 
3–1970; and cluster 4–898, 2127, 2201, and 2065. In addition, favorable alleles for yield-related traits are identi-
fied in the following genotypes that are among the top 10% based on their phenotype (Supplementary Table 9):  
Genotype 2191 (tubers/plant), 1972 (yield/plant, mother tuber length, child tuber weight and length), 1849 
(yield/plant, mother tuber length), 2155 (yield/plant, tubers/plant, mother tuber length), 1970 (mother tuber 
length), and 898 (tubers/plant). For example, a cross of 1972 ×  2191 or 1972 ×  898 might be expected to produce 
some high-yielding genotypes with a reasonably good number of large sized child tubers. A similar strategy of 
integrating results from population structure and association analysis should be considered for other crossing 
schemes. In particular, it should be applied to the selections derived by Belamkar et al.6, which were primarily 
based on the phenotypic data available at the time.

Gene expression in the genotypes can be correlated with their phenotypes, and is valuable in identification of 
candidate genes for phenotypic traits38. Gene expression is affected by many factors including staging of tissues 
for sampling, environment, and plant growth and development. Nevertheless, recent evidence suggests expres-
sion data can be more powerful or at least as informative as the SNP markers for building kinship matrices 
and for clustering, PCA, expression-based association analysis and genomic predictions (especially for com-
plex traits with low heritability)38,45–48. RNA-Seq and microarray can both provide insights into the global tran-
scriptome. However, per sample costs are still higher compared to SNP genotyping assays. Hence, expression 
based marker-trait association studies have relied on sequencing one-pooled samples, comprising biological 
replicates38,47,48. In this study, 28 GEM-trait associations were identified, and they include transcripts for four 
aboveground and five belowground traits. Interestingly, only five of these transcripts contained SNPs. These val-
uable associations would not have been captured in the association analysis conducted solely using SNP markers. 
The expression of the transcript “comp57351_c3_seq6” was lower in genotypes with shorter child tubers, and was 

Figure 6. Scatter plots of nine interesting marker-trait associations identified using gene expression 
markers (GEMs). Linear regression analysis was performed with 39,609 GEMs as dependent variables, and 
each of the 20 phenotypic traits as independent variables. We identified 28 GEM-trait associations, nine of 
which are shown in this figure. The Y-axis of each plot represents FPKM normalized expression values of a 
transcript for 52 genotypes, and X-axis represents REML-based LS means for the phenotypic trait measured on 
these genotypes.
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extremely high in genotypes with longer child tubers, resulting in clustering of the population into two groups 
based on its expression. This transcript is annotated as being involved in the Jasmonic Acid (JA) signaling path-
way, and JA has a well established role as an effective inducer of tuberization in potato49,50. Two of the transcripts 
(comp57301_c0_seq1 and comp55913_c0_seq2), associated with yield/plant and child tuber length, were only 
expressed in the top five performing genotypes (1849, 1972, 2127, 2155 and 2201), and 1978 (good-performing, 
but not exceptional). These two transcripts were mapped to Chromosome 8 of P. vulgaris, where they are sep-
arated by 318.1 kb. Although there are no SNPs within either transcript, there are 96 SNPs identified in genes 
falling between them (assuming conserved synteny with Phaseolus). The average LD (r2) among these 96 SNPs 
was 0.18, which is slightly higher than the background LD value of 0.15. Further investigation is required to test 
whether this region was selected during the Blackmon and Reynolds’s breeding program. Overall, GEM-based 
association analysis provided several candidate genes that merit further functional evaluations. GEM-based asso-
ciations will need to be validated in a different collection or in bi-parental mapping populations prior to imple-
mentation in gene discovery or marker-assisted selection efforts.

In summary, this study in Apios demonstrates how a combination of high-throughput genomics and pheno-
typic information may accelerate the mining of a germplasm collection for a little-studied crop. We have built a 
large collection of genomic resources for Apios, including a high-quality reference de novo transcriptome assem-
bly, an expression atlas of six tissues, and 58,154 highly reproducible SNPs and 39,609 GEMs across the collection. 
Both SNPs and GEMs successfully identified the pedigree and population structure, and association analysis 
identified favorable alleles and potential candidate genes for both aboveground and belowground traits. Lastly, 
the success of GEMs here is exciting and suggests broad utility of this method for both new and well-studied 
crops.

Methods
Historical and morphological evaluation of the Apios americana collection. The collection used 
in the study was developed by Blackmon and Reynolds14,15 at Louisiana State University Agricultural Experiment 
Station in Baton Rouge, LA during 1985–1994 (Fig. 1a). The breeding program involved (i) collection of wild 
germplasm from different states of the USA and Canada with the majority of them originating from Louisiana; 
(ii) germplasm evaluation for traits of interest; (iii) open pollinations; and (iv) phenotype-based selections for 
superior genotypes (Fig. 1a). The open pollinations made it impossible to conclusively determine the paternal 
parent; instead, the genotypes growing adjacent to the female genotypes (the probable pollen donors), were 
generally recorded as the “likely paternal parents”. Genotypes that produced seeds were documented as female 
parents. Partial pedigree information derived from maternal lineage is available for 35 of the 53 accessions in 
the collection (Fig. 1b). The collection was screened6 for phenotypic variation in 2011–2012 in Iowa, Virginia 
and Pennsylvania under field-conditions and in pots and grow-bags. Twenty phenotypic traits, including 10 
aboveground and 10 belowground traits, were recorded for the entire collection. The REML-based least square 
(LS) means generated for the 20 traits recorded at Ames, IA during 2011 and 2012 were used in this study6. The 
genome sizes of 25 of the 53 genotypes, as well as six additional wild accessions collected from Iowa, New York 
and Canada were estimated using flow cytometry at the Iowa State University Flow Cytometry Facility (http://
www.biotech.iastate.edu/facilities/flow/).

De novo transcriptome assembly, annotation and expression catalog. Total RNA was isolated 
from 14 samples, including six different tissues from accession 2127 (Supplementary Data 1), using Qiagen 
RNeasy® Plant mini kit and following the manufacturer’s protocol. The RNA samples were treated with Ambion® 
TURBO DNA-free™  DNase to eliminate any DNA contamination, and the quality and quantity were then 
inspected using an Agilent 2100 Bioanalyzer. Illumina® libraries were prepared, and the samples were sequenced 
on Illumina® GAIIx, and Illumina® HiSeq 2000 platforms (Supplementary Data 1). Both single- and paired-end 
reads of length 50 to 90 bp were generated. The reads were trimmed to exclude the Q2 (read segment control 
indicator) bases from the ends of the reads using a custom script (https://goo.gl/Q73j48). The reads that passed 
the quality trimming and were at least 25 bp in length were utilized to build the de novo transcriptome assembly 
using the Trinity package51 (release 2013-02-25). Assembled transcripts were examined for full-length transcripts, 
and sequence conservation across species, by performing a BLASTX search with a threshold of 1E-05 against 
the proteomes of six sequenced legumes, Swiss-Prot non-redundant database (release-2013_04), and the model 
plant Arabidopsis thaliana (v 10.0; release 04/16/2012). The six legume species included Glycine max (assembly v 
1.01, JGI Glyma 1.1 annotation), Medicago truncatula (v 3.5.1), Cajanus cajan (v 1.0), Phaseolus vulgaris (v 1.0), 
Lotus japonicus (v 2.5) and Cicer arietinum (v 1.0). Functional annotation of transcripts was performed using 
Trinotate51, an annotation suite within the Trinity package. The likely coding region (open reading frame) in the 
transcripts were extracted using TransDecoder with default settings, and the option to utilize pfam using hmms-
can (–search_pfam), and the minimum peptide length changed to 67 amino acids to match with the minimum 
length of transcripts. The functional annotation of these peptides was performed as follows: a homology search 
with BLASTP against the Swiss-Prot non-redundant database; protein domain identification using HMMER 
and Pfam-A (v 27.0); signal peptide identification using SignalP (v 4.0); transmembrane region prediction using 
tmHMM; and annotation by comparison with the eggNog (evolutionary genealogy of genes) and Gene Ontology 
databases. Lastly, the quality-trimmed reads from 11 samples–six different tissues and two biological replicates 
per tissue (except for flower sample)–were aligned to the de novo transcriptome assembly using Bowtie, and the 
abundance estimation per transcript and component (loosely termed as gene) were estimated using RNA-Seq by 
Expectation Maximization (RSEM)52.

http://www.biotech.iastate.edu/facilities/flow/
http://www.biotech.iastate.edu/facilities/flow/
https://goo.gl/Q73j48
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Genotyping using RNA-Seq. The collection was grown in 2012 at Ames, IA as described in Belamkar  
et al.6. Young leaf close to the shoot tip was excised from 52 genotypes, 3 months after planting, on a single day, 
within a two-hour window and at mid-day to minimize the effect of environment and provide relatively uniform 
staging of tissues for gene expression. The leaf tissue from four plants that were grown from four independent seed 
tubers (represent a genotype) were pooled and frozen in liquid nitrogen. Total RNA was isolated and the quality 
was inspected as described earlier for de novo transcriptome assembly construction. Illumina® libraries were pre-
pared at the DNA Facility at Iowa State University (http://www.dna.iastate.edu), and the samples were sequenced 
on Illumina® HiSeq at National Center for Genome Resources (NCGR), Santa Fe, NM to generate single-end, 
50 bp reads (Supplementary Data 1). RNA was isolated and sequenced from pooled samples of shoots and roots 
of four genotypes that were grown in the greenhouse for quality control purposes (Supplementary Data 1). All of 
the sequence data generated are available in the Short Read Archive (SRA) at NCBI (BioProject: PRJNA313331; 
SRA: SRP071120). The reads from the 56 samples were mapped to the de novo transcriptome assembly to iden-
tify “variants” and “transcript abundances for each genotype” using the AlpheusTM pipeline53. For calling single 
nucleotide polymorphisms (SNPs) in each genotype, a minimum read depth of ≥ 5 reads, frequency of vari-
ant allele ≥ 20%, and average quality of bases calling the variant allele ≥ 10 were used. We further filtered and 
excluded SNP markers with minor allele frequency ≤ 0.1% and maximum missing percentage ≥ 10%, and gener-
ated 58,154 high-quality SNP markers. Allele frequencies, and summary statistics for each SNP (major and minor 
allele frequency, missing %, heterozygous accessions %) and genotype (number of SNPs, missing SNPs %, hete-
rozygous SNP marker sites %) were generated using the “Genotype summary” option in TASSEL v 5.0 (ref. 54).  
The “transcript abundance per individual” was also utilized as a marker, and will be referred to as a gene expres-
sion marker (GEM). A transcript was considered expressed if the normalized expression value was greater than 
or equal to 2 in at least one of the genotypes, which resulted in 39,609 GEMs across the collection.

Diversity, inbreeding and pedigree estimates. The two commonly used diversity estimates, average 
pairwise divergence or nucleotide diversity per bp, π  (pi), and number of segregating sites per nucleotide, θ  
(theta) were generated using the option “Diversity” in TASSEL. Similarly, the Tajima’s D was produced in TASSEL 
to understand the evolutionary history of the breeding collection. The extent of heterozygosity in the collection, 
and its effect on phenotype, was investigated by estimating inbreeding coefficients for each genotype using the 
“–het” option in PLINK. The correlations between inbreeding coefficients and REML-based LS means of pheno-
typic traits recorded in Ames, IA in 2011–2012 were performed in R (http://www.r-project.org/). Lastly, pedi-
gree relationships between genotypes in the collection such as “parent-child” and “half-sib” were identified using 
estimates of identity-by-descent (IBD) as described in Stevens et al.55. The IBD and the proportion of IBD values 
were generated using the “–genome” option in PLINK with an assumption of homogenous population. The SNP 
data set used for IBD analysis was restricted to retain only the SNPs that were reproducible in the four control 
genotypes, and had minor allele frequency ≥ 0.1% and maximum missing percentages ≤ 10%, which provided 
14,321 SNP markers across the collection.

Population structure. The population structure of the collection was investigated using both SNPs and 
GEMs. Four approaches were tested using SNPs–(1) Phylogeny reconstruction using the package SNPhylo56. 
Briefly, in this package the SNP information of each genotype is used to generate sequences. The sequences are 
then aligned using MUSCLE, and the phylogeny tree is built using maximum likelihood. SNPhylo was utilized 
with the following settings (-l 0.0, -b and -A), and the resulting tree was visualized with midpoint rooting using 
FigTree v 1.4.2; (2) Identity-by-state (IBS)–a distance matrix based on (1-IBS) values was generated using PLINK 
v 1.90b2pNL, and hierarchical clustering was performed using the Ward’s linkage in R; (3) Principal component 
analysis (PCA)–performed in the program GCTA v 1.24 (ref. 57), and the plot of PC1 versus PC2 was made in R; 
(4) Variational Bayesian framework–implemented in the program fastSTRUCTURE58. The program fastSTRUC-
TURE was run with a prior of 1 to 10 subgroups in the collection (K =  1 to 10), and the output was parsed with 
“choosing model complexity” script to determine the possible range of subgroups. The potential subgroups iden-
tified were then inspected with known pedigree information and coefficient of coancestry values generated for 
each genotype to precisely identify the number of subgroups in the collection. The results were visualized using 
a plot made in R. Furthermore population structure analysis was also performed using GEMs. The normalized 
expression counts of 39,609 GEMs were transformed to log2 scale, and 1000 GEMs with the highest variances 
across the collection were utilized to generate a Euclidean distance matrix followed by hierarchical clustering 
using Ward’s linkage method in R. A confusion table was built to compare the performance of the five different 
approaches to the known partial pedigree information, and decipher the population structure in the collection.

Linkage disequilibrium (LD), and LD decay. Linkage disequilibrium in the collection was investigated 
using the LD statistic “r2.” The r2 values were generated for all marker pairs located within and between transcripts 
using the options “–r2, inter-chr and –ld-window-r2 0.0” in PLINK. We further mapped the Apios transcripts to 
the Phaseolus vulgaris genome assembly (version 1.0) using gmap (2014-05-15.v3) with the following settings: “–
cross-species, –format =  coords, –npaths =  0, –chimera-margin =  0, intronlength =  10034, –totallength =  60969,” 
and retrieved the likely location information for ~81% of the SNPs. These marker locations were then utilized 
to investigate the decay of LD along each of the “pseudo-Apios” chromosomes, as well as across the genome, 
with the assumption that the genome structure is conserved between the two phaseoloid legumes A. americana 
and P. vulgaris. The background LD estimated as the 90th percentile of the r2 value of marker-pairs on different 
chromosomes, and the commonly used criteria (r2 =  0.1 and 0.2) across the genome, were used to set a threshold 
to determine the LD decay. Haplotype blocks were estimated using the options “–blocks, no-pheno-req and –
blocks-max-kb 2000” in PLINK. The maximum haplotype block size was set to 2 Mb. In this method two SNPs are 
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considered to be in ‘strong LD’ if the lower limit of the 90% D-prime confidence interval is greater than 0.7, and 
the upper limit of the confidence interval is at least 0.98. Generally, for a haplotype block the number of ‘strong 
LD pairs’ must be more than 95% of the total number of informative pairs. The pericentromeric start and end 
coordinates of each of the chromosomes were obtained from the P. vulgaris genome browser hosted at the Legume 
Information System (legumeinfo.org).

Association analysis using SNP markers. The phenotypic dataset used for association analysis is pre-
viously reported in Belamkar et al.6, and contains REML-based LS means of 20 phenotypic traits that include 
10 aboveground and 10 belowground measurements recorded on 52 genotypes in Ames, IA during 2011 and 
2012. The genotypic dataset contains 58,154 SNPs of high quality, after filtering and excluding SNPs with minor 
allele frequency ≤ 0.1% and maximum missing percentage ≥ 10%. Population structure was accounted for either 
by including only familial relatedness, or familial relatedness together with subpopulations in the linear mixed 
models (LMMs). Association analysis was first performed in the software program TASSEL59 by incorporat-
ing (1) familial relatedness matrix (generated in PLINK) in the linear mixed model as random effect; and (2) 
familial relatedness (as random effect) and subpopulation membership coefficients generated using fastSTRUC-
TURE as covariates. Association analysis was also conducted using “GCTA: a tool for Genome-wide Complex 
Trait Analysis60”, in which familial relatedness matrix was generated with GCTA, and either six or 10 principal 
components were used to account for presence of subpopulations. The performance of each of the models was 
tested using quantile-quantile (QQ) plots generated using “qqman” package in R. Marker-trait associations with 
a P-value less than 0.0001 were considered as significant associations38,61, and were tabulated and represented in 
Manhattan plots generated using “qqman” package in R. The marker-trait associations were further assessed by 
comparing the biological function of the transcript containing the SNP marker (derived from its annotation) to 
the associated phenotypic trait.

Association analysis using gene expression markers. Linear regression analysis was performed in 
R with 39,609 GEMs as dependent variables, and each of the 20 phenotypic traits as independent variables. The 
adjusted-r2 and significance (P) values were recorded per trait for each of the GEMs. The associations were: 
(1) filtered by applying Bonferroni correction of P <  0.05, which resulted in a new threshold of P <  0.0000013 
(0.05/39609). (2) The associations that passed the Bonferroni test were examined for assumptions of linear regres-
sion. FPKM normalized expression values were represented along Y-axis, and REML-based LS means for the 
phenotypic trait were plotted along the X-axis. The significant associations that passed both the Bonferroni test 
and met the assumptions were tabulated, and also displayed using Manhattan plots. The significant associations 
were further verified by comparing the associated phenotypic trait with the annotations of transcripts.

Statistical analyses. The statistical analyses described in this article were performed in R (http://
www.r-project.org/). R code for replicating the analysis and plots are provided in Supplementary Methods 1.
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