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Potential application of VIIRS Day/Night Band for monitoring
nighttime surface PM2.5 air quality from space
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h i g h l i g h t s

� VIIRS Day/Night Band (DNB) is much more sensitive to aerosols than to water vapor
� Modeling of outdoor light transfer in nighttime atmosphere for VIIRS DNB
� DNB potential for estimating surface PM2.5 is shown qualitatively and quantitatively
� PM2.5 at VIIRS night overpass time is much closer to daily-mean PM2.5 than at daytime
� Strategies for future DNB remote sensing of aerosols are elaborated
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a b s t r a c t

A pilot study is conducted to illustrate the potential of using radiance data collected by the Day/Night
Band (DNB) of the Visible Infrared Imaging Radiometer Suite (VIIRS) aboard the Suomi National Polar-
orbiting Partnership (S-NPP) satellite for particulate matter (PM) air quality monitoring at night. The
study focuses on the moonless and cloudless nights in Atlanta, Georgia during AugusteOctober 2012. We
show with radiative transfer calculations that DNB at night is sensitive to the change of aerosols and
much less sensitive to the change of water vapor in the atmosphere illuminated by common outdoor
light bulbs at the surface. We further show both qualitatively that the contrast of DNB images can
indicate the change of air quality at the urban scale, and quantitatively that change of light intensity
during the night (as characterized by VIIRS DNB) reflects the change of surface PM2.5. Compared to four
meteorological variables (u and v components of surface wind speed, surface pressure, and columnar
water vapor amount) that can be obtained from surface measurements, the DNB light intensity is the
only variable that shows either the largest or second largest correlation with surface PM2.5 measured at 5
different sites. A simple multivariate regression model with consideration of the change of DNB light
intensity can yield improved estimate of surface PM2.5 as compared to the model with consideration of
meteorological variables only. Cross validation of this DNB-based regression model shows that the
estimated surface PM2.5 concentration has nearly no bias and a linear correlation coefficient (R) of 0.67
with respect to the corresponding hourly observed surface PM2.5 concentration. Furthermore, ground-
based observations support that surface PM2.5 concentration at the VIIRS night overpass (~1:00 am
local) time is representative of daily-mean PM2.5 air quality (R ¼ 0.82 and mean bias of �0.1 mg m�3).
While the potential appears promising, mapping surface PM2.5 from space with visible light at night still
face various challenges and the strategies to address some of these challenges are elaborated for future
studies.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The last decade has seen a growing interest of applying satellite
remote sensing data to derive mass concentration of aerosol or
particulate matter at the surface (Wang and Christopher, 2003; Liu
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et al., 2004; Hoff and Christopher, 2009; van Donkelaar et al., 2013).
Surface Particulate Matter (PM) concentration is a primary stan-
dard for evaluating air quality, and improved estimates of the
spatial distribution from satellite data, if accurate, can enhance the
ground-based aerosol observation network and provide an
improved understanding of spatial gradients of PM for air quality
assessment at the regional to continental scale. Indeed, operational
monitoring of particulate matter (PM) with aerodynamic diameters
less than 2.5 mm (PM2.5) does not exist in many developing coun-
tries such as China and India (Hoff and Christopher, 2009), even
though it has been known for decades that increased exposure to
PM2.5 can induce respiratory diseases and premature death (Wilson
and Spengler, 1996).

While the air quality standards for PM vary in different coun-
tries, the standards are often expressed in terms of surface dry PM
mass concentration at 24-h or annual averages, which contrasts
with an instantaneous aerosol optical measurement derived from
radiances at the satellite overpass time. For example, the most
recent primary National Ambient Air Quality Standards (NAAQS)
for PM2.5 promulgated by U.S. EPA set the daily standard at 35 mgm-

3 (24-hr average) and the annual standard at 12 mgm-3. At the vast
majority of surface PM2.5 monitors used to determine compliance
with these standards, the method is based on an integrated (24-h)
filter-based measurement operated every 3rd day. There are also
continuous PM2.5 monitoring methods which provide hourly PM2.5

measurements, with the vast majority being used to supply data to
support development of air quality models and forecasts, including
the Air Quality Index (AQI). Regardless of the type monitor or use of
data, additional information on both the temporal and spatial dis-
tribution of PM2.5 can fill gaps in the assessment of air quality
conditions.

This study introduces the first attempt to derive the near-
surface PM2.5 at night from the visible lights measured by the
Day/Night Band (DNB) on the VIIRS sensor aboard the NPP satellite
launched in October 2011. VIIRS views the Earth at 22 channels,
including 9 bands (in addition to DNB) in the visible to near infrared
(IR) spectrum, 8 bands in middle IR and 4 bands in thermal IR (Lee
and Miller, 2006). With its swath of ~3000 km at the equator, VIIRS
provides global coverage twice within 24 h. Similar to its prede-
cessor, the Operational Linescan System (OLS) that has been aboard
the DMSP for detecting clouds and city lights during night (Elvidge
et al., 1999), the VIIRS DNB has a spectral width covering
0.4e0.9 mm. Different from OLS, which has only 6-bit quantization,
a nominal footprint of 2 km at nadir, and no onboard calibration,
VIIRS DNB has 3-level of gains (for low, medium, and high intensity
light) respectively digitized with 13, 13, and 14-bits, onboard cali-
bration, and a nearly constant resolution of ~750 m across the scan
swath (Lee and Miller, 2006). Such advanced capability in DNB
provides an unprecedented opportunity to monitor visible light
during night from space.While past case studies have used artificial
light from OLS and DNB to derive aerosol optical depth at night
(Zhang et al., 2008; Johnson et al., 2013), the application of the
VIIRS DNB for nighttime PM air quality applications is still unex-
plored because the operational retrieval of AOD from VIIRS is only
conducted during daytime by using radiance data at shortwave
spectrum (Jackson et al., 2013).

Estimates of surface PM2.5 at night from space are important for
various reasons. First, surface PM2.5 often has a distinct diurnal
cycle, and hence satellite-based estimate of surface PM2.5 at night
can be used together with other remote sensing techniques that
rely on sunlight to estimate daily-averaged PM (Wang and
Christopher, 2003; Liu et al., 2004; Al-Saadi et al., 2005; Gupta
et al., 2006; P. Gupta et al., 2006; Engel-Cox et al., 2013; van Don-
kelaar et al., 2013). Second, factors that regulate the surface PM at
night often highly contrast with their counterparts during daytime;

these factors include a shallow nocturnal boundary layer, low ef-
ficiency in oxidation and gas-to-particle conversion, weak turbu-
lent mixing (sometimes further suppressed by temperature
inversion), and largely reduced emissions fromhuman activity such
as transportation, cooking, construction, etc. (Seinfeld and Pandis,
2006). Observation-constrained assessments of the relative
importance of these factors are highly needed for a better under-
standing of the change of surface daily PM2.5 mass, but currently are
hindered by the fact that operational retrievals of aerosols from
space are made most often during daytime (with an exception of
using lidar such as CALIOP that often has limited spatial coverage,
Winker et al. (2002)).

At night, artificial lights and moonlight are two major sources
for the visible lights. While the spatiotemporal distribution of
incoming moonlight at the top of atmosphere can be much better
quantified than artificial lights (Miller and Turner, 2009), the in-
tensity of artificial lights, especially in an urban environment, is
generally more stable and a factor of 10 higher than moonlight
(Miller and Turner, 2009). Hence, in this study, we will explore the
potential of using city lights in a large urban center (Atlanta) to
derive the surface PM2.5 at night. In addition, the intensity of city
lights is also shown to be a good indicator of city population and
energy consumption (Elvidge et al., 1999), and hence, the process of
using city lights to derive surface PM2.5 can fit the emergent needs
for operational air monitoring in urban regions where the NAAQS
are often not in compliance (such as the Atlanta Metropolitan
Statistical Area or MSA). Through a case study, this paper is aimed
to introduce the potential of VIIRS DNB for nighttime PM estimate
to the air quality community, and to elaborate on the challenges of
the next steps. We present data and our approach in Section 2,
analysis in Section 3, and conclude our paper in Section 4.

2. Data and approach

2.1. Data and DNB sensitivity to aerosol and water vapor

Located aboard S-NPP, the VIIRS is a 22-band scanning radi-
ometer with a nominal spatial resolution of 375 m in the five im-
agery bands (I-bands) and 750 m in both the 16 moderate-
resolution bands (M-bands) and the dayenight band (DNB)
(Polivka et al., 2015). Over a single orbit, the intensity of visible light
that VIIRS encounters can range seven orders of magnitude (from
daytime cloud reflection of solar radiation to nighttime illumina-
tion by airglow, starlight, and zodiacal light in clear sky conditions)
(Lee and Miller, 2006). To achieve high radiometric resolution
across such a large dynamical range of visible light, DNB is deigned
to: (a) have a broad spectral coverage (of 0.4e0.9 mmand half width
and half maxima of the spectral response function at 0.7 mm, Fig. 1),
and (b) select its amplification gain dynamically from three
simultaneously collecting stages (groups of detectors) (Lee et al.,
2006). Each of three stages (corresponding to high, medium, and
low gains, respectively) covers a radiance range of more than 500:1
and has generous overlap with its adjacent stage(s) to ensure a
good single-to-noise ratio (Lee et al., 2006). In average, DNB's
radiometric uncertainties are estimated as 3.5%, 7.8%, and 11.0%
during daytime, twilight, and nighttime conditions, respectively
(Miller et al., 2012). With such accuracy, DNB data is shown to be
valuable for studying meteorological and surface features illumi-
nated by moonlight as well as for detecting airglow structures in
the mesosphere at night (Miller et al., 2012).

The VIIRS sensor data records (SDRs) of calibrated radiances
and brightness temperatures cover a spectral range from 0.411 to
11.87 mm and are used in a wide range of Earth observation ap-
plications, including fire detection and characterization, retrieval
of cloud and aerosol properties, and land and sea surface
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temperature estimation (Cao et al., 2013). For this study, three
VIIRS datasets are used: (a) VIIRS DNB scientific data record (SDR)
that includes DNB radiances (Cao et al., 2013); (b) VIIRS DNB
geolocation SDR that includes the latitude, longitude, moonphase
angle, and Moon-Sun-Earth-Satellite geometries (Cao et al., 2013);
(c) VIIRS cloud mask intermediate product (CVM) (Kopp et al.,
2014). In addition, VIIRS night imagery is also used to filter out
the days that have clouds.

In total, 15 moonless and cloudless nights of data are found from
1 August 2012 to 30 October 2012. Hourly PM2.5 data were
extracted from the Environmental Protection Agency (EPA) Air
Quality System (AQS) Data Mart for 5 Georgia Department of Nat-
ural Resources (GADNR) continuous PM2.5 monitoring stations
within Atlanta, Georgia. 3 sites (denoted as A, B, and C in Fig. 2) are
in the Atlanta suburb region and 2 sites (D and E) are in the Atlanta
urban center. Table 1 lists each site (A-E) AQS site ID, location,
county and monitor type. Furthermore, the PM2.5 mass averaged
over these 5 sites is used to represent the mean state of the PM air
quality in Atlanta, and it is compared to the light intensity averaged

over the core of the urban center (i.e., CTR site denoted as F in
Table 1 and Fig. 2).

In the moonless mid-night (the VIIRS overpass time), the out-
door lights are the dominate source for the broadband radiance
measured by DNB, although airglow and star lights can also been
seen in the DNB image (Miller and Turner, 2009). However, the
spectra of outdoor lights can highly vary, depending on the color
temperature of (and in many cases gases inside) the light bulb, as
well as the bulb variety (Elvidge et al., 2010). In the U.S., high-
pressure sodium lamps (HPS) are the most common type of light
source used for outdoor applications (Rea et al., 2009), while
fluorescent and light-emitting diode (LED) lamps are also often
used. By comparing the spectral radiances emitted from these three
types of lamps (the color lines of Fig. 1a) with the spectral trans-
mittance of cloud-free and aerosol-free mid-latitude summer at-
mosphere (the grey line in Fig. 1a) in the DNB spectrum, we find
that the radiances from outdoor lamps are primarily in the visible
spectrum less than 0.65 mm, and hence, their transfer within the
atmosphere are not affected by themajor gas absorption lines (such
as 0.69 mm of O2 B, 0.76 mm of O2 A, 0.72 mm and 0.82 mm of water
vapor). We note that HPS lamp does have an emission peak coin-
cident at 0.82 mm of water vapor absorption, but both the width of
this peak emission and the water vapor line are very narrow
(<3 nm) with respect to the broad spectrum of DNB.

Overall, our calculation (after integrating the spectral trans-
mittance, lamp spectral intensity, and DNB response function)
reveals that the change of water vapor has negligible effect on the
DNB transmittance in the atmosphere (or the atmospheric radia-
tive transfer that affects DNB signal). Regardless of aerosol loading,
variation of preciptitable water by 40% results in a maximum
change of DNB transmittance by ~1% when the light source is from
HPS (Fig. 1b). In contrast, a change of AOD from 0.0 to 0.5 and 1.0 at
0.55 mm can lead to the change of DNB transmittance by ~30% and
~28%, respectively (Fig. 1b). Interestingly, Fig. 1b also shows that as
AOD increases (from 0 to 1), the DNB transmittance decrease is
smaller for HPS spectra (blue line) than for LED or fluorescent
spectra (e.g., red or green line). This smaller decrease is due to the
enhanced multiple scattering of aerosols (associated with the in-
crease of AOD) that is larger and thus renders more decrease of
transmittance in shorter wavelengths (<0.7 mm) where the radi-
ances emitted from LED and fluorescent bulbs are mostly
concentrated. Hence, the relative contribution of emission at
wavelengths larger than 0.7 mm (such as in the case of HPS) is
becoming larger as AOD increases, which explains why in Fig. 1b,
for AOD ¼ 0 blue line is below, and for AOD ¼ 1 blue line is above
the red and green lines.

2.2. Assumptions and regression approach

While our analysis in Fig. 1 suggests that the DNB is sensitive to
the change of atmospheric aerosols (and is much less sensitive to
the change of water vapor), accurate modeling of the light transfer
in the night can be further complicated by the surface conditions,
especially how the light from lampas interacts with surfaces and
buildings. Here, as the exploratory first step, we make the same
assumption as Zhang et al. (2008) that the upward visible radiation
from the surface layer (including surface canopy, buildings, streets,
etc.) is Lambertian and has a constant intensity of I0 for a given
location during our 3-month study period. In this assumption, the
surface canopy and buildings are considered as one surface layer,
and I0 is the intensity of light at the top of surface layer entering into
the atmosphere. Hence, I0 is not exactly equal to the intensity of
light at the ground and is a result of multiple scattering and
reflection of lights between air and buildings within the surface
layer. I0 is expected to be strongest in places with intense lights at

Fig. 1. (a) DNB spectral response function (shaded grey area) and atmospheric trans-
mittances (black line for AOD ¼ 0) overlaid with the emission spectra of commonly
used city lamps: (70-Watt) high pressure sodium lamp (HPS, blue line), standard (32-
Watt) fluorescent tube (red line), and 100-Watt natural-white LED streetlight lamp
(green line). (b) atmospheric transmittance integrated over DNB as a function of col-
uman water vapor amount (e.g., precipitable water) for three different surface condi-
tions (illuminated by HPS, fluorescent, and LED lampls, respectivley) and three aerosol
conditions (with AOD of 0, 0.5, and 1 at 0.55 mm). The simulation is conducted with
UNified and Linearized Vector Radiative Transfer Model (UNL-VRTM, Wang et al.,
(2014)) for the standard mid-latitude summer atmospehric profile. Aerosol proper-
ties are based on Dubovik et al., (2002) for urban aerosols. The database of spectral
intensity emitted from HPS, fluorescent, and LED bulbs are from Elvidge et al., (2010).
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the ground (such as city centers) and weaker in suburb areas.
However, at a specific location, we can reasonably assume that
surface features (such as layout of buildings and location of lights)

don't change within 3 months in a particular year; consequently, in
the following analysis, I0 is treated as a constant for each location
within VIIRS pixel, but is allowed vary spatially.

Fig. 2. (a)e(d): images of VIIRS DNB radiances for Atlanta city on 24 Sep., 15 Sep., 25 Oct., and 17 Aug. 2012 respectively; solid circles denote the location of 5 EPA PM2.5 monitoring
sites color coded with the measured PM2.5 mass concentration during the satellite overpass time. For (a), the satellite viewing zenith angle q and the moonphase angle h are 46.90� ,
and 59.36� , respectively; the set of these angle values for (b), (c), and (d) are (50.60� , 152.04�), (9.55� , 52.22�), and (1.45� , and 173.36�) respectively. (e): the difference between (a)
and (c). (f): same as (e) but for (b) and (d). Note the data are gridded into 0.03� resolution in (e) and (f).

Table 1
Summary information of the 5 Georgia DNR continuous PM2.5 sites.

Site AQS site ID County Longitude Latitude PM2.5 Monitor typea

A 131350002 Gwinnett �84.069 33.961 R&P TEOM Series 1400
B 130770002 Coweta �84.746 33.404 R&P TEOM Series 1400
C 131510002 Henry �84.161 33.433 R&P TEOM Series 1400
D 131210055 Fulton �84.357 33.720 R&P TEOM Series 1400
E 130890002 DeKalb �84.290 33.688 MetOne BAM-1020
F(CTR)b N/Ab N/Ab �84.39 33.75 N/Ab

a A measurement intercomparison between BAM (b-ray Attenuation Monitor) and TEOM (Tapered Element Oscillating Microbalance) monitors conducted by Schwab et al.,
2006 revealed high correlation of 0.96 and low standard errors of 0.02 and 0.33 associated with slope (~1.02) and intercept (~1.72), respectively (Schwab et al., 2006).

b Site F is the center of study area, and its PM2.5 concentration is computed by averaging the hourly PM2.5 mass concentration measured at the sites A-E. See text for details.
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By neglecting multiple scattering (the same strategy as Zhang
et al. (2008)), the radiance I that DNB measures for an atmo-
spheric optical depth t at viewing angle with its cosine value of m is:

I ¼ I0e
�t=m (1)

We further assume that the profile of aerosol extinction coeffi-
cient follows a well-defined structure in the nocturnal boundary
layer, so that the optical depth (or total extinction) can be related to
the surface extinction coefficient by an effective height H (Wang
and Christopher, 2003):

taer ¼ PM2:5f ðrhÞQmextH (2)

where Qmext is the mass extinction efficiency at dry conditions, and
f(rh) is the correction factor for relative humidity impact on aerosol
size and refractive index, and hence aerosol extinction efficiency,
due to particle hygroscopic growth (Wang and Martin, 2007). As in
Kessner et al. (2013), H is mathematically defined as the integral of
the shape of aerosol extinction profile in an atmospheric column.
By combining equations (1) and (2), we obtain:

PM2:5f ðrhÞQmextH
m

þ tRay þ tgas ¼ lnðI0Þ � lnðIÞ (3)

To the first order, the Rayleigh scattering optical depth tRay is
linearly proportional to the surface pressure (Ps by a factor of bp),
while the optical depth due to gas absorption tgas is linearly pro-
portional to the precipitable water vapor amount (W) by a factor of
bw (Liou, 2002). Hence, equation (3) can be re-written as:

PM2:5f ðrhÞQmextH
m

¼ lnðI0Þ � lnðIÞ � bw �W � bp � Ps (4)

where subscripts w and p denotes water vapor and pressure,
respectively.

We apply equation (4) over the 5 ground-based GADNR sites and
the CTR site to evaluate practical robustness of equation (4). At each
of these sites, we obtain the surface pressure data from weather
stations in Atlanta, column water vapor amount from MODIS ob-
servations (King et al., 2003), PM2.5 mass from ground-based ob-
servations, m and I from DNB data. However, f(rh), Qmext, and H are
not directly measured, and hence, have to be either directly
assumed or determined from atmospheric chemistry transport
models. We model f(rh) based upon the parameterization used by
Interagency Monitoring of Protected Visual Environments
(IMPROVE) for the fall season in this region (Malm et al., 1994),
noting that ammonium sulfate dominates the particle compsition
in this region. Qmext and H depend respectively on aerosol
composition and boundary layer height (or turbulent mixing) and
thus vary with time. However, we found that using Qmext, RH, and H
from a chemistry transport model (such as WRF-Chem) did not
improve the results that we obtained in the regression analysis
(Section 3) assuming that the product of Qmext and H are constant
and using the hourly RH data reported by National Weather Service
in Atlanta. Since the accurate values of Qmext and H are not available
from in situmeasurements, we treat the Qmext and H as constants in
our following analysis, with an acknowledgment that such simple
treatment should be improved once we have more in situ data
about these parameters. Consequently, equation (4) becomes

PM2:5f ðrhÞ
m

¼ a0 � aIlnðIÞ � ar �W � ap � Ps (5)

where a0, aI , ar , and ap are linear coefficients, and vary with space
and time

While equation (5) establishes the link between surface PM2.5
and the intensity of light measured by the DNB, PM2.5 concentra-
tion at night over a particular location is traditionally modeled
without use of any DNB data, and its day-to-day change can be
affected by meteorological factors such as wind speed and wind
direction. Hence, after deriving PM2.5 from equation (5), we also
developed another linear model (meteorological model) through
regression with wind speed u and v and other meteorological var-
iables (water vapor W and surface pressure Ps). The goal here is to
show that the regression based on the equation (5) or optical
approach, which is based on the radiative transfer theory, can
provide better estimate of surface PM2.5 than the empirical
approach using meteorological variables only.

Leave-one-out cross validation technique is applied to evaluate
the predictive potential of linear regression models (Wilks, 2011).
At each site, assuming we have N sets of known variables (of PM2:5,
f ðrhÞ, m, W , I, and Ps), the linear regression analysis can be con-
ducted N times (assuming normality of the residuals), and each
time, only N-1 sets of variables be used in the regression while
leaving one set of variables out for evaluating the regression. By
doing so, we have a total of 5N independent data points (and trials)
to evaluate the robustness of equation (5). Note, because f ðrhÞ and m

are known variables and physically the left side of the equation (5)
represents the optical path of aerosol, we use left size of equation as
the dependent variable in regression for each site. This cross-
evaluation is a first step to evaluate the potential of using DNB to
estimate surface PM2.5.

3. Results

3.1. Case demonstration

We first show two sets of paired images, one set focusing on
nights with moonlight, and another set focusing on moonless
nights. In each set, one nadir image with high PM2.5 (larger than
10 mgm�3) and small moonphase angle (strongermoonlight, Fig. 2c
or 2d) is paired and contrasted with another edge-view image with
low PM2.5 (less than 8 mgm-3) and large moonphase angle (weaker
moonlight, Fig. 2a or 2b). For each set, if the atmospheric conditions
of aerosols are the same, the nadir view image (Fig. 2c, d), because
of their shorter radiative path length (e.g., airmass factor), would be
brighter than their counterparts of edge view images (Fig. 2a, b).
However, the opposite is true, as shown in Fig. 1, which indicates
that the DNB is sensitive to the change of PM2.5 at the surface. The
smaller intensity of light in nadir view images on 25 October
(Fig. 2c) and 17 August 2012 (Fig. 2d) can only be attributed to
higher surface PM2.5 concentration in these two days (as compared
respectively to images Fig. 2a and b for 24 Sep. and 15 Sep. 2012).
Quantitatively, large reduction of visible lights can be seen in urban
centers and suburb regions where light sources at the surface are
strong (Fig. 2e, f), while only a marginal difference can be found in
rural areas that do not have city lights (Fig. 2e). This quantitative
contrast suggests that city lights amplify the signal of aerosols in
radiative extinction, enabling the change of PM2.5 to be detectable
from DNB.

3.2. Daily representativeness of PM2.5 during VIIRS night overpass
time

In 3-month averages for each hour, site E showsminimal diurnal
variation, when compared to sites A-D (Fig. 2). Site E is the location
for the GADNR NCore site, and is located southeast of the urban
core. The NCore site was designed to assess transport from the
urban core and secondary pollutant formation (GADNR, 2014), a
reason for the more constant hourly profile versus sites A-D. Sites
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A-D exhibit the consistent diurnal variation of surface PM2.5 (Fig. 3):
(a) sharp increase from 4:00 to 8:00 a.m. reflecting effects due to
local traffic, the shallow boundary layer, and buildup of aerosol
precursors at night; (b) progressive decrease between 8:00 a.m. to
2:00 p.m. reflecting the growth of the day-time boundary layer and
influence of strong turbulent mixing; (c) slow increase between
2:00e8:00 pm reflecting again the increase of traffic and weak-
ening of boundary layermixing toward evening; (d) nearly constant
(with slightly decrease) in 8:00 pme4:00 am reflecting the stable
nocturnal boundary layer. Such a diurnal variation pattern is indeed
typical over the urban areas in the southeastern part of United
States (Wang and Christopher, 2003). As a result of this diurnal
variation pattern, PM2.5 mass during VIIRS overpass time at night
(~1:00 am local time) is representative of the 24-h mean of PM2.5
within the deviation of less than 10% on average in 3 months
(Fig. 3), which favors the use of VIIRS DNB to derive surface PM2.5
for regional and daily-to-seasonal air quality evaluations. In addi-
tion, as expected, the suburb PM2.5 concentrations (sites A, B, and C)
are on average 2e4 mgm-3 smaller than those of urban centers (D
and E). It is noted in Fig. 3 that PM2.5 in mid-morning (10:00 am) is

also representative of daily mean of PM2.5, and this time corre-
sponds well with the MODIS/Terra satellite overpass time (Wang
and Christopher, 2003). Further analysis (Fig. 4) shows that PM2.5
at 1:00 locale time is highly correlated with corresponding daily
mean PM2.5 (R ¼ 0.82) with mean bias of �0.1 mg m�3 and root-
mean-square error (RMSE) of 3.1 mg m�3; in contrast, R, mean
bias, and RMSE between PM2.5 at 13:00 (e.g., VIIRS and MODIS/
Aqua daytime overpass) and the daily mean are 0.75, �1.9 mg m�3,
and 3.5 mg m�3, respectively. This contrast suggests that PM2.5
derived from VIIRS DNB at night, if accurate, is more representative
than the counterparts fromVIIRS andMODIS/Aqua daytime data for
assessing daily-mean air quality.

3.3. Regression analysis

Following equation (5), we first analyze the variables that
should be included in the regression prediction of surface PM2.5.
Table 2 shows that while different variables have different corre-
lations with the left-side term of eq. (5) at each site, lnI is the only
variable that has either the largest or second largest statistically
significant (negative) correlation with the left-side term of equa-
tion (5) over all sites, which suggests that lnI should be an indis-
pensable part in our multiple regression for modeling PM2.5. In
contrast, the change of surface pressure was the only variable that
shows neither the largest nor second largest correlation with the
optical term for PM2.5. Other variables such as water vapor (W), u,
and v can also be useful for predicting PM2.5, but their importance
varies by site (as in Table 2). Note, to have the correlation analysis
results in one table (Table 2), we show the correlation coefficients
of u � f(rh)/m and v � f(rh)/m with PM2.5 � f(rh)/m (e.g., left-side of
equation 5 assuming QextH as constant); similar results are found
when correlation coefficients are computed for u (or v) and PM2.5.
The positive correlation between precipitiable water and surface
PM2.5 is consistent with some early studies that showed surface
PM2.5 is positively correlated with AOD that in turn is positively
correlated with precipitiable water (Wang and Christopher, 2003;
Smirnov et al., 2000). Interestingly, while horizontal wind (u) is
negatively correlated surface PM2.5 (Table 2), meridional wind (v)
shows positive correlation, likely reflecting more polluted source
from the south.

It should be noted that equation (5) or optical model is based on
the physics that governs the radiative transfer, although many as-
sumptions are made in the derivation of equation (5). Hence, the
first step for construction of multiple-variable regression for the
optical model is to include those most significant variables (such as
lnI) in the model (or equation (5)). We didn't include u and v in the
optical model because they are not part of the physics affecting the
radiative transfer. Instead, they together with water vapor and
surface pressure are included in another regression model that
estimates the surface PM2.5 purely based upon the meteorological
variables.

Following the leave-out-one cross validation strategy, Fig. 5a
presents the inter-comparison between PM2.5 estimates from the
multiple regression based on the optical model (as described in
equation (5)) and the counterparts from the groundmeasurements.
Overall, the predicted PM2.5 (y) and observed (x) show a linear
correlation coefficient R of 0.67 and a best-fit equation of y ¼ 0.996
x þ 0.044. The overall bias in the prediction is close to zero
(mean ± standard deviation of x: 10.89 ± 5.54 and y: 10.96 ± 5.52).
These statistics are all better than the counterparts (Fig. 5b) from
the multiple regression model using meteorological variables only
(e.g., R of 0.5 and a best-fit equation of y ¼ 0.921 x þ 0.477, and
mean bias of�0.39). This result highlights the potential of applying
the city-light data from satellite into the geospatial modeling of
PM2.5 at night.

Fig. 3. Diurnal variation (solid line) and daily mean (dot line) of 3-month
(AugusteOctober 2012) averages of hourly PM2.5 mass concentration at 5 EPA moni-
toring sites in Atlanta. The location for site A-E is shown in Fig. 1. The bottom panel is
similar as panel A but for the mean of data collected at all stations. Also overlaid (in
green line) is the normal VIIRS overpass time at night. (For interpretation of the ref-
erences to color in this figure legend, the reader is referred to the web version of this
article.)
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4. Summary and discussions

We presented a pilot study to illustrate the potential of using
VIIRS DNB for particulate matter air quality monitoring at night.
The case study focused on the moonless and cloudless nights in
Atlanta during AugusteOctober 2012. We showed that, among 5
variables (including u and v component of wind speed, surface
pressure, and columnar water vapor amount), the change of light
intensity from VIIRS DNB is always among the top two variables
that have the highest correlation with the change of measured
surface PM2.5. This is also consistent with results from our

Fig. 4. (a) Inter-comparison between daily-mean (x-axis) PM2.5 concentration and the corresponding PM2.5 concentration measured at local time (LT) 1:00 (y-axis). (b) same as (a)
except for PM2.5 concentration measured at LT 13:00 (y-axis). The comparison is based on ground-based observations at sites A-E during during AugusteOctober 2012 in Atlanta,
GA. Each circle represents data measured at one ground site on a particular day and is filled with same color for the same site. See text for details.

Table 2
Correlation coefficients (R) between PM2.5 � f(rh)/m and different variables at 6
ground sites (A-F as described in Table 1 and marked in Fig. 2)a.

A B C D E F(CTR)

Variables\R
lnI ¡0.78 ¡0.56 ¡0.53 �0.39 ¡0.71 ¡0.73
DPs 0.05 0.21 0.08 0.14 0.10 0.10
W 0.49 0.38 0.85 0.17 0.00 0.10
u � f(rh)/m �0.21 �0.08 �0.21 �0.30 �0.60 �0.66
v � f(rh)/m 0.59 0.49 0.48 0.53 0.54 0.52

a At each site, the largest value is in bold and second largest value is in the italic
bold.

Fig. 5. Inter-comparison between predicted (y-axis) and measured (x-axis) PM2.5. The prediction is based upon two models: (a) the optical model that includes variables of DNB
radiance, surface pressure, and columnar water vapor (as described in equation (5)); and (b) the linear regression model based on surface meteorological variables (u and v wind,
water vapor, and surface pressure) only. Each of those measured PM2.5 data points in x-axis is excluded in the regression that predicts the corresponding PM2.5 in y-axis (e.g., leave-
one-out cross validation).

J. Wang et al. / Atmospheric Environment 124 (2016) 55e63 61



radiative transfer modeling that suggests the high sensitivity of
DNB to the change of aerosols (and much less sensitivity of DNB to
the change of water vapor) in the atmosphere illuminated by
commonly-used outdoor lamps (such as high pressure sodium,
LED and fluoresces lights). Under the assumption that Beer's Law is
valid for analyzing the transfer of surface light through the at-
mosphere to space and the variation of the relationship between
AOD and surface PM2.5 is minimal at night (although varies
spatially), a simple linear regression model is constructed to relate
the DNB-measured light intensity to the GADNR-measured surface
PM2.5. The coefficients needed in this regression model can be
obtained by using spatially and temporally paired surface PM2.5
data, meteorological variables, and DNB data. Cross validation
shows that the regression model can estimate the surface PM2.5
with nearly no bias and a linear correlation coefficient of 0.67.
While the potential of using DNB data to estimate surface PM2.5 is
demonstrated, several challenges should be addressed in future
studies toward automatically mapping surface PM2.5 at night from
space. We outline these challenges and provide some strategies for
thought in below.

First, a radiative transfer model that can account for the atmo-
spheric transfer of both moonlight and surface-leaving visible light
simultaneously is highly needed. Construction of such a model
appears technically feasible, because (a) the code and database for a
moonlight source function has been compiled by Miller and Turner
(2009) and (b) several radiative transfer models, under the
framework of discrete coordinate for a multi-layered plane-parallel
medium, have been developed recently to account for surface-
leaving radiances (especially those water-leaving radiances for
ocean color retrievals, Spurr, 2006; Wang et al., 2014).

Second, spatial and temporal characterization of city light
sources needs to be improved. The source function of city light is a
function of bulb types as well as the light interaction with the
surface that in turn depends on the altitude of these bulbs and the
layout of their surrounding buildings and canopies. However,
similar as the way that surface canopy and buildings are treated as
one layer of the planar boundary (characterized by bi-directional
reflectance function or BRDF) in the current radiative transfer
model for satellite remote sensing, we think it is necessary to
characterize the nighttime visible radiances coming out from the
surface layer at different angles. A dedicated field campaign with
multi-angle instrument capability can be a good start to pursue
this.

Finally, many challenges in the use of daytime satellite data to
estimate surface PM2.5 still remain (in the nighttime), including the
lack of a measurement-based aerosol extinction profile that links
AOD to surface PM2.5, conversion of ambient aerosol mass to dry
aerosol mass that requires an account of aerosol hygroscopic
growth and thereby knowledge of aerosol composition, as well as
estimated dry surface PM2.5 from total aerosol mass (Wang et al.,
2010). Existing measurements for these compounding factors
often lack spatial or temporal coverage, and therefore, it is fore-
seeable that a combination of satellite and chemistry transport
models is highly needed for operational estimates of surface PM2.5
from satellite data.
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