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[1] In the modern marine environment the silicoflagellate genus Dictyocha is rare, or absent, south of the
Antarctic polar front (APF); the genus Distephanus, in contrast, is dominant. In sediments recovered from ODP
Site 1165, 1600 km south of the front, however, three intervals where Dictyocha is abundant are interpreted to
represent Pliocene warm events. Comparison of our data with Ciesielski and Weaver’s [1974] modern core top
silicoflagellate relationship with sea surface temperature (SST) indicates that at Site 1165 mean annual SST
was approximately 5�C at 3.7 Ma (event I), and approximately 4�C at 4.3–4.4 Ma (event II) and 4.55–4.8 Ma
(event III). Event I represents a 5.5�Cwarming, and events II and III represents a 4.5�Cwarming relative tomodern
mean annual SST. Dictyocha is absent from other Site 1165 Pliocene intervals, which suggests that cooler SST
(<2�C) prevailed. The warm events detected at Site 1165 may represent times when North Atlantic Deep Water
production and ocean heat transport into the Southern Ocean exerted maximum influence. INDEX TERMS: 1635
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1. Introduction

[2] This study uses silicoflagellates (unicellular marine
phytoplankton) to reconstruct early to middle Pliocene sea
surface temperature (SST) from the Southern Ocean’s
Ocean Drilling Program (ODP) Leg 188 Site 1165. The
manuscript reviews Southern Ocean SST reconstruction
from paleontological, sedimentological, and isotope proxies
and seeks to explain the different SST estimated. Our study
discusses how Southern Ocean SST may have interacted
with increased thermohaline circulation (THC) during the
Pliocene, most notably when North Atlantic Deep Water
(NADW) circulation and atmospheric CO2 levels increased.

1.1. Study Area

[3] ODP Leg 188 Site 1165 (64.380�S, 67.219�E) is
located in the Southern Ocean on the east Antarctic conti-
nental rise in a water depth of 3537 m offshore from Prydz
Bay and centered over the Wild Drift (Figure 1). The drift is
an elongate sediment body formed by the interaction of
sediment, from the continental shelf, and westward flowing
ocean currents, on the continental rise [Shipboard Scientific
Party, 2001], and mixed with pelagic siliceous ooze (pri-
marily diatoms and silicoflagellates) ‘‘raining out’’ from the
overlying water column.
[4] The upper �50 m below seafloor (mbsf ) of sediment

from Hole 1165B consists of brown, diatom-bearing, silty

clay spanning the upper Pleistocene to lower Pliocene.
The Southern Ocean diatom zonal scheme of Harwood
and Maruyama [1992] applies directly to these strata. The
diatom stratigraphy suggests that there is a disconformity
at �17.1 mbsf of 0.5–0.6 myr duration. Integrated
biostatigraphic and magnetostratigraphic data also indicate
disconformities at �6.0, 14.4, 15.6, and �16.0 mbsf
[Florindo et al., 2003; Whitehead and Bohaty, 2003],
but their duration cannot be resolved through diatom
biostratigraphy. Silicoflagellate data were not collected
between �17.1 mbsf and 24.47 mbsf due to low fossil
abundance. Silicoflagellate data were collected between
24.47 mbsf and 49.97 mbsf, which spans the time
interval �3.2–�5.0 Ma.
[5] Site 1165 occurs within Antarctic waters. It is

�1600 km south of the Antarctic polar frontal zone (APFZ),
which spans that area between the Subantarctic front (SAF)
and Antarctic polar front (APF). Across both fronts major
transitions in surface water temperature and salinity occur.
The APF separates Subantarctic and Antarctic surface
waters, where there is a change of approximately 3�C in
surface water temperature (from 2�C to 5�C) and �0.2% in
salinity [Gordon, 1971; Gordon and Molinelli, 1982]. The
climate conditions at Site 1156 differs greatly from that
north of the APF, average summer (January–March) SST is
0.5�C, average winter (July–September) SST is �1.8�C,
and annual mean SST is approximately �0.5�C [Gordon
and Molinelli, 1982]. The steep latitudinal changes in
temperature and salinity across the APF cause considerable
differences in phytoplankton biogeography between Ant-
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arctic surface waters, at Site 1165, and Subantarctic surface
waters north of the APF [Bohaty and Harwood, 1998].

1.2. North Atlantic Deep Water and Thermohaline
Circulation

[6] The strength of THC and the amount of NADW influx
into the Southern Ocean during the Pliocene may have
influenced SST at Site 1165, the physical structure of the
APFZ, and temperature gradients across the APF and SAF.
Our study compares SST at Site 1165 to other studies, which
show that that NADW influx increased during the Pliocene.
[7] The influx of NADW to the Southern Ocean via THC

has a major impact on modern global heat distribution.
Modern THC operates in a conveyor belt-like transport
system (reviewed in detail by Broecker [1997]), which
transports warm, salty, surface water from the tropics to
the North Atlantic. From the North Atlantic, the surface
water cools and sinks to form NADW, and then flows south.
The majority of NADW then forms Circumpolar Deep
Water (CDW) [Wong et al., 1998], the largest volume of
water in the Southern Ocean. Vertically mixed CDW
penetrates onto the Antarctic continental shelf [Middleton
and Humphries, 1989; Wong et al., 1998] and relatively
warm CDW upwelling around Antarctica [Gordon, 1981]
promotes sea-ice melt [Crowley, 1992].
[8] In the Southern Ocean, CDW also combines with

dense (cold and saline) Antarctic Bottom Water (AABW)

formed by brine exclusion during sea-ice formation. The
newly formed bottom water flows at depth away from south
polar latitudes into the Pacific and Indian Oceans. Here the
ocean is strongly stratified, but sufficient mixing between
warmer, less-dense surface waters decreases the density of
the deep water. The density deficit that is established at
lower latitudes drives deep-water renewal and the transport
of surface water to the North Atlantic, thus sustaining the
THC conveyor belt.

1.3. Pliocene Ocean Circulation and Global Warming

[9] The Pliocene may have been the most recent time
when global temperatures were significantly warmer than
today [Crowley, 1996]. Warm intervals during the Pliocene
are largely explained by two factors: enhanced THC and
increased atmospheric CO2 levels. The average Pliocene
CO2 level was 380 ppm (peaking at 425 ppm), based on
interpretations from the carbon isotopic composition of
marine organic matter [Raymo et al., 1996]. This average
is 35% higher than the preindustrial level and is 3–14%
higher than that recorded in 1999 [Raymo et al., 1996;
Intergovernmental Panel on Climate Change (IPCC),
2001]. Increased ocean heat transport due to enhanced
THC may also explain Pliocene warming [Crowley, 1996].
Each of these two factors is not necessarily exclusive, as
CO2 increases may partially drive THC [Crowley, 1996;
Kim and Crowley, 2000].

Figure 1. Location ODP Site 1165 on the Wild Drift, Southern Ocean.
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[10] Isotope studies suggest that both THC and NADW
influx to the Southern Ocean increased during the early
Pliocene [Billups et al., 1998; Ravelo and Andreasen,
2000]. A simultaneous increase in equatorial surface water
transport to the North Atlantic may explain Pliocene warm-
ing in the Northern Hemisphere. The effect of increased
NADW influx to the Southern Ocean is unclear, but two
hypotheses have been proposed:
[11] 1. Increased NADW production resulted in a gradual

warming of the Southern Ocean [Billups et al., 1998] via
enhanced THC. Increased NADW formation would have
helped to dissipate heat globally, but may have also enhanced
global warming through sea-ice reduction and the resulting
decrease in global albedo [Raymo et al., 1996].
[12] 2. Enhanced NADW formation may have caused a net

heat loss from the Southern Hemisphere, as warmer surface
waters (from the tropics, south of the equator) are drawn into
the North Atlantic Basin. Enhanced NADW formation
during the Pliocene would have caused Southern Hemi-
sphere cooling. In contrast, if THC were to slow or cease,
warm surface water would not be exported from the Southern
Hemisphere and the region would warm [Crowley, 1992].
[13] A decrease in latitudinal temperature gradients, rela-

tive to today, is evidence to support increased THC during
the Pliocene [Dowsett et al., 1996]. If global temperatures
increased solely due to increased atmospheric CO2, warm-
ing would have occurred evenly at all latitudes [Dowsett et
al., 1996]; but during the Pliocene, equatorial temperatures
remained similar to today, or may have even cooled slightly
[Billups et al., 1998], while preferential heating occurred at
high latitudes [Rind, 1998]. This provides evidence for
increased THC in the Pliocene that redistributed more heat
to higher latitudes.
[14] Two forcing mechanisms capable of increasing global

THC in the Pliocene are thought to have been possible.
Either seawater density gradients were altered (after the
Central American seaway closed 4.7–4.2 Ma [Haug et al.,
2001]), or sea-ice formation in the Southern Ocean was
reduced during a slight atmospheric CO2 increase that
caused global warming [Kim and Crowley, 2000]. However,
global climate models suggest that greatly elevated CO2

levels (four times the preindustrial level) will weaken or
potentially stop THC [IPCC, 2001], but when the climate
models are run for longer time periods THC is re-established
[IPCC, 2001]. Extended warming, as may have occurred in
the Pliocene [PRISM Project Members, 1995], is thought to
be required for THC to become re-established [Raymo et al.,
1996]. Research is required, therefore, to document the
magnitude and duration of the warm climatic intervals in
the Pliocene Southern Ocean in a step toward addressing the
mechanism for past changes in ocean circulation.
[15] For warming to be detected adjacent to East Antarc-

tica, major warming within the Antarctic region would be
required. Site 1165 is an ideal location to study Pliocene
SST in the Southern Ocean due to its southern location and
the completeness of the Hole 1165B sediment sequence
[Shipboard Scientific Party, 2001].

1.4. Silicoflagellate SST Reconstruction

[16] Silicoflagellates are assigned to the kingdom Eukar-
yota, algal division Heterokontophyta, and the class Dictyo-

chophyceae [Van den Hoek et al., 1995]. The relative
abundance of the silicoflagellate genera Dictyocha and
Distephanus in seafloor surface sediments changes abruptly
at the APF [Ciesielski, 1974; DeFelice and Wise, 1981;
Pichon et al., 1987]. In the Southern Ocean between
Antarctica and Australia, Dictyocha is common north of
the APF, where summer (January–March) SST is > 5�C;
Distephanus is abundant south of the APF [Ciesielski and
Weaver, 1974]. Dictyocha in surface sediments is also
limited to sites north of the APF [DeFelice and Wise,
1981] from the Atlantic and western Indian Oceans sectors
of the Southern Ocean [Pichon et al., 1987]. The ratio of
Dictyocha to Distephanus was determined from 48 phleger
and trigger-core surface sediment samples collected between
Australia and Wilkes Land, Antarctica [Ciesielski, 1974].
The ratio of Dictyocha to Distephanus has proved to co-vary
with mean annual SST [Gordon, 1971] and this measure-
ment is a useful tool to reconstruct past SST [Mandra, 1969;
Mandra and Mandra, 1970; Jendrzejewski and Zarillo,
1971; Ciesielski, 1974; Ciesielski and Weaver, 1973, 1974;
Bohaty and Harwood, 1998].
[17] From the ratio of Dictyocha to Distephanus warmer

surface waters in the Southern Ocean during the Pliocene
have been inferred. Dictyocha is abundant in four Pliocene
intervals at four sites between 56�S and 69�S, which are
between 300 km and 550 km south of the present APF
[Ciesielski and Weaver, 1974]. Three intervals of abundant
Dictyocha (�3.7, �4.4 and �4.7 Ma) have also been iden-
tified from the Kerguelen Plateau, ODP Sites 748 and 751
(�58�S) and are interpreted to represent either a 900 km
southern migration of the APF from its present location or a
decrease in the temperature gradient across theAPFZ [Bohaty
and Harwood, 1998]. The latitudinal variation in the modern
APF position is partially controlled by seafloor topography
[Lazarus and Caulet, 1993]. The Elan Bank at�57�S, which
rises over 2000 m in depth and extends 500 km west from the
Kerguelen Plateau, may have stabilized the southern position
of the APF during the middle Pliocene [Barron, 1996].

2. Methods

[18] The relationship between modern mean annual SST
and the ratio of Dictyocha to Distephanus in core top
samples was identified by Ciesielski and Weaver [1974].
In the current study we use this relationship, but apply a
‘‘silicoflagellate index,’’ defined here as the percentage of
Dictyocha within the silicoflagellate assemblage to the
Pliocene strata from Site 1165.
[19] Silicoflagellate data were collected from �10 cm

sample increments throughout the Pliocene interval of
Hole 1165B (24.47–49.97 mbsf ). Smear slides were pre-
pared from the samples and mounted with Norland Optical
Adhesive 61 (refractive index = 1.56). Silicoflagellate iden-
tification was carried out using an Olympus BH-2 light
microscope at 1000xmagnification (oil immersion objective)
(Appendix A). The smear slides were scanned for silicofla-
gellates, and�100 specimens from the generaDictyocha and
Distephanus counted per sample (Appendix 21). Those

1 Supporting appendices are available at ftp://ftp.agu.org/apend/pa/
2002PA000829.
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samples with <80 silicoflagellate specimens were removed
from further data analysis. The extinct species Distephanus
crux (Ehrenberg) Haeckel, Bachmannocena spp., and aber-
rant forms ofDistephanus andDictyochawere also excluded
from the ratio, because their paleoecology is unknown (as in
the work of Bohaty and Harwood [1998]).

3. Results

[20] Three events where Dictyocha abundance increases
(up to �36% and 62%) are recorded from Site 1165
(Figure 2). The first event, dominated by Dictyocha fibula
Ehrenberg, saw abundance increase to 62% between 37.37
mbsf and 37.57 mbsf. Two more events occur between
43.57 mbsf and 43.77 mbsf, and 46.17 mbsf and 47.07
mbsf. Both are dominated by Dictyocha pumila (Ciesielski)
Bukry, which increased to 36% and 40%, respectively.
[21] Distephanus speculum speculum (Ehrenberg)

Haeckel is the most abundant species from this genus in
the Pliocene section of Hole 1165B. Distephanus crux is
rare, but a marked increase in abundance was observed
below 45.37 mbsf. Similarly, Bachmannocena spp. was
present only in trace abundance, but a minor increase was
observed below 49.36 mbsf.

4. Discussion

4.1. Interpreting the Silicoflagellate Index

[22] The three episodes of increased Dictyocha abundance
in Hole 1165B are dated through diatom biostratigraphy and
magnetostratigraphy as being at �3.7 Ma, 4.3–4.4 Ma, and
�4.55–4.8 Ma; they are named here as events I, II and III,
respectively (Figure 3). Site 1165 is 1600 km south of the

modern APF and the presence of the Dictyocha events
represents an extreme southern occurrence for this genus.
We consider the events to reflect higher SST in the Pliocene
relative to today (Figure 3). Although conditions similar to
those north of the APF now occurred at Site 1165 (64�S)
during the Pliocene, it is possible that the position and
structure of the oceanographic fronts were very different
from today.
[23] The distribution and abundance of silicoflagellates

in the water column are influenced by a variety of factors
(such as water temperature, salinity, nutrient availability,
and grazing), but the relationship is neither simple nor
consistent [Sancetta, 1990]. The habitat preference of
Dictyocha, from studies in the Northern Hemisphere, is
ambiguous. Dictyocha is reported to prefer warm surface
waters [Ciesielski and Weaver, 1974], yet Takahashi
[1987] finds it common in the northern Pacific Ocean
regardless of surface water temperature. The occurrence of
Dictyocha in the relatively cold waters of the northern
Pacific may be explained by transportation within warmer
surface water eddies. Sancetta [1990], for example, finds
Dictyocha common in warm water rings in the northeast-
ern Pacific. Similar observations have been reported in
warm water rings from the Gulf Stream in the North
Atlantic [Takahashi and Blackwelder, 1992].
[24] In the Southern Ocean, Dictyocha is limited in

surface sediments to sites north of the APF [DeFelice and
Wise, 1981; Pichon et al., 1987], which suggests that their
biocoenoses is restricted to surface waters north of the front.
Modern plankton data from a South Atlantic transect show
that the major change in distribution is further north at the
Subantarctic front (SAF); Dictyocha fibula reaches maxi-

Figure 2. Relative abundance (percent) of the most abundant silicoflagellates and silicoflagellate index
from the Pliocene interval from Hole 1165. Corresponding diatom and magnetostratigraphic ages are
from Florindo et al. [2003], and Whitehead and Bohaty [2003].
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mum abundance between here and the Agulthas front
(Figure 4) [Eynaud et al., 1999]. Features of the modern
Southern Ocean’s circum-Antarctic surface water and atmo-
spheric systems may inhibit Dictyocha incursions south of
the APF. Today, cold water-bodies in the Southern Ocean
occasionally become trapped in eddies that spiral northward
off the APF jet stream [Pickard and Emery, 1990], causing
diatoms from Antarctic waters to appear sporadically at low
latitudes [Crawford et al., 1997]. Relatively warm water
rings also occasionally spiral southward from the APF jet

stream into Antarctic waters [Gouretski and Danilov, 1994];
however, this would cause negligible Dictyocha transport
southward because their abundance is originally low near
the APF [Eynaud et al., 1999]. Cyclonic, circum-Antarctic,
low-pressure systems over the APFZ form effective cloud
and precipitation barriers that extend for several kilometers
above the ocean surface [Shaw, 1979]. Precipitation
removes airborne particles from below the troposphere
[Delmas and Legrand, 1989] and prevents aerial transport
of Dictyocha into the Southern Ocean. For Dictyocha to be

Figure 3. Site 1165 Dictyocha percent (this study) and age control [Florindo et al., 2003]. Three
Dictyocha events (I, II, and III) were identified at Site 1165 and correlate to Dictyocha events identified at
ODP Sites 748 and 751 [Bohaty and Harwood, 1998]. Dictyocha planktic formaminfera d18O values
from ODP Site 704 [Hodell and Venz, 1992]. The Dictyocha percent relationship to summer sea surface
temperature is from Ciesielski and Weaver [1974].
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deposited at Site 1165; therefore a change in atmospheric,
and more likely, a change in oceanic conditions is required.
[25] We consider low SST to be the major factor prevent-

ing the incursion of Dictyocha south of the modern APF.
Comparison between Pliocene and modern silicoflagellate
data [Ciesielski and Weaver, 1974] suggests that a mean
annual SST increase up to 5.5�C occurred during event I at
Site 1165, resulting in a summer maximum SST of approx-
imately 5�C. During events II and III, warming by approx-
imately 4.5�C occurred, producing summer maximum SST
at Site 1165 of 4�C. The lack of Dictyocha in other Pliocene
intervals at the site suggests cooler SST of <2�C prevailed
throughout much of this period.

4.2. Correlation to Other Pliocene SST Records

[26] The early to middle Pliocene is generally recognized
as an interval of elevated global temperature [Crowley,
1996; Dowsett et al., 1996]. Early to middle Pliocene
Southern Ocean SST has been previously reconstructed
using paleontological evidence, as well as sedimentological
and isotope proxies. This evidence and its SST interpreta-
tion at Site 1165 are discussed below.
4.2.1. Paleontology
[27] Events with high Dictyocha abundance have been

identified north of Site 1165 on the Kerguelen Plateau at
ODP Sites 748 and 751 [Bohaty and Harwood, 1998]
(Figure 3; Appendices 3 and 4). Event I correlates to an
event at the base of the Fragilariopsis interfrigidaria zone at
Sites 748 and 751; events II and III may correlate with two
unnamed events on the Kerguelen Plateau, within the Tha-
lassioisira inura zone at Site 751 (Figure 3). The Dictyocha
events also appear to be useful biostratigraphic markers in the
Indian sector of the Southern Ocean. For instance, event I is
an easily identifiable event, nearly coincident with the first
occurrence (FO) of F. interfrigidaria (McCollum) Gersonde
and Bárcena at �3.7 Ma.
[28] Southern Ocean silicoflagellate paleotemperatures

have been interpreted from Eltanin and Deep Sea Drilling
Project (DSDP) cores [Ciesielski and Weaver, 1974]. On the
basis of the diatom stratigraphy, the Dictyocha events at Site
1165 can be correlated to events at DSDP Site 266 referred

to as G-II, G-IV, and G-V [Ciesielski and Weaver, 1974].
The G-II event at Site 266 was identified in Sample 266 - 7-
4, 45 (124.95 mbsf ), which contains 11% D. fibula (orig-
inally identified as Dictyocha aspera (Lemmermann) Burky
and Foster) [Ciesielski and Weaver, 1974]. This Dictyocha
event is coincident with the FO of F. interfrigidaria between
Samples 266-7-2, 45–47 (121.96 mbsf ) and 266-7-4, 120–
122 (125.71 mbsf ) at Site 266 [McCollum, 1975] and
therefore correlative to event I at Site 1165. Events G-IV
and G-V fall between �130 mbsf and 140 mbsf at Site 266
[Ciesielski and Weaver, 1974]. These events can be corre-
lated to Site 1165 based on the FO of Fragilariopsis
barronii (Gersonde) Gersonde and Bárcena (4.2–4.3 Ma)
(identified as Nitzschia angulata Hasle), which occurs
between Samples 266-7-CC (129.50 mbsf ) and 266-8-1,
55–57 (130.06 mbsf ), and the FO of Fragilariopsis praein-
terfrigidaria (McCollum) Gersonde and Bárcena (4.9–
5.8 Ma), between Samples 266-9-4, 99–101 (145.50 mbsf )
and 266-9-CC (148.50 mbsf ). Therefore events G-IV and
G-V at Site 266 fall within the T. inura zone and are most
likely correlative to events II and III at Site 1165. Another
important stratigraphic feature of these two events is the
dominance of D. pumila.
[29] Southern Ocean SSTs were warmer than present

during the middle and early Pliocene, as interpreted from
diatom, coccolithophorid, foraminiferal, and radiolarian
distribution in the Southern Ocean [Ciesielski and Weaver,
1974; Keany, 1978; Abelmann et al., 1990; Bohaty and
Harwood, 1998; Whitehead et al., 2001]. In the Southern
Ocean sector from �76�E to 150�E during the early
Pliocene (Chrons C2Ar and C3n), Antarctic radiolarians
from the APFZ dominated assemblages deposited up to
�350 km south of the current APF (e.g., Eltanin core Site
E50-28) [Keany, 1978]. The southern incursion of radio-
larians may correlate to Dictyocha events II and III at Site
1165. Subantarctic planktic foraminifera also penetrated
�900 km south of the current APF during the Pliocene, at
ODP Sites 747, 748, 751 and DSDP Site 265 [Berggren,
1992; Jenkins, 1993; Ivanova and Ivanova, 1996a, 1996b].
On the Kerguelen Plateau, abundant coccolithophorids were
deposited south of the modern APF, in association with

Figure 4. Latitudinal abundance of Dictyocha in surface water samples from a transect across the South
Atlantic (data from Eynaud et al. [1999]).
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Dictyocha events in the T. inura and F. interfrigidaria zones
at Sites 748 and 751 [Bohaty and Harwood, 1998]. Cocco-
lithophorids on the Kerguelen Plateau suggest that the
summer SST exceeded 5�C, which is consistent with a
4�C warming interpreted by Bohaty and Harwood [1998].
From the coast at Prydz Bay (�68�S), extant diatoms were
deposited within the early Pliocene Sørsdal Formation
[Harwood et al., 2000], during a brief interval between
4.2 Ma and 4.1 Ma. We have revised the biostratigraphic
age of the Sørsdal Formation to the Berggren et al. [1995]
timescale from the presence of Fragilariopsis praecurta
(last occurrence 4.1 Ma [Gersonde and Burckle, 1990]) and
Fragilariopsis barronii (first occurrence 4.2 Ma [Winter
and Iwai, 2002]), which indicates that the deposit falls
between events I and II at Site 1165. Microfossil data from
the Sørsdal Formation suggests that summer SST was 1.6�C
to 3�C warmer than today [Whitehead et al., 2001]. It is
likely that the Sørsdal Formation was not deposited during
maximum warming, which may explain why the relative
SST increase at this high latitude location was less than that
detected to the north at Site 1165. This is consistent with the
oxygen isotope record from ODP Site 846, which illustrates
that climatic conditions were highly variable between
4.5 Ma and 4.1 Ma [Shackleton et al., 1995].
[30] From Maud Rise in the Weddell Sea (�64� S),

�1500 km south of the modern APF, there is evidence for
an early Pliocene climatic optimum (within Subchron
C3n.4n) when SST was 10�C to 5�C warmer than today
[Abelmann et al., 1990]. Although the optimum predates the
Site 1165 silicoflagellate record, warm conditions were
recognized at Maud Rise throughout the Subchron C3n
followed by cooling in the Subchron C2Ar [Abelmann et
al., 1990]. This trend is similar to that interpreted from Site
1165 (Figure 3). Coolwater radiolarians and diatoms endemic
to Antarctica first appear on the Maud Rise within Subchron
C3n.2n [Abelmann et al., 1990], which coincides with
the cooler interval that separates the Site 1165 Dictyocha
events II and III.
4.2.2. Sedimentology
[31] Variation in biogenic carbonate and silica deposition

has been used to indicate movement of the APF [e.g.,
Froelich et al., 1991; Burckle et al., 1996]. Today, calcar-
eous sediments are dominant north of the SAF and siliceous
sediments are dominant south of the APF; a mixture of both
sediments occurs within the intermediate APFZ [Hodell and
Warnke, 1991; Burckle et al., 1996]. High carbonate inter-
vals at ODP Site 737, deposited when the APF moved south
from today’s location, suggest that Southern Ocean warm-
ing was only short-lived in the early Pliocene [Burckle et
al., 1996].
[32] The lack of appreciable carbonate from other South-

ern Ocean sediment records has been used to infer negli-
gible warming in the early Pliocene [Burckle et al., 1996].
However, many of these records were deposited near or
below the carbonate compensation depth (CCD), which
lies below water depths of 2000 m on the Kerguelen
Plateau [Goodell, 1973] and 1500 m on the Antarctic
continental shelf [Quilty, 1985] (e.g., ODP Sites 693,
697, 744, and 745). Additionally, many records are in
close proximity to Antarctica where they received signif-

icant terrigenous input (e.g., CIROS 2, DVDP 10, 11
[Winter and Harwood, 1997]). Deposition below the
CCD or high terrigenous input prevents simple interpreta-
tion of SSTs from bulk carbonate content. This pertains to
Site 1165, at 3537 m water depth, which was most likely
well below the CCD during the Pliocene [Shipboard
Scientific Party, 2001].
[33] At high latitudes in the Southern Ocean, increased

biogenic deposition (notably silica) has been linked to sea-
ice reduction and increased SST [Burckle, 1984]. This is
evident in early Pliocene sediments from the Bellingshausen
Sea (ODP Sites 1095 and 1096) near the Antarctic Penin-
sula [Hillenbrand and Fütterer, 2001].
[34] There is no consistent relationship between ice rafted

debris (IRD) deposition and SST in early Pliocene strata
from the Southern Ocean [Bohaty and Harwood, 1998;
Anderson, 1999]. IRD deposition was consistently high
throughout the Southern Ocean �4.5 Ma to 4.2 Ma [Hodell
and Warnke, 1991; Breza, 1992]; a period that spans both
warm and cool silicoflagellate events identified at Kergue-
len Plateau Site 751 [Bohaty and Harwood, 1998]. A warm
event at Site 751, �3.7 Ma, is also associated with high IRD
[Bohaty and Harwood, 1998].
[35] IRD data must be interpreted with caution, how-

ever, as numerous factors affect iceberg calving rates, and
hence IRD deposition. Iceberg calving can increase dur-
ing both ice sheet growth and retreat. Calving, dispersal,
and drift trajectory are also dependent on sea-ice condi-
tion, ocean currents, and wind [Anderson, 1986; Breza,
1992; Anderson, 1999]. Altered sediment deposition rates
and erosion (i.e., winnowing) can also concentrate IRD
[Whitehead and McMinn, 2002], which may be misinter-
preted as increased iceberg calving. We cannot use IRD
data alone to interpret SST in the Southern Ocean.
Rather, IRD data must be combined with paleotemper-
ature data, as done to interpret Heinrich events in the
Northern Hemisphere [Oerlemans, 1993; Verbitsky and
Saltzman, 1994], to understand the climatic significance
of the Southern Ocean’s Pliocene IRD record.
4.2.3. Isotopes
[36] Isotopes have been used to reconstruct Southern

Ocean SST, notably from ODP Site 704 just north of the
Southern Ocean (�47�S) [Hodell and Venz, 1992; Kennett
and Hodell, 1993]. Variations in d18O are a result of
changing ice sheet volumes and must be considered in
conjunction with SST estimates. Planktic d18O values from
the early to middle Pliocene are �0.5–0.6% less (minima
0.75% less) than Holocene values [Kennett and Hodell,
1993]. A reduction of this amount can accommodate either
a 2.5�C SST warming at Site 704 or a 60% East Antarctic
Ice Sheet (EAIS) reduction, but not both [Hodell and Venz,
1992]. A partial EAIS deglaciation equivalent to a 20 m
sea level rise (equivalent to a 0.2% d18O decrease) would
accommodate a 1�C to 2�C SST warming at Site 704 and
is consistent with the oxygen isotope record (up to 0.4%
d18O decrease) [Kennett and Hodell, 1993]. A similar
trend has been observed from the Tasman Sea, where a
1.5�C warming is interpreted from the planktic d18O
isotope record at DSDP Site 593 (�41�S) [Head and
Nelson, 1994].
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[37] An alternative hypothesis for the Site 704 isotope
record explains ice sheet expansion associated with higher
SST (i.e., Prentice and Matthews’ [1991] ‘‘snow gun
hypothesis’’). The hypothesis enables elevated SST to
explain the reduced early Pliocene d18O values at Site 704
without the need to account for EAIS reduction [Warnke et
al., 1996]. This is consistent with the proportionally higher
Southern Ocean SST estimates from microfossils (i.e., 4.5�
to 5.5�C warming at Site 1165), when current or increased
ice sheet volume is factored into the ‘‘low’’ early Pliocene
d18O values from Site 704 [Warnke et al., 1996]. Seismic
data from the Antarctic continental shelf supports evidence
for two or three episodes of early Pliocene ice sheet
expansion [Bart, 2001]. Early Pliocene eustatic sea levels
lower than today are evident from the northeast Gulf of
Mexico [Greenlee and Moore, 1988], and loosely correlate
to decreased planktic d18O at 3.6 Ma and 4.7–4.8 Ma at Site
704 [Bart, 2001]. Lower sea levels than today occurred on
the Pacific Ocean Enewetak Atoll 3.7–3.8 Ma and 5.0 Ma
(dates revised to the Berggren et al. [1995] timescale);
however, eustatic sea levels 30–35 m higher than today
also occurred during these times [Wardlaw and Quinn,
1991], which indicates that a large Antarctic ice sheet was
not sustained throughout the early Pliocene.
[38] A new approach to interpret ice volumes integrates

benthic foraminiferal d18O values with Mg/Ca ratios that
reflect water temperature near the seafloor [Lear et al.,
2000; Billups and Schrag, 2002]. The highest resolution
Pliocene study of this kind has been undertaken on Ker-
guelen Plateau ODP Site 747 (�54�S, at 1695 m water
depth) [Billups and Schrag, 2002]; however, the resolution
is still relatively low (thirteen samples spanning �3.5 myr
of strata). The findings suggest early Pliocene temperatures
were comparable, or only slightly cooler, than temperatures
throughout much of the Miocene, but specific warming or
cooling events may have been missed by the low sampling
resolution. A cooling of approximately 4�C occurred in the
late Pliocene [Billups and Schrag, 2002], but a critical
interval between 3.1 Ma and 2.5 Ma, of interpreted warming
[Moriwaki et al., 1992; Wilson et al., 1998], is disconform-
ably absent from Site 747 [Harwood et al., 1992].
[39] The planktic isotope record from Site 704 shows little

correlation with Dictyocha events I and II at Site 1165
(Figure 3). There are numerous explanations for this lack of
correlation, which includes differences in the age models or
different temperature histories at the two sites. Ice volume
and temperature affect d18O values, as do changes in surface
water salinity and pH, which complicate the isotope inter-
pretation [Spero et al., 1997] and may explain the discrep-
ancy between these proxies. There is some similarity,
however, between a decrease in d18O at Site 704 and
Dictyocha event III at Site 1165, which points toward some
consistency between parts of these records.
[40] The d18O isotope record suggests that in the Pliocene,

Southern Ocean SST were lower than values obtained from
paleontological reconstructions [Kennett and Hodell, 1993;
Warnke et al., 1996; Bohaty and Harwood, 1998]. These
differences may be geographical, as at low latitudes small
temperature increases of 1.5�C (�41�S, DSDP Site 593)
and 1�C to 2�C (�47�S, Site 704) were interpreted from

planktic d18O isotopes [Kennett and Hodell, 1993; Head
and Nelson, 1994]. At higher latitudes, SST increased 4�C
(�58�S at Sites 748 and 751) and 4.5�C to 5.5�C (�64�S,
Site 1165), as interpreted from silicoflagellate data [Bohaty
and Harwood, 1998; this study]. A declining latitudinal
temperature gradient in the Pliocene may only be associated
with a minor temperature increase at Site 704, due to the
southern movement or change in the latitudinal temperature
gradient across Subantarctic surface water. The larger tem-
perature transitions across the SAF and APF, currently south
of Site 704, could have become less steep and/or moved
southward [Bohaty and Harwood, 1998], leading to rela-
tively greater warming of Antarctic surface waters at Sites
748, 751 and, notably, Site 1165.

4.3. Mechanisms for Southern Ocean Warming

[41] Distinct warm intervals in the early Pliocene at Site
1165 contribute toward our understanding of THC. The
Pliocene is recognized as an interval of strengthened THC,
between 5.0 Ma and 2.7 Ma [Kwiek and Ravelo, 1999] and
in particular between 4.4 Ma and �3.7 Ma [Billups et al.,
1998]. The Dictyocha events at Site 1165 represent distinct
pulses of warming in the Southern Ocean that do not span
the entire duration of enhanced NADW influx that occurred
throughout much of this period. It is possible that the
Dictyocha events at Site 1165 represent intervals of maxi-
mum NADW influx into the Southern Ocean �3.7 Ma,
4.3–4.4 Ma, and �4.55–4.8 Ma.
[42] Recent climate models indicate that enhanced THC

(notably increased NADW influx) was a consequence of
Pliocene warming, not the cause [Kim and Crowley, 2000].
Kim and Crowley [2000] proposed that a reduction in sea-
ice formation in the Southern Ocean would have created a
meridional deep-water gradient that promoted thermohaline
overturning in the North Atlantic and increased NADW
production. The cause for sea-ice loss in the Pliocene is
thought to have been a slight atmospheric CO2 increase
[Kim and Crowley, 2000]. Reduced sea-ice concentration
throughout the early Pliocene was documented from the
Bellingshausen Sea ODP Sites 1095 and 1096 [Hillenbrand
and Fütterer, 2001]. It is possible that the distinct warming
intervals, represented by increased Dictyocha abundance at
Site 1165, occurred during intervals of higher atmospheric
CO2 than occurred in the middle to late Pliocene (recon-
structed by Raymo et al. [1996]). Detailed early Pliocene
atmospheric CO2 records are required to test this. Alterna-
tively, the warming interpreted from Dictyocha abundance
at Site 1165 could have been the result of complicated
feedback processes that resulted in warming of Southern
Ocean surface waters.

5. Conclusion

[43] A middle to early Pliocene SST reconstruction is
derived from silicoflagellate data collected from ODP Hole
1165B. Three events with high Dictyocha abundance,
between �36% to 62%, were identified. These events
occurred �3.7 Ma, 4.3–4.4 Ma, and �4.55–4.8 Ma, as
interpreted from diatom and magnetostratigraphic data
[Florindo et al., 2003; Whitehead and Bohaty, 2003].

20 - 8 WHITEHEAD AND BOHATY: SOUTHERN OCEAN PLIOCENE SEA SURFACE TEMPERATURE



Comparison of these data with Ciesielski and Weaver’s
[1974] modern core top silicoflagellate relationship with
SST indicates that at Site 1165 SSTs were 5.5�C and 4.5�C
warmer than modern mean annual SST values.
[44] A review of previous studies identified that discrep-

ancies occur between SST estimates from isotope, sedimen-
tological and paleontological proxies. There appear to be
problems interpreting SST from sedimentological proxies,
where carbonate analyses have been made on cores depos-
ited below the CCD, and from IRD data that has not been
interpreted in conjunction with other paleoenvironmental
data. More reliable SST estimates may arise from isotope
and paleontological techniques, but some differences in
these proxies may be geographical, due to differential
warming at different latitudes in the Southern Ocean. It is
believed that the latitudinal temperature gradient declined
globally during the Pliocene warming [Dowsett et al., 1996;
Rind, 1998] and this appears consistent with early Pliocene
Southern Ocean SST reconstructions.
[45] Dictyocha could only have been deposited at Site

1165 if the APF was �1600 km south of its current
position, or more likely the temperature gradient of this
front was less steep across the Southern Ocean. The
mechanism for warmer Southern Ocean SST during much
of the Pliocene may have been strengthened THC, between
5.0 Ma and 2.7 Ma [Kwiek and Ravelo, 1999], which
decreased the temperature gradient across the APF.
Strengthened THC is associated with enhanced NADW
influx into the Southern Ocean, which may have peaked
at �3.7 Ma, 4.3–4.4 Ma, and �4.55–4.8 Ma, creating the
higher SSTs at Site 165 that supported Dictyocha. Alter-
nately, other studies suggest that enhanced NADW influx
may have resulted from Pliocene warming (due to elevated
atmospheric CO2), which may have caused a reduction in
sea-ice formation in the Southern Ocean that created a
meridional deep water gradient that promoted THC and
increased NADW production [Kim and Crowley, 2000].
Further research on the link between Pliocene atmospheric
CO2 levels, sea-ice conditions, and the SST record from Site
1165, and other sites, may help resolve this.

Appendix A: Taxonomy

[46] Silicoflagellate taxonomy from Site 1165 are
as follows: (1) kingdom PROTISTA; (2) subkingdom
PROTOPHYTA; (3) class CHRYSOPHYCEAE; (4) order
SILICOFLAGELLATA Borgert, 1891.

A1. Genus BACHMANNOCENA (Locker, 1974)
Bukry, 1987

[47] All silicoflagellates consisting solely of a basal ring
are grouped into the genus Bachmannocena (Locker). We
do not follow the taxonomy established by Locker and

Martini [1986], who separate such morphotypes into the
genera Septamesocena, Mesocena, and Paramesocena (as
in the work of Amigo [1999]).
[48] 1. Bachmannocena sp. A: multiple sides to the basal

ring with multiple spines.
[49] 2. Bachmannocena sp. B: 6 sides to the basal ring

and 6 spines at the joins of these sides.
[50] 3. Bachmannocena sp. C: 4 sides to the basal ring

and 4 spines at the joins of these sides.
[51] 4. Bachmannocena sp. D: 3 sides to the basal ring

and 3 spines at the joins of these sides.
[52] 5. Bachmannocena sp. E: 2 sides to the basal ring

and 2 spines at the joins of these sides.

A2. Genus DICTYOCHA Ehrenberg, 1837

[53] The genus Dictyocha lacks an apical ring, and instead
possess a bar that joins the struts that extend in from the
basal ring [Perch-Nielsen, 1985]: (1) Dictyocha fibula
Ehrenberg 1840; (2) Dictyocha pumila (Ciesielski) Bukry;
(3) Dictyocha pentagona (Schulz) Bukry and Foster 1973.
[54] 1. Dictyocha sp. A: 6 sides to the basal ring and 3

apical-ring portals.
[55] 2. Dictyocha sp. B: 6 sides to the basal ring and 2

apical-ring portals.
[56] 3. Dictyocha sp. C: 3 sides to the basal ring and 2

apical-ring portals.

A3. Genus DISTEPHANUS Stöhr, 1880

[57] The genus Distephanus is characterized by a basal
and apical ring [Perch-Nielsen, 1985]: (1) Distephanus
speculum speculum (Ehrenberg) Haeckel 1887; (2) Dis-
tephanus speculum var. pentagonus Lemmermann 1901.
[58] 1. Distephanus speculum f. A: the apical ring is close

to the circumference of the basal ring.
[59] 2. Distephanus crux f. A (Ehrenberg) Haeckel 1887:

4 sides to the basal ring.
[60] 3. Distephanus crux f. B (Ehrenberg) Haeckel 1887:

3 sides to the basal ring.
[61] 4. Distephanus xenus Bukry, 1985.
[62] 5. Distephanus sp. A: aberrant forms with multiple

apical rings.
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