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We study the electrically forced thickness-shear and thickness-twist vibrations of stepped thickness piezoelectric plate
mesa resonators made of polarized ceramics or 6-mm class crystals. A theoretical analysis based on the theory of piezoelec-
tricity is performed, and an analytical solution is obtained using the trigonometric series. The electrical admittance, resonant
frequencies, and mode shapes are calculated, and strong energy trapping of the modes is observed. Their dependence on
the geometric parameters of the resonator is also examined.
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1. Introduction
Piezoelectric crystals are widely used to make resonators,

filters, sensors, and other acoustic wave devices for time-
keeping, frequency generation and operation, telecommuni-
cation, and sensing. Thickness-shear (TSh) vibrations of
crystal plates are common structures and modes for these
applications.[1,2] TSh modes can be excited in quartz plates,
ceramic plates with in-plane poling, plates of 6-mm class crys-
tals with in-plane six-fold axes, etc. Theoretically, pure TSh
modes can only exist in unbounded plates without edge ef-
fects. When a plate is vibrating in TSh mode, the motions of
the material particles are parallel to the surfaces of the plate,
and the particle velocities vary only along the plate thickness,
without in-plane variations. In reality, however, due to the fi-
nite sizes of devices, pure TSh modes cannot exist because of
edge effects. In real devices, the actual TSh operating modes
have slow, in-plane variations. These modes are referred to
as transversely varying TSh modes.[3] In cases where the in-
plane mode variation is along the direction perpendicular to
the TSh particle velocity, the modes are called thickness-twist
(TT) modes.[4,5]

When a plate vibrates in the TSh modes, all parts of the
plate are moving, except for some of the planes parallel to
the plate surface (nodal planes). For such a vibrating plate,
the mounting that is necessary for any device, becomes an is-
sue. Fortunately, the TSh modes in a plate with partial elec-
trodes in the center (trapped energy resonator) have an im-
portant and useful behavior called energy trapping, through
which the TSh vibration is confined under the electrodes and
decays rapidly outside them.[6] Energy trapping is useful in
device mounting. For trapped modes, mounting can be done

near the plate edges without affecting the vibration of the
plate. Energy trapping is mainly due to the inertial effect of
the electrodes.[6] Piezoelectric coupling can also contribute to
energy trapping,[7] and researchers have developed contoured
resonators[8–11] from plates with gradually varying thicknesses
and mesa resonators[12–21] from plates with stepped or piece-
wise constant thickness. In contoured or mesa resonators, the
changing plate thickness usually leads to stronger energy trap-
ping than the inertia of the partial electrodes.

This paper is mainly concerned with mesa resonators. Be-
cause of the change in plate thickness, analytical modeling of
mesa resonators is mathematically challenging. Theoretical
results are few and scattered. The analysis in Ref. [12] was
based on approximate, two-dimensional plate equations. In
Refs. [13]–[20], a combined analytical–numerical approach, a
finite-element numerical method, and an experimental study
were conducted. Most of Refs. [12]–[21] presented the results
on mode variation along the direction of the particle veloc-
ity. Only references [18] and [21] have results on mode varia-
tion along the direction perpendicular to the particle velocity.
These results are for free vibration frequency and mode shape
analysis only.

In real applications, resonators operate as elements of
electrical circuits. Two of the basic properties of a resonator,
its resonant frequency and its electrical admittance, are of pri-
mary interest for a complete circuit analysis. The impedance
of a resonator can only be obtained from an electrically forced
vibration analysis. A review of the relevant literature shows
that two aspects of mesa resonators are rarely studied. One
is the electrically forced vibration and the other the in-plane
mode variation perpendicular to particle velocity. In this paper,
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for a complete simulation of an operating mesa resonator, we
perform an electrically forced vibration analysis of a mesa res-
onator for its electrical admittance, and examine the effects of
the geometric parameters of the resonator on its basic behav-
iors including admittance, resonant frequencies, mode shapes,
and energy trapping. In-plane mode variation perpendicular to
particle velocity is considered. Our analysis differs from all
previous analyses of mesa resonators in the literature in that
the present analysis is based on the exact equations of linear
piezoelectricity.

2. Governing equations
Consider the plate made of polarized ceramics or crystals

of 6-mm class as shown in Fig. 1. The mathematical struc-
tures of the material tensors of polarized ceramics and 6-mm
class crystals are the same. The analysis below is valid for
both materials. Polarized ceramics are conventional materials
for resonant piezoelectric devices, and 6-mm class crystals in-
clude aluminum nitride and zinc oxide, which are of current
and growing research interest for thin-film acoustic wave res-
onators and sensors.[22–26] The plate is unbounded in the x3

direction and does not vary along x3. Figure 1 shows a cross
section of the plate. The poling direction or the six-fold axis is
along x3. The entire surface of the plate is traction free. Across
the electrodes, shown by the thick lines at the top and bottom
of the central portion of the plate, a voltage of 2V exp(iωt) is
applied. We consider a plate driven by an electric field in the
plate thickness direction or the so-called thickness field exci-
tation (TFE). A plate can also be driven by an in-plane electric
field or the so-called lateral field excitation (LFE).[27–29] Due
to the symmetry in the structure and the antisymmetry of the
applied voltage about the plate middle plane, the plate is driven
into shear-horizontal (SH) or antiplane[30] motions, even in x1

and odd in x2. We artificially divide the plate cross section by
dotted lines into three rectangular regions, and call them the
top, middle, and bottom regions.

↩V

x2↼y↽

x1↼x↽

a

h

V

b↩ab↩a

H

H

top   region

middle region

bottom region

Fig. 1. A mesa resonator of polarized ceramics or 6-mm class crystals.

The direction x3 is determined from directions x1 and x2

by the right-hand rule.

For the mesa resonator in Fig. 1, SH motions including
the TSh and TT modes are governed by[30,31]

u1 = u2 = 0,

u3 = u(x1,x2, t), φ = φ(x1,x2, t), (1)

where u1, u2, and u3 are the components of the displacement
vector, and φ is the electric potential. A function ψ can be
introduced through φ = ψ + eu/ε ,[30,31] where e = e15 and
ε = ε11 are the relevant piezoelectric and dielectric constants.
The governing equations for u and ψ are[30,31]

c̄∇
2u = ρ ü, ∇

2
ψ = 0, (2)

where ∇2 is the two-dimensional Laplacian, c̄ = c+e2/ε , and
c = c44 is the relevant shear elastic constant. The nonzero
stress components are T23 = T4 and T13 = T5. The nonzero
electric displacement components are D1 and D2. They are
given by the following constitutive relations:[30,31]

T23 = c̄u,2 + eψ,2, T13 = c̄u,1 + eψ,1,

D1 =−εψ,1, D2 =−εψ,2, (3)

where an index after the comma denotes partial differentiation
with respect to the coordinate associated with the index. The
above equations are valid in each rectangular region in Fig. 1.
The boundary conditions at the top of the central potion are

T23(x1,h+H, t) = 0, |x1|< a,

ϕ(x1,h+H, t) =V exp(iωt), |x1|< a. (4)

The boundary and continuity conditions at the interface be-
tween the top and middle rectangular regions are

u(x1,h−, t) = u(x1,h+, t), |x1|< a, (5a)

ϕ(x1,h−, t) = ϕ(x1,h+, t), |x1|< a, (5b)

T23(x1,h−, t) =
{

T23(x1,h+, t), |x1|< a,
0, a < |x1|< b, (5c)

D2(x1,h−, t) =
{

D2(x1,h+, t), |x1|< a,
0, a < |x1|< b. (5d)

The right edges of the top and middle rectangular regions are
traction free, with

T13(a,x2, t) = 0, h < |x2|< h+H,
D1(a,x2, t) = 0, h < |x2|< h+H,

(6)

T13(b,x2, t) = 0, |x2|< h,
D1(b,x2, t) = 0, |x2|< h. (7)

Due to antisymmetry and symmetry, the boundary and conti-
nuity conditions at the lower interface, the bottom surface, and
the left edges are not needed. In formulating the above bound-
ary conditions, the electrodes are assumed to be very thin so
their mechanical effects are neglected. The free charge on and
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the current that flows into the electrode at x2 = H+h are given
by[32]

q =
∫ a

−a
− D2|x2=h+H dx1, I = q̇, (8)

where a unit dimension in the x3 direction is taken. In time-
harmonic motions, the admittance Y of the device is given by

Y =
I

2V
. (9)

3. Series solution
For time-harmonic motions, we use the usual complex

notation and write u, ψ , φ , T23, D2, q, and I as

(u,ψ,ϕ,T23,D2,q, I)

= Re{(U,Ψ ,Φ ,T,D,Q, Ī)exp(iωt)}. (10)

We will write solutions in the top and middle rectangular re-
gions using the trigonometric series with undetermined coef-
ficients. The fields in the bottom rectangular region are not
needed due to symmetry. Then, the solutions in different re-
gions will be substituted into the interface continuity condi-
tions among different regions to obtain linear algebraic equa-
tions for the undetermined coefficients.

3.1. Middle-region fields

In this region, we construct the following solution from
the standard method of separation of variables in partial dif-
ferential equations:

U = B0 sin(η0y)+
∞

∑
m=1

Bm sin(ηmy)cos
mπx

b
, (11)

Ψ = D0y+
∞

∑
m=1

Dm sinh
mπy

b
cos

mπx
b

, (12)

where Bm and Dm are undetermined constants, (x, y) corre-
spond to (x1, x2), and

η
2
m =

ρ ω2

c̄
−
(mπ

b

)2
, m = 0,1,2,3, . . . . (13)

Equations (11) and (12) satisfy Eqs. (2) and (7). To apply the
boundary and continuity conditions at x2 = h, from Eqs. (11)
and (12), we obtain the following expressions:

Φ =
e
ε

B0 sin(η0y)+D0y+
∞

∑
m=1

[
e
ε

Bm sin(ηmy)

+Dm sinh
mπy

b

]
cos

mπx
b

, (14)

T = c̄B0η0 cos(η0y)+ eD0 +
∞

∑
m=1

[
c̄Bmηm cos(ηmy)

+eDm
mπ

b
cosh

mπy
b

]
cos

mπx
b

, (15)

D = −εD0 +
∞

∑
m=1
−ε

mπ

b
Dm cosh

mπy
b

cos
mπx

b
. (16)

3.2. Top-region fields

Similarly, in this region, the general solution symmetric
in x can be written as

U = F0 sin(ξ0y)+G0 cos(ξ0y)+
∞

∑
m=1

[Fm sin(ξmy)

+Gm cos(ξmy)]cos
mπx

a
, (17)

Ψ = H0y+K0 +
∞

∑
m=1

[
Hm sinh

mπ y
a

+Km cosh
mπ y

a

]
cos

mπx
a

, (18)

where Fm, Gm, Hm, and Km are undetermined constants, and

ξ
2
m =

ρ ω2

c̄
−
(mπ

a

)2
, m = 0,1,2,3, . . . . (19)

Equations (17) and (18) satisfy Eqs. (2) and (6). To apply the
boundary and continuity conditions at x2 = h and x2 = h+H,
we need

Φ = H0y+K0 +
e
ε

F0 sin(ξ0y)+
e
ε

G0 cos(ξ0y)

+
∞

∑
m=1

[
e
ε

Fm sin(ξmy)+
e
ε

Gm cos(ξmy)

+Hm sinh
mπ y

a
+Km cosh

mπ y
a

]
cos

mπx
a

, (20)

T = c̄ξ0F0 cos(ξ0y)− c̄ξ0G0 sin(ξ0y)+ eH0

+
∞

∑
m=1

[
c̄ξmFm cos(ξmy)− c̄ξmGm sin(ξmy)

+e
mπ

a
Hm cosh

mπ y
a

+e
mπ

a
Km sinh

mπ y
a

]
cos

mπx
a

, (21)

D = −εH0 +
∞

∑
m=1

[
− ε

mπ

a
Hm cosh

mπ y
a

−ε
mπ

a
Km sinh

mπ y
a

]
cos

mπx
a

. (22)

3.3. Boundary and continuity conditions

The substitution of Eqs. (11), (12), (14)–(16), (17), (18),
and (20)–(22) into Eqs. (4) and (5) yields six equations in
terms of trigonometric series. We then multiply both sides of
the four equations from Eqs. (4), 5(a), and 5(b) by cos(nπx/a)
(n = 0,1,2, . . .) and integrate the resulting equations over
(−a, a), then multiply both sides of the two equations from
Eqs. 5(c) and 5(d) by cos(nπx/b) (n= 0,1,2, . . .) and integrate
the resulting equations over (−b, b). This leads to a system of
linear algebraic equations for the undetermined constants Bm,
Dm, Fm, Gm, Hm, and Km. These equations are solved using a
computer.
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4. Numerical results
As a numerical example, we consider a mesa resonator

made of polarized ceramics, PZT-4.[33] Damping is introduced
using a complex elastic constant. We let c44 = c44(1+ i/Q),
where Q is a large and positive real number (the mechanical
quality factor). Q = 20, V = 110 V, 2a = 15 mm, 2b = 40 mm,
2h = 1 mm, and H = 0.3 mm are used. The admittance is de-
termined by the resonator structure and is independent of the
applied voltage used to calculate it. We also introduce a refer-
ence circular frequency

ω0 =
π

2(h+H)

√
c44

ρ
= 3.627599×106 rad · s−1, (23)

which is the fundamental TSh frequency of a ceramic plate
with a thickness of (h+H).

Figure 2(a) shows the admittance versus the driving fre-
quency. Two resonance peaks are visible near ω/ω0 = 1, with
one much larger than the other. The numerical data show that
in fact there is also a third peak, which is small and cannot be
seen in the figure. Figures 2(b)–2(d) show the real and imag-
inary parts of the displacement component u3 at these three
resonances, respectively. The imaginary part of the first mode
is much larger than the rest and is the main contributor to the

larger peak in Fig. 2(a). These modes are all trapped in the
thick central portion of the plate (energy trapping). Within the
central portion of the plate, the three modes all pass through
zero only once along the plate thickness direction. The first
mode has no zeros, i.e., no nodal points between (−a, a) along
the x direction. It is a slowly varying TSh mode. The second
and the third modes have two and four nodal points along x, re-
spectively, and are TT modes. The frequencies of these modes
are mainly determined by 2(H + h), i.e., the thickness of the
central portion of the plate. They are slightly above ω0 and are
slowly increasing as the wavelength along x becomes shorter.
The presence of nodal points along x causes charge cancella-
tion on the electrodes and is responsible for the drastic drop
of admittance from the first mode to the second mode and the
third mode. The u3 of the first mode is slowly varying along x.
The trigonometric series converges rapidly. When eight terms
are used for the relatively long region in the middle and three
terms are used for the relatively short region at the top, the fre-
quency has three significant figures. For the second mode and
the third mode with more variations along x, more terms in the
series are needed for the same accuracy. Numerical data show
that at higher frequencies there are other resonances whose ad-
mittances are even smaller.
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Fig. 2. (a) Admittances versus driving frequency. (b) The first mode with ω1 = 3.826517×106 rad · s−1. (c) The second mode with
ω2 = 4.012095×106 rad · s−1. (d) The third mode with ω3 = 4.400648×106 rad · s−1.

087704-4



Chin. Phys. B Vol. 22, No. 8 (2013) 087704

Figure 3(a) shows the effect of 2a, i.e., the length of the
thick central portion of the resonator, on the admittance. When
a becomes larger, the electrodes become longer and can col-
lect more charges. Therefore, the admittance becomes larger
as expected. a also affects the resonance frequencies. As a in-
creases, the thick portion of the plate becomes longer and has
more inertia and hence lower resonant frequency. Figures 3(b)
and 3(c) show the effects of a on the first two modes. For larger
values of a, the modes spread more toward the edges or are less
trapped. Corresponding to a= 7.5, 9.5, and 11.5 mm, the reso-
nant frequencies of the first mode are 3.826517×106 rad · s−1,
3.819001×106 rad · s−1, and 3.814545×106 rad · s−1, respec-
tively. As expected, the frequencies become lower as a in-
creases.
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Fig. 3. The effects of a when H = 0.3 mm. (a) Admittance, (b)
Im{u3(h)} of the first mode, and (c) Im{u3(h)} of the second mode.

Figure 4(a) shows the effect of 2H, i.e., the differ-
ence between the thickness of the central portion and the
edge, on the admittance of the resonator. When H becomes
larger, the admittance becomes smaller. This is because
the plate vibration amplitude becomes smaller, as seen from
Figs. 4(b) and 4(c). From Figs. 4(b) and 4(c), energy trap-
ping seems to be insensitive to H. Corresponding to H = 0.3,

0.4, and 0.5 mm, the resonant frequencies of the first mode
are 3.826517× 106 rad · s−1, 3.405791× 106 rad · s−1, and
3.067456× 106 rad · s−1, respectively. They become lower
as the plate thickness increases as expected. This cannot be
seen in Fig. 4(a), where the normalized frequency is used.
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Fig. 4. The effects of H when a = 7.5 mm. (a) Admittance, (b)
Im{u3(h)} of the first mode, and (c) Im{u3(h)} of the second mode.

5. Conclusions
An exact solution for electrically-forced vibrations of ce-

ramic mesa resonators is obtained. The analysis is also valid
for 6-mm class crystals. The admittance at the fundamental
TSh resonance is much larger than that at other resonances,
and is sensitive to the length and thickness of the thick central
portion of the resonator. A longer and thinner central portion
leads to larger admittance. Energy trapping is mainly deter-
mined by the length of the central portion and is less sensitive
to its thickness. A shorter central portion has better energy
trapping.
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