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Abstract: Scaffold mechanical properties are essential in regulating the microenvironment
of three-dimensional cell culture. A coupled fiber-matrix numerical model was developed in
this work for predicting the mechanical response of collagen scaffolds subjected to various
levels of non-enzymatic glycation and collagen concentrations. The scaffold was simulated
by a Voronoi network embedded in a matrix. The computational model was validated using
published experimental data. Results indicate that both non-enzymatic glycation-induced
matrix stiffening and fiber network density, as regulated by collagen concentration, influence
scaffold behavior. The heterogeneous stress patterns of the scaffold were induced by the
interfacial mechanics between the collagen fiber network and the matrix. The knowledge
obtained in this work could help to fine-tune the mechanical properties of collagen scaffolds
for improved tissue regeneration applications.

Keywords: collagen scaffold; fiber-matrix interaction; glycation; collagen concentration;
computational biomechanics
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1. Introduction

Three-dimensional (3D) scaffolds are commonly used as microenvironments for regulating cellular
functions and supporting tissue regeneration in vitro as well as in vivo [1,2]. Their mechanical
characteristics have been acknowledged as important factors in cell functions including growth,
migration, proliferation, and apoptosis [3]. Three dimensional cell culture systems have been gaining
more attention due to their capacity to better capture complex cell-scaffold interactions compared
to two-dimensional platforms [4]. Numerous hydrogel systems have been utilized for 3D cell
culture to better understand the role of scaffold mechanics in mediating cell behavior within certain
environments [5–7]. Specifically, collagen hydrogels are a viable scaffold for regenerating tissues such
as skin [8], cartilage [9], tendons [10], and blood vessels [11]. The microstructure and stiffness of
collagen gels can be tuned using various techniques including altering the collagen concentration [12],
changing the extent of crosslinking using techniques such as glycation, commonly utilizing glucose or
ribose as reducing sugars [13], and adding synthetic polymers such as polyethylene glycol (PEG) [14] or
natural proteins such as agarose [15]. However, it remains difficult to tune individual scaffold properties
without altering the microstructure of the scaffold.

Mason et al. recently demonstrated that non-enzymatic glycation can be used to control collagen
scaffold stiffness without significant microstructural changes within the range of 0–100 mM ribose [5].
Non-enzymatic glycation is the result of covalent bonding of a protein with a sugar molecule, such as
glucose or ribose. In this case, during non-enzymatic glycation, the ribose interacts with amino groups
on collagen to form Schiff bases that can rearrange into Amadori products [16]. These Amadori products
subsequently form advanced glycation end products (AGE) that accumulate on collagen. Results showed
that the compressive modulus of collagen scaffolds were increased threefold after glycation, along with
a significant increase in cell growth and spreading. Even though Mason et al. [5] has only characterized
gels with the collagen concentration of 1.5 mg/mL, it is interesting to observe that the gel modulus
increased without significant microstructural changes. This led to our hypothesis that the change in gel
modulus is due to altered interfacial mechanics between individual collagen fibers and their surrounding
matrix. Since the collagen fiber network does not show significant changes, different levels of ribose
used for non-enzymatic glycation results in changes in the shear modulus of the matrix.

The goal of this work is to develop a computational framework for capturing the above mentioned
experimental results [5] and provide additional insight on the fiber-matrix interface beyond the discrete
experimental datasets. Here, we model the detailed fiber-matrix interactions following non-enzymatic
glycation of the collagen scaffold. In addition, three different collagen concentrations were investigated
to separate the coupled effect of collagen concentration and glycation on the mechanics of the resulting
collagen scaffold. The knowledge obtained in this work could help to fine-tune the mechanical properties
of collagen scaffolds for controlling cellular functions and ultimately lead to better tissue regeneration.

2. Materials and Methods

In this work, a collagen fiber network was modeled as a Voronoi diagram (Figure 1), which has
demonstrated its utility elsewhere [17,18]. Briefly, Delaunay triangulation [19] was created by linking
randomly seeded nodes within a representative volume element (RVE) using Matlab (Natick, MA, USA).
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A total of 698 fibers with a diameter of 62 nm were generated within the 10 µm square cubic RVE to
mimic the fiber microstructure for a collagen concentration of 1.5 mg/mL. The fiber dimensions were
adopted based on the measurement from collagen gel polymerized at 37 ˝C and pH 7.4 [20]. The
same fiber diameter was also used in our previous study [21], which configured a significantly different
fiber network compared to the current work. The collagen fiber network herein was designed to mimic
the fiber entanglement rather than the exogenous cross-linker as in our previous work. Each fiber was
meshed with 100nm beam elements and the Young’s modulus was adopted as 50 MPa [22]. The fiber
network was embedded in the matrix to formulate the RVE as illustrated in Figure 1.

The matrix was meshed with 125,000 eight-node brick elements and considered as an incompressible
neo-Hookean solid [23] as defined by its strain energy density function W:

W “
µ

2
pI1 ´ 3q (1)

where µ is the shear modulus and I1 is the first invariant of the right Cauchy-Green deformation tensor.
Per our hypothesis, shear moduli of the matrix, i.e., 11 Pa, 30 Pa, and 50 Pa, were reverse fitted
corresponding to three levels of ribose concentration (0 mM, 50 mM, and 100 mM) as used in the
experimental work by Mason et al. [5]. A 5% compressive strain used in the experimental protocol was
also applied on one surface of RVE for observing the mechanical behaviors of collagen scaffold. The
RVE models were solved using ABAQUS 6.12 (Simulia, Providence, RI, USA).
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Figure 1. Collagen scaffold represented by the coupled fiber-matrix model.

3. Results

The coupled fiber network and matrix model resulted in different scaffold behavior when the matrix
shear modulus was adjusted (Figure 2a). The compressive stress of the scaffold was calculated by the
predicted reaction force divided by the side area. The equilibrium compressive modulus of the scaffold
was obtained by a linear fit to the stress-strain datasets.

To match the measured equilibrium compressive modulus [5], the matrix shear moduli (µ = 11 Pa,
30 Pa, and 50 Pa) were correlated with levels of ribose concentration (0 mM, 50 mM, and 100 mM) used
for non-enzymatic glycation. The comparison between our computational predictions and the published
experiments [5] is shown in Figure 2b. The good match indicates that different levels of ribose indeed
result in altered shear modulus of the matrix. As such, experimentally observed gel stiffening with
altered ribose concentration can be explained computationally based on changes to matrix rather than
collagen fiber microstructure.
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Figure 2. (a) Scaffold behavior in response to matrix shear modulus; (b) Model validation.

The load sharing in the scaffold with different matrix shear moduli is illustrated in Figure 3. As the
matrix shear modulus is altered from 11 Pa to 50 Pa with the fiber network structure intact, more load is
required to deform the scaffold to achieve 5% strain. The load undertaken by the matrix increased from
270.9 nN to 1124 nN, while the load shared by the fiber network increased from 619.8 nN to 1474 nN.
This also led to an increase in the matrix’s load-sharing from 30% to 43%, and a reduced percentage of
load-share for the fiber network. The increased load-sharing capacity of the matrix could be explained
by the increased matrix modulus ratio, i.e., matrix modulus over the fiber modulus.
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Figure 3. Load sharing capacity of scaffold.

The fiber-matrix interaction also resulted in heterogeneous stress distributions as illustrated in
Figure 4. Stress concentrations occurred at the regions around the fiber intersections. The calculated
local matrix stress gradient increases with a stiffer matrix. However the sensitivity of this local stress
gradient to the matrix modulus diminishes with a stiffer matrix. The probability distributions of
normalized matrix stress (σMises/µ) depicted in Figure 4b were also used to demonstrate the role of matrix
stiffness in the matrix stress inhomogeneity. The black dotted line is the uniform stress distribution in
a pure matrix without fibers, also referred to as affine deformation. It is clear that the increased matrix
shear modulus led to a shift in the probability distribution closer to the affine case, indicating reduced
stress inhomogeneity.
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Figure 4. (a) Von-Mises stress distribution of the matrix with shear modulus of 11 Pa;
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The role of collagen concentration on the mechanical response of the collagen scaffold is also
investigated in this work. Two additional collagen concentrations (1 mg/mL and 3 mg/mL) were
compared to the baseline case at 1.5 mg/mL. Higher concentrations of collagen resulted in a denser
fiber network (Figure 5a,b), as expected. In addition, two additional matrix shear moduli (0 and 500 Pa)
were considered to represent an isolated fiber network without matrix and a much stiffer matrix case,
respectively. Here, we have assumed that fiber microstructure is kept intact at a higher matrix shear
modulus, i.e., the higher ribose concentration used for non-enzymatic glycation. It is observed that
the compressive modulus of the scaffold increased nonlinearly with collagen concentrations as well as
matrix shear modulus (Figure 5c). The nonlinearity created by increasing the matrix shear modulus
alone could be explained by the shift from fiber dominated mechanics to matrix dominated mechanics.
The increased scaffold stiffness due to increased collagen concentration alone is due to the compact
fiber network. If the matrix shear modulus below is limited to 50 Pa per the published experiments [5],
a linear relationship with a correction coefficient (R2) of 0.9645 among the scaffold compressive modulus
(E, in Pa), matrix shear modulus (µ, in Pa), and collagen concentration (Cf, in mg/mL) was then obtained
and summarized as

E “ 8.942µ ` 105.3Cf´ 134.2 (2)

This empirical equation could be used to fine-tune the configuration of scaffold.



Materials 2015, 8 5381
Materials 2015, 8 6 

 

(a) (b) 

(c) 

Figure 5. Confocal reflectance microscopy images of scaffold at the collagen concentration 

(Cf) of (a) 1.5 mg/mL, and (b) 3.0 mg/mL, respectively; (c) Compressive Modulus of 

collagen scaffolds in response to collagen concentrations and matrix shear modulus. 

4. Discussion  

A coupled fiber-matrix finite element model was developed in this work and used for predicting the 

mechanical response of collagen scaffolds with different levels of non-enzymatic glycation and collagen 

concentrations. The collagen network was modeled as a Voronoi network embedded in a matrix. The 

macro compressive modulus of the scaffold increased three-fold by tuning the ribose concentration from 

0 mM to 100 mM, corresponding to the matrix shear modulus from 11 Pa to 50 Pa. This correlation is 

based on the experimental observations [5] that the above mentioned range of ribose used for  

non-enzymatic glycation did not alter the scaffold microstructure, i.e., the fiber network remains the 

same. This indicated that the three-fold scaffold stiffness increase could be fully due to the matrix 

stiffness, rather than the fiber network. The predicted results along with our computational framework 

were validated by published experiments (Figure 2). The validated model could then be used to inspect 

the mechanism of the altered fiber-matrix interactions as well as to identify the factors regulating the 

scaffold mechanics.  

The altered scaffold stiffness could be explained by the load sharing capacity of the matrix and fiber 

network as well as the stress heterogeneity induced by the fiber-matrix interactions. Even though a larger 
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collagen scaffolds in response to collagen concentrations and matrix shear modulus.

4. Discussion

A coupled fiber-matrix finite element model was developed in this work and used for predicting
the mechanical response of collagen scaffolds with different levels of non-enzymatic glycation and
collagen concentrations. The collagen network was modeled as a Voronoi network embedded in a
matrix. The macro compressive modulus of the scaffold increased three-fold by tuning the ribose
concentration from 0 mM to 100 mM, corresponding to the matrix shear modulus from 11 Pa to 50 Pa.
This correlation is based on the experimental observations [5] that the above mentioned range of ribose
used for non-enzymatic glycation did not alter the scaffold microstructure, i.e., the fiber network remains
the same. This indicated that the three-fold scaffold stiffness increase could be fully due to the matrix
stiffness, rather than the fiber network. The predicted results along with our computational framework
were validated by published experiments (Figure 2). The validated model could then be used to inspect
the mechanism of the altered fiber-matrix interactions as well as to identify the factors regulating the
scaffold mechanics.

The altered scaffold stiffness could be explained by the load sharing capacity of the matrix and fiber
network as well as the stress heterogeneity induced by the fiber-matrix interactions. Even though a larger
force is required to deform the scaffold to its 5% strain with increased matrix stiffness, a large percentage
of the extra load is shifted to the matrix (Figure 3). This also led to the altered interfacial mechanics
between collagen fibers and matrix, which resulted in heterogeneous scaffold mechanics (Figure 4).
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Stress concentrations were found at the fiber-matrix interface, especially at fiber clusters where several
fibers were entangled. However, this matrix stress heterogeneity reduced with a larger matrix modulus.
These local scaffold mechanics will likely affect cell behaviors, such as cell migration towards regions
of stiffness [24]. The scaffold heterogeneity was also recognized in previous numerical studies [18,25]
and needs to be further investigated.

The roles of collagen concentration, i.e, the fiber network density ribose concentration, and the matrix
modulus, were isolated to better understand the contribution from each element to the mechanical
behavior of scaffold (Figure 5 and Equation (2)). The increase in either matrix modulus alone or
collagen concentration alone has demonstrated its capacity to stiffen the scaffold as well as to diminish
the local stress heterogeneity. Both individual elements led to reduced material mismatch between the
fiber network and matrix. In addition, the scaffold was more sensitive to the alteration of collagen
concentrations. This could be explained by the dominant role of the fiber network in sharing the scaffold
load. It should be noted that Equation (2) is valid for a ribose concentration below 100 mM, i.e.,
the matrix shear modulus below 50 Pa. This is due to a larger ribose concentration, which also
induced the microstructural changes in the fiber network, such as increased crosslinking, and reduced
entanglement between fibers. These alterations together led to a nonlinear behavior of scaffold modulus
related to a large range of ribose concentrations [5]. The predictive model needs to consider the
competitive effects of both the altered fiber network and matrix stiffening on the scaffold modulus.
Specifically, the fiber thickening resulted in an increased scaffold modulus, while conversely, the reduced
fiber entanglement led to a smaller scaffold modulus. If the fiber network was assumed unaltered by a
wide range of ribose concentrations, the nonlinear behavior in Figure 5 was then observed.

5. Conclusions

In this study, a coupled fiber-matrix numerical model was developed to predict the mechanical
response of collagen scaffolds subjected to various levels of non-enzymatic glycation and collagen
concentrations. The scaffold was simulated using a Voronoi network embedded in a matrix. The
constructed fiber network density was regulated by the collagen concentration, while non-enzymatic
glycation led to increased matrix stiffness. The computational model was validated with previously
published experimental data. Results show that scaffold modulus was linearly correlated with both
matrix stiffness and collagen concentration for a ribose concentration below 100 mM. This correlation
became highly nonlinear, where a larger ribose concentration induced microstructural changes in the
fiber network. More crosslinking between fibers were also speculated to contribute to the glycation
induced scaffold stiffening. This aspect was not explicitly included in this work due to lack of
experimental data. Appropriate experiments need to be designed to quantify the role of glycation on
both matrix stiffness and crosslink density.

In summary, the developed models offer an effective means to integrate experimental datasets and
facilitate investigation of the scaffold mechanics where experimentation is inefficient. The detailed
fiber-matrix interaction could be used to guide the design of collagen scaffolds. More modeling details
such as fiber curvature and its nonlinear material properties could also be included for better inspection
of the interfacial mechanics. The insight gained in this work could lead to a better understanding of how
to fine tune the mechanical properties of collagen scaffolds for optimal tissue regeneration applications.



Materials 2015, 8 5383

The model could also be extended to study the cell-scaffold interactions with independent control of
fiber microstructure and local stiffness.
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