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Component analysis of errors in satellite-based precipitation estimates
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[1] Satellite-based precipitation estimates have great potential for a wide range of critical
applications, but their error characteristics need to be examined and understood. In this
study, six (6) high-resolution, satellite-based precipitation data sets are evaluated over
the contiguous United States against a gauge-based product. An error decomposition
scheme is devised to separate the errors into three independent components, hit bias,
missed precipitation, and false precipitation, to better track the error sources associated
with the satellite retrieval processes. Our analysis reveals the following. (1) The three
components for each product are all substantial, with large spatial and temporal variations.
(2) The amplitude of individual components sometimes is larger than that of the total
errors. In such cases, the smaller total errors are resulting from the three components
canceling one another. (3) All the products detected strong precipitation (>40 mm/d)
well, but with various biases. They tend to overestimate in summer and underestimate in
winter, by as much as 50% in either season, and they all miss a significant amount of light
precipitation (<10 mm/d), up to 40%. (4) Hit bias and missed precipitation are the two
leading error sources. In summer, positive hit bias, up to 50%, dominates the total errors
for most products. (5) In winter, missed precipitation over mountainous regions and the
northeast, presumably snowfall, poses a common challenge to all the data sets. On the
basis of the findings, we recommend that future efforts focus on reducing hit bias,
adding snowfall retrievals, and improving methods for combining gauge and satellite
data. Strategies for future studies to establish better links between the errors in the end
products and the upstream data sources are also proposed.

Citation: Tian, Y., C. D. Peters-Lidard, J. B. Eylander, R. J. Joyce, G. J. Huffman, R. F. Adler, K. Hsu, F. J. Turk, M. Garcia,

and J. Zeng (2009), Component analysis of errors in satellite-based precipitation estimates, J. Geophys. Res., 114, D24101,

doi:10.1029/2009JD011949.

1. Introduction

[2] Accurate measurement of global precipitation is crit-
ical to many applications, such as climate studies, agricul-
tural forecasts, natural hazards and hydrology. Especially
for land surface hydrology, errors in precipitation measure-
ments can cause significant uncertainties in predicting pro-
cesses such as surface runoff [e.g., Nijssen and Lettenmaier,
2004; Tian et al., 2006] and land slides [Hong et al., 2007],
because of the highly nonlinear nature of these physical

processes [e.g., Ogden and Julien, 1993; Nykanen et al.,
2001].
[3] Currently satellite-based remote sensing is essential in

producing estimates of global precipitation. By combining
as many satellite platforms as available, one can obtain a
global coverage of precipitation observation with high
spatial and temporal resolutions (0.5 degree, daily or
higher). Most of the recent high-resolution global products
are produced roughly this way, albeit each of them has its
unique approaches in cross-calibrating, weighting, and
blending the various data sources. Some of these multi-
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sensor products also incorporate ground-based measure-
ments, such as gauge data.
[4] For useful application of these data sets, their quality

has to be evaluated and error characteristics analyzed. Such
evaluation and analysis will give better guidance to users in
selecting a product for their particular applications, and help
them assess the impact of the errors on these applications.
Equally importantly, if such error analysis could yield
insight into the sources of the errors and how to correct or
reduce them, it would be greatly helpful to the algorithm
developers and data producers for further improvement.
[5] There have been many evaluation efforts, exemplified

by the Algorithm Intercomparison Programme (AIP) [Arkin
and Xie, 1994; Ebert et al., 1996], the Precipitation Inter-
comparison Project (PIP) [Smith et al., 1998; Adler et al.,
2001] and the more recent Program to Evaluate High
Resolution Precipitation Products (PEHRPP) [Arkin and
Turk, 2006]. More recent examples include Gottschalck et
al. [2005], who compared several satellite-based, surface
gauge-based and model data over contiguous U. S.
(CONUS), documented the errors and studied the impact
on land surface modeling; Ebert et al. [2007], who exam-
ined several high-resolution precipitation data sets from
satellite-based estimates and from numerical weather pre-
diction models, over CONUS, Australia and Europe, and
found satellite-based estimates performed well in summer;
Tian et al. [2007], who studied two leading Tropical
Rainfall Measuring Mission (TRMM)–based satellite prod-
ucts over a wide range of time scales, from seasonal
climatology to diurnal, and documented the error character-
istics over CONUS and the southeastern United States in
particular; and more recently, Hossain and Huffman [2008],
who evaluated four satellite products over two smaller
regions within CONUS. Studies over other areas with
multiple satellite-based products have also been performed.
Ebert et al. [2007] found that CMORPH (see section 3) has
best probability of detection or temporal correlation over
Australia and over the United Kingdom among other
products. Ruane and Roads [2007] studied the variance of
3B42, CMORPH and PERSIANN (see section 3) over the
globe, and found interesting differences among them. How-
ever, it is not clear which one performs better because of the
lack of reliable global validation data. Sapiano and Arkin
[2009] evaluated four of the six products to be studied here
over the midwest United States and the tropical Pacific
Ocean. Their analysis shows that these products tend to
overestimate precipitation over the land region, especially in
summer, and underestimate over the tropical ocean.
[6] Conceptually, satellite-based precipitation retrieval

normally involves two steps, be it infrared (IR)-based
[Vicente et al., 1998], passive microwave (PMW)–based
[Ferraro et al., 1998], or a combination of the two [e.g.,
Kidd et al., 2003]. The first step is the discrimination, or
screening process, i.e., detection of raining and nonraining
areas. Once the screening is done, the magnitude of the rain
is estimated on the basis of empirical or physical relations
between the signals (such as brightness temperature) and
precipitation rate in the second step. Errors can take place in
either step. During the screening step, if some raining areas
are not detected, it will result in missed precipitation in the
estimates. Conversely, some nonraining areas may be mis-
taken as raining ones, for example, by cold cloud top

temperatures of high-level cirrus, or by false signatures
produced from certain land surface features [Grody, 1991;
Tian and Peters-Lidard, 2007], causing false precipitation.
Finally, even when a raining area is correctly detected, there
are still errors in accurately estimating the rain rate in the
second step. Therefore, it would be very helpful to separate
the errors into components associated with these retrieval
stages, and help data producers and algorithm developers
better trace the errors and reduce them.
[7] In this article, we devised a scheme to separate the

total errors in a satellite-based data set into three indepen-
dent components, hit bias, missed precipitation and false
precipitation, which have close correspondence to the
satellite retrieval processes described above. We applied
this error decomposition scheme to six high-resolution
satellite-based precipitation data sets, namely AFWA,
TMPA (3B42), TMPA-RT (3B42RT), CMORPH, PER-
SIANN and NRL (see section 3), currently the most
extensive collection of IR-PMW merged products. Our
analysis produced the spatiotemporal distribution of these
error components and their magnitudes for each product.
Such an error decomposition yields less ambiguous assess-
ment for data producers to infer the origin of the errors and
for users to understand the unique and common strengths
and weaknesses among the six products. It is also interest-
ing to see the amplitudes of the three individual components
are often larger than the total error; therefore it is not enough
to evaluate a data set’s performance solely on the basis of its
total error, as most existing studies do. We hope these
results not only give a broader perspective of the current
state of precipitation remote sensing, but also provide more
insight to both data users and producers for their application
and further improvement of these products.
[8] The error decomposition scheme is introduced in

section 2. The six satellite-based data sets, as well as a
surface rain gauge-based product used as validation data,
are described in section 3. Section 4 presents the results,
including spatial and temporal characteristics and intensity
distribution of the total error and its components, for each
product. Finally, the results are summarized in section 5,
with recommendations for possible future improvements in
satellite-based precipitation estimates, based on the findings
in this study.

2. Error Decomposition

[9] Given a precipitation field, R(~x,t), one can derive a
binary-valued precipitation event mask, P(~x,t),

P ~x; tð Þ ¼ 1 if R ~x; tð Þ > 0

0 if R ~x; tð Þ ¼ 0 or missing

�
ð1Þ

In practice, a small value (e.g., 1 mm/d) instead of 0 is
usually used as the rain/no-rain threshold to determine the
mask.
[10] Then when we evaluate a satellite-estimated precip-

itation field R2(~x,t) against a reference data set, or ‘‘obser-
vations,’’ R1(~x,t), with their respective event masks, P2(~x,t)
and P1(~x,t), we can define a hit mask:

P12 ¼ P1 � P2;
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a miss mask:

P12 ¼ P1 � P2;

and a false alarm mask:

P12 ¼ P1 � P2;

where Pn denotes the Boolean complement of a binary
mask Pn. The three masks are essentially what are used in
calculating the conventional contingency table and accuracy
measures, such as probability of detection, false alarm ratio
and threat scores [e.g., Wilks, 1995]. A hit is an event when
both the evaluated data and the reference data report
precipitation coincidently. A miss (false alarm) is an event
when the evaluated data report no precipitation (precipita-
tion) while the reference data report otherwise.
[11] It is easy to see that the three masks above are

‘‘orthogonal,’’ or independent, to one another:

P12 � P12 ¼ P12 � P12 ¼ P12 � P12 ¼ 0: ð2Þ

If we define total error, E, hit error, H, missed precipitation,
�M, and false precipitation, F, as,

E ¼ R2 � R1; ð3Þ

H ¼ R2 � R1ð Þ � P12 ¼ H2 � H1;

�M ¼ �R1 � P12;

F ¼ R2 � P12:

ð4Þ

We use H2 and H1 in equation (4) to denote ‘‘hit
precipitation in satellite estimates’’ and ‘‘hit precipitation
in observations’’ to indicate the subsets consisting of

coincidental precipitation within the satellite estimates and
within the observations, respectively. Because of (2), H,
�M and F are independent to one another, and it can be
shown that,

H �M þ F ¼ R2 � R1ð Þ � P12 � R1 � P12 þ R2 � P12

¼ R2 P12 þ P12

� �
� R1 P12 þ P12

� �
¼ R2 � P2 � R1 � P1

¼ R2 � R1

¼ E ð5Þ

which means the total error E can be completely decom-
posed into three independent parts: hit error H, missed
precipitation �M and false precipitation F. Equation (5) still
holds when spatial and temporal averaging are applied, but
the total error and hit error will be called total bias and hit
bias by convention.
[12] The relation E = H � M + F raises a critical point. It

implies that it is not enough to look at the total bias E as an
indicator of the performance. The three individual compo-
nents H, �M, and F could have larger amplitudes than the
total error E, but they could cancel one another, resulting in
total bias smaller than some of the components. This is
especially true for �M and F, which always have opposite
signs. Therefore it is important to realize that the amplitude
of the total bias alone is not enough to serve as a measure of
the performance of a set of estimates; one needs to look at
the three components as well to truly understand the error
characteristics. Section 4 provides ample examples to illus-
trate this situation.
[13] Berg et al. [2006] employed a similar decomposition

to compare collocated TRMM TMI and precipitation radar
(PR) retrievals at pixel levels over ocean. Ebert and
McBride [2000] used a scheme to decompose the errors
into location error, rain volume error and pattern error for
verification of numerical model forecasts. It would be

Table 1. Summary of Six Satellite-Based and One Gauge-Based Data Sets Used

Data Set Full Name
Spatial

Resolution
Temporal
Resolution Sensor Platforms References

AFWA Air Force Weather Agency’s
Agricultural Meteorology

modeling system

0.5� 3 h IR, SSM/I,
WMO gauges,
climatology

Data Format Handbook
for AGRMET

3B42 TRMM Multisatellite
Precipitation Analysis

research product 3B42 Version 6

0.25� 3 h IR, SSM/I, TRMM,
AMSU-B, AMSR-E, gauges

Huffman et al. [2007]

3B42RT TRMM Multisatellite
Precipitation Analysis
Real-time experimental

product 3B42RT

0.25� 3 h IR, SSM/I, TRMM,
AMSU-B, AMSR-E

Huffman et al. [2009]

CMORPH NOAA Climate
Prediction Center (CPC)
MORPHing technique

0.25� 3 h IR, SSM/I, TRMM,
AMSU-B, AMSR-E

Joyce et al. [2004]

PERSIANN Precipitation Estimation
from Remotely Sensed

Information using
Artificial Neural Networks

0.25� 3 h IR, TRMM Hsu et al. [1997]
and Sorooshian et al. [2000]

NRL Naval Research Laboratory’s
blended technique

0.25� 3 h IR, VIS, SSM/I,
TRMM, AMSU-B, AMSR-E

Turk and Miller [2005]

Higgins NOAA CPC near-real-time
daily precipitation analysis

0.25� 24 h gauges Higgins et al. [2000]
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interesting to compare the two different schemes applied to
satellite-based estimates in future studies.

3. Data

[14] Six satellite-based precipitation data sets and one
surface rain gauge-based product are used in our study. We
denote the six satellite-based data sets as AFWA, (TMPA)
3B42, (TMPA) 3B42RT, CMORPH, PERSIANN and NRL,
and the surface rain gauge product as Higgins. Except
AFWA, all the satellite-based data sets have a 0.25 by
0.25 degree spatial resolution and a 3-h temporal resolu-
tion. See Table 1 for a summary including these products’
full names, basic features and references for further
information.
[15] AFWA refers to the data set from the Air Force

Weather Agency (AFWA)’s Agriculture Meteorology mod-
eling system (AGRMET), one of the leading operational
land surface modeling systems which has been in opera-
tion for 2 decades. It assimilates a wide array of input data
sources, including real time precipitation observations and
analyses, global model forecasts, and satellite remote
sensing data, to provide timely estimates of global precip-
itation, soil moisture and soil temperature etc. More
information can be found in the Data Format Handbook
for AGRMET, available at http://www.mmm.ucar.edu/
mm5/documents/DATA_FORMAT_HANDBOOK.pdf.
[16] AFWA precipitation is a multisensor product, merg-

ing surface reports, remote sensing data, cloud analysis and
climatology. As far as the tropics and midlatitudes are
concerned, AFWA is essentially a satellite-based, gauge-
corrected product composed of retrievals from IR channels
on geostationary platforms and PMW channels on polar
orbiting ones, overlaid by gauge analysis. Surface gauge
reports from the World Meteorological Organization
(WMO)’s Global Telecommunication System (GTS) net-
work are used wherever available, with the Barnes [Barnes,
1964] analysis scheme. Over CONUS AFWA usually
receives about 1000 gauge reports daily. When there are
multiple data sources at a grid box, a predefined precedence
(gauge analysis, then PMW and lastly IR) is used to
determine which data source is used exclusively.
[17] TMPA 3B42 (Version 6) and 3B42RT are two of the

Tropical Rainfall Measuring Mission (TRMM) Multisatel-
lite Precipitation Analysis (TMPA) products provided by
NASA Goddard Space Flight Center [Huffman et al., 1997,
2007, 2009]. Both 3B42 and 3B42RT derive their precip-
itation estimates primarily by merging the most recent
PMW scans available from the array of sensors including
the TRMM Microwave Imager (TMI), the Special Sensor
Microwave Imager (SSM/I), the Advanced Microwave
Sounding Unit-B (AMSU-B) and the most recent Advanced
Microwave Scanning Radiometer–Earth Observing System
(AMSR-E). Both data sets use IR-based retrievals from
geostationary satellites as well, to fill PMW coverage gaps.
In addition, 3B42 incorporates global surface gauge meas-
urements on a monthly basis for bias correction, while
3B42RT does not contain any gauge information, and is
regarded as an experimental product with an evolving
algorithm. In particular, 3B42RT data prior to 3 February
2005 are considered obsolete because they result from an
early version of the algorithm that was diagnosed as having

major problems in wintertime over land surface. Therefore
results presented here for 3B42RT before February 2005
only serve as historical context. Both products have been
used in many applications such as land data assimilation
[e.g., Gottschalck et al., 2005] and landslide prediction
[Hong et al., 2007].
[18] CMORPH refers to the National Centers for Envi-

ronmental Prediction (NCEP)’s Climate Prediction Center
(CPC) MORPHing technique [Joyce et al., 2004; Janowiak
et al., 2005]. This technique uses the high-resolution IR
imagery to infer the motion of rainfall patterns between
PMW scans, and use this advection information to obtain a
smooth ‘‘morphing’’ of PMW rain patterns between PMW
snapshots. The PMW-based retrievals are from almost the
same set of sensors as 3B42 and 3B42RT. CMORPH used
in this study has a spatial resolution of 0.25 by 0.25 degree
and a time resolution of 3 h (although a higher-resolution
8 km, hourly CMORPH is also available).
[19] PERSIANN (Precipitation Estimation from Remotely

Sensed Information using Artificial Neural Networks) [Hsu
et al., 1997, 1999; Sorooshian et al., 2000] is a neural
network-based system for estimating precipitation from re-
motely sensed data. It uses IR imagery from geostationary
satellites to derive precipitation, while its parameters are
regularly adjusted using PMW-based estimates from TMI
and SSM/I.
[20] NRL refers to the Naval Research Laboratory

(NRL)’s blended technique [Turk and Miller, 2005]. It uses
coincident and collocated infrared and PMW pixels aggre-
gated to 2 by 2 degree grid boxes to calculate IR rainfall
threshold and rain rate distribution. The IR rainfall data are
then regridded onto a global 0.1 degree grid and weighted
mean is used to combine the PMW and calibrated IR data.
[21] The Higgins data set (‘‘observations’’) used as

ground-based reference is the NCEP CPC near–real time
daily precipitation analysis [Higgins et al., 2000]. This data
set is derived from the daily reports of 6000–7000 CPC
Cooperative rain gauges over CONUS, with quality control
measures including duplicate station checks, neighbor
checks and standard deviation checks against climatology.
The station data are projected on a 0.25 by 0.25 degree grid
with a modified Cressman [1959] analysis scheme. It also
uses ground-based radar estimates to eliminate unrepresen-
tative zeros reported by a small portion of the gauges. We
also derived a 0.5 degree version to facilitate comparison
with AFWA.
[22] It is worth noting that the Higgins gauge data are

certainly not perfect ‘‘truth.’’ The undercatch problem for
rain gauges, especially during winter and in mountainous
regions, is well documented [e.g., Legates and DeLiberty,
1993]. In addition, projecting data from point-scale gauge
measurements tends to spatially smooth and potentially
depict precipitation areas as more expansive than is true.
This is illustrated by the extensive light drizzle (<1mm/d) as
shown in the gray shadings in Figure 1. In this study, we use
1 mm/d as the rain/no rain threshold to eliminate the effect
of these drizzles, which account for less than 3% of total
rainfall for the rainy days shown in Figure 1, and are also
below the detection threshold of the satellite algorithms.
[23] To assess the amplitude of the uncertainties in the

gauge data, we intercompared Higgins data with NCEP’s
Next-Generation Weather Radar (NEXRAD) Stage IV data
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[Lin and Mitchell, 2005], and a more recent gauge-based
analysis, the CPC Unified gauge analysis [Chen et al.,
2008], which uses a different algorithm to project the station
data onto the grid and collects slightly more station reports.
Over the eastern CONUS, the differences between them are
small, especially for strong precipitation events (>20 mm/d).
Because of the high density of the gauges in this region, we
estimate the errors in the gauge data is one order of
magnitude lower than those in the satellite data. Therefore
the errors in gauge data in the eastern CONUS will not
qualitatively impact the evaluation of the current generation
of satellite-based estimates, especially on the temporal and
spatial scales used in this study. In the western CONUS,
however, the uncertainties become much larger, especially
in winter. Stage IV data severely underestimate relative to
either gauge data set, mainly because of the complex terrain.
Meanwhile, Pan et al. [2003] show Higgins data also
underestimate by nearly 60%, an error amplitude similar
to those of the satellite-based data sets (see Table 2).
Consequently, over the western CONUS, missed precipita-
tion and negative hit biases tend to be severely under-
estimated, and false precipitation and positive hit biases
overestimated, by roughly a factor of 2.
[24] We selected a common time span from June 2003

through February 2007, as our study period. This period
contains four summers (June, July, and August (JJA)) and
four winters (December, January, and February (DJF)),

except for NRL, which does not have data available for
the first summer and first winter. All the satellite data sets
are aggregated to daily accumulation for comparison with
Higgins. Special attention was paid to match up the different
spatial and temporal grids used in each data set. For
example, Higgins’s 0.25 degree grid has a half-grid shift
from the 0.25 degree grid used by the satellite-based data

Figure 1. Sample daily precipitation patterns from each data set for (a) a winter day (14 January 2006)
and (b) a summer day (28 July 2006).

Table 2. Seasonally Averaged Error Components as Percentages

of Total Observed (Higgins) Precipitationa

Product H (%) �M (%) F (%) E = H � M + F (%)

Winter (DJF)
AFWA �2.5 �17.2 7.8 �11.9
3B42 0.7 �34.0 12.8 �20.6
3B42RT 9.9 �27.9 47.0 29.0
CMORPH �21.7 �39.5 6.6 �54.5
PERSIANN �1.3 �22.0 28.7 5.4
NRL �10.9 �32.0 42.7 �0.1

Summer (JJA)
AFWA 16.8 �18.2 11.7 10.2
3B42 3.5 �19.1 6.0 �9.6
3B42RT 53.2 �20.5 15.1 47.9
CMORPH 49.9 �12.2 13.4 51.1
PERSIANN 34.8 �15.0 18.1 37.9
NRL 41.1 �24.4 14.3 31.0

aThe seasonal average is over the 4 year (3 for NRL) period from JJA03
to DJF07.
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sets. Therefore we chose to regrid Higgins data to the
satellite 0.25 degree grid.
[25] Figure 1 shows sample daily precipitation patterns

from each of the six satellite-based data sets and the Higgins
data set (gauge data, or ‘‘OBS’’), for a winter day
(14 January 2006; Figure 1a) and a summer day (28 July
2006; Figure 1b). The winter day has two large-scale, strong
precipitation systems present in the gauge data, one in the
northwest coastal region, and the other, a V-shaped system,
in the eastern United States. For this winter day, most
satellite-based products captured the precipitation distribu-
tion in the east, but the V-shaped pattern was not well
reproduced. The strong system over the northwest coastal
region, and the light precipitation patch over the Rockies,
are either mostly missed or only partially captured by the
satellite-based products for this particular day. As to be
shown in section 4, missed precipitation like this is typical
in winter, and is the major source of negative biases in the
western United States.
[26] For the summer day sample (Figure 1b), all the

satellite-based data sets perform well in capturing the
continent-scale, clustered precipitation pattern; no major
features are missed by the satellite-based data. Still, there
are differences in the amplitudes of the precipitation clusters
among the data sets. Again, as will be shown in section 4, in
summer, the amplitude differences in precipitation patterns
become the leading error source for the satellite-based data.

4. Results

[27] The results of our error analysis are organized into
three parts in this section: the spatial characteristics of the
error components for each product for both summer and
winter seasons; the spatially averaged error components on
the daily scale over the whole 4 year period; and the
distribution of the error components as a function of
precipitation intensity. These three aspects will provide a
relatively complete picture of the error characteristics for
each product.

4.1. Spatial Analysis of Error Components

[28] For each product, we decomposed the total bias for
each day over CONUS, and then accumulated the daily
error components as well as the total errors into seasonal
time scale for the 4 summers and winters (3 for NRL). In
this article, we only present one winter (December 2005 and
January and February 2006 (DJF06)) and one summer
(June, July, and August 2006 (JJA06)) for each of the six
data sets as representative examples, though interannual
variations for each particular product are present. The
results shown in section 4.2 will illustrate such variations.
[29] Figures 2 and 3 present the spatial patterns of the

error components for DJF06 and JJA06, respectively. Each
product occupies a row in Figures 2 and 3 representing the
seasonal sum of the total bias E and its three components:
hit bias H, missed precipitation �M, and false precipitation
F, related by E = H �M + F.
[30] For the winter season (DFJ06), the six products share

considerable similarities in their spatial distribution of the
total bias and its three components. The most obvious
common feature is the large areas of underestimates on
either side of the continent and over the Rockies. These

underestimates are attributed primarily to missed precipita-
tion (�M) over these areas. The missed precipitation may be
caused by snow cover on the ground at higher latitudes or
over the Rockies, and by the inability to catch warm rain
processes or short-lived convective storms at lower lati-
tudes, or maritime precipitation along the west coast.
Negative hit bias (H) also contributes to these underesti-
mates, but it is largely confined along the west coast, and
sometimes along the Appalachians (e.g., PERSIANN).
[31] On the other hand, many significant differences exist

between these six products. AFWA and 3B42 exhibit
smaller total bias (Figures 2a and 2b), especially over
eastern CONUS. This shows the benefit of gauge data
incorporation in these two algorithms. Also AFWA’s missed
precipitation is much less than other products, except the
patches over the Rockies, whereas 3B42’s particular gauge
correction strategy cannot make up the rain undetected by
the satellites. In addition, 3B42RT and NRL have remark-
able overestimates over central CONUS, which are largely
absent in other products. These overestimates can be traced
to large false precipitation (Figure 2), with secondary
contribution from hit bias. Both 3B42RT and NRL tend to
have higher false precipitation for other three winter seasons
(DJF04, 05, and 07, not shown here) as well, which is
possibly caused by the particular calibration algorithms
between IR and PMW used in both products. Finally,
AFWA has some spotty false precipitation patterns near
the northern border, and we determined they were caused by
the sparse surface gauge data overlaid with the Barnes
analysis scheme employed in AFWA.
[32] For the winter season missed precipitation is appar-

ently the dominant error source for all these satellite-based
products (except AFWA). We speculate this is mostly linked
to the inability to measure snowfall, or rainfall over snow/
ice-covered land surfaces with PMW, or it is often associ-
ated with low-level cloudiness and warm rain processes
which may not have a strong signature of ice particles. The
quantitative differences in the amount of missed precipita-
tion should be related to the different screening strategies
for land pixels. For example, CMORPH uses the daily snow
cover to mask out anomalously high PMW rainfall, while
TMPA products use PMW channels for the screening.
[33] For the summer season (JJA06, Figure 3), every

product shows a very different picture from its winter
counterpart. However, except for 3B42, the similarity of
the error features between these products is still remarkable.
Large-scale overestimates in total bias occupy central
CONUS (eastern CONUS for AFWA), and heavy under-
estimates take place over New England and, to a less extent,
the northwest. Both the overestimates and underestimates
are mostly from hit biases (Figure 3). Both missed and false
precipitation are much smaller, with the former concentrated
largely along the Atlantic and Gulf coast, probably caused
by undersampling of short-lived thunderstorms, and the
latter scattered inland (e.g., 3B42RT, Figure 3c). AFWA
does not seem to have benefited much from its gauge data
correction for this season.
[34] TMPA 3B42 (Figure 3b) is qualitatively different

from others. Its total biases are dominated by underesti-
mates instead, with some scattered patches of slight over-
estimates in the midwest and the south of Ohio Valley. Still,
most of these errors are from hit biases, with some en-
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hancement from missed precipitation for the underestimates,
and from false precipitation for the overestimates, over
different regions. The different hit bias feature from its
real-time product, 3B42RT, illustrates the effect of its
correction scheme with gauge data. False precipitation,
overall, is not very pronounced for this season for 3B42,
partly because the gauge correction scheme can effectively
suppress this error component.
[35] In summary, the error decomposition enables one to

better identify the error sources and their contributions to
the total errors. The six data sets have rather different and

unique error characteristics; meanwhile, some of their error
components share considerable similarities despite their
rather different algorithms. In the winter of DJF06, a
remarkable amount of precipitation is consistently missed
over either side of CONUS, except AFWA, and over the
Rocky Mountains area in all the six data sets (Figures 2). In
the summer of JJA06 (Figure 3), total biases in each data set
tend to be dominated by strong overestimates from hit
biases around central CONUS, except 3B42 (Figure 3b).
The errors in hit biases in 3B42 were effectively alleviated
by its gauge adjustment (Figure 3b). Substantial negative hit

Figure 2. Error components of the six (6) data sets for the winter of 2006 (DJF06): total bias (E), hit
bias (H), missed precipitation (�M), and false precipitation (F). The components are related by E =
H �M + F.
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biases over New England and widespread missed precipi-
tation over the eastern United States are also common
features shared by all products except AFWA during sum-
mer (Figures 3b–3f). Overall, the last four products
(3B42RT, CMORPH, PERSIANN and NRL, Figures 3c–3f)
have much more similar spatial patterns in every error
component than the other two products (AFWA and 3B42),
and than their winter counterparts (Figure 2). These obser-
vations also apply roughly to other winters and summers
(not shown here), except for the last winter of PERSIANN,
which shows anomalously higher false precipitation which
the data producers are currently investigating (also see
section 4.2).

4.2. Temporal Analysis of Error Components

[36] To see the error characteristics of the six data sets
over our entire study period, we also studied the daily error
components as functions of time from July 2003 through
February 2007. We divided CONUS into a western half and
eastern half along the 100th meridian west, as previous
studies show the two regions tend to have distinct error
characteristics [Gottschalck et al., 2005; Ebert et al., 2007;
Tian et al., 2007]. Figure 4 shows the area-averaged error
components as well as the total bias over the western
(United States–west; Figure 4, left) and eastern (United
States–east; Figure 4, right) half of CONUS, for the six data

Figure 3. Same as Figure 2, except for the summer of 2006 (JJA06).
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Figure 4. Time series of the error components, spatially averaged over the United States (left) west and
(right) east. The two regions are separated by the 100th meridian west. A 31 day running average is
applied to each time series to reduce visual cluttering.
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sets. A 31 day running average is applied to each time series
for smoothing and reducing visual cluttering.
[37] AFWA (Figures 4a) features considerable year-

to-year variations without obvious systematic trend. In the
west (Figure 4a, left), AFWA shows slight negative total
bias (black line) during the first 2 years, with higher
amplitudes in winter. Then it jumps to positive during the
two last summers, but drops back to slight negative bias
during the two intervening winters. During the first 2 years,
the total bias is primarily from missed precipitation (tur-
quoise area), as the other two components, false precipita-
tion (orange area) and hit bias (red line), are considerably
small. But during the last 1.5 years, false precipitation
increases to a slightly higher amplitude than missed precip-
itation, and the two largely cancel each other. Subsequently,
the total errors are dominated by hit bias, which is also
responsible for the seasonal variation.
[38] In the east (Figure 4a, right), AFWA starts off in the

first few months with hit bias-dominated errors. Both
missed and false precipitation components are rather high
but they counter each other. The following two summers
(JJA04 and 05) see increased missed precipitation and
decreased false precipitation and hit bias, and consequently,
total errors are mostly caused by missed precipitation.
During the last 1.5 years the reduced missed precipitation
is canceled by strengthened false precipitation, and the total
errors are close to hit bias. The large positive total bias
during the last summer (JJA06) is consistent with the spatial
patterns shown in Figure 3a.
[39] For 3B42 (Figure 4b), the most outstanding features

are the nearly regular seasonal variation of missed precip-
itation in the west (Figure 4b, left, turquoise area), and
the extremely small total bias in the east during the first
1.5 years (Figure 4b, right, black line). In the west, hit bias
(red line) is rather small, and it counterbalances most of false
precipitation (orange area). Consequently, total errors are
largely controlled by missed precipitation, especially during
the four winters. In the east, both missed and false precip-
itation are nearly constant, and in the first 1.5 years, missed
precipitation is countered by the sum of hit bias and false
precipitation, leading to very small total errors (black line).
But the last 2 years start to see a drift to total underestimates,
due to a shift of hit bias from positive to mostly negative.
This is caused by a switch of gauge data source from the
Global Precipitation Climatology Centre data set to CPC’s
Climate Anomaly Monitoring System data set.
[40] The four satellite-only data sets, 3B42RT, CMORPH,

PERSIANN and NRL (Figures 4c–4f) have qualitatively
different characteristics from either AFWA or 3B42 shown
above, and share some major similarities among them-
selves. All of them have dramatic seasonal dependence in
its error characteristics in both the west and east. Hit biases
(red lines) dominate the total errors in summer. Most of
them have strong positive hit bias in summer and low
negative hit bias in winter. Another interesting common
feature is the enhanced missed precipitation during winter in
the west, with 3B34RT being the least pronounced. This
behavior is also shared by 3B42 (Figure 4b). In the east,
such seasonal variation of missed precipitation is not
significant, and the amplitude is close to that of false
precipitation (e.g., Figure 4b, left). Also note the reduced

false precipitation in 3B42RT after the update of its algo-
rithm starting in February 2005.
[41] Consequently, the net outcome of the three compo-

nents’ interplay is strong seasonal cycles of total errors, with
overestimates in summer, mainly caused by positive hit
biases, and underestimates in winter, caused by missed
precipitation and negative hit biases, with the former
dominating in the west. But there are exceptions. For
example, 3B42RT (Figure 4c), has very strong false precip-
itation in the west during winter, and consequently over-
estimates are also large during winter, albeit from a
different error component. Another example is PERSIANN
(Figure 4e), which has anomalously high false precipitation
dominating the total bias for the last winter (DJF07) in both
the west and the east. Nevertheless, there are abundant
examples to illustrate that sometimes the components work
together to enhance the total errors (e.g., CMORPH Jul04,
Figure 4d), while other times they cancel one another,
resulting in much smaller total errors than most of their
components (e.g., 3B42RT Jan06, Figure 4c).
[42] To summarize, Table 2 shows the seasonally aver-

aged amplitudes of these error components and the total
errors, as percentages of the total observed (Higgins)
precipitation. For summer, hit bias (H) is generally the
major contributor to the total errors, sometimes accounting
for about 50% of the total precipitation (3B42RT and
CMORPH). Missed precipitation (�M) and false precipita-
tion (F) have similar amplitudes but are about two thirds
smaller than hit bias. For winter, missed precipitation is the
dominant source of errors, and is often much larger than
total errors (e.g., 3B42 and NRL). False precipitation for
3B42RT and NRL is also particularly large, even higher
than total errors too. In addition, these data sets will be rated
differently by different criteria. For example, CMORPH has
the highest amplitude in total biases in either winter or
summer, but it has the lowest and second lowest false
precipitation in winter and in summer, respectively.

4.3. Intensity Distribution of Error Components

[43] To look further into the nature of the error compo-
nents, we computed the distribution of the components, as
well as the total, as functions of daily precipitation intensity,
as shown in Figure 5. The intensity distribution of the total
precipitation for each of the six satellite-based products and
for Higgins (R2 and R1 as in (3)) is shown in Figure 5a, and
those of hit precipitation in the satellite-based products (H2),
missed precipitation (�M), and false precipitation (F) are
shown in Figures 5b, 5c, and 5d, respectively. Each inten-
sity distribution is computed over all the grid points over
CONUS for the 4 winters (Figure 5, left) and 4 summers
(Figure 5, right) (3 for NRL).
[44] For total precipitation (Figure 5a), the satellite-based

data sets diverge from one another substantially. In winter
(Figure 5a, left), NRL’s distribution is closest to Higgins for
intensities over 4 mm/d, and 3B42RT grossly overestimates
for intensities over 10 mm/d. PERSIANN has more
light precipitation (<10 mm/d) events and fewer strong
(>10 mm/d) events than Higgins, while CMORPH con-
stantly underestimates for all intensities. 3B42 first under-
estimates with intensities up to 30 mm/d, then gets close to
Higgins for stronger precipitation. AFWA has a similar
trend, but has tall spikes for intensities less than 20 mm/d
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Figure 5. Intensity distribution of the error components for the six data sets. The results are computed
from the (left) four winters and (right) four summers (three for NRL). The total observed (Higgins)
precipitation (black line) is also shown in Figures 5a and 5b.
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(not shown to reduce cluttering). This seems to be caused by
AFWA’s rounding off of precipitation amounts to a few
particular integers in millimeters.
[45] Figure 5b shows the intensity distribution of hit pre-

cipitation in satellite-based data, H2, for winter (Figure 5b,
left) and summer (Figure 5b, right). H2 is essentially the
total amount of precipitation from events coincidental with
gauge-measured events. Overall they diverge remarkably
from the observations and between one another as well. In
winter, most products’ hits underestimate except for
3B42RT and 3B42, which overestimate for strong events
(>30 mm/d). In summer, all products dramatically overes-
timate strong events (>20 mm/d), especially for the 4
satellite-only products, 3B42RT, CMORPH, PERSIANN,
and NRL. On the other hand, they consistently underesti-
mate light events (<10 mm/d).
[46] Figures 5c and 5d show the other two error compo-

nents: missed precipitation and false precipitation. The
common feature between all the data sets and between the
two seasons is that most missed and false precipitation is in
the low-intensity range (1–10 mm/d). In addition, missed
precipitation is slightly higher in winter than in summer
(except for AFWA, Figure 5c). False precipitation for each
product is also generally lower than its missed precipitation,
but PERSIANN, 3B42RT, and NRL are exceptions in
winter (Figure 5d). PERSIANN’s false precipitation in
summer is unusually slightly higher than others, presumably
affected by the pattern shown in Figure 3e, while 3B42RT
and NRL’s have much broader distributions, extending to
strong events (Figure 5d, left). In summer, false precipita-
tion for each product is relatively low (Figure 5d, right).
[47] We also computed hit precipitation in Higgins (H1 as

in (4)), and show the results in Figure 6. Hit precipitation in
observations (H1), or in Higgins in particular here, enables
one to see how much of the precipitation in Higgins are
detected by each of the satellite-based estimates, and it
essentially describes the detection rates by the satellite
estimates for different observed intensities. Figure 6 shows
H1 (color lines) for both winter (Figure 6, left) and summer

(Figure 6, right). The total precipitation in Higgins is also
shown (black line) as reference. In either season, all the
satellite-based products suffer from underestimates, espe-
cially for light precipitation (<20 mm/d) and for winter
(Figure 6, left). For strong precipitation events (>20 mm/d),
their detections are considerably improved, especially for
summer (Figure 6, right). AFWA still slightly underestimates
strong events for summer, but not for winter. For the detected
precipitation events shown in Figure 6, the satellite-based
products do not necessarily get the amplitudes (H2) right,
leading to hit bias (H = H2 - H1).
[48] In summary, all the six data sets captured strong

rainfall events well. In both winter and summer, for precip-
itation intensity larger than 40mm/d, there are very few
missed precipitation events, as manifested by both
decreased missed precipitation (Figures 5c) and the little
difference between hit precipitation and total precipitation in
Higgins (Figure 6). Missed light precipitation, especially in
winter, is a common problem. Within the intensity range of
2–10 mm/d, missed precipitation accounts for 50–80% of
the observed total precipitation in winter (Figure 5c, left),
and 20–50% in summer (Figure 5c, right).

5. Summary and Recommendations

[49] We studied the error characteristics of six leading
satellite-based data sets, AFWA, 3B42, 3B42RT,
CMORPH, PERSIANN, and NRL over CONUS for a
period of 3.5 years (June 2003 to February 2007). We
decomposed the total errors into three independent compo-
nents: hit bias, missed precipitation and false precipitation,
which have closer correspondence to the satellite-based
retrieval processes. We are able to identify the contributions
to the total errors from the three components, and their
spatial and temporal features. This study yields new insights
into the nature of the errors in these satellite-based esti-
mates, including the following.
[50] 1. The total errors in each product result from the

interplay of the three independent components. There are

Figure 6. Intensity distribution of hit precipitation in observation (Higgins), H1.The results are
computed from the (a) four winters and (b) four summers (three for NRL). The total observed (Higgins)
precipitation (black line) is also shown.
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many cases in which some of the error components are
larger than the total errors. The components sometimes
work together to enhance the total bias, but sometimes
cancel one another to produce much smaller total bias
(e.g., Figure 4c, January 2006).
[51] 2. The error sources, their geographical distribution,

and their impacts are systematically different for different
seasons. For example, during winter, missed precipitation is
a major contributor to the total errors of 3B42RT,
CMORPH, PERSIANN and NRL, up to 40%, especially
over the Rocky Mountains (Figure 2). During summer,
however, their total errors are dominated by hit biases
spreading over most of CONUS (Figure 3), which overes-
timate as much as over 50%.
[52] 3. These satellite-based data sets perform reasonably

well in detecting strong precipitation events (>40 mm/d),
but it remains a challenge for them to get the amplitudes
right; they all systematically overestimate the intensity in
summer by a factor of 2 or more. In addition, they constantly
miss about 20–80% of light precipitation (<10 mm/d). The
amount of false precipitation also gets exceedingly large
sometimes, especially for winter in the west (e.g., Figures 4c
and 4f). The deficiencies in missed and false precipitation
pose a common challenge to the majority of the products.
[53] 4. Incorporation of surface rain gauge data, such as in

3B42, helps to reduce total errors by adjusting the ampli-
tudes of the hit biases and false precipitation. It also helps to
bring the intensity distribution of heavy rainfall closer to the
gauge data (Figure 5a), which will benefit surface runoff-
related applications such as landslide forecast [Hong et al.,
2007]. Unfortunately this approach still does not affect
missed precipitation because it, as well as other similar
approaches such as probability matching [e.g., Turk and
Miller, 2005] cannot generate undetected precipitation
events in the system. In fact, 3B42 strives to minimize bias,
and results in slightly boosted hit biases, to compensate for
the missed precipitation. We also want to note the gauge
data used in AFWA and 3B42 are essentially small and
sparse subsets of the Higgins data set, so they are not totally
independent but their information content is different. Our
study shows a smaller number of gauges (AFWA) or long-
term averages (3B42) can help to reduce a large portion of
the bias, but also show the limitation of gauge correction,
even if the gauge data used were perfect, because of missed
precipitation in the original satellite data.
[54] 5. Missed precipitation in winter, especially over

mountainous regions such as the Rockies, poses a common
challenge for most of the products (e.g., Figure 2). The
problem may be twice more severe than it appears here,
because the ground reference data we used, Higgins, may be
missing more than 50% of precipitation already [Pan et al.,
2003] because of the lower gauge density and because of
the well-documented [e.g., Legates and DeLiberty, 1993]
undercatch problem for rain gauges, especially during
winter and in mountainous regions.
[55] We speculate the error characteristics of these prod-

ucts are primarily connected to the performance of PMW
retrievals, because the six products, with rather different
merging or blending algorithms, share remarkable similarity
in error features, and Ebert et al. [2007] showed IR-PWM
merged products are much more similar to PMW-only

products than IR-only products. The summer positive hit
biases in these products should be related to overestimates
by PMW land algorithms for SSM/I, TMI and AMSR-E in
convectively active regimes, while the winter negative hit
biases should arise from underestimates in more stratiform
precipitation [McCollum and Ferraro, 2003]. Additionally,
PMW’s inability to detect warm, topographically forced
low-level rain and maritime precipitation without a strong
ice signature may be responsible for the missed precipitation
over the Rockies in summer and along the west coast in
winter, respectively (Figures 2 and 3). Finally 3B42,
3B42RT, CMORPH, and NRL use AMSU-B in addition
to other PMW sensors, which are expected to help with
wintertime precipitation retrievals, but the current study
does not show perceivable impacts. On the other hand,
the techniques of merging IR and PMW do also contribute
to the errors. For example, CMORPH’s ‘‘morphing’’ algo-
rithm improves the detection of rain events, leading to
higher probability of detection, but with the price of over-
estimating rain amount in summer by smoothing out the
intermittency in convective rain events, and possibly intro-
ducing more false precipitation. Conversely, the relatively
low sampling frequency by PMW sensors could miss short-
lived thunderstorms, and it could explain the high missed
precipitation in the southeastern CONUS.
[56] We note that the failed detection of winter precipita-

tion, presumably snowfall, is mostly due to the intrinsic
inability to retrieve precipitation with PMW when the
underlying land surface is covered by snow or ice [Grody,
1991; Ferraro et al., 1998]. Therefore, these data sets
simply report missing data or avoid using the PMW-based
retrievals when such conditions exist.
[57] On the basis of our findings, we propose the follow-

ing directions of improvement.
[58] 1. For all the six products, reduction of hit biases

should be the easiest, particularly for heavy precipitation,
and for summer. For the satellite-only products in particular
(3B42RT, CMORPH, PERSIANN and NRL), it is impera-
tive to reduce the gross overestimates over most part of
CONUS during summer (Figure 5b, right).
[59] 2. Incorporation of snowfall retrieval data whenever

they are available. Currently none of the products studied
here includes snowfall retrievals. There have been research
efforts for snowfall retrieval with different PMW frequency
bands from the rainfall retrieval [e.g., Kongoli et al., 2003;
Skofronick-Jackson et al., 2004]. Once such data are in
production, all the products should strive to incorporate
them. We believe this strategy will not only alleviate the
deficiency of missed precipitation in winter, but also help
get the intensity distribution right when gauge-based cor-
rections are used (e.g., 3B42). Better snowfall detection in
these products will also be critical to land surface hydrolog-
ical studies involving snowpack accumulation and melting.
[60] 3. AFWA has spotty false precipitation features (e.g.,

Figure 2) resulting from its objective analysis of surface
gauge reports. The nearly circular pattern of these spots is
related to the isotropic weighting used in the Barnes [1964]
scheme. Better blending of gauge data with satellite retriev-
als would help to reduce the impact. In addition, for PMW-
based retrievals, AFWA currently only employs the SSM/I
platforms. We recommend incorporation of retrievals from
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newer PMW platforms, including SSMIS, TRMM, AMSR
and AMSU, for improved coverage and accuracy.
[61] We want to note that though these error components

can show better correspondence to the retrieval steps than
more conventional approaches, the current analysis still can
only provide evidence and feedback for data producers to
infer the sources of error in their products; it is not possible
to directly attribute or connect any part of the errors shown
in this study to any specific sensors or processing stages.
This is simply because most of the end products do not
contain the information for tracking back the error to
individual sensors, such as the weightings of the various
sensors. Additionally, the merging, or blending of PMW, IR
and surface gauges is by itself a complex and unique
process for each product, and the errors introduced during
this stage could be large enough to obscure the contribution
from a specific sensor input. Recently, Turk et al. [2009]
performed controlled experiments with NRL data set by
adding or deleting certain input sensors and studied the
impact on the end product. They found the overall quality of
the end product is not particularly sensitive to one or the
other type of PMW sensors added or deleted. Therefore we
would propose an experiment for future studies: Have all of
the algorithm developers used the identical exact input data
sets for, say, three months during winter and three months
during summer, and without any gauge adjustments. Then
differences would presumably be due to the method of
blending/transporting, since all of the physical adjustments
(PMW data) would be the same. Then repeat the process
with one or more PMW data sets added and/or improved.
This approach should be able to isolate the effect of the
PMW data and their algorithm characteristics from the
details of each blending/merging technique.
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