
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln

Faculty Publications, Department of Mathematics Mathematics, Department of

2000

Measuring the Tameness of Almost Convex
Groups
Susan Hermiller
University of Nebraska-Lincoln, hermiller@unl.edu

John Meier
Lafayette College

Follow this and additional works at: https://digitalcommons.unl.edu/mathfacpub

This Article is brought to you for free and open access by the Mathematics, Department of at DigitalCommons@University of Nebraska - Lincoln. It
has been accepted for inclusion in Faculty Publications, Department of Mathematics by an authorized administrator of DigitalCommons@University
of Nebraska - Lincoln.

Hermiller, Susan and Meier, John, "Measuring the Tameness of Almost Convex Groups" (2000). Faculty Publications, Department of
Mathematics. 109.
https://digitalcommons.unl.edu/mathfacpub/109

https://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fmathfacpub%2F109&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/mathfacpub?utm_source=digitalcommons.unl.edu%2Fmathfacpub%2F109&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/mathematics?utm_source=digitalcommons.unl.edu%2Fmathfacpub%2F109&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/mathfacpub?utm_source=digitalcommons.unl.edu%2Fmathfacpub%2F109&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/mathfacpub/109?utm_source=digitalcommons.unl.edu%2Fmathfacpub%2F109&utm_medium=PDF&utm_campaign=PDFCoverPages


TRANSACTIONS OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 353, Number 3, Pages 943-962 
S 0002-9947(00)02717-3 
Article electronically published on October 11, 2000 

MEASURING THE TAMENESS OF ALMOST CONVEX GROUPS 

SUSAN HERMILLER AND JOHN MEIER 

ABSTRACT. A 1-combing for a finitely presented group consists of a continuous 
family of paths based at the identity and ending at points x in the 1-skeleton of 
the Cayley 2-complex associated to the presentation. We define two functions 

(radial and ball tameness flnctions) that measure how efficiently a 1-combing 
moves away from the identity. These functions are geometric in the sense that 
they are quasi-isometry invariants. We show that a group is almost convex if 
and only if the radial tameness function is bounded by the identity function; 
hence almost convex groups, as well as certain generalizations of almost convex 
groups, are contained in the quasi-isometry class of groups admitting linear 
radial tameness functions. 

1. INTRODUCTION 

In the late 80s and early 90s, various ideas were imported from the study of 
3-manifolds to the study of finitely presented infinite groups; in particular, ideas 
related to the covering conjecture and missing boundary problems were found to 
be useful. Highlights include Cannon's almost convexity and the notion of tame 
1-combings due to Mihalik and Tschantz. The tame 1-combing property has one 
notable advantage over almost convexity: admitting a tame 1-combing is a geo- 
metric property in the sense that it does not depend on choice of presentation [13], 
while almost convexity does depend on presentation [18]. 

In an earlier paper [6] we showed how the ideas of almost convexity, tame comb- 
ings, and the more algorithmic idea of rewriting systems, interrelate. Looking over 
that work we realized that the tame combings arising from almost convexity were 
very tame. Our primary goal in this paper is to introduce a method of measuring 
the "tameness" of a given tame 1-combing, and to show that this degree of tame- 
ness -much like isodiametric and isoperimetric functions -is a quasi-isometry 
invariant. 

In order to state our main theorems, we quickly review the definitions of tame 

combing and almost convexity. Let X be the Cayley 2-complex for a finitely pre- 
sented group G, and pick a basepoint e c X?. More generally, X can be the uni- 
versal cover of a finite, connected, 2-dimensional PLCW-complex X. A O-combing 
of X is a collection of paths I : X x [0, 1] - X1, where l vx[o,1] begins at e 

and ends at v C X?. Viewing X1 as the Cayley graph of the group G, this can 
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SUSAN HERMILLER AND JOHN MEIER 

be thought of as the standard notion of a combing for G. The map I is a tame 
O-combing if for each compact set C C X there is a compact set D C X such that 
for all x e X?, 4-1(C) n ({x} x [0,1]) is contained in a single path component of 

-1 (D) n ({} x [0,1]). 
Similarly, a 1-combing of X is a homotopy T : X1 x [0,1] -+ X such that 

\(x;, 0) = e and 4(x, 1) = x for all x C X1, with the condition that the restriction 
of 4 to X? x [0, 1] is a O-combing. The map 4 is a tame 1-combing if this restriction 
is a tame O-combing, and if for each compact set C C X there is a compact set 
D C X such that for all edges e C X1, -1(C) n (e x [0,1]) is contained in a single 
path component of T'-(D) n (e x [0, 1]). This is often expressed as: once a combing 
path leaves D it never returns to C. 

Cannon's almost convexity condition can be defined in terms of the metric struc- 
ture of Cayley graphs. Let X1 be the Cayley graph for a finitely generated group, 
with the path metric. If n is any positive integer, then the sphere of radius n is 

S(n) = { x E X1 I d(e, x) =n } where e is the identity element; similarly, the ball 
of radius n is B(n) = { x X1 d(e, x) < n 

A group G is almost convex [2] with respect to a finite symmetric set of generators 
if there is a constant A such that for any integer n and any pair of group elements 
g, h e G with g, h C S(n) and d(g, h) < 2, there is a path in B(n) of length at most 
A joining g and h. A short exercise shows that the existence of A implies there is 
a list of constants {Ak} (one for each integer k > 2) such that points in S(n) that 
are a distance < k apart can be joined in B(n) by a path of length at most Ak. 

We measure the "tameness" of a tame 1-combing in two ways. First, a tame 
1-combing 4 admits a radial tameness function p : Q -- Q if for any point x in 
X1, s c [0,1], and q c Q, whenever T(z, s) leaves B(p(q)), then all of the points 
I (x,t) with t > s are outside B(q). (We describe what we mean by a "ball of 
radius q" in a Cayley complex as opposed to the Cayley graph in Section 2; this is 
accomplished through the introduction of levels.) Note that p(q) > q for all q. 
Theorem A. Suppose that X and Y are finite, connected 2-dimensional PLCW- 
complexes whose fundamental groups are quasi-isometric. Let X and Y be their 
corresponding universal covers. Then X has a tame 1-combing that admits a ra- 
dial tameness function Px if and only if Y has a tame 1-combing that admits an 
equivalent radial tameness function py. 
Theorem C. A finitely presented group G is almost convex with respect to a finite 
set of generators if and only if there is a finite presentation, with the same set of 
generators, such that the associated Cayley complex admits a tame 1-combing with 
radial tameness function p(q) - q. 

Combining Theorems A and C we see that the collection of almost convex groups 
is contained in the quasi-isometry class of groups that admit a linear radial tameness 
function. This result is generalized in Theorem D to groups satisfying weaker 
versions of almost convexity. 

While the class of groups admitting linear radial tameness functions may be 
large, it certainly does not include all finitely presented groups. For example, in 
?5 we prove there are groups whose radial tameness functions are at least multiply 
exponential. 

In ?6 we explore a second notion of tameness that, in some sense, measures the 
width rather than the length of a tame combing. Let e be any edge of X. We 
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MEASURING THE TAMENESS OF ALMOST CONVEX GROUPS 

have restricted ourselves to PLCW complexes, so by simplicial approximation, we 
may assume that the maps I ex[0,1] are combinatorial, that is, the domain e x [0, 1] 
can be subdivided so that |1lex[0,1] maps cells isomorphically to cells. The tame 
combing 1 admits a ball tameness function 3 : Q -- Q if for any edge e and q C Q, 
the number of vertices, edges, and 2-cells in e x [0, 1] which map to cells in B(q) 
is bounded by 3(q). That is, we are counting the number of cells in B(q) that are 
hit by 4, with multiplicity. Note that a tame combing I may have a value of /3(q) 
that is not finite; in this case, we say the combing does not admit a ball tameness 
function. 

Like radial tameness, the ball tameness function is a quasi-isometry invariant 
(Theorem B). Combining radial and ball tameness functions allows us to bound 
the isoperimetric and isodiametric functions of G (Theorem E). In particular, as 
a corollary to these results we show: If a group G has a tame combing admitting 
recursive radial and ball tameness functions, then G has recursive isoperimetric and 
isodiametric functions, and the word problem for G is solvable. 

2. DEFINITIONS 

2.1. Geometry of the Cayley complex. 
Suppose G is a finitely presented group. We assume that for every presentation 

in this paper, the set of generators is closed under inverses, or symmetric, none of 
the generators has order 1, and no two generators are equal in the group. Let X 
be the universal cover of the standard 2-complex, or Cayley 2-complex, associated 
to the finite presentation. Let X? denote the O-skeleton; the vertices in X? are in 
one-to-one correspondence with the elements of the group. Also, let X1 denote the 
1-skeleton of X, i.e. the Cayley graph. 

As a reminder, because it is sometimes convenient to stray from presentation 
2-complexes to more general finite 2-complexes, we allow X to be the universal 
cover of any finite, connected, PLCW-2-complex X. (See ?1.1.4 of [7] for definitions 
and background on PLCW complexes.) We will abuse notation, and continue to 
call X1 and X the Cayley graph and Cayley complex of 7rl(X). 

There is a natural metric, called the path metric, on the Cayley graph X1 asso- 
ciated to a finite presentation: each edge is given the metric structure of the unit 

interval, and the distance between any two points of X1 is the length of the shortest 
path between the two points. Regrettably, for arbitrary finitely presented groups, 
there is no simple way to extend this metric to a metric structure on the entire 

Cayley complex, and this motivates our use of "levels" for the cells of X. 
Choose a base vertex e E X0. The level of v for a vertex v in X?, denoted 

lev(v), is the distance, using the path metric on the 1-skeleton, between the vertex 
v and the vertex e. For each edge e, the level of e, denoted lev(e), is 4 plus the 
average of the levels of the endpoints of e. The level of any point of the interior 
of e is defined to be the same as the level of e. Note that for any point x C Xl, 
d(e, x)- < lev(x) < d(e, x) + , where d denotes the path metric. Finally, for 4 - 4, 
a 2-cell f, the level of f, written lev(f), is defined to be the average of the levels 
of all of its boundary edges, plus 1, where c = 4n .. nk + 1 and n,..., nk are the 
numbers of edges in the polygons used in constructing X. The actual value of c is 
unimportant; what is important is to choose c so that no 2-cell has the same level 
as a 1- or O-cell. 
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Recall that a function f : N -+ N is an isoperimetric function for 7r1(X) if for 

any freely reduced word w C X1, where w represents the trivial element, there is a 
van Kampen diagram D with boundary label w containing at most f(l(w)) 2-cells. 
(Here l(w) is the word length of w.) A function g : N -+ N is an isodiametric 

function for 7r (X) if for any freely reduced word w C X1 as above, there is a van 
Kampen diagram D for w such that the (word length) distance from any vertex 
of D to the basepoint is at most g(l(w)). See [9] for information on van Kampen 
diagrams and [5] for background on the isodiametric and isoperimetric inequalities. 

2.2. Tame combings. 
Tame 1-combings were defined in the introduction. It is shown in [13] that tame 

combability is equivalent to a property first introduced by Tucker in the context of 
3-manifolds [19]. Let X be the universal cover of a finite 2-dimensional polyhedron 
X. We say that X is Tucker if for any finite subcomplex C c X, rl(X - C) 
is finitely generated (i.e. each path component of X- C has finitely generated 
fundamental group). 

The equivalence of the Tucker condition and tame combability uses the assump- 
tion that X is polyhedral; it is false in the setting of arbitrary CW complexes. Our 
assumption that all complexes are PLCW also allows us to count the number of 
times lex[0o,1] hits cells in B(q), that is, it allows us to define the ball tameness 
function. 

The definitions of radial and ball tameness functions given in the introduction 
refer to "balls of radius n" in X, although this concept was really only defined for 
graphs, not 2-complexes. For q E Q we define the ball B(q) of radius q to consist of 

{a C X t lev(o) < q}, and note that the usual ball of radius n in the Cayley graph 
is the intersection of the full Cayley graph with the ball of radius n in the Cayley 
2-complex, for any n E N. 

The radial tameness function has an immediate application to the Tucker prop- 
erty. An examination of the Mihalik-Tschantz proof of "tame combable X<: Tucker" 
establishes the following result. 

Proposition 2.1. Let X be the universal cover of a finite 2-dimensional polyhedron 
X, where X is tame 1-combable with radial tameness function p. Then there is a 
constant K such that, given any finite subcomplex C C X, if C C B(n), then 

generators for the fundamental group of any component of X -C can be found in 
B (p(p(n + K) + K)) -C. 

We note that Mihalik has also introduced "tame pairs of groups" which, com- 
bined with Tucker's results, allow him to get concrete results related to the missing 
boundary property for 3-manifolds (see [11] and [12]). We hope to consider degrees 
of tameness for pairs of groups in a later paper. 

2.3. Quasi-isometry. 
Two finitely presented groups G and H are quasi-isometric if there are functions 

f : G - H and g: H -- G and a constant k > 1 such that for all x, w E G and for 
all y, z C H, 

1. dH(f(x),f(w)) < kd (x,w) + k, 
2. d (g(y), g(z)) < kd (y, z) + k, 
3. d (g(f(x)),x) < k, and 
4. df (f(g(y)), y) < k, 
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where dG and dH denote the word metrics in G and H respectively. While there 
is nothing in the definition that requires it, we will be assuming that our quasi- 
isometries take identity elements to identity elements. If f is a quasi-isometry where 

f(ec) 7 eH, then the map f : G - H defined by f(eG) = eH, and f(x) = f(x) 
otherwise, is a quasi-isometry, although the constant k might need to be larger. 

Lemma 2.2. Let X and Y be two finite, connected, PLCW-2-complexes whose 
fundamental groups are quasi-isometric. Then there are cellular maps f : X - Y 
and : Y - X, and a constant K > 1 such that for all x,w E X1 and for all 
y,z C yl, 

1. dy, (f(x), f(w)) < Kdx (x, w) + K, 
2. dx (g(y), g(z)) < Kd, (y, z) + K, 
3. dx ((f(x)), x) < K, and 
4. d, (f(g(y)),y) < K, 

where dx and dy denote the path metrics in X1 and y1 respectively. Moreover, f 
and g can be defined so that for any cell a in X and r in Y, f(cr) and g(r) contain 
at most K cells, including cells in all dimensions, and counted with multiplicity. If 
ex and cy are basepoints in X and Y, respectively, then f and g can also be defined 
so that f(ex) = Cy and g(ey) = ex. 

Proof. Let f be the quasi-isometry from the group G -= 7r(X) to H - 7rl(Y), 
and let g be the complementary quasi-isometry from r1( Y) back to 7ri(X), with 
associated constant k. These functions can be thought of as maps between selected 
vertices in X and Y. More specifically, let ex and cy denote chosen base vertices in 
X and Y. Then f and g can be thought of as maps between the 7r1(X) translates 
of ex and the 7rl(Y) translates of ey. 

We construct our cellular maps f and g one dimension at a time. First, on 
the translates of the basepoints, define fo(w ex) = f(w) . ey for w C Fl (X) and 
go(z cy) = g(z) ex for z C 7Fi(Y). Because of our assumption that f and g 
map identity elements to identity elements, the maps fo and go map basepoints to 

basepoints. Let fo X? -> Y? via fo(v) fo(gv ' ex), where gv cx is a 7rl(X) 
translate of ex that is of minimum distance (path metric) from v. Since X is a 
finite complex, the distance from v to g, ex will be bounded by the finite number 
IX?O. Further, one can choose loops in X and Y representing the generators of G 
and H respectively; let L represent the combinatorial length of the longest such 
loop. It follows that for any x, w C X?, 

dy (fo(z), fo(w)) = dy (fo(g( ' cx), fo(gw ex)) = dy (f(gx) - ey, f (gw) - ey) 
< Ld, (f(gx), f(gw)) 
< L(kd, (gx, gw) + k) 
< L(kdx(g . ex, gw . cx) + k) 
< Lk(d, (x, w) + 2 X? + 1) = Lkd (x, w) + 21X?ILk + Lk, 

so we must pick K > 2 X?ILk + Lk. Define go : Y? - X? by go(v) = go(hv eCy) 
where, again, hv . ey is a 7 1(Y) translate of ey of minimum distance (at most IY?|) 
from v. The fact that the maps fo and go between the entire 0-skeleta of X and Y 
satisfy (i)-(iv) then follows from the fact that f and g are quasi-isometries. 
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We extend the maps fo and go to maps on the 1-skeleta. If e is an edge in X 
that is bounded by the vertices a and b, define fi (e) to be a minimal length path 
in Y connecting fo(a) to fo(b). Since we know that 

dy (f, (a), f, (b)) = dy (fo(a), fo(b)) 
< Lkdx (a, b) + 2IX?ILk + Lk = 2X?|ILk + 2Lk, 

this number bounds the length of the path fi (e) for all edges e. The map gi : y1 
X1 is defined similarly. 

The maps f and g are defined by extending fi and gi to the 2-cells. Since X is a 
finite complex, there is a constant J such that for any 2-cell a in X, 0a is a circuit 
of at most J edges in X1. Hence fi (Oa) is a circuit of at most J (2 X?ILk + 2Lk) 
edges in yl. Since Y is simply connected, there is a combinatorial disk, and a 
cellular map, filling in the circuit fl(08a); let f map a to this filling disk. Since 
there is a bound on the number of edges in this loop, we can also choose a so that 
we bound the number of cells in f(c), counted with multiplicity, in all dimensions. 

(For example, if f mapped a 2-simplex ca isomorphically to another 2-simplex, then 

f(c) would contain seven cells.) Again, g is defined similarly. D 

3. QUASI-ISOMETRY INVARIANCE 

In [13] Mihalik and Tschantz proved that having a tame combing is indepen- 
dent of presentation. Moreover, if X and Y are two finite PLCW-complexes with 

7r(X) - 7rTi(Y), then X has a tame 1-combing if and only if Y has a tame 1- 
combing. Using an alternate definition (the Tucker property mentioned in ?2.2) 
Brick extended this result, proving that admitting a tame 1-combing is a quasi- 
isometry invariant [1]. However, in the proofs of Theorems A and B we need to 
make specific reference to the construction of the tame 1-combing for Y. Hence 
we have chosen to include an outline of how the Mihalik-Tschantz proof can be 
adapted to the quasi-isometry setting. Later in this section we use this result to 
show that our measures of tameness are quasi-isometry invariants. 

Proposition 3.1. Let X and Y be two finite, connected, PLCW-2-complexes whose 
fundamental groups are quasi-isometric. If X admits a tame 1-combing, then Y also 
admits a tame 1-combing. 

Both here and elsewhere in the paper we will refer to stars and iterated stars. If 
C is any subcomplex of X, the star of C in X, denoted St(C), is the collection of all 
cells whose closure has non-trivial intersection with C. In general, St(C) = St'(C), 
and StK(C) = St(StK-l(C)). 

Outline of Proof. Essentially one uses the cellular maps f and g between X and 
Y from Lemma 2.2 to define a 1-combing A of Y in terms of a given 1-combing 
IV of X. However, there is a bounded amount of adjustment necessary, primarily 
because f o g(v) : v. In addition to the constant K mentioned in Lemma 2.2, 
the fact that Y is the universal cover of a finite PLCW-complex Y can be used to 
find two other constants. There are fixed constants M and D such that if v is any 
vertex of Y and s is any loop of Y of length at most K2 + 2K + 1 in StK+l (v), then 
c is homotopically trivial in StM (v) and the corresponding homotopy Ht can be 
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assumed to be combinatorial with domain subdivided into at most D cells. (We'll 
use this fact in the proof of Theorem B.) 

Suppose I is a tame 1-combing of X. Pick basepoints ex c XO and ey E Y0. 
Without loss of generality, as noted in Lemma 2.2, we may assume that f(ex) = ey 
and g(ey) = ex. For a vertex v E Y0, g(v) E X?, so there is a O-combing path 

4ig(,)x[o,i]. The composition fo Ig (v)x[0,1] then gives a path from [0,1] to yl 

connecting ey to f(g(v)). Since dy(f(g(v)),v) < K, we can pick a path ac in 
y1 from f(g(v)) to v of length at most K. Define Alvx[o,l] to be the path from 

[0, 1] to V1 connecting ey to v by concatenating the paths f o |l(v)x[o,1] and av; 

so A(v,s) = f(4'(v,2s)) when 0 < s < 1/2 and A(v,s) = a(l(av)(2s - 1)) when 
1/2 < s < 1. 

The construction of the 1-combing is only slightly more complicated. Suppose 
e is an edge of Y, and let a and b be the endpoints of e. Let y = (dl,d2, ...,dn) 
be the edge path g(e) in X from g(a) to g(b). Then f(7) is a path in X from 

f(g(a)) = Oa(0) to f(g(b)) = ab(O). Since I gives a combing of all of the edges 
of the path y, f o ?lx[to,1] gives a homotopy from f(7) to the image f(Ex) = Ey 
of the basepoint in X. Every point of f(7) is contained in f(g(e)), so each of 
these points is within a distance K of a point of e. Then every point of the loop 

( = (l, (7), ab, e-1) must be in StK+l(a), and the length of this loop is at most 
K2 + 2K + 1. Let H, be the homotopy H~ killing this loop in St" (a). 

Composing He with a homeomorphism of [0,1] x [0,1] gives a homotopy HI with 

H(s, 0) = f(y(s)), HT,(1) - (s), H(0, t) = a(t), and H(1, t) = ab(t). The 

homotopy A : e x [0, 1] - Y is defined to be the homotopy f o T x[0o,1] followed by 
Ht. This defines the 1-combing A of Y. Since ' is a tame combing of X, Theorem 1 
of [13] says that A is a tame combing of Y. D 

Definition. Suppose p: Q -+ Q and p' : Q -> Q are functions. Define p -4 p' 
if there is a positive constant A such that p(q) < Ap'(Aq + A) + A for all q e Q. 
Then p and p' are equivalent if both p -- p' and p' - p. 

Theorem A. Suppose that X and Y are finite, connected 2-dimensional PLCW- 
complexes whose fundamental groups are quasi-isometric. Let X and Y be their 

corresponding universal covers. Then X has a tame 1-combing that admits a ra- 
dial tameness function p, if and only if Y has a tame 1-combing that admits an 
equivalent radial tameness function py. 

Proof. Suppose that X has a tame 1-combing ': X1 x [0, 1] - X which admits 
a radial tameness function px. In the proof of Proposition 3.1, a tame 1-combing 
A : 1 x [0, 1] - Y for Y is built using 4. 

In order to find a radial tameness function py for A, we need two more constants. 

First, let L be a positive constant such that for any vertex v C Y0, the distance 
from v to any point in StM (v) n Y1 is at most L, where M is the constant defined 
in the proof of Proposition 3.1. 

In our proof we move between levels of cells and the path metric on the Cayley 
graph. To facilitate this, if x E X, let vx denote any vertex on the boundary of 
the cell containing x; similarly, define vy to be a vertex in the boundary of the 
cell containing y C Y. Define the constant J to be 2 plus the maximum length 
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of the boundary of any 2-cell in X or Y. Then J is greater than the difference in 
levels between any two cells for which one cell is in the boundary of the other, in 
both X and Y. This shows that the differences Ilevx(z) - d (cx,vx)l < J and 
Ilev y() - dy(cy, v) I < J; hence moving between the level of an arbitrary point 
in X or Y, and the distance between a representative vertex and basepoint in the 
path metric on the 1-skeleton, introduces an easily constrained distortion. The 
third sentence of Lemma 2.2 implies that since the two points x and vx in X are 
contained in the same cell (including the boundary), their images f(x), f(vx) E yl 
are within K cells of each other; hence \levy (f(x)) - levy (f(vx)) < KJ. 

Let C be a constant greater than 2K + 1, 2L + 1, and 2KJ. Let p = A(y, s) 
for some y C yl with y contained in an edge e (possibly an endpoint of the edge). 
Suppose that t > s, and let q = A(y,t), so q is a point further along the same 
combing path as p. Assume that levy (p) > Cpx (Cn + 7C2) + 4C2; it is our goal 
to show that the level of q is greater than n, hence py = Cp, (Cn + 7C2) + 4C2 is 
a radial tameness function for A. 

Case I. p is in the image of H/. 

Then q must also be in the image of H', which is contained in StM(a) for an 
endpoint a of e. Then from the definition of the constant L, dy (a, Vp) < L and 
dy (a, vq) < L, so dy (vp, vq) < dy (a, vp) + dy (a, Vq) < 2L. Then 

levy (q) > dy (y, vq) - J 

> dy(CY, V) - dy(vpvq) - J > dy(EY,Vp) -2L - J 

> levy (p) - 2L - 2J > Cpx (Cn + 7C2) + 4C2 - 2C 

> n. 

Case II. p and q are both in the image of f o kx[o0,]. 

Then p f ( T(x, s')) and q = f (l(x, t')) for some x e y, with s' < t'. 
Let p' =- (x, s') and q' = T(z, t'). 
Note that 

levx(p') > d (ex,vp') - J 

1 1 
> -dy(f(cx),f(vp,))- 1- J - -dy(cy,f(vp)) - -J 

- (levy(f(vp,)))-- J 

1 1 
> (lev(f(p')) - KJ) - 1 - J (levy (p)- KJ) - - J 

> -(Cp (Cn + 7C2) + 4C2 - KJ) - 1- J 

> P (C n+ 7C2). 

Since p' and q' are on the same combing path F{x} x[0,1], and q' is further along 
than p', the definition of the radial tameness function says that lev(q') > Cn+ 7C2. 

950 

This content downloaded  on Thu, 28 Feb 2013 11:18:37 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


MEASURING THE TAMENESS OF ALMOST CONVEX GROUPS 

It follows that 

levy (q) = lev, (f(q')) > levy (f(vq,)) - KJ 

= d(6y, f(Vq,)) - KJ = dy(f(x), f(vq)) - KJ 

> dx (g(f(ex)), (f(vq,))) - 1 - KJ 

> (dx (x,V q) - dx (g(f(ex)),ex) - dx ((f(v/)), q))- 1 - KJ - K 

> K(dx (ex,vqv -K)-K 1-KJ 

1 

> (levx (q') - J - K) - 1 - KJ 

> j(Cn + 7C2 - J- K) - 1 - KJ 

> n+2C. 

(We use the "+2C" in the next case.) 

Case III. p is in the image of f o Tl x[o,1] and q is in the image of H'. 

In this case we again have p = f(F(x, s')) for some x C 7 and s' e [0, 1]. Let 
r = f (F(x, 1)) -= f(x). Then r = A(y, u) with s < u < t. Since q and r are both in 
the image of H', dy(vq,r) < 2L, as in Case I. Also, p and r are both in the image 
of f o ' l/[x[o,1], so Case II says that levy (r) > n + 2C. Then 

levy(q) > dy(ey,vq) - J 

> d (ey,r) - dy (r,vq) - J > dy (y, r) - 2L - J 

> lev (r) - 2L - 2J > n + 2C - 2L - 2J 

> n. 

Hence, in all three of the possible cases, if levy (p) > Cpx (Cn + 7C2) + 4C2, 
then levy(q) > n. Therefore, the function py : Q -> Q defined by py(n) 
Cp(Cn + 7C2) + 402 is a radial tameness function for the tame combing A of Y. 

It is clear from the definition of py that py -< p,. Notice that px(n) 
- PY (n - 

7) - 4C, so that Px py also. Therefore the tame combing A admits 
a radial tameness function equivalent to p,. D 

Theorem B. Suppose that X and Y are finite, connected 2-dimensional PLCW- 

complexes whose fundamental groups are quasi-isometric. Let X and Y be their 
corresponding universal covers. Then X has a tame 1-combing that admits a ball 
tameness function f3x if and only if Y has a tame 1-combing that admits an equiv- 
alent ball tameness function /3y. 

Proof. Let B+ (n) and By (n) denote the balls of radius n in X and Y respectively, 
and let e be an edge of Y. We need to bound the number of cells in the cellular 
decomposition of e x [0, 1] that map to jBy(r), using the ball tameness function 
f3x. In constructing A : e x [0, 1], in the proof of Proposition 3.1, we used the 
edge path 7 - (d1, d2,... , dn) which connected the g-images of the end points of 

e. We then amalgamated the maps ' : di x [0, 1], and used the map f to send this 

amalgamation back to Y. Now we just need to make a careful accounting of this 
process. 
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Since the endpoints of e are a distance one apart, the number n of edges in the 
path y is < K, where K is the constant in Lemma 2.2. Suppose o is a cell in any 
di x [0, 1] that maps onto a cell T in e x [0, 1] which in turn maps into By(r). Let 
V,J be a vertex on the boundary of a. Then 

levx (a) < d, (ex, va) + J 

< dx (cx, g(f(v))) + dx (g(f(v)), v) + J 

< dx (ex, g(f(v,))) + K + J = dx (9(f(ex)), (f(vo))) + K + J 

< Kd{ (f(ex), f(va)) + K + K + J = Kdy (y, f(v,)) + 2K + J 

= Klev (f(v,)) + 2K + J 

< K(levQ (T) + KJ) + 2K + J - Klev () + K2J + 2K + J 

< Kr+ (K2J +2K+ J). 

Set K' = K2J + 2K + J so that levx(ca) < K'r + K'. Thus c has to map 
to Bk(K'r + K'). By the definition of 3ix, each di x [0,1] has a maximum of 
f3x(K'r + K') cells mapping to Bk(K'r + K'). Because there are at most K di's, 
because each cell in each di x [0, 1] maps to at most K cells in Y under f, and 
because the domain of each homotopy H' has at most D cells (see the proof of 
Proposition 3.1), the total number of cells in e x [0,1] that could possibly map to 
By(r) is bounded by 3y(r) -K2 I3x(K'r + K') + D. D 

4. ALMOST CONVEXITY AND LINEAR RADIAL TAMENESS 

In the introduction we noted that Cannon's almost convexity property is not 
geometric in that a group can be almost convex with respect to one set of generators 
and not with another. Here we show that an almost convex Cayley graph embeds as 
the 1-skeleton of a Cayley complex admitting the minimal possible radial tameness 
function p(n) = n. It follows that almost convex groups are contained in the quasi- 
isometry class of groups admitting linear radial tameness functions. 

While Cannon's definition of almost convexity was introduced in the context of 
Cayley graphs, it also applies to arbitrary graphs, in particular, to the 1-skeletons 
of simply connected PLCW-complexes. 

Definition. For a 1-combing x of a 2-complex X and a point x c X, the corre- 
sponding combing path Tll{x}x[0o,] is monotone increasing if whenever s < t, then 
either lev(x(x, s)) < lev(x(x, t)), or lev(xP(x, s)) = lev(x(x, t)) and T(x, [s, t]) is 
contained in the interior of a single cell of X. The combing xP is monotone increasing 
if all of its paths are monotone increasing. 

Lemma 4.1. A 1-combing ' is monotone increasing if and only if Z is tame and 
admits a radial tameness function p: Q -- Q given by p(n) = n. 

Proof. Assume IF is a monotone increasing 1-combing of X, and let x e X1, 
s C [0,1], q C Q, and lev(xl(x,s)) > q. Then for any point I(x,t) with t > s, 
lev(Q(x,t)) > lev(x(x,s)) > q also, so xl admits the radial tameness function 
p(q) = q. 

On the other hand, if x admits a radial tameness function p(q) = q, if s < t, and 
if lev(I(x,s)) # lev(PQ(x,t)), then lev('F(x,s)) < lev(e(x,t)). If lev(I(x,s)) 
lev(T(x, t)), but I(x,s) and I(x, t) aren't contained in a single open cell, then 
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the path T(x, [s, t]) must cross an open cell a whose dimension is different from 
the dimension of the open cell containing 4(x, s). But cells of different dimensions 
can't have the same level, so by the fact that p(q) - q, lev(a) > lev(Q(x,s)). 
Again by the fact that p(q) = q this implies that it is impossible for lev(4'(x, s)) = 
lev((zx, t)). ? 

Theorem C. A finitely presented group G is almost convex with respect to a finite 
set of generators if and only if there is a finite presentation, with the same set of 
generators, such that the associated Cayley complex admits a monotone increasing 
tame 1-combing. 

Theorems A and C, along with Lemma 4.1, immediately imply the following 
corollary. (See Corollary 4.3 also.) 

Corollary 4.2. The class of almost convex groups is contained in the presentation 
independent class of groups admitting tame 1-combings with linear radial tameness 
functions. 

Proof of Theorem C. (=>) For this direction we revisit the construction of the tame 
1-combing for an almost convex group given in [6]; the general technique outlined 
here is also used in the proof of Theorem D. 

Suppose that G is almost convex with respect to a finite generating set S. Let A 
be the corresponding almost convexity constant. Let R be any finite set of defining 
relators for G that contains every word of length up to 2A + 2 that represents the 
trivial element of G. Finally, let X be the Cayley 2-complex associated with the 
presentation given by S and R. 

Define a O-combing T : X? x [0,1] -- X by taking the combing path lF{v}x[o,1] 
for any vertex v to be the path (without backtracking) of a geodesic in X1 from e 
to v. Moreover, choose the paths in this O-combing so that for any vertex x on a 
combing path lI{f} x[0,1], the O-combing path Tl{} x[o,l] for x is simply the portion 
of [l{f x[o,l] that goes from the basepoint to x, reparametrized; that is, choose the 
O-combing to be prefix closed. (For example, the O-combing given by taking the 
paths corresponding to the shortlex minimal representatives of each of the group 
elements has this property.) With this choice, each of the O-combing paths are 
monotone increasing. 

We define the combing lex[o,l] for an edge e by induction on the level of the 
edge. Note that with our assumption on presentations in ?2.1, no generator has 
order 1, so there is no edge with level . Suppose that e is an edge with level . 
Then for any point x in the edge e, define the combing path Il{a}x[o,1] to be a 
path that runs directly from the endpoint e of e to the point x. Next suppose that 
e is an edge with level 4. Then the endpoints a and b of e are connected to the 
basepoint e by single edges c and d, respectively. These three edges (c, e, d) must 
therefore form a loop in X1. The definition of R implies that there is a 2-cell in X 
whose boundary is given by this loop. In this case define the homotopy lex[o,1] to 
fill in this 2-cell. 

Next suppose that the combing 4 has been defined for all points in X1 with 
level less than n + 4 for n c N, and that all of the combing paths for these points 
are monotone increasing. 

Let e be an edge at level n + 4 with n C N. Then the endpoints a and b of e are 
both in the sphere S(n), and d(a, b) = 1 (since we assume no generator has order 
1). The definition of almost convexity then says that there is a path a of length at 
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most A inside of B(n) from a to b. Note that since all of the points on this path 
are inside of B(n), the level of all of the points on this path is at most n, also. By 
induction, the combing ' has been defined on all of the points of the path a. The 
path a together with the edge e form a loop in X of length at most A + 1. The 
definition of the set of relators then says that there must be a 2-cell in X whose 
boundary is given by a and e. Define the combing l,ex [0,1] to be the combing of 
a followed by a homotopy filling in the 2-cell. Since the combing of a is monotone 
increasing, and all of the points of a have level less than n + -, the combing for e 
is also monotone increasing. 

Finally, suppose that e is an edge at level n + 3 with n E N. The edge e has an 
endpoint a with lev(a) = n and an endpoint b with lev(b) - n + 1. The combing 
path T|{b}x[o,1] follows a geodesic in X1 from e to b, so it must go through a point 
c with lev(c) = n. The distance from a to c is at most 2. If a = c, then for any 
point x of e, define the combing path to x to be the portion of the combing path 
TI{b}x[o,1] from the basepoint to x, reparametrized. If 1 < d(a, c) < 2, then almost 
convexity implies that there is a path a from a to c inside of B(n) of length at most 
A. As in the paragraph above, define l|ex[o,1] to be the combing of a followed by 
a homotopy filling in the 2-cell bounded by a, the edge from c to b, and e; this is 
again monotone increasing. 

(=) Suppose that G has a finite presentation for which the corresponding Cayley 
complex X has a monotone increasing tame 1-combing '. Since X is the universal 
cover of a finite complex, there is a constant C such that the number of edges in 
St2(e) for any edge e is bounded by C; we will show that G is almost convex with 
constant A = 2C. 

Suppose that g, h c S(n) and d(g, h) < 2. The case where d(g, h) - 0 is trivial. 

Case I. d(g, h) = 1. 

In this case g and h are joined by an edge e of level n+ 4. Since the map l|ex[0,1] is 
combinatorial, there are finitely many 2-cells in the domain whose closure intersects 
e x {1}; all such cells map into the first cellular neighborhood of e E X. We call 
this collection T. Because the level of e is n + 4, and ' is monotone increasing, 
the level of any vertex in the image of T is at most n, and the level of any edge 
in T (&T) - {e} must be less than n + 4 and hence is at most n - . So the path 
' (0T) - {e} is a path joining g and h in B(n). By eliminating loops in this path, g 
can be joined to h by a path of length at most C which stays inside of St(e) nB(n). 

Case II. d(g, h) - 2. 

Let d and e be a path of length 2 from g to h in X1, and let f be their common 
endpoint. If lev(f) - n - 1, then d and e are a path of length 2 in B(n) from g to 
h. If lev(f) - n, then applying Case I to the edges d and e shows that there is a 
path of length at most 2C inside B(n) from g to h. 

Now suppose that lev(f) - n+ 1. Because the 1-combing restricts to a 0-combing 
on the endpoints of edges, the two maps PI\d and T'e can be combined into one 
monotone increasing map P : {d U e} x [0,1] -- X. Again we will take a cellular 
subdivision of this map which makes it combinatorial, and let T be the collection 
of 2-cells in {d U e} x [0, 1] whose closure intersects d, e (or f). Then T maps under 
'IdUe to the first cellular neighborhood of {d U e}, which is the union of the first 
cellular neighborhoods of d and e. As a first approximation, we look at the path 
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(0T) - {d, e} joining g to h. Because ' is monotone increasing, the level of any 
edge in J (0T) - {d, e} is < n + and hence is < n + 1 

Let a be a 2-cell in T that contains an edge e' with lev('(e')) = n + 4. Case 
I shows how the endpoints of I(e') can be connected by an edge path in B(n). 
Replacing all edges of level n + in ? (&T) - {d, e} in this way yields a path from 
g to h contained in B(n). By construction this path is contained in the union of 
the second cellular neighborhoods of d and e, and hence, after removing loops, its 
length is bounded by 2C. C 

There are two weaker versions of almost convexity for groups in the literature. 
One was introduced by Poenaru in [15]. A group G is P-almost convex if it satisfies 
two conditions. Poenaru's condition 1? is a variation on a condition of Casson and 
it implies that the group admits a linear isodiametric function. Condition 2? is an 
almost convexity condition: there are positive constants C and e (where 0 < e < 1) 
such that for any integer n and any pair of group elements g, h E G with g, h E S(n) 
and d(g, h) < 3, there is a path in B(n) of length at most Cnl~- + C joining g and 
h. 

Poenaru and Tanasi introduced another variation on Cannon's almost convexity 
condition using isoperimetric functions [16]. Suppose that k is a natural number 
and that g and h are arbitrary elements of S(n) for some n with d(g, h) < k. Let 

pi be a path in X1 from g to h of length at most k, and let P2 be any path inside of 

B(n) from h to g. This gives a closed loop in X1, which must bound a disk in X. 
Among all disks bounded by loops formed by paths with these properties, let D be 
a disk for which the number of 2-cells in D, or the area of D, is minimal. If there are 
positive constants C and e, depending only on k, such that area(D) < Cnl-~ + C 
for all n E N and all g, h c S(n) with d(g, h) < k, then the group is said to be 
k-weakly almost convex. The group is weakly almost convex if it is k-weakly almost 
convex for every natural number k. 

Theorem D. If a group G is either P-almost convex or weakly almost convex with 
respect to a finite presentation, then the corresponding Cayley 2-complex has a tame 
combing with a linear radial tameness function. 

Using Theorem D we can extend Corollary 4.2 to 

Corollary 4.3. The quasi-isometry invariant class of groups admitting tame 1- 
combings with linear radial tameness functions contains all almost convex, P-almost 
convex, and weakly almost convex groups. 

Proof of Theorem D. The proofs in both cases are essentially the same, starting 
with the construction of a 1-combing, similar to the one made in the case of almost 
convexity. 

Suppose that G is P-almost convex, so that (1?) G admits a linear isodiametric 
function, and (2?) there are positive constants C and e (where e < 1), such that 
whenever a, b E S(n) and d(a, b) < 3, there is an edge path contained in B(n) of 
length at most Cnl-e + C joining a and b. 

The 0-combing is constructed by taking any geodesic, prefix closed combing from 
a chosen basepoint. The 1-combing is constructed inductively much as in the case 
of Cannon's almost convexity. Let e be an edge with vertices a and b. If the level 
of e is n + , then lev(a) = lev(b) = n and a 7 b, hence by condition 2? there is 
an edge-path joining a to b contained in B(n), of length < Cn1-6 + C. Similarly, 
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if lev(e) = n + 4, then without loss of generality we may assume lev(a) n and 
lev(b) = n + 1, and that the penultimate vertex c in the combing path for b is at 
level n. Then there exists an edge path from a to c contained in B(n), of length 
< Cn1-~ + C. Call the edge path in B(n) the AC path associated with the edge e. 

If lev(e) n + 4, or lev(e) n + and a 7 c, then the union of e, the AC 

path for e, and possibly the edge {b, c} when lev(e) -n + 3, forms a loop in X. 
In the "classical" setting of Cannon's almost convexity, these loops had bounded 
length, hence we could assume they were filled by a single 2-cell. Passing to the 
more general setting, we still have reasonable control over how to fill these loops 
in order to construct a tame 1-combing for X. By condition 1? (which implies 
there is a linear bound on the diameter of filling disks in terms of the length of the 
perimeter), one can fill this loop such that every vertex in the filling is at most a 
distance C'nl-~ + C' from a or b, where C' is some constant greater than C. Call 
such a filling the AC bead associated to the points of the edge e. Note that every 
edge in the AC path for e is at a lower level than e. Thus, by induction, there are 
1-combing paths out to all of the edges of the AC path for e. The 1-combing for 
e is constructed via concatenating the 1-combings to the edges in the AC path for 
e, and then adding a homotopy from the AC path for e, to e, passing through the 
AC bead. 

It may occur that lev(e) - n + 3 and a = c. In this case then the AC path for 
e consists of a single point. The 1-combing path to any point p on the edge e is 
defined to be the O-combing path from the basepoint to a, followed by the portion 
of the edge e from a to p. The portion of the edge e in this path is called the AC 
bead for the point p; the AC bead for the vertex b is the entire edge e. 

Ultimately, each combing path TI{x}x[o,1] will run through a necklace of AC 
beads as it moves from the basepoint to the edge e. Thus there is a finite sequence 
of special points {pl.... ,Pj,x} where the combing path begins at the basepoint, 
stays inside an AC bead until it reaches the point pi where it passes into a second 
AC bead, the AC bead associated with p2. The combing path exits this second 
AC bead at the point P2, then travels through the third AC bead until it reaches 
p3, etc., until the final AC bead bridges the gap between pj and the point being 
1-combed, x. Note that because pi-1 is part of the AC path for Pi, the level of pi-1 
is strictly less than the level of pi. 

Every vertex in the nth AC bead is a distance at most C'ml-~ + C' + J from 
p,n where the level of pn is m. Setting C" = C' + 2J we see that every cell in the 
nth AC bead has level at least m - C"n1-' - C" and at most m + C"m1-6 + C". 
Because C"m1-6 + C" is sublinear, there is a constant K such that 

C"ml-' + C" < m + K 

for all m > 0. Thus if I is the level of any cell in the AC bead for Pn, we get 
2 4 
-m - K < I < -m+K 
3 3 

hence 
3 3 
-(I- K) <m < (+K). 4 2 

Set p(q) = 2q + 3K. Assume that a combing line passes through a cell whose 
level is > 2q 4-3K, and let pn be the special point whose AC bead contains that cell. 
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3 3 
Then the level of p, is > (2q + 2K) = (q + K). But then any cell in this AC 

4 2 

bead has level > (q + K) - K - q. Further, because the levels of the special 3 
-2-~ ~3 

points are strictly increasing, and because the level of the point pn is > - (q + K), 2 

the level of any special point pj (j > n) must also be > -(q + K). So the level of 

any cell in the jth AC bead (j > n) is also at least q. 

Weakly Almost Convex. We use the same construction as in the almost convex and 
P-almost convex cases to construct the tame combing: Comb out to the vertices 
using prefix closed geodesics; connect the two vertices on an edge by a path in B(n); 
fill the loop created in a minimal manner. The weak almost convexity criterion 
states that this filling has area < Cn1-e + C. Note that the diameter of this filling 
is then at most JCnl-e + JC, where J is the length of the longest relator. Further, 
the length of the path in B(n) is also bounded by JCnl-~ + JC. Thus the two 
key ingredients from the previous case still hold, and the argument follows mutatis 
mutandis. D 

Note. Mihalik and Tschantz showed that if M is a closed irreducible 3-manifold 
with an infinite fundamental group that is tame combable, then the universal cover 
of M is homeomorphic to R3 [13]. In [6] we showed that if 7r1 (M) satisfies Cannon's 
almost convexity condition, then nl (M) admits a tame combing, hence by Mihalik 
and Tschantz, the covering conjecture holds for M. (This is the main result of [14].) 
It follows from Theorem D that this is true if 7rl (M) is P-almost convex or weakly 
almost convexity. This gives a new proof of the main results of [15] and [16]. 

5. EXAMPLES OF GROUPS WITHOUT LINEAR RADIAL TAME COMBINGS 

In ?6 of [4], Gersten studied the iterated HNN extensions 

Gn = (ao,al,...,an I a i+ a2; < i < n 1) 

and showed that they have isoperimetric functions bounded below by iterated expo- 
nential functions. In this section we show that these groups admit finite complete 
rewriting systems, hence they are tame combable, but they cannot have tame comb- 
ings with linear radial tameness functions. 

Recall that a rewriting system consists of a finite set E and a subset R C S* x S* 
of replacement rules, written u -> v whenever (u, v) E R, which give, for any 
x, y C S*, rewritings xuy -> xvy. This is a rewriting system for a group G if 

( u = vif (u,v) R) 

is a presentation for G as a monoid. The rewriting system is finite if the sets E and 
R are finite, and the system is complete if the following conditions hold: 

(C1) There is no infinite chain xz > -> x2 -> * . of rewritings. 
(C2) There is exactly one word representing each element of the monoid presented 

by the rewriting system that cannot be rewritten. 

The rewriting system is geodesic if all of the rules either decrease or preserve 
word length. 
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Note that Theorem B of [6] says that if a group has a geodesic finite complete 
rewriting system, then the group is almost convex with the same set of generators. 
The following corollary then follows directly from Theorem C above. 

Corollary 5.1. If a group G has a geodesic finite complete rewriting system, then 
the corresponding tame 1-combing is monotone increasing. 

Proposition 5.2. The groups Gn admit finite complete rewriting systems. 

Theorem A in [6] states that any group admitting a finite complete rewriting 
system is tame 1-combable. Hence we immediately get the following. 

Corollary 5.3. The groups Gn are tame 1-combable. 

We note that Gersten suggested (in a note to C.F. Miller, III) that the groups Gn 
ought to admit finite complete rewriting systems, and proposed such a presentation 
of G3. However, the general result for G,, as well as the proof, is new. 

Proof of Proposition 5.2. For the groups Gn, define the generating set 

En - {ao,Ao, a1,A1, ... , a,, A}. 

Let Rn consist of the rewritings aiAi -> 1 and Aiai -> 1 for each 0 < i < n, along 
with the rules 

ak-lak -> Ak-akak-1, 

ak-lAk - Akak-lak-1, 

Ak-lAk-lak -> akAk-1, 

Ak-lAk AkAk-lAk-1 

when 1 < k < n and k is odd, and the rules 

ak+lak -- akakak+l, 

ak+lAk - AkAkak+i, 

Ak+lakak a akAk+l, 

Ak+1Ak - AkAk+lak 

when 1 < k < n - 1 and k is again odd. This is a rewriting system for Gn since it 
gives a monoid presentation for this group. 

To check that condition (C1) holds, it suffices to show that there is a well-ordering 
compatible with multiplication, or reduction ordering, which is reduced by each of 
the rules in R. We define the ordering recursively, by iterating the wreath product 
ordering (see pp. 46-50 in [17] for details). First, for each 1 < k < n with k odd, 
define the ordering <k to be the ordering on the set of words {ak, Ak}* given by 
the shortlex ordering with Ak > ak. For each 0 < j < n with j even, define the 
ordering <,j to be the ordering on the set of words {aj, Aj}* given by the shortlex 
ordering with aj > Aj. 

Next define the ordering <0 on the set ES of words over Eo = {ao, Ao} to be 
<o=<o. The ordering <1 on the set ES of words over 1 = {ao, Ao, al,Al} is 
given by taking the left-to-right wreath product ordering <i=<o I <<1. In this 

ordering, in order to compare two words u and v, write u = Sob1Slb2...Sr-lbrSr 
and v = Tod1T1d2...Tp_ldpTp with S, Ti C {ao,Ao}* and bi,di C {al, A}. Then 
u <1 v if one of the following holds: 

(i) blb2 ...br <<1 dld2 ...dp, 

958 

This content downloaded  on Thu, 28 Feb 2013 11:18:37 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


MEASURING THE TAMENESS OF ALMOST CONVEX GROUPS 

(ii) bib2...br = d1d2...dp and (So, S,...,Sr) comes before (To, T, ...,Tr) in the 
left-to-right (i.e., usual) lexicographic ordering of (E;)r+l defined by <0. 

Since <o and <<1 are both reduction orderings, Proposition 1.7, p. 47 of [17] shows 
that <1 is also a reduction ordering. 

The ordering <2 on the set E* is defined by taking the right-to-left wreath 
product ordering <2=<1 1 <<2. For two words u = SoblSlb2...Sr-lbrSr and v = 

TodlTld2...TpldpTp with Si,Ti C SZ and bi, di {a2,A2}, u <2 v if one of the 
following holds: 

(i) blb2...br <<2 dld2...dp, 
(ii) b1b2...br = d1d2...dp and (So, Si,... Sr) comes before (To, T, ..., T) in the 

right-to-left lexicographic ordering of (ES)'+1 defined by <1. 
A slight variation on Proposition 1.7 in [17] again shows that <2 is a reduction 
ordering, since <1 and <2 are. 

Repeat this procedure to define an ordering <k on ES for any k. If k is odd, 
then let <k=<k-i l <k, and if k is even, then let <k=<k-1 1' <k. In each case, 
the ordering <k is a reduction ordering. 

It is straightforward to check that this rewriting system is compatible with this 
iterated wreath product ordering; that is, for each of the rewritings u -- v C R,, 
v <n u. Thus the rewriting system satisfies condition (C1). The Knuth-Bendix 
procedure [8] is a procedure which is used to check that the condition (C2) holds 
for a rewriting system in which (C1) is already known to hold. This is again a 
straightforward computation for the rewriting system given by E, and Rn; therefore 
this rewriting system is finite and complete. D 

Proposition 5.4. The groups Gn do not admit tame 1-combings with linear radial 
tameness functions. 

Proof. Gersten uses a Koch snowflake picture to demonstrate that Gn has an 
isoperimetric function bounded below by an iterated exponential function (?6 of 
[4] again). In particular, he shows that the isoperimetric function for Gn grows at 
least as fast as En where 

21 

En () := 2 

n times 

The Koch snowflake picture is a reduced van Kampen diagram for the null- 
homotopic word 

al 

Un,l = [aO ,ao] 

of length 2n+ (1+ 1) that is filled by more than En(l) 2-cells. Because G is aspherical 
[4], any filling of the null-homotopic word uw,,l must involve all the cells in Gersten's 
Koch snowflake diagram, and this van Kampen diagram embeds in the Cayley 
complex X. Suppose the image of the van Kampen diagram is contained in the 
ball B(r). Since the number of vertices in B(r) C X is at most (2(n + 1))r, and the 
diagram contains at least En(l) vertices, r must be at least En_l(l)/ log2(2(n+ 1)) = 
O(En_1(l)). Then the maximum distance from the identity to a vertex in this 
filling of wn,, must be at least O(E,n-(l)). Thus all fillings of wjn,, contain vertices 
a distance at least O(E_n-(l)) from e in the Cayley graph. 
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FIGURE 1. The sea shell filling of a null homotopic loop. 

Tame 1-combings can be used to fill null homotopic words. If w =c 1, then for 
each edge e C w, elex[o,1] gives a homotopy from e to e. The union 

U { 'lex[0,lI eE w} 

where one amalgamates }|ex[0,1] and leIx [0,1] along |1 ax[0,1] when e ne' a, is a 
disk filling in w. We call this the sea shell filling of c (see Figure 1). 

Suppose the group Gn admits a tame combing with linear radial tameness func- 
tion pn(q) = Kn*q + Kn for some constant Kn. If the length of w is 1, then the 
distance (in the Cayley graph) from e to any vertex in the corresponding sea shell 

filling is bounded by p(l). That is, the image of this disk in X is contained in 
B(p(l)). Then one could fill the Koch snowflake loop w,, in B(Knl + Kn) for all 
1. But as we noted above, these Koch snowflake loops can only be filled in B(r), 
for some r = O(En_l(l)) (or larger). Hence these groups cannot admit linear ra- 
dial tameness functions, and moreover, their radial tameness functions are bounded 
from below by iterated exponentials. El 

6. ISOPERIMETRIC AND ISODIAMETRIC FUNCTIONS AND 

SOLVABILITY OF THE WORD PROBLEM 

Given a group G and a finite set of generators for G, Dehn's word problem asks 
if there is an algorithm which can determine, given any word in the generators, 
whether or not the word represents the trivial element of the group. This problem 
is not solvable in general; that is, there are finitely presented groups for which 
there is no such algorithm. (See [9] for details.) In this section we show that if 
the measurements for a tame combing for G are recursive, or computable, then 
the word problem is solvable. In particular, we establish that the isodiametric and 
isoperimetric functions are recursive, or computable. 

In the previous section we studied the diameters of images of van Kampen di- 
agrams in the Cayley complex in order to establish that there are tame combable 
groups whose radial tameness functions are at least multiply exponential. Given 
this, one might imagine that there is a tight connection between isodiametric func- 
tions and radial tameness functions. However, the connection is not clear. For 
example, given any null homotopic word w one can use a tame 1-combing to form 
a van Kampen diagram for w using the sea shell method. As noted in ?5, this van 
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Kampen diagram is mapped to B (p(l(c))) C X. In the examples of ?5 we had the 
added advantage of knowing that these van Kampen diagrams embed in X, but 
this is not true in general. Cells in B (p(l(w))) C X could be hit multiple times; 
hence there is no immediate way to bound either the combinatorial diameter or 
area of such disks. 

Conversely, let g : N -> N be an isodiametric function for G. One can make a 
1-combing as follows: Let the 0-combing consist of geodesics from e to each v e X?. 
Each edge e determines a O-combing loop consisting of e and the 0-combing paths 
to the vertices of e. Have the 1-combing for e pass through a filling of this 0- 
combing loop that satisfies the isodiametric condition given by g. It is true that if 
lev(e) - n ?, then no combing line for a point in e will leave B(g(2n) + J), so one 
might be tempted to believe p(n) := g(2n) + J would be a radial tameness function 
for G. However, if lev(e) > n, there is no reason to assume that once a combing 
line for a point in e leaves B(g(2n) + J) it won't return to B(n); a minor amount 
of backtracking at the start will not force a contradiction with the assumption that 
the filling of the 0-combing loop for e satisfies the isodiametric condition. As a 
matter of fact, it is not even clear that the 1-combing described here will always be 
tame. 

Theorem E. If a finitely presented group G has a tame 1-combing admitting radial 
tameness function p and ball tamreness function f, then the function f : N -> N 
given by f(n) -= n (/3(p(n))) is an isoperimetric function, and the function g : N -- 
N given by g(n) = J. (/3(p(n))) is an isodiametric function, for the group G. 

Proof. Suppose that the universal cover of the standard 2-complex for a finite pre- 
sentation of G has a tame combing I admitting a radial tameness function p and a 
ball tameness function 13. Suppose also that w is a freely reduced word representing 
the trivial element of G. The sea shell filling determines a van Kampen diagram 
for w. 

For each edge e in the boundary of the van Kampen diagram, the level of e is at 
most the length l(w), so all of the points in the combing paths from the identity to 
the points of e must have level at most p(l(w)). The number of cells in T(e x [0, 1]) 
with level in [0, p(l(w))], counted with multiplicity, is bounded by f3(p(l(w))). 

Since this is true for all of the edges in the boundary of the van Kampen diagram 
for w, the number of 2-cells in the diagram is at most l(w) (/3(p(l(w)))). Therefore 
the function f : N -- N given by f(n) n (f3(p(n))) is an isoperimetric function 
for the group G. Also, any vertex inside the van Kampen diagram for w is contained 
in the image of the homotopy for one of the edges, which also contains the basepoint 
and at most i3(p(l(w))) cells. Thus the vertex is at most a distance J (C3(p(l(w)))) 
away from the basepoint of the diagram, where J is the length of the longest 
relator of the presentation for G. Hence the function g : N ->* N given by g(n) = 
J. (/3(p(n))) is an isodiametric function for G. D 

Corollary 6.1. If a finitely presented group G has a tame 1-combing admitting 
recursive radial and ball tameness functions, then G has recursive isoperimetric 
and isodiametric functions, and the word problem for G is solvable. 

Proof. Since the composition of recursive functions is recursive [10], the isoperi- 
metric and isodiametric functions in Theorem E are recursive functions. The rest 
follows the fact that a group with recursive isoperimetric function has solvable word 
problem (Theorem 2.2.5 of [3] or Theorem 2.1.2 of [5]). [] 
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