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 Four studies were conducted to evaluate the components of distillers grains plus 

solubles in finishing beef cattle diets. Experiment 1 evaluated the effects of five 

composites of feedstuffs formulated to be similar in nutrient composition to DDGS on 

finishing performance of cattle. Experiment 2 evaluated isolating the protein from 

distillers grains using a feedstuff from the wet milling ethanol industry to determine the 

impacts of protein on the feeding value of WDGS in finishing performance of cattle. 

Experiments 3 and 4 evaluated the effects of protein from distillers grains with the diets 

used in Exp. 2 on site of digestion, ruminal VFA concentration and pH. In Exp. 1, 

replicating distillers grains plus solubles with proportions of high-protein distiller grains, 

corn bran, and condensed distillers solubles did not result in similar performance as cattle 

fed distillers grains plus solubles. Cattle consuming the CaO treated corn stover and 

byproducts were less efficient than cattle fed the composite with corn bran. Replacing 

high-protein distillers grains from the composite diet with condensed distillers solubles 

and corn bran resulted in greater DMI and tended to improve feed efficiency. In Exp. 2, 

protein made up a large portion of the calculated feeding value of the distillers grains plus 

solubles. In Exp. 3 and 4, DM and NDF total tract digestibility were greater for protein of 

distillers grains than for distillers grains plus solubles. Excess protein, from distillers 



 

 

grains plus solubles, above the animals requirement does serve as an energy source to 

beef cattle on finishing diets.  

Key Words: distillers grains plus solubles, finishing, protein, treated corn stover 
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CHAPTER I. LITERATURE REVIEW 

Introduction 

In the last decade, ethanol production has increased significantly, which directly 

correlates to greater distillers grains plus solubles (DGS) production. For every liter of 

ethanol produced from the dry-grind process, 0.84 kg of DGS is produced (Kim et al., 

2010). Increased ethanol production has led to increased demand for corn and utlimately 

higher corn prices (Watson, 2015). Corn is the primary ingredient in finishing diets, 

supplying the majority of the energy for ruminant animals (Galyean and Gleghorn, 2001; 

Vasconcelos and Galyean, 2007). As a result of high corn prices, replacing corn with 

ethanol byproducts can be economically favorable while still providing energy. Distillers 

grains included at or below 20% of diet DM are utilized to meet the protein requirements, 

with greater inclusion levels serving as an energy source. Excess protein used as energy 

is deaminated in the liver, producing ketone bodies to be used as energy, and urea is 

excreted (Klopfenstein et al., 2008).  

Ethanol plants are always striving to improve efficiency and profitability, which 

has led to the development of new technologies, especially within the dry-grind 

processing industry. These technologies improve efficiency have focused on producing 

more from the same kernel of corn. In the dry-grind process, corn is ground and corn 

starch is hydrolyzed to sugar and sugar fermented to produce ethanol. The unfermented 

components included mostly fiber, protein, fat, minerals (Kim et al., 2010). Currently, the 

germ component of DGS can be further processed to seperate corn oil (Depenbusch et al., 

2008). The fiber component may be subjected to cellulosic fermentation yielding 

additional ethanol and a DGS lower in NDF. The remaining NDF has been reported to be 
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less digestible and lower in energy relative to fiber from traditional DGS (Lundy et al., 

2015). Following cellulosic fermentation, protein can be separated and removed from 

DGS. Distillers grains plus solubles contains approximately 31% CP (DM basis) and 

serves as an excellent source of protein (Buckner et al., 2011; Klopfenstein et al., 2008). 

Depending on the amount of protein removed, the role of DGS as a protein source could 

change. The combinations of further processing of germ, fiber, and protein may have a 

significant impact on the use of DGS in ruminant diets in the future.  

Ethanol Production 

Ethanol can be produced by dry-grind processing, wet milling, or dry milling. 

Each process yields unique byproducts, therefore it is important to understand each 

processes’ techniques in order to better understand the characteristics of the byproducts.  

Dry-Grind Processing 

The traditional dry-grind process starts with grinding whole corn and transferring 

the fine ground corn into a slurry tank to be mixed with process water and thermostable α 

– amylases to produce a solution called slurry. The thermostable α – amylases gelatinize 

the corn slurry in a jet cooker, a process called liquefaction. The result is mash which is 

diluted with thin stillage, acquired by previous batches, prior to fermentation. The corn 

mash enters the saccharification tank, which hydrolyzes dextrin into glucose by 

glucoamylase enzyme. The liquid, rich in glucose, is transferred to a fermentation column 

to be fermented into ethanol by yeast, then distilled and dehydrated into fuel grade 

ethanol. The remaining product after fermentation is called heavy stillage. This is 

centrifuged to separate the solids from the liquids. During centrifugation, a large portion 

of oil is emulsified and ash, for the most part, is soluble so more ends up in the liquid 
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fraction also known as thin stillage. The solids are distillers wet grains, which contains 

the highest portion of protein (Liu, 2011). The liquid is evaporated to produce condensed 

distillers solubles (CDS) and later is combined with distillers wet grains to form wet 

distillers grains plus solubles (WDGS) which can be dried to produce modified distillers 

grains plus solubles (MDGS) or dried distillers grains plus solubles (DDGS; Kim et al., 

2008b). Nutrient composition of DGS can change based on the amount of thin stillage 

added to the mash. Protein, oil, and ash contents are much greater in whole stillage than 

corn, as a result of starch removal, these components can be 3-fold that of corn (Liu, 

2011).  

Wet Milling 

The main purpose of the wet milling industry is to isolate and recover starch to 

produce high fructose corn syrup, glucose, and ethanol (Rausch and Belyea, 2006). Only 

#1 and #2 grade corn can be used because most products produced are for human food 

consumption (Stock et al., 2000). First, corn grain is sifted through screens to remove 

broken kernels, chaff, pieces of cobs, and any foreign material (U.S. Grain Council, 

2012). Then corn is steeped in weak sulfurous dioxide solution for 40-48 h to soften the 

kernels and cause leaching of solubles from the germ, a process known as degerming. 

The corn and weak sulfurous acid solution are combined to form steepwater (4-8% 

solids), which is concentrated by evaporation into heavy steepwater (35-40% solids; 

Rausch and Belyea, 2006). The corn kernels are ground through a system of 

hydrocyclones, pressed, and dried to remove the germ fraction from the slurry. The germ 

is dried and oil is extracted from the germ to produce corn oil. Fiber, which contains 

pericarp and cell-wall fiber components, is separated by pumping the slurry through a 
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screen, leaving starch and protein within the slurry. The slurry is centrifuged, removing 

the protein fraction because it is weighs less than starch. The protein fraction is called 

gluten, which is then concentrated using gluten thickener, centrifuged and dewatered by 

vacuum belt filtration and then dried to form corn gluten meal (Rausch and Belyea, 2006; 

U.S. Grain Council, 2012). The remaining slurry is primarily composed of starch, which 

is purified to remove residual protein and utilized to produce ethanol with a similar 

procedure as dry-grind processing ethanol plants (Rausch and Belyea, 2006). The starch 

may be dried and marketed as-is or used to make corn syrups and sweetners. Some 

milling plants convert starch to dextrose, which is then fermented to produce ethanol and 

a byproduct feed called distillers solubles (Stock et al., 2000).  

The byproducts from wet milling include steep liquor, corn germ meal, corn 

gluten feed, corn gluten meal, and distillers solubles. Steep liquor (40-50% DM) can be 

fed to animals as a liquid protein feed containing 25% CP or added to other byproducts, 

such as corn gluten feed. Corn germ meal (90% DM) is what remains after oil extraction 

of the corn germ. It contains 26% CP, 2% fat, and 4% NDF (Rausch and Belyea, 2006). 

Corn gluten feed is the bran and fibrous portions of the corn kernel that is sold wet or dry. 

It contains approximately 14-24% CP, 3.5% fat, and 35-48% NDF; however the 

composition of CGF is variable based on the amount of steep liquor added to the bran 

(Rausch and Belyea, 2006; Stock, 2000). Thus, CGF does not have a consistent nutrient 

profile and differs among wet milling plants (Stock, 2000). Corn gluten meal contains 

65% CP, 2.5% fat, and 11% NDF and is high in escape protein. The primary use of CGM 

is in pet food and poultry industries, with very little being added to CGF (Stock, 2000). 

Distillers solubles from wet milling corn processing comes from the fermentation of 
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starch, like the dry-grind process, and contains 22% CP, 12% fat, and very little fiber 

(Rausch and Belyea, 2006; U.S. Grain Council, 2012). However, unlike CDS from dry 

grind facilities, wet milling distillers solubles contains less fat (Stock et al., 2000).  

Many feedlots utilize CGF from the wet milling industry in finishing diets. Stock 

et al. (2000) summarized several studies performed at the University of Nebraska 

evaluating CGF in finishing beef cattle diets. Two different wet CGF were evaluated; one 

containing wet bran and steep (combination of steep liquor and distillers solubles) 

(WCGF-A) and was 40-42% DM with 15-18% CP (DM basis). The second WCGF 

contained dry bran, steep (combination of steep liquor and distillers solubles) and germ 

meal (WCGF-B) and was 60% DM with 20-25% CP (DM basis). When WCGF-A was 

fed at levels from 20 to 60% (DM basis), the net energy value was estimated to be 1% 

more than that of corn. When WCGF-B was included at the same inclusion levels, the net 

energy value was estimated to be 15% more than that of corn. The greater energy value 

for WCGF-B is attributed to greater DM and CP values and lower NDF values due to 

more steep and less bran added to WCGF-B. Therefore, it is critical for producers to 

understand the nutrient content of CGF and understand that they are not all nutritionally 

equal.  

Dry Milling 

Dry milling corn processing accounts for only a small fraction of total ethanol 

produced in the U.S. The process utilizes physical separation of the germ, endosperm, 

and bran. First, corn is screened to remove foreign material, crop residue, fines, and 

broken kernels and washed with water to achieve a moisture content of 20-22%, which 

causes differential swelling and increased resiliency of the germ (Stock et al., 2000). 
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Germ and bran are separated from the endosperm by an abrading system similar to the 

degermination in wet milling. However, total separation of corn components from the 

endosperm is incomplete, leaving residual germ and bran attached to endosperm. These 

components are removed through aspiration, screening, and other milling techniques. 

Bran is removed from the germ via aspiration, isolating the germ for oil extraction (Stock 

et al., 2000). Germ from dry milling contains less oil (26%, DM basis) compared to germ 

from wet milling (35-40%, DM basis; Rausch and Belyea, 2006). The endosperm is 

sorted by size to yield large, medium, and fine grits, meals, or flours for breakfast cereals. 

Livestock feed byproducts include bran, broken corn kernels, deoiled germ, and 

inseparable components of germ, bran, and endosperm. These materials are combined, 

dried, and marketed as hominy feed. It contains approximately 57% starch, 11% CP, 25% 

NDF, and 5% fat (DM basis; Larson et al., 1993; Stock et al., 2000).  

Larson et al. (1993) conducted three feeding trials to establish the nutritive value 

of hominy feed in finishing diets. As hominy feed replaced dry-rolled corn (DRC; 0, 15, 

30, 45, 100%, respectively), DM digestibility decreased. However, starch digestibility 

and NDF digestibility increased as hominy feed inclusion increased. Heifers fed hominy 

feed with or without fat added at 0, 13.3 (0.67% added fat), 26.7 (1.33% added fat), and 

40% (2.0% added fat) of diet DM. There was no interaction with hominy feed inclusion 

and fat addition. Heifers fed 13.3 or 26.7% hominy feed or hominy feed plus fat 

consumed more than heifers consuming 0 or 40% diets. Average daily gain and feed 

efficiency were not different. When hominy feed replaced DRC at 0, 13.3, 26.7, and 40% 

(DM basis) and fed to steers, DMI was greatest for steers consuming 40% hominy feed. 

Even though hominy feed contains 20% less starch than corn, it was calculated to be 87% 
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the energy of corn. Hominy feed can replace corn up to 40% in finishing diets and 

provide adequate performance.  

Partial Fractionation 

Partial fractionation is the process of physically separating the 3 main components 

of a corn kernel; endosperm, germ, and bran before the cooking process. This allows the 

germ (12% of the kernel), which is not fermentable, to avoid fermentation and be further 

processed to yield corn oil. Partial fractionation creates a bran stream containing high 

levels of cellulose, hemicellulose, and lignin which can be combusted for energy use, 

fermented into cellulosic ethanol, or marketed as a feedstuff (Cereal Process 

Technologies, 2012). In traditional dry milling ethanol production, the entire corn kernel 

was subjected to fermentation. Distillers grains plus solubles derived from partial 

fractionation contains less fat and phosphorous but has increased concentration of 

protein. Front-end fractionation separates the components before fermentation with the 

goal of increasing ethanol yields, lowering production of by-products that require drying, 

reducing frequency of cleaning the system to remove oil, and using less energy (U.S. 

Grains Council, 2012). However, front-end fractionation could not become profitable and 

has ceased to exist in most current production facilities.  

Few studies have reported feeding byproducts from front-end fractionation. 

Godsey et al. (2010) fed a corn byproduct from the front-end fractionation of endosperm 

and germ called E-corn, which contains low levels of fat (5.3%) and heat-treated starch. 

The hypothesis was E-corn will perform similar to dry-rolled corn (DRC) in a finishing 

diet because previous work showed similar feeding values between E-corn and DRC. 

Increasing E-corn up to 60% of the diet (DM basis) had greater DMI but no effect on 
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average daily gain (ADG). Feed efficiency improved for 20 and 60% E-corn inclusion. 

Marbling, 12th rib fat, and calculated yield grade decreased with inclusion of E-corn, 

suggesting that E-corn had a lower energy value than DRC. Overall, E-corn can replace 

conventional dry-rolled corn at 20% of diet (DM basis) and provide similar performance 

with a slight reduction in carcass quality.  

Depenbusch et al. (2008) compared traditional DGS to front-end fractionated 

DGS utilizing 610 yearling heifers on steam-flaked corn based finishing diets. Traditional 

DGS (26% CP, 12% crude fat, 26% NDF) was included in the diet at 12.9% DM and 

partial fractionated DGS (43% CP, 4% crude fat, 23% NDF) was included at 13.5% DM. 

Performance data showed no difference between traditional DGS and partial fractionated 

DGS on final BW, ADG, or G:F. Dry matter intake was lower for heifers consuming 

partial fractionated DGS compared to traditional DGS. Kelzer et al., (2011) individually 

fed 48 steers DRC control, 35% conventional DDGS or 35% high-protein distillers grains 

(HPDG; 5.1% fat and 39% CP) finishing diets. Kelzer et al. (2011), similar to 

Depenbusch et al. (2008), found reduced intakes for steers consuming HPDG compared 

to corn but no difference with DDGS. These data suggest that feeding partial fractionated 

DGS will result in similar performance to traditional DGS. Partial fractionated DGS 

contained 46% less phosphorus than traditional DGS, which could decrease phosphorus 

excreted. Producers could feed partial fractionated DGS to help waste removal challenges 

by allowing manure application to occur more frequently allowing more nitrogen 

application on the same section of land without the over application of phosphorus.  
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Back-end Fractionation 

The main process for removing corn oil is back-end fractionation. Corn oil is 

extracted from thin stillage via centrifugation following fermentation and distillation 

before drying occurs (CEPA, 2011). Thin stillage contains approximately 30% of the oil 

available in the corn, of which most can be recovered by centrifugation (U.S. Grains 

Council, 2012). An additional washing technique removes another 30% of the corn oil 

from wet cake. The two techniques combined extract 60 to 70 percent of the corn oil 

available (CEPA, 2011). 

Jolly et at. (2013) compared back-end fractionated DGS in finishing cattle diets. 

Treatments were : 1) low-fat CCDS (6.0%) at 27% inclusion, 2) normal-fat CCDS 

(21.1%) at 27% inclusion, 3) low-fat (9.2%) modified distillers grains plus solubles 

(MDGS) at 40% inclusion, 4) normal-fat (11.8%) MDGS at 40% inclusion in a 1:1 blend 

of DRC and high-moisture corn (HMC) diets. There were no differences in performance 

or carcass characteristics between low-fat and normal-fat CCDS and MDGS. This 

suggests cattle fed low-fat CCDS or MDGS will perform similar to normal-fat CCDS or 

MDGS. Jolly et al. (2014) also compared low-fat (7.9%) and normal-fat (12.4%) WDGS 

in finishing cattle diets. Treatments consisted of low-fat and normal-fat WDGS at 

inclusions of 35, 50, and 65% in a 1:1 blend of DRC and HMC diets. There was no 

difference in final BW, DMI, ADG, and G:F between low-fat and normal-fat. Likewise, 

carcass characteristics were not different for oil-extracted compared to normal-fat 

WDGS. 

Bremer et al. (2015) analyzed low-fat (7.2%) MDGS and normal-fat (12%) 

MDGS at 15 and 30% inclusion in a 1:1 blend of DRC and HMC finishing diets. No 
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differences were observed between low-fat and normal-fat MDGS for final BW, DMI, 

ADG, and carcass characteristics. However, normal-fat MDGS at 30% inclusion had a 

3.4% improvement in G:F compared to low-fat MDGS. 

Advancements in Technology for Dry-Grind Process 

In 2004, 7.3 million metric tons of DGS were produced while in 2014, 39 million 

metric tons were produced (RFA, 2016). The influx in supply led to decreased prices for 

byproducts and corn (Dale, 2008). In efforts to increase profitability of corn byproducts, 

the dry-grind industry developed several different pretreatment processes that recycle 

DGS by utilizing the unfermented sugars remaining after starch fermentation, primarily 

from fiber. Several different pretreatments options exist including ammonia fiber 

expansion (AFEX) and liquid hot water (LHW), coupled with the enzymatic hydrolysis 

which converts polymeric sugars into monomeric (hexose and pentose) sugars utilized by 

specific microbes (Kim et al., 2008b). Both pretreatment techniques increased the 

hydrolysis rate of DDGS over non-pretreated material with a result of 90% cellulose to 

glucose conversion within 24 hours of hydrolysis (Kim et al., 2008b). Virtually all 

bacteria utilize hexose (i.e. glucose) first and when glucose is limiting the pentose sugars 

are broken down (Ezeji and Blaschek, 2008). After pretreatment, hydrolysis, and 

fermentation, the product is called “enhanced DDGS or eDDGS” (Kim et al., 2008b). 

The nutrient composition of eDDGS varies relative to DDGS with 41.2% and 28.3% 

crude protein, respectively, 2.88% and 6.52% NDF/ADF, respectively (Perkis et al., 

2008). The final result produces more ethanol and leaves behind a byproduct rich in 

protein (Dale, 2008).  
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Separating amino acids via protease treatment from DGS will also add value back 

to the ethanol market for existing ethanol plants. The amino acids derived can be 

separated and isolated for chemical precursors (Brehmer et al., 2008). Another profit 

center for ethanol plants is developing advancements in the conventional dry-grind 

process to obtain higher-valued byproducts. The lack of diversity of marketable 

byproducts, relative to the wet milling process, makes the dry-grind process more 

vulnerable to marketing issues (Rausch and Belyea, 2006). This dilemma motivated dry-

grinding facilities to develop methods of separating the germ and fiber from corn before 

fermentation. As a result, quick germ, quick germ quick fiber, and enzymatic dry-grind 

were developed. These techniques incorporate wet milling technologies to separate and 

recover the germ, pericarp fiber, and endosperm fiber. Recovery of germ allows 

extraction of corn oil, for higher-value uses. Recovery of pericarp increases fermentor 

capacity and provides an enhanced DGS product for nonruminant livestock. Similar to 

separation of amino acids, enzymatic dry-grinding uses protease and amylase during the 

incubation step allowing endosperm fiber to be separated (Rausch and Belyea, 2006). 

AFEX 

Ammonia fiber expansion is a pretreatment technology process that facilitates 

enzymatic hydrolysis before fermentation. There are many pretreatment processes that 

exist for enzymatic hydrolysis. Ammonia fiber expansion (or explosion) is not a novel 

development. For many years AFEX has been used to improve digestibility of crop 

residues (Dale, 1983). The AFEX process can utilize wet distillers grains or corn stover 

to produce ethanol in what is called a 2nd generation technology. Corn stover is the 

residual plant material left after corn grain harvest and a common source of 
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lignocellulose (Brehmer et al., 2008). As stated previously, current ethanol production 

occurs with fermentation of only the starch portion of corn. Pretreatment of cellulosic 

components gives the ethanol industry another option. Without pretreatment, the densely-

packed crystalline cellulose is resistant to enzymatic hydrolysis and overall fermentation 

of cellulose (Brehmer et al., 2008). The processes begins by supplying ammonia under 

pressure (0.65 – 3.5 MPa) and moderate temperatures (70-150oC) for a short residence 

time (5-15 min), which allows the ammonia sufficient time to react with the components 

of WDG. The pressure is rapidly released causing the biomass structure to break apart 

causing lignin solubilization, hemicellulose hydrolysis, cellulose decrystallization, and 

increased surface area for an almost complete enzymatic conversion of cellulose and 

hemicellulose to fermentable sugars (Teymouri et al., 2005). Utilizing WDG instead of 

DDGS has major effects on hydrolysis, causing reduced yields of sugars and overall 

ethanol production (Kim et al., 2008b). The reduction in sugar yields can be caused by 

various factors including inefficient mixing of the slurry due to high viscosity, buildup of 

glucose and cellobiose that inhibit cellulase activity. During hydrolysis and fermentation, 

AFEX pretreated WDG hydrolyzes at least 70 – 80% of glucans to glucose. Glucan 

content of DGS is approximately 18 – 20% which is divided between cellulose (2/3) and 

residual starch (1/3). The overall results comparing DDGS and WDG shows that ethanol 

yields per bushel of corn may be increased by 7 – 10% with WDG (Kim et al., 2010). 

The livestock feed product eDDGS, generated from WDG pretreated by AFEX, 

contained 50.8% crude protein (CP), 7.2% crude fat, 0.5% NDF/ADF, and 6.0 ash (DM 

basis; Kim et al., 2008b). This varies dramatically from traditional DDGS according to 
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Spiehs et al. (2002) which has 30.2% CP, 10.9% crude fat, 8.8% CF, and 5.8% ash. 

Overall, AFEX can increase ethanol production by 12% (Brehmer et al., 2008). 

Controlled pH Liquid Hot-Water 

Similar to AFEX, LHW pretreats hemicellulose allowing easier hydrolysis and 

dissolution of hemicellulose providing more rapid saccharification of insoluble cellulose 

by cellulase enzymes and improved subsequent enzymatic hydrolysis efficiency (Mosier 

et al., 2005). The process starts with corn fiber (40% DM) from a Vetter press 

(VetterTec®) mixing with stillage creating slurry. The protein and lactic acid in stillage 

buffer the slurry to pH 4.0. Maintaining a pH above 4.0 limits hydrolysis of 

polysaccharides. Limiting hydrolysis of polysaccharides to monosaccharides is critical 

because monosaccharide degradation produces furfural and 5-hydroxymethylfurfural, 

which inhibit the ability of bacteria or yeast to ferment sugars to ethanol (Mosier, 2005). 

The slurry is heated to 160ᴼC for an average retention time of 20 minutes and then cooled 

to 100ᴼC. The pretreated slurry is then centrifuged leaving a solid cake (26% DM) and a 

clear liquid. The result is nearly all the residual starch is solubilized along with 50% of 

corn fiber dissolved into fermentable sugars (Mosier et al., 2005). Previous research from 

Kim et al. (2008b) reported the composition of eDDGS from LHW pretreatment of WDG 

were 94.4% DM, 41.2% CP, 14.7% crude fat, 2.9% NDF/ADF, and 5.3% ash (DM 

basis). The DDGS used in that study contained 89.6% DM, 28.3% CP, 14.5% crude fat, 

6.5% NDF/ADF, and 4.8% ash. Differences in composition of feed corn, processing 

methods, fermentation efficiency, and extents of process liquid recycle cause the 

variability in the composition of DDGS (Kim et al., 2008b).  
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Protein Separation 

The removal of protein/amino acids from DGS may impact feedlots use of the 

corn byproduct. Therefore, it is important to understand the process of amino acid 

removal and the effects it has on the overall finished product. Polypeptides are broken-

down to a few bonds and even to free amino acids by removal and separation via protease 

enzymes breaking peptide bonds, a mechanism called peptide cleavage or protease 

digestion (Brehmer, 2008). This process works in conjunction with AFEX and utilizes the 

solid stream after pretreatment. As a result, the protein content of DDGS still remains 

high (52.9%) because the fiber portion was reduced which increased the concentration of 

the remaining components (Brehmer et al., 2008). It is not clear how much protein can be 

separated. The end product, free amino acids, would be used as precursors for chemical 

compounds. 

If some protein is removed from DGS, its role in ruminant diets, depending on the 

amount removed, may change. One protein component not often discussed is protein 

contributions from residual yeast. Han and Liu (2010) sampled DDGS from 3 different 

plants and reported that yeast contributed 20% of the total protein, with the remaining 

80% from corn. Liu (2011) found in the literature at least four methods for estimating 

yeast contribution towards DGS. However, little research is available on yeast cells from 

DGS and their contributions to the overall protein quality of DGS. Protein quality and 

amino acid composition of a feedstuff are important for ruminant and nonruminant 

animals alike. Both animals require specific amino acids for maintenance and growth. 

Nonruminant animals depend completely on feed to provide the protein they require. 

Ruminant animals are unique because they have a microbial population within the rumen. 
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The microbes utilize some of the amino acids from feed to aid in their own maintenance, 

growth, and other cellular functions. Some of those microbial cells pass into the 

abomasum and small intestine, where ruminants can digest and absorb the microbial 

cells. Therefore, ruminants have 2 sources of protein, feed and microbial cells.  

Protein as an Energy Source 

When DGS is included and provides MP greater than requirements of the animal, 

protein in DGS can be utilized as an energy source. The primary protein in DDGS is zein 

protein (Klopfenstein et al., 2008). Approximately 63% of the protein from DGS is 

rumen undegradable protein, which contributes to metabolizable protein (MP) and 

supplies energy, when supplied in excess, to the ruminant animal (Castillo-Lopez et al., 

2013). Firkins et al. (1985) performed one of the first finishing trials with WDG as an 

energy source, feeding 0, 25, and 50% of diet DM. When WDG was included, ADG 

improved. Cattle consuming 50% WDG gained 1.20 kg/d while corn-control cattle 

gained 1.08 kg/d. There was no difference in DMI for treatments; however, feed 

conversion tended to improve with inclusion of WDG in the diet. The authors attributed 

increased efficiency of WDG as a result of lower likelihood of subacute acidosis and 

increased fiber digestibility of byproduct diets. Trenkle (1997) also observed a tendency 

for increased ADG, no difference in DMI, and improved feed efficiency when replacing 

20% of corn with WDG. Replacing 40% of the diet DM with WDG decreased feed intake 

by 10% without affecting ADG, resulting in improved feed efficiency.  

Larson et al. (1993) examined WDG in combination with thin stillage, as a source 

of protein and energy, in efforts to reduce the use of fossil fuels and drying cost 

associated with DDGS. Concerns of transporting moisture and occurrence of spoilage 
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limited the amount of WDGS use at the time. The two byproducts were fed in the same 

ratio (1.68:1 ratio of WDG:thin stillage) as produced by the alcohol plants. In two 

finishing studies, calf-fed and yearling, cattle  fed 5.2, 12.6, or 40% wet distillers 

byproduct had reduced DMI and improved ADG compared to the corn control. Calf-feds 

were 2, 6, and 14% more efficient and yearlings were 5, 10, and 20% more efficient, 

respectively, compared to cattle fed DRC based diets. These data are supported by 

findings from Ham et al. (1994) that reported improved ADG, not significant but a 

numerical reduction in DMI, and improved feed efficiency for cattle consuming 40% 

WDG byproduct compared to corn. Protein content from wet distillers byproducts was 

lower than estimated (21.9% CP for WDG byproducts), so lower DMI and protein 

content yielded less metabolizable protein (MP) for the intermediate byproduct (5.2 and 

12.6%) diets than the corn-control but still above NRC (1985) requirements. The 

improvement in ADG was not as a result of CP or MP but from increased energy 

utilization of the WDG byproducts. The authors attributed this effect to several factors: 

byproducts contained 3 times more corn oil, addition of residual ethanol to the diet, and 

increased fiber consumption paired with lower starch availability, similar to Firkins et al. 

(1985).  

More recently, Watson et al. (2014) included WDGS at 0, 10, 20, 30, 40, and 50% 

inclusion in a 50:50 blend of HMC:DRC-based finishing diets. They reported a quadratic 

increase in carcass-adjusted final BW as WDGS increased in the diet. A quadratic 

response was reported for DMI. As inclusion of WDGS increased from 0 to 20%, DMI 

increased, and as inclusion went from 30 to 50% of the diet, DMI decreased. A similar 

quadratic response was observed for ADG, as WDGS increased from 0 to 40% gain 
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increased from 1.66 kg/d to 1.96 kg/d, respectively, and at 50% inclusion of WDGS, 

ADG decreased. Watson et al. (2014) data agree with Trenkle (1997) and Larson et al. 

(1993) as discussed previously. Feed efficiency decreased as inclusion of WDGS 

increased with 40% WDGS having the greatest G:F.  

Trenkle (2008) replaced 0, 20, 40, and 60% of DRC with WDGS in finishing 

diets. Unlike previous studies (Firkins et al., 1985; Larson et al., 1993; Ham et al., 1994; 

Vander Pol et al., 2006; and Watson et al., 2014), they observed no difference between 0, 

20, and 40% inclusion of WDGS for final BW, ADG, DMI, and G:F when fed to steers 

and heifers. Vander Pol et al. (2009) observed the same response with no difference in 

final BW, DMI, ADG, and G:F when heifers were fed 0, 20, and 40% WDGS. Few 

studies have evaluated WDGS at inclusions above 50%; Farlin et al. (1981) had one of 

the first studies on feeding WDGS as a protein and energy source. They replaced 21.25, 

42.50, and 63.75% (DM basis) of corn with WDGS. At 63.75% inclusion of WDGS, 

cattle had an 11.2% reduction in DMI, similar ADG, and a 10% improvement in G:F 

relative to the corn-control. Trenkle (2008) reported decreased final BW, DMI, ADG, and 

poorer G:F when cattle consumed 60% WDGS compared to 0, 20, and 40% WDGS.  

Feeding values based on performance results, calculated using the feed efficiency 

of DGS diet relative to the control diet, and divided by WDGS inclusion, provides an 

energy estimate of DGS. Larson et al. (1993) suggested that the increased corn oil in 

DGS accounted for part of the increase in energy relative to corn. Klopfenstein et al. 

(2008) suggested that RUP and corn oil can only account for 20% increase above corn. 

Watson et al. (2014) reported feeding values highest at (178%) 10% inclusion of WDGS 

and declined as inclusion of WDGS increased to 50% WDGS (121%). Conroy et al. 
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(2016) evaluated the individual components of DGS on growing cattle performance. All 

diets included 50% hay and with 40% DRC as the control diet. When 40% MDGS 

replaced 40% DRC, cattle had greater ADG and G:F. The calculated feeding value of 

MDGS was approximately 118% the value of corn. The isolated protein from MDGS 

(20% CGM, DM basis) had a calculated feeding value of 134% the value of corn. 

Oglesbee et al. (2016) observed a similar response when individual components of DGS 

were fed in finishing diets. Similar to previously discussed studies, the authors reported 

an improvement in ADG and G:F when 20 or 40% WDGS replaced DRC. The calculated 

feeding value of WDGS at 40% was 130% the value of corn. When 17.5% CGM was 

added with 14% corn bran and 3% solvent extracted meal to replicate the protein and 

fiber of DGS, the feeding value was 121% the value of corn. These data suggest that 

protein within DGS is a significant portion of the feeding value of the DGS overall.  

The effect of corn processing, specifically DRC, HMC, or SFC, can alter cattle 

performance when feeding DGS. Vander Pol et al. (2008) compared processing methods 

of corn (whole corn, finely-ground corn, DRC, 1:1 blend of DRC:HMC, HMC, or SFC) 

in finishing diets containing 30% WDGS (DM basis). The authors reported lower ADG 

for fine-ground corn and SFC relative to the other processing methods. Average daily 

gain tended to be greater for cattle fed DRC compared to HMC. All processing methods, 

except whole corn, had reduced DMI. Cattle consuming HMC were more efficient than 

cattle fed fine-ground corn, SFC, and whole corn. However, at 30% inclusion of WDGS, 

cattle fed DRC, DRC:HMC, and HMC had no difference in G:F. There was a tendency 

for cattle fed DRC to have poorer G:F relative to cattle fed HMC. When WDGS replaced 

0, 15, 27.5, and 40% (DM basis) of DRC, HMC, or SFC-based finishing diets, an 



19 

 

interaction of processing by WDGS level was observed for ADG and G:F (Corrigan et 

al., 2009). Steers fed WDGS in DRC rations had improved final BW and ADG. In HMC 

and SFC diets, as WDGS inclusion increased, final BW and ADG improved. Cattle fed 

DRC and HMC improved G:F as WDGS inclusion increased. There were no differences 

in animal performance as WDGS inclusion increased in SFC diets. In agreement with 

Vander Pol et al. (2008), DMI decreased for all corn processing methods. Watson et al. 

(2014) also reported a quadratic decrease in DMI as WDGS concentration increased 

when feeding a 1:1 blend of DRC:HMC.  

Condensed Corn Distillers Solubles 

Condensed distillers solubles (CDS), sometimes referenced as syrup, is a liquid 

product from dry-grind ethanol production. In dry-grind processing, after the alcohol has 

been distillated and removed, what remains is known as whole stillage. In order to reduce 

energy costs from drying, whole stillage is centrifuged producing wet grains and thin 

stillage. Wet grains become the primary component in distiller grains. Thin stillage (5% 

DM) is condensed through evaporation to form CDS (30% DM; Lardy, 2007; NASEM, 

2016). The two fractions are combined to produce dry, modified, or wet distillers grains 

plus solubles. Wet grains is greater in CP and fiber components, but CDS is greater in fat 

and minerals (Rausch and Belyea, 2006). Condensed distillers solubles contain 

approximately 25% CP, the RUP is estimated to be approximately 25 to 30% (% CP), 

20% fat, 1.57% P, 0.92% S, and 2.3% NDF (NASEM, 2016). When more of the CDS 

fraction is added back to the wet grains fraction, then fat, phosphorus, potassium, and 

sulfur concentrations are increased compared to DG without CDS. In plants producing 

WDGS, 20% (DM basis) is the average inclusion of CDS added to the wet grains 
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(Corrigan et al., 2007). Cao et al. (2009) evaluated ratios of DG:CDS at 100:0, 87:13, 

73:27, and 60:40 on nutrient digestibility in TMR diets fed to Holstein cows. Distillers 

byproduct was included in the TMR at 8% DM. Keeping in mind that the experimental 

diets were formulated for dairy cows, reporting differences between 8% of the diet may 

be difficult to interpret. However, the authors reported ruminally degradable DM 

increased as the ratio of CDS increased. A greater CDS:DG ratio can provide more 

protein available for rumen degradation without inhibiting animal performance. Cao et al. 

(2009) reported the immediately soluble DM and CP fractions increased as CDS 

inclusion increased. Rate of DM and CP degradation were not different among CDS 

treatments. Increasing the CDS fraction increased rumen degradability as the result of a 

greater soluble DM and CP fractions. Corrigan et al. (2009) observed a similar response 

with greater ruminal, postruminal, and total tract DM digestibilities when CDS, as a 

proportion of DDG, increased. Godsey et al. (2009) reported no differences in cattle 

performance feeding ratios of WDG:CDS at 100:0, 85:15, and 70:30 at 20 and 40% 

WDGS DM inclusions in finishing diets. In finishing diets, a greater CDS:DG ratio will 

increase the rumen degradation of the diet with little impact on animal performance.   

Trenkle (2003) observed a decrease in DMI as CDS (as an ingredient) inclusion 

increased from 0 to 8% (DM basis) in DRC-based finishing diets. There were no 

differences in ADG, G:F, or carcass characteristics among treatments. Trenkle and Pingel 

(2004) replaced corn grain and supplemental urea with CDS at 0, 4, 8, 12% (DM basis) in 

DRC-based finishing diets. They reported no differences in performance or carcass 

characteristics with inclusion of CDS. Pesta et al. (2015) observed reduced DMI as CDS 

inclusion increased from 0 to 36% in a blend of DRC/HMC-based finishing rations. 
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Average daily gain increased and G:F improved when CDS supplementation increased. 

Calculated dietary inclusion of CDS for maximal ADG was 20.8 and greatest G:F at 

32.5% (DM basis). Hot carcass weight improved with inclusion of CDS with the greatest 

HCW observed at 18% inclusion (DM basis). Oglesbee et al. (2016) conducted a 

finishing trial evaluating the different components of WDGS. When 8% CDS was added 

to several diets containing different components of DGS, the authors observed greater 

DMI, ADG, and final BW with CDS addition. These data suggest feeding up to 8% CDS 

may effectively reduce dietary inclusion of corn and improve performance. The authors 

suggested that greater levels of CDS inclusion may be acceptable. As Harris et al. (2014) 

replaced SFC with CDS in finishing diets and observed a decrease in DMI. Average daily 

gain increased and G:F improved and was greatest for both traits at 27% CDS inclusion. 

Pesta et al. (2015) evaluated feeding CDS at 0, 7, 14, 21% of diet with 20% MDGS or 

20% Synergy (a combination of wet corn gluten feed and MDGS) in finishing diets. A 

tendency for diet x CDS inclusion interaction was observed for ADG. Cattle fed MDGS 

had improved ADG with the greatest gain for 14% CDS inclusion (DM basis). There 

were no differences in ADG were observed when feeding Synergy. Feed efficiency 

improved with increasing CDS inclusion, regardless of byproduct type. In MDGS diets, 

HCW increased but Synergy had no effect on HCW. Dry matter intake, regardless of diet, 

was greatest at 14% CDS and lowest at 21% CDS (DM basis). The authors hypothesized 

that the depression in DMI and ADG for 21% CDS (DM basis) may be due to high 

dietary fat (8.8% DM basis) within those diets. The dietary fat supplied from CDS used 

in this experiment was 18.5% (DM basis). Lardy (2007) suggests that CDS fat content 

ranges from 9 to 15%. The variability of nutrients in CDS depends upon the ethanol 
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plants’ methods for extraction of fat. Segers et al. (2015) evaluated the effect of fat 

concentration from CDS in growing diets. Condensed distillers solubles was fed at 0, 10, 

19, and 27% with dry-corn gluten feed to provide 45% byproduct from each diet. 

Compared to DRC-based growing diet, cattle consuming 10% CDS had lower ADG. 

Increasing CDS had no effect on ADG, DMI, or G:F. Results from a digestion trial using 

the same diets reported improved DM digestibility as CDS inclusion increased. Fat 

digestibility increased as inclusion of CDS increased with the greatest digestibility at 

19% CDS (DM basis). Corrigan et al. (2009) reported greater ether extract intake and 

digestibility with DDG containing 22.1% CDS (DM basis). Increased ether extract intake 

did not affect total tract DM, OM, and NDF digestibility. Greater inclusion of dietary fat, 

mainly from CDS, did not impact fiber digestibility (Segers et al., 2015). Previous work 

has reported dietary fat reduced ruminal fiber digestion and limit intake (Kowalczyk et 

al., 1977; Zinn, 1989; Zinn, 1994; Zinn et al., 2000). Henderson (1973) reported long-

chain fatty acids may inhibit some rumen microbes, especially cellulolytic bacteria. 

Inhibiting primary fiber digesting bacteria could cause more fiber to escape the rumen 

without degradation. Gilbery et al. (2006) reported increased ruminal OM, NDF, ADF, 

microbial CP synthesis, and true ruminal CP digestibility with increased CDS 

supplementation in low-quality forage diets. Therefore, it is possible that fat from DGS 

may behave differently in the rumen relative to other unsaturated fat supplements and not 

inhibit fiber digestion in the rumen with inclusions up to 15% (DM basis). Results from 

Segers et al. (2015) and Gilbery et al. (2006) suggest that CDS supplementation in 

growing or high forage diets does not negatively affect fiber digestion. CDS 

supplementation did not perform as well as corn in growing diets (Segers et al., 2015). 
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When priced competitively to corn, CDS can replace corn and be utilized as an energy 

source.  

Sulfur 

During the saccharification process of dry-grind ethanol production, sulfuric acid 

is used to lower the pH of the slurry to 4.5 to provide the proper environment for 

conversion of starch to glucose (Kwiatkowski et al., 2006). Additionally, sulfuric acid 

may be used during cleaning between batches (Vannes et al., 2009). These processes add 

S to the already 3-fold concentrated DGS relative to corn. The recommended level of 

dietary S is less than 0.3%, with an upper limit of 0.4% (NRC, 1996). Other than DGS, 

several other sources of S or sulfate with potential toxicological effects include molasses, 

elemental S, drinking water, and gypsum or ammonium sulfate. The potential hazard 

associated with feeding S above the tolerated level is inducing polioencephalomalacia 

(PEM), a neurologic disorder that causes necrosis of the cerebral cortex (Gould, 1998). 

Rumen available S is converted to H2S by rumen microbes. Nichols et al. (2011) 

observed cattle consuming a wet corn gluten feed (87.5% DM basis) based finishing diet 

containing 0.46% S had significantly lower H2S production compared to diets containing 

similar amounts of S but less wet corn gluten feed (0.0, 37.5, or 44.0%; DM basis). Not 

all dietary S is available to rumen microbes, particularly S-containing amino acids 

contained in the rumen undegradable protein (RUP) portion of DGS (NASEM, 2016). 

According to Church (1988), eructated gases enter the trachea at pressures approximating 

those occurring in the esophagus during the expulsive phase of eructation and penetrate 

deeply into the lungs. Inhalation of eructated H2S causes systemic sulfide absorption 

causing softening of the gray matter in the brain. Clinical signs of S-induced PEM 
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include blindness, incoordination, and recumbency with seizures. There are other causes 

associated with PEM, such as thiamine deficiency, acute lead poisoning, and water 

deprivation-sodium ion toxicosis (Gould, 1998).   

Vanness et al. (2009) compiled data from 4,143 cattle on finishing diets including 

byproducts and found cattle consuming diets with 0.46% S or below, provided adequate 

levels of roughage (approximately 6 – 7.5%), had 0.14% risk of S-induced PEM. When 

diets exceeded 0.56% the occurrence increased considerably to 6%. Other than S-induced 

PEM, feedlots may notice performance issues when feeding high dietary S. Sarturi et al. 

(2013) observed reduced DMI in feedlot cattle fed 0.30% of total dietary S compared to 

0.20% DM. Uwituze et al. (2011 and 2011b) reported an 11% and 8.9% decrease in DMI 

from DRC and SFC, respectively, finishing diets containing 30% dry DGS high in S 

(0.65%) compared to matching diets at a lower S (0.42%) level. Spears et al. (2011) fed 

varying levels of dietary S (0, 0.15, or 0.30% of DM) by supplementing NH4SO4 in 

ground corn-based (85% of DM) finishing diets and observed a decrease in DMI for 

cattle consuming a finishing ration with 0.31 or 0.46% compared to 0% supplemental S. 

However, in growing diets containing 86% corn silage, Spears et al. (2011) fed 

concentrations of supplemental S at 0.12, 0.30, and 0.46% and found no difference in 

DMI. Unfortunately, there were no ruminal parameters measured by Spears et al. (2011) 

to indicate if H2S gas production was altered by growing diets and was the reason for 

similar performance between treatments. Increasing forage in finishing diets may be able 

mitigate negative effects of greater concentrations of S without impacting performance. 

Inorganic sources of S (i.e. NH4SO4) may not be appropriate to compare against a blend 

of organic and inorganic S from DGS. Uwituze et al. (2011, 2011b), Spears et al. (2011), 
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and Sarturi et al. (2013) reported decreased ADG, by approximately 0.20 kg, for diets 

with greater dietary S (0.30, 0.65, and 0.46% of DM, respectively) with limited effect on 

feed efficiency. Cattle fed diets greater in dietary S had lesser HCW (Uwituze et al., 

2011; Spears et al., 2011; Sarturi et al., 2013) and lesser 12th rib fat (Spears et al., 2011; 

Sarturi et al., 2013).  

A deeper look into the rumen environment by Sarturi et al. (2013) showed a 

tendency for steers fed finishing diet with 0.55% S to have greater concentration of H2S 

in ruminal gas cap compared to steers consuming 0.40% S.  Likewise, steers consuming 

wet DGS had 72% greater H2S concentration in ruminal gas cap than steers fed dry DGS, 

which denotes a negative correlation between ADG and H2S production as S 

concentration increases in the diet. Ruminal pH increased in steers fed 0.65% S finishing 

diets, which may be attributed to decreased VFA concentration and greater ruminal 

ammonia concentrations (Uwituze et al., 2011). Sarturi et al. (2013) reported decreased 

propionate production for cattle fed 0.30% dietary S, compared to 0.20%, and only slight 

changes in ruminal pH. Overall, when feeding DGS, it is important to know the S 

concentration and understand that wet DGS appears to be more easily converted into H2S 

and have significant impacts on performance of feedlot cattle.   

High levels of S in distillers grains can cause PEM and other metabolic issues. 

Not all S in distillers grains is treated equally when it comes to hydrogen sulfide 

production. Sarturi et al. (2013b) studied the effects of organic and inorganic sources of 

S. Corn gluten meal served as an organic source and ammonium sulfite was fed as 

inorganic source of S. Wet distillers grains plus solubles was considered a combination of 

organic and inorganic source of S. In this metabolism trial, S content tended to reduce 
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intake only when inorganic S was fed. Rumen available S was measured via IVDMD 

analytical procedure to measure ruminal reduction to sulfide. Both inorganic S and 

WDGS resulted in greater levels of rumen available S compared to organic sources. 

Organic S is less available in the rumen because the majority of S is from S containing 

amino acids, which either escape degradation or are incorporated into rumen 

microorganisms. Ruminal H2S gas was collected from the ruminal gas cap, inorganic and 

WDGS had greater ruminal H2S gas production compared to organic sources even though 

an organic S source and WDGS were fed at similar dietary levels of S. The regression 

equation between ruminal hydrogen sulfide gas concentration and total S intake only 

explained 29% of the ruminal H2S variation. While adjusted ruminal protein S and rumen 

available S accounted for 58 and 65%, respectively, of ruminal H2S production, these 

results demonstrate that source of S is more useful than total S in determining H2S 

production.  

Fiber in High Concentrate Diets 

Digestion is defined as the process of physically and chemically breaking down 

nutrients into substances that can be absorbed. Ruminant animals are able to digest fiber 

by utilizing a symbiotic relationship with microorganisms. Fiber digestion occurs almost 

exclusively in the rumen because mammals lack the digestive enzymes to break fiber 

polymers. Therefore, maximizing ruminal fiber digestion is most energetically efficient 

because the rumen is the site of fiber digestion (Moore et al., 1990). Optimal 

concentration and type of roughage in concentrate diets are related to many factors such 

as availability, price, and interaction with other ingredients in the diet (Hales et al., 2014). 

In recent years, there has been an increase in the use of alternative roughage sources due 
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to reduced hay availability and abundance of crop residues. Changing roughage sources 

can affect various factors in fiber digestion such as extent of digestion, rate of passage, 

and rate of digestibility. It is important to examine these characteristics of different 

roughage types before substituting them in concentrate diets.  

Roughage plays an important role in high-concentrate diets to help maintain 

rumen function and prevent ruminal acidosis. Roughage is typically the most expensive 

ingredient when priced on an energy basis. Forages are difficult ingredient to handle 

when mixing rations due to its bulky nature. All these factors are important 

considerations when selecting roughage source and level. According to a survey from 

Galyean and Gleghorn (2001), consulting nutritionists reported that finishing diets 

contained 4.5 to 13.5% (DM basis) roughage, with the main sources being alfalfa hay and 

corn silage. In finishing diets, cattle consume feed to a chemostatic intake. Gut fill rarely 

limits intake of finishing diets, so when greater levels of roughage are included, the 

animal typically consumes more feed to maintain similar energy intake. Compensation 

from increased DMI occurs only until the level of roughage is high enough to impose 

limitations via gut fill (Galyean and Defoor, 2003). 

Using Neutral Detergent Fiber to Evaluate Forage Quality 

Neutral detergent fiber is a measurement of cellulose, hemicellulose, and lignin 

that can be used to evaluate forage quality (Jung and Allen, 1995). Past studies (Theurer 

et al. 1999; Shain et al. 1999; Defoor et al. 2002) summarized by Galyean and Defoor 

(2003) have evaluated the effects of substituting roughage type based on NDF 

concentration and concluded that the substitution of low-quality for high-quality 

roughage is possible without negatively affecting DMI, ADG, or G:F. The effects of 
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exchanging roughage on NDF concentration for digestibility characteristics needs further 

examination. A meta-analysis by Galyean and Defoor (2003) compiled 11 trials to 

evaluate roughage source and level on DMI by feedlot cattle. The authors reported that 

DMI, as a % of BW, increased as level of roughage increased. However, the correlation 

was relatively low (r2 = 0.699) between DMI and roughage level. Using the values 

provided within the trial or values from the NRC (1996) NDF, eNDF, and NEg were 

calculated and used for the regression of DMI. Dietary NEg supplied by roughage 

resulted in small differences in DMI and can be explained by small changes in NEg 

provided among the data points in the database. High correlations for NDF and eNDF (r2 

= 0.92 and r2 = 0.931, respectively) demonstrate that the effects of roughage level on 

DMI are associated with NDF supplied by roughage in feedlot diets. The greater variation 

by eNDF were slightly higher than that of NDF suggesting eNDF is a better tool for 

evaluating roughage source and level. The authors explain that NDF is a more practical 

choice for feedlots to use when considering different roughage sources. The relationship 

between NDF from roughage and DMI in finishing diets can be partially explained by 

lower risk of acidosis. Greater NDF intake per unit of grain might increase or stabilize 

ruminal pH by lower proportions of fermentable substrate in each bite, as well as 

stimulate more chewing and saliva secretion. It is unlikely that the inherent buffering 

capacity of roughages, included at low levels, in finishing diets has much effect on 

ruminal pH. Another contribution towards more stable ruminal pH might be increased 

passage rate of the feed. If increasing NDF from roughage increased the passage rate of 

grains, less fermentation of those grains would occur within the rumen, resulting in a 

lower acid load and increased DMI (Galyean and Defoor, 2003). 
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Defoor et al. (2002) determined the effects of dietary NDF supply from roughages 

on NEg intake by comparing alfalfa hay, sudan hay, cottonseed hulls, and wheat straw 

(40, 66, 86, and 80% NDF) in three 4 × 4 Latin squares at 5%, 10%, and 15% of dietary 

DM. Net energy for gain intake tended to be greater for cottonseed hulls (45.55/kg of 

BW0.75) compared to alfalfa and sudan hay (35.74 and 40.66/kg of BW0.75) with no 

difference between cottonseed hulls and wheat straw. Therefore, roughages with greater 

NDF concentrations provide more energy at similar DM inclusions. Defoor et al. (2002) 

also examined three different methods of dietary roughage exchange in a 90% 

concentrate steam-flaked corn based diet. Cottonseed hulls and sudan silage were 

compared to alfalfa at 12.5% of dietary DM, equal NDF level, and equal NDF level with 

particles less than 2.36 mm considered to supply minimal NDF to the diet. NEg intakes 

were greater for cottonseed hulls and sudan silage at equal dietary DM inclusion in 

comparison to alfalfa. This indicates that cottonseed hulls and sudan silage, which are 

higher in NDF, are required at lesser concentrations in the diet for similar responses to 

alfalfa. No difference was observed for NEg intake between cottonseed hulls and alfalfa 

at equal NDF levels, so the exchange of alfalfa for cottonseed hulls can be made at equal 

NDF inclusion. Feeding sudan silage showed no difference in NEg intake compared to 

alfalfa at equal NDF inclusion excluding particles 2.36 mm or smaller, which indicates 

that sudan silage is needed at a lower level of NDF for substitution.   

A similar study by Quinn et al. (2011) found no difference with in vitro 

digestibility between alfalfa and coastal bermudagrass at equivalent NDF concentrations, 

suggesting that at equal NDF concentrations, different roughage sources will not affect 

digestibility between roughage types. Poore et al. (1991) reported the opposite effect 
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when including chopped wheat straw and chopped alfalfa hay at equal NDF 

concentrations of the diet on lactating Holstein cows. Organic matter digestibility was 

greater for alfalfa than wheat straw (67.2 vs. 63.5%) and NDF digestibility followed a 

similar pattern (43.5 vs 31.2%). The difference between the experiments is that Poore et 

al. (1991) matched the NDF concentration of the diet and not of the individual forages. 

This suggests that NDF composition is different between the overall diet and roughage 

type in terms of digestibility. Hales et al. (2014) found similar results, reporting that dry 

matter and organic matter digestibility was reduced for alfalfa hay as inclusion increased 

within the diet demonstrating that increasing the NDF concentration of the diet will 

negatively impact digestibility. 

Using Dry Matter Inclusion to Evaluate Forage Quality  

Another method of exchanging different roughage types is DM concentration. 

Galyean and Defoor (2003) also compiled previous work (Kreikemeier et al. 1990 and 

Bartle et al. 1994) evaluating roughage inclusion based on DM concentration. Animal 

performance was significantly different for high-quality compared to low-quality 

roughages. However, fiber digestibility was not accounted for in these studies.  

Moore et al. (1990) compared the effects of partial exchange of alfalfa hay, 

cottonseed hulls, and wheat straw (DM basis) on digestibility in a 65% concentrate 

steam-flaked milo diet. The control diet included alfalfa hay at 35% DM, and cottonseed 

hulls or wheat straw replaced half of alfalfa hay in the remaining two diets. Dry matter 

intake was greater for cottonseed hulls compared to alfalfa hay (6.9 and 5.9 kg/d, 

respectively), and cottonseed hulls had significantly lower DM (74.9%) and NDF 

(43.9%) digestibility compared to alfalfa hay (80.3 and 56.4% for DM and NDF 
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digestibility, respectively) and wheat straw (79.4 and 51.6% for DM and NDF 

digestibility, respectively). Cell solubles digestibility was similar between all three 

roughage types. In the second experiment by Moore et al. (1990), in situ digestibility of 

DM and NDF were evaluated on the same diets. Digestibility of cottonseed hulls and 

wheat straw (41.3 and 53.8%, respectively) tended to be lower than alfalfa hay (80.1%). 

Likewise, cottonseed hulls and wheat straw had tendencies for reduced NDF digestibility 

(22.4 and 40.4%) compared to alfalfa hay (61.7%). Despite reduced digestibility, the 

combination of wheat straw and alfalfa increased DM and NDF digestibility for alfalfa. 

Increased digestibility for alfalfa is explained as an effect from longer rumen retention 

time. Total tract digestion of DM and NDF decreased for cottonseed hulls, which agrees 

with previous work of Moore et al. (1990). The complete or partial substitution, on a DM 

basis, of alfalfa for cottonseed hulls reduces DM and NDF digestibility.  

Moore et al. (1990) reported rumination of wheat straw was greater (14 min/h) 

compared to the alfalfa hay and cottonseed hulls (10 and 11 min/h). This agrees with 

Mertens et al. (1997), who summarized several studies that found similar results for oat 

straw, which required more time for rumination compared to alfalfa (Sudweeks et al., 

1979 and Freer et al., 1962). Shain et al. (1999) further analyzed rumination and 

compared particle size (small or large) of alfalfa hay to wheat straw and corncobs. 

Rumination time was longer for large particle size wheat straw compared to both alfalfa 

hay diets. Also, steers spent more time ruminating small particle size wheat straw 

compared to small particle size alfalfa hay and corncobs. Since all diets were formulated 

for equal NDF, these results suggest that lower quality roughages increase rumination. 

According to Cole et al. (1976) altering rumination time causes differences in particle 
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size and ultimately changes rate of passage.  In contrast to this statement, Moore et al. 

(1990) reported no difference in liquid turnover between wheat straw, alfalfa hay, or 

cottonseed hulls with different rumination times. Increased rumination did not impact rate 

of passage. Ruminal pH did not differ between alfalfa hay, cottonseed hulls, and wheat 

straw (6.0, 6.4, and 6.4, respectively) which supports Weiss and Shockey (1991) who 

found no difference in ruminal pH between orchardgrass and alfalfa silage. 

Ruminal pH was not affected by low-quality roughages at low inclusion levels 

and should not be a concern when determining roughage source for concentrate diets. 

Wheat straw and oat straw had noticeable increases in rumination. Theoretically, 

increasing rumination would trigger a cascade of events including: increased saliva 

production, reduced particle size, and increased supply of bicarbonate to the rumen and 

as a result would increase pH, but this was not the case with Moore et al. (1990).  

In agreement with the results by Moore et al. (1990), Poore et al. (1991) reported 

no difference in ruminal passage rate when feeding chopped alfalfa hay or chopped wheat 

straw, at a particle size of 5 cm, as a proportion of roughage NDF. Liquid passage rate of 

alfalfa hay was similar to wheat straw. These results agree with Shain et al. (1999), who 

reported no difference in ruminal passage rate between an all-concentrate diet, alfalfa or 

wheat straw with small (2.54 cm) particle size, alfalfa or wheat straw with large (12.4 

cm) particle size, and corncobs. Alternatively, Hoffman et al. (1998) determined alfalfa 

silage had a faster rate of passage (4.86%/h) than perennial ryegrass silage (4.05%/h), and 

dry matter intake was reduced for perennial ryegrass silage. The authors suggested that in 

high forage diets the rate of passage and feed intake have a direct relationship in which 

slower passage rates restrict feed intake. Mertens et al. (1980) reported shorter lag time 
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for alfalfa (0.86 h) compared to coastal bermudagrass (3.05 h). Therefore, alfalfa spent 

less time in the rumen thereby allowing less time for cellulolytic and other classes of 

bacteria to break down the β- 1,4 or β- 1,6 bonds of the fiber constituents. It can be 

concluded when a roughage has increased rate of passage and decreased retention time, 

digestibility will decrease.  

One area of research that most authors agreed upon was the effect of starch on the 

passage rate of roughages. Most of the papers suggest that starch has limited or no effect 

on passage rate of the roughage. Eng et al. (1964) agree with this reasoning and state the 

average rate of passage for roughages is dependent on the amount consumed and remains 

independent of grain passage rate.  

Moore et al. (1990) found rate of digestion, at 96 h of fermentation, was not 

significantly different between wheat straw, alfalfa hay, and cottonseed hulls, but the 

combination of alfalfa with wheat straw displayed tendencies to have a faster rate of 

digestibility. In contrast to these findings, Mertens et al. (1980) found decreased rate of 

digestion for alfalfa and fescue (6.70 and 6.58%/h, respectively) compared to 

orchardgrass. Kinser et al. (1988) reported rate of digestion was significantly reduced 

when rice hulls replaced corncobs in pelleted diets fed to rams. Rice hulls had more 

grams per day of DM, OM, and NDF flow through the duodenum. Providing evidence 

that rice hulls are less digestible and are of lower forage value in comparison to corncobs. 

Ruminal pH was similar for cattle fed both rice hulls and corncobs (5.60 and 5.61) 

agreeing with Moore et al. (1990) and Weiss and Shockey (1991). Total VFA production 

was slightly greater for rice hulls (107.3 mM) compared to corncobs (101.5 mM) but not 

statistically significant. Poore et al. (1991) also reported VFA production with acetate, 
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propionate, butyrate, and valerate concentrations greater for alfalfa, but the 

acetate:propionate ratio was reduced for wheat straw. Shain et al (1999) also reported 

decreased VFA production for wheat straw. However, acetate:propionate ratio increased 

numerically for wheat straw diets. This may be due to increased rumination causing more 

salivation, which creates a dilution affect and increases the pH of the rumen. This 

increase in pH provides a more favorable environment for the production of acetate over 

propionate (Sudweeks, 1977; Latham, 1974).  

Corn Residue 

The increased demand for fuel ethanol led to rising corn price in the past ten 

years. The response to high corn prices caused more land to be converted from forage 

production to corn production. It is estimated that from 2006 to 2011, 0.526 million ha of 

range and pastureland were converted to corn and soybean production from Minnesota, 

Iowa, North Dakota, South Dakota, and Nebraska (Wright and Wimberly, 2013). With 

less traditional forage available, alternative forages, such as corn stover, were more easily 

available and became more common as a forage source with higher corn prices. Corn 

stover consists of stalk, leaf, cob, and husk components of the corn plant after grain 

harvest. For every kilogram of corn grain produced, approximately 0.8 kg of 

aboveground residue can be harvested (Watson et al., 2015). According to USDA-NASS 

(2016), corn grain production in 2015 was estimated to be 3.45 trillion kg yielding 2.76 

trillion kg of corn stover available. Other factors that influence corn stover availability 

include uses in the ethanol industry for cellulosic fermentation, livestock grazing, and 

proximity to feedlots (Watson et al., 2015). 
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Chemical Treatment 

Corn stover is usually considered low-quality forage because the plant has 

reached physiological maturity resulting in low protein content and digestibility 

(Klopfenstein et al., 1987). At maturity, the corn plant has developed cross-linkages of 

lignin within the cell wall (Jung and Allen, 1995). Enzymes that breakdown cell wall 

carbohydrates have limited access to hemicellulose and cellulose due to the lignin cross 

linkages (Jung and Deetz, 1993). Chemical treatment of corn stover using alkali 

compounds, sodium, calcium, or ammonium hydroxide, breaks cross linkages between 

hemicellulose, lignin, and cellulose, as well as disruption of H bonding between cellulose 

molecules (Klopfenstein et al., 1972; Fahey et al., 1993). These reactions make 

hemicellulose and cellulose more available for rumen microbial degradation 

(Klopfenstein, 1978). The improvement in degradation of hemicellulose and cellulose by 

rumen microorganism improves rate and extent of digestion (Klopfenstein et al., 1987). 

Several chemicals have been screened in laboratory experiments to treat corn stover. Four 

primary chemicals used include: sodium hydroxide, ammonium hydroxide, calcium 

hydroxide, and potassium hydroxide (Klopfenstein, 1978). The practical application of 

these treatments is impeded by technical, economical, and environmental concerns (Shi et 

al., 2016).  

There have been many studies evaluating the effects of treating forages with alkali 

compounds. The treatment of forages with NaOH has been practiced for many decades 

and has reported to improve the feeding value of forages (SundstØl et al., 1988). 

Klopfenstein et al. (1972) examined treating corn stover with NaOH at 0, 3, or 5%, and 

adding water to bring moisture to 50%, then ensiling the residue. Treatments were fed to 
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lambs in a metabolism trial. Treatment of corn stover at 3 and 5% NaOH increased true 

organic matter digestibility compared to untreated corn stovers with no difference 

between 3 and 5% NaOH. In Vitro DMD was increased for 3% NaOH treated corn stover 

compared to untreated corn stover. Five percent NaOH treatment caused a further 

increase in DMD over 3% NaOH treatment. There were no differences for VFA profiles, 

rumen ammonia concentrations, and rumen pH between treatments. It should be noted 

that the authors shared concerns about the level of Na added to the diet by chemical 

treatment and should be considered when formulating rations. Fahey et al. (1993) 

summarized 24 studies with NaOH treatment on crop residues. An average improvement 

of 22% was calculated for DMI and a 30% increase in DM digestibility with NaOH-

treated crop residues. Lately, the use of NaOH has decreased due to environmental 

concerns of Na leaching into the soil and excessive Na intake of the animal (Shi, 2016). 

Therefore, more attention has been on using weaker bases, such as ammonia and 

Ca(OH)2, to treated forages.  

The mode of action for ammoniation is similar to that of NaOH. However, 

improvement in the digestibility of roughages treated with ammoniation tends to be lesser 

compared to NaOH (Fahey et al., 1993). Males (1987) observed an average improvement 

in IVDMD of 16% with NaOH treatment compared to NH3-treated straw. Two 

advantages to NH3-treated forages, over NaOH treatment, is added N and reduced Na 

added to the forage (Males, 1987). There is two methods to applying NH3 to forages. The 

most common method is dry application and the other method being wet application 

(Males, 1987). Saenger et al. (1982) performed a feeding and metabolism trial utilizing 

corn stover treated with anhydrous ammonia (NH3) at 3% and 2% DM, respectively. 
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Corn stover bales were treated with NH3 by covering all bales with plastic and applying 

NH3 into the sealed enclosure. Bales remained covered for three weeks and were 

uncovered one week prior to initiation of trial. Ammoniation increased the crude protein 

content of corn stover by approximately 7.2 %, which is due to N retention by the corn 

stover. Cattle consuming treated corn stover had greater DMI than cattle fed non-treated 

corn stover in both trials. Morris and Mowat (1980) also observed greater intakes of corn 

stover with ammoniation compared to non-treated corn stover. Fahey et al. (1993) 

summarized 21 studies using NH3-treated crop residues and reported an average increase 

in DMI of 22%. Saenger et al. (1982) observed a 10% increase in DM digestibility for 

treated corn stover compared to non-treated corn stover. Likewise, Fahey et al. (1993) 

summarized 32 studies and reported an average increase of 15% in DM digestibility of 

NH3-treated crop residues. Oji et al. (1977) found similar results when corn stover was 

treated with 3 or 5% NH3 fed to lambs in a metabolism trial. Ammoniated corn stover 

was reconstituted with 30% moisture and ensiled for at least 30 days. Lambs fed either 3 

or 5% NH3 treated corn stover improved DMI compared to non-treated corn stover with 

no difference between NH3 concentration. Likewise, DM digestibility was improved with 

treatment of corn stover with no difference between 3 or 5% NH3.  

Previously, Ca(OH)2 was believed to be ineffective at improving digestibility 

(Fahey et al., 1993). However, recent studies have reported the effectiveness of CaO 

treatment on the digestibility of corn stover (Chapple et al., 2014; Duckworth et al., 2014; 

Shreck et al., 2015; Shi et al., 2016). Compared with NaOH and ammonia, Ca(OH)2 may 

be less expensive and safer to handle (Shi, 2016). Duckworth et al. (2014) evaluated the 

effects of CaO-treated corn stover fed with 40% MDGS (DM basis) on growth 
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performance, carcass characteristics, and ruminal metabolism in finishing diets. Treating 

corn stover with 5% CaO (DM basis) and hydrating to 50% DM, included at 20% (DM 

basis) of the diet, improved DM digestibility but decreased DMI and ADG compared to 

untreated corn stover. Chapple et al. (2015) fed the same amount of MDGS and corn 

stover, except that their control contained 5% untreated corn stover. Since control diets 

were different between the two studies, direct comparison is difficult. Chapple et al. 

(2015) reported increased apparent NDF and ADF digestibility for treated corn stover. 

Cattle consuming CaO treated corn stover had decreased DMI and similar ADG 

compared to untreated corn stover. In addition, Chapple et al. (2015) hydrated all treated 

corn stover to 50% DM and treated with 5% CaO, 4% CaO plus 1% NaOH, and 3% CaO 

plus 2% NaOH. There were no differences in digestibility of corn stover between the 

combinations of CaO and NaOH. Shreck et al. (2015) evaluated CaO treated corn stover 

in diets containing 40% WDGS on finishing performance and carcass characteristics. 

Corn stover was treated at 5% (DM basis) with CaO, hydrated to 50% DM, and included 

in the diet at 20% (DM basis). Cattle consuming treated corn stover had greater ADG, 

G:F, and final BW compared to untreated corn stover. Shreck et al. (2015) performed a 

metabolism study with similar diets only corn stover was include at 25% (DM basis) of 

the diet. Greater DM, OM, and NDF digestibilities were observed for treated corn stover 

compared to untreated corn stover. Shi et al. (2015) examined various levels of CaO 

treatment (3, 5, and 7% of dry-corn stover) and various moisture levels (40, 50, and 60%) 

on digestibility parameters. Treated corn stover improved digestibility compared to 

untreated corn stover. Corn stover treated with 7% CaO at 60% moisture had the greatest 

DM, OM, and NDF digestibilities. However, there was no difference between 7% and 
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5% CaO at 60% moisture. Using 5% CaO treatment, or a combination of CaO and 

NaOH, will sufficiently improve digestibility. Overall, improved NDF digestibility 

suggests that CaO treatment of corn stover is effective at solubilizing some 

carbohydrates. 

Pelleting 

Another modification to improve the utilization of corn stover is pelleting. The 

primary advantage of pelleting is that a product is produced which can be easily stored 

and transported. Typically, corn stover will be treated (i.e. alkali treatment) before the 

pelleting process. The major disadvantage for pelleting is the cost of collection and 

transportation of bulky residues prior to treatment and pelleting (Klopfenstein, 1978). 

Several companies have created pelleted feeds by combining corn stover with DGS or 

other corn byproducts. Incorporation of these byproducts improves the nutritional 

composition of the corn stover pellet. Several studies have examined the contributions of 

these pelleted products in beef cattle diets. Clark et al. (2013) evaluated a pelleted corn 

stover product, included at 15% (DM basis), as a roughage in finishing diets. The pellet 

contained 33% corn stover, 33% DDG, and 33% undescribed commodities. It was not 

reported whether the corn stover was chemically treated. Compared to the corn control, 

cattle consuming the corn stover pellet had lower ADG, DMI, HCW, 12th rib back fat, 

and yield grade. Digestive disturbances, such as acidosis and bloat, became an occurring 

issue and was believed to be caused by lower amounts of effective fiber from the pellet. It 

is possible that the poor performance observed in this study was partially due to 

reoccurring digestive disturbances. Sewell et al. (2009) analyzed several forages, 

including corn stover, wheat straw, switchgrass, and corn fiber:wheat chaff combinations, 
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treated with 5% (DM basis) CaO and 35% water and pelleted with DDGS. The pelleted 

product was 75% residue and 25% DDGS (DM basis) and replaced corn in the diet. Like 

previously discussed, DM, NDF, and ADF digestibility were improved when wheat straw 

and corn stover were chemically treated and pelleted compared to unprocessed forages. 

When treated wheat straw pellets were included at 50% (DM basis) of the diet, cattle had 

improved ADG and G:F compared to conventional wheat straw. When treated wheat 

straw pellets replaced corn, cattle had similar ADG but greater DMI. Therefore, 

chemically treating and pelleting crop residues improves diet digestibilities compared to 

conventional crop residues. Pelleting corn stover makes storage and transportation of low 

quality forages easier and more economical. Data suggest pelleted crop residues may 

serve as a partial corn replacement for finishing diets.  

Conclusion 

Based on the literature cited in this review it is clear that ethanol byproducts (i.e. 

distillers grains) are widely utilized protein source for beef cattle feeding operations. As 

demand for ethanol continues, ethanol plants will continue to develop methods of 

fractionating the components of corn. More components will be removed resulting in an 

altered distillers grains. Knowing the techniques and methods of ethanol production from 

dry-grind, wet milling, and dry milling facilities will provide better insight into the 

potential byproducts produced. At times of high corn price, utilizing distiller grains or 

condensed distillers solubles to provide protein and energy can prove to be economical 

without compromising performance. When feeding ethanol byproducts understanding the 

concentration of rumen available S (i.e. inorganic sources) will prove helpful in avoiding 

S toxicity issues. Processing corn stover by alkali treatment and pelleting has proven to 
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improve the digestibility and utilization of low quality forages in finishing diets. 

Therefore, the objectives for this thesis include: 1) determine the effect of replacing corn 

bran, from the dry milling industry, which contains more protein, from a DGS composite 

diet with CaO treated corn stover on feedlot performance and carcass traits; 2) evaluate 

the effect of exchanging protein from a DGS composite with corn bran and CDS on 

feedlot performance and carcass traits; 3) evaluate protein from DGS on feedlot 

performance, carcass traits, nutrient digestibility, ruminal VFA concentration, and 

ruminal pH.  
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ABSTRACT 

Crossbred yearling steers (n = 448; initial BW 368 kg; SD=13) were utilized in a 

generalized randomized block design to determine the effect of altering distillers grains 

plus solubles (DGS) composition on performance and carcass characteristics. Treatments 

were: 1) negative control (CON) with 50% dry-rolled corn; 2) positive control (DDGS) 

dried DGS replaced corn at 50% of diet; 3) pelleted corn stover (PEL-STV) treated with 

calcium oxide, containing 18.75% solubles (CDS), 12.5% treated corn stover, and 

18.75% high-protein dried distillers grains plus solubles (HPDG), pelleted; 4) non-

pelleted corn stover (STV), treated with calcium oxide, containing treated corn stover, 

CDS, and HPDG at same DM inclusion as PEL-STV; 5) component DGS(COMP) 

including 18.75% CDS, 12.5% corn bran, isolated from the dry-milling ethanol process, 

and 18.75% HPDG; 6) component medium protein (COMP-MED) contained 24.4% 

CDS, 16.2% corn bran, and 9.4% HPDG; and 7) component low protein (COMP-LOW) 

had 30% CDS and 20% corn bran (DM basis). Performance and carcass characteristics 

were analyzed using the MIXED procedures of SAS with pen as the experimental unit. 

Block was a fixed effect and contrasts were developed to determine effects of exchanging 

components in DGS. Dry matter intake and ADG were greater for DDGS compared to 

CON (P < 0.01). Combining corn bran, CDS, and HPDG together in similar proportions 

to DDGS reduced G:F by 9.0% (P < 0.01) compared to DDGS. There was a quadratic 

increase in DMI as protein was removed between COMP, COMP-MED, and COMP-

LOW (P < 0.04). Steers fed DDGS had heavier HCW (P < 0.01) and increased 12th rib 

fat thickness (P < 0.02) compared to COMP. As protein decreased between COMP, 

COMP-MED, and COMP-LOW fat thickness decreased linearly (P = 0.02). Replacing 
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corn bran with a treated corn stover mixture further reduced feed efficiency (P < 0.04). 

Pelleted corn stover decreased DMI (P < 0.02) with no affect on ADG or G:F (P ≥ 0.37). 

When the treated corn stover mixture replaced corn bran, 12th rib fat thickness decreased 

(P < 0.02). Replacing the fiber from DDGS with the treated corn stover mixture supplied 

less energy. As the portion of CDS and corn bran in the composite DGS increased, 

performance remained similar. Combining individual ingredients of corn bran, HPDG, 

and CDS did not mimic the fiber, protein, and fat fractions of DDGS. 

Key Words: beef cattle, corn stover, distillers grains plus solubles 
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INTRODUCTION 

The composition of distillers grains plus solubles (DGS) changes as nutrient components 

are removed during ethanol production. The removal of oil from DGS has been reported 

to lower the energy value of DGS by 3.5% when DGS was included in the diet at 30% 

(DM basis; Bremer et al., 2015). Fermentation of corn bran via secondary fermentation 

systems will lower the concentration of fiber in DGS. Separation of protein may reduce 

the protein concentration of DGS and alter use in feedlot diets. Partially fractionated DGS 

containing less fiber and more protein compared to traditional DGS has been reported to 

perform similarly to traditional DGS in finishing diets (Depenbusch et al., 2008; Kelzer 

et al., 2011). Lundy et al. (2015) reported poorer feed efficiency for WDGS from 

secondary cellulosic ethanol fermentation compared to traditional wet distillers grains 

plus solubles (WDGS). Bremer et al. (2008) described methods of protein separation 

available to ethanol plants to enhance their value-added products. Ethanol plants ability 

to isolate components of DGS will continue to increase, which means understanding 

protein, fiber, fat, and the interactions of those components from DGS in beef cattle diets 

will allow for prediction of performance as nutrients change in the future.  

Corn stover has become more available with higher corn prices (Watson, 2015). 

New techniques to commercially process corn stover, in combination with DGS, are 

available. Pelleted DGS and CaO treated corn stover when included in finishing diets 

cattle performed similarly to corn at 20% inclusion (DM basis; Gramkow et al., 2016). 

Little research has examined replacing fiber from DGS removed by secondary 

fermentation with treated corn stover or utilizing condensed distillers solubles (CDS) and 

corn bran for the protein component of DGS. The objectives of this study were to 
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determine the effect of replacing corn bran from the dry-milling industry, which contains 

more protein than bran from the wet-milling industry, in DDGS with CaO treated corn 

stover and to evaluate the effect of exchanging protein in DDGS with corn bran and CDS 

on feedlot performance and carcass traits. 

MATERIALS AND METHODS 

All animal care and management procedures were approved by the University of 

Nebraska – Lincoln Institutional Animal Care and Use Committee. 

Crossbred yearling steers (n = 448; initial BW 368 kg; SD=13) were utilized in a 

generalized randomized block design at the University of Nebraska-Lincoln Eastern 

Nebraska Research and Extension Center feedlot (Mead, NE). Initial receiving and 

processing of the calves into the feedlot included vaccination for protection against 

bovine rhinotracheitis virus and bovine viral diarrhea types 1 and 2 viruses (Bovi-Shield 

Gold One Shot; Zoetis, Florham Park, NJ); control against gastrointestinal roundworms, 

lungworms, eye worms, grubs, sucking lice, and mange mites (Dectomax injectable; 

Zoetis); and prevention of Haemophilus somnus (Somubac; Zoetis). Cattle were given a 

booster vaccination 14 d after initial vaccination for protection against bovine 

rhinotracheitis virus and bovine viral diarrhea types 1 and 2 viruses (Bovi-Shield Gold 5; 

Zoetis) and prevention of Haemophilus somnus (Ultrabac-7; Zoetis). Steers grazed corn 

stalks After backgrounding, steers were limit-fed (2% of BW) a diet consisting of 50% 

Sweet Bran® (Cargill Wet Milling, Blair, NE), and 50% alfalfa hay (DM basis) for 5 d 

before weighing to equalize gut fill (Watson et al., 2013). Steers were weighed 2 

consecutive days (d 0 and 1) using a hydraulic squeeze chute with load cells mounted on 

the chute (Silencer, Moly Manufacturing Inc., Lorraine, KS: scale readability ± 0.90 kg) 
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to establish initial BW. Steers were implanted with 36 mg of zeranol (Ralgro, Merck 

Animal Health, De Soto, KS) during the initial weighing (d 1) process. Steers were 

blocked by BW into three blocks on d 0, stratified by BW within block, and assigned 

randomly to 56 pens.  

Pens were assigned randomly to one of seven dietary treatments (Table 2.1) with 

eight replications per treatment and eight steers per pen. The light and heavy BW blocks 

contained 2 replications each and the middle block contained 4 replications. Steers were 

re-implanted with 200 mg of trenbolone acetate and 20 mg of estradiol (Revalor-200, 

Merck Animal Health) with the middle block (4 replications) on d 36 and light and heavy 

blocks (4 replications) on d 38.  

Cattle were fed ad libitum with feed bunks evaluated daily at approximately 0630 

h for refusals and managed so that trace amounts of feed were left in the bunk at time of 

feeding. Feed was delivered with a truck mounted mixer and delivery unit (Roto-Mix 

model 274, Roto-Mix, Dodge City, KS; scale readability ±0.91 kg) each morning at 0800 

h. Steers were adapted to finishing diets over a 19-d period through a series of 4 diets 

containing 40, 30, 20, and 10% alfalfa hay (DM basis) for 4, 5, 5, and 5 d, respectively, 

with HMC, DRC or byproducts replacing alfalfa hay, respectively. In step-up diets 2, 3, 

4, and finisher high-moisture corn (HMC) and dry-rolled corn (DRC) replaced 4, 4, 4, 

1.5% and 6, 6, 6, 3% of alfalfa hay in the CON diet, respectively. In step-up diets 2, 3, 4, 

and finisher HMC and DDGS replaced 4, 4, 4, 1.5% and 6, 6, 6, 3% of alfalfa hay in the 

DDGS diet, respectively. In step-up diets 2, 3, 4, and finisher HMC and a combination of 

CDS, and CaO treated corn stover with CDS and HPDG (pelleted and non-pelleted) 

replaced 4, 4, 4, 1.5% and 6, 6, 6, 3% of alfalfa hay in the STV and PEL-STV diets, 
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respectively. In step-up diets 2, 3, 4, and finisher HMC and a combination of CDS, corn 

bran, and HPDG replaced 4, 4, 4, 1.5% and 6, 6, 6, 3% of alfalfa hay in the COMP diet, 

respectively. In step-up diets 2, 3, 4, and finisher HMC and a combination of CDS, and 

corn bran replaced a portion of alfalfa hay in COMP-MED and COMP-LOW, 

respectively. The composite DGS diet (COMP) was formulated to replicate the protein, 

fiber, and fat from DGS utilizing isolated components of corn from the dry-milling 

ethanol industry (Table 2.1). Corn bran (ICM Biofuels; St. Joseph, MO; 65.3% DM, 

24.1% CP, 56.3% NDF, and 5.5% fat; DM basis) was utilized as the fiber portion. High-

protein dried distillers grains plus solubles (ICM Biofuels; 92.3% DM, 37.7% CP, 40.3% 

NDF, and 8.4% fat; DM basis) was utilized as a protein source. A portion of the protein 

and fat was replicated with the inclusion of CDS (ICM Biofuels; 35.5% DM, 34.8% CP, 

7.4% NDF, and 6.7% EE; DM basis).  

Diets were formulated to meet or exceed MP requirements using the NRC (1996).  

Nutrient composition for all experimental diets are listed in Table 2.2. All finishing diets 

contained 31.5% high-moisture corn, 5.5% alfalfa hay, 4.0% corn silage, 5.0% liquid 

molasses, 4.0% dry meal supplement formulated with 30 g / ton of monensin (Rumensin, 

Elanco Animal Health, Greenfield, IN) and 90 mg / steer of tylosin (Tylan, Elanco 

Animal Health) daily. Supplements were formulated and mixed at the on-site feed mill. 

The supplement for CON contained urea at 1.36% (DM basis) to meet the RDP 

requirement and 1.43% limestone (DM basis) to meet and / or exceed the Ca requirement 

(NRC, 1996). The supplement for DDGS, COMP, COMP-MED, and COMP-LOW 

contained 1.98% limestone (DM basis) to meet and/or exceed the Ca requirement 

(NASEM, 2016). The supplement for STV and PEL-STV contained 0.49% limestone 
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(DM basis) since those treatments contained CaO (71% Ca based on molecular weight) 

treated corn stover. Supplements were mixed weekly in a stationary ribbon mixer (model 

S-5 Mixer; H.C. Davis Sons Manufacturing Co., Inc., Bonner Springs, KS).  

Both corn stover ingredients, pelleted and non-pelleted, were harvested from the 

same field and processed by Pellet Technology, USA (Gretna, NE). The corn stover was 

reduced to a small particle size (297-1,680 μm). Then CDS was added to hydrate the 

corn stover to 50% DM. As CDS was added, CaO was also simultaneously added (5% of 

forage DM). After CaO treatment, the mixture was sent through an extruder (66-121°C) 

to increase the rate of the chemical reaction. Following the extrusion process, HPDG was 

added. At this point the non-pelleted corn stover mixture was completed and the pelleted 

corn stover was pelleted (Zeeck, 2013). The final product was composed of 

approximately 31% treated corn stover, 19% CDS, 48% HPDG, and 1.6% CaO. The 

pelleted corn stover in the current experiment is similar to the product used in previous 

studies evaluating the alkaline treatment and pelleting of corn stover with CDS and dried 

DGS (Welchons et al, 2016; Gramkow et al, 2016). Gramkow et al. (2016b) examined an 

alternative alkaline treatment process on corn stover. The alternative method utilized 

CDS instead of water to hydrate the corn stover before CaO treatment. When compared 

to traditional alkaline treatment hydrated with water, hydrating corn stover with CDS 

resulted in improved total-tract DM and OM digestibilities when included in growing 

diets fed to steers. As described above, the same alternative CaO treatment of corn stover 

hydrated with CDS examined with Gramkow et al. (2016) was used for in the current 

study. High-moisture corn, DRC, alfalfa hay, and corn silage were harvested from fields 
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at the Eastern Nebraska Research and Extension Center (Mead, NE) and processed at the 

research feedlot. 

Orts were removed from the bunk when refusals were present, and dried in a 60°C 

forced-air oven (model LBB2-21-1, Despatch, Minneapolis, MN) for 48 h to determine 

DM content (AAOC, 1965; method 935.29). Individual feed ingredients were dried in 

60°C forced air ovens (model LBB2-21-1, Despatch, Minneapolis, MN) for 48 h (AAOC, 

1965; method 935.29) weekly to ensure accurate DM’s were used when mixing dietary 

treatments. Individual feed ingredients were sampled weekly, composited by month, 

freeze dried, and ground through a 1-mm screen using a Wiley mill (number 4; Thomas 

Scientific, Swedesboro, NJ). Feed samples were analyzed for OM, CP, NDF, ADF, and 

lignin to calculate nutrient composition of dietary treatments (Table 2.3). Ash was 

evaluated by placing samples in a muffle furnace for 6 h at 600°C (AOAC, 1999; method 

4.1.10). Crude protein and S were determined using a combustion type N and S analyzer 

(TruSpec N Determinator and TruSpec Sulfur Add-On Module, Leco Corporation, St. 

Joseph, MI; AOAC, 1999; method 990.03). Neutral detergent fiber content was 

determined using the procedure described by Van Soest et al. (1991) with modifications 

described by Buckner et al. (2010). The modification applied to DDGS, HPDG, CDS, 

pelleted and non-pelleted corn stover, and corn bran was a biphasic lipid extraction 

(Bremer et al., 2010) prior to NDF analysis (Buckner et al., 2013). Acid detergent fiber 

and lignin content were determined using the procedure described by Van Soest et al. 

(1963). Ether extract was determined by a biphasic lipid extraction procedure described 

by Bremer (2010). Samples were heated in a 1:1 mixture of hexane and diethyl ether for 

9 h, dilute HCl was added, and samples were centrifuged to separate the lipid layer from 
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other liquid. The lipid layer was pipetted off, heated to drive off remaining solvent, and 

weighed.  

Cattle were shipped according to projections made utilizing pen weights on d 113 

and predicted ADG to reach a final BW of 658 kg, at which all cattle were assumed to 

have 1.27 cm or more of fat thickness at the 12th rib. On day 149, steers in the heavy 

block (2 replications) were fed 50% of the previous days feed call and shipped 

approximately 10 h after feeding. On day 156, steers in the light and middle blocks (6 

replications) were fed 50% of the previous days feed call and shipped approximately 10 h 

after feeding. Steers were harvested at Greater Omaha Packing Co. (Omaha, NE). Upon 

day of harvest, HCW was collected. After a 48-h chill, LM area, 12th rib fat, and USDA 

marbling scores were collected. Final BW was calculated by dividing HCW by a 

common dressing percentage (63%). Feeding values were calculated using the following 

equation: [((compared treatments G:F – CON G:F) / CON G:F) / compared treatments 

inclusion rate*100 + 100]. 

 Performance data (BW, DMI, ADG, G:F) and carcass data (HCW, 12th rib back 

fat, marbling, quality grade, yield grade) were analyzed using the MIXED procedures of 

SAS (SAS Institute, Inc., Cary, N.C.) with dead or chronic steers removed from analysis. 

One steer from COMP, one steer from COMP-MED, and three steers from COMP-LOW 

diets were removed from the experiment due to diagnosis of sulfur induced 

polioencephalomalacia (S-PEM) by the Nebraska Veterinary Diagnostic laboratory. Pen 

was the experimental unit and block was treated as a fixed effect. Linear and quadratic 

contrasts were developed for steers fed COMP, COMP-MED, COMP-LOW to determine 

the impacts of replacing protein from DGS with CDS and corn bran. Additionally, 
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pairwise comparisons were pre-planned to determine the following effects: 1) replacing 

corn with commodity DGS as an internal validation (CON vs DDGS); 2) replacing 

DDGS with a composite DGS (DDGS vs. COMP) to test if combining 18.75% HPDG, 

12.50% corn bran from the dry-milling process, and 18.75% CDS could replicate the 

components of DDGS; 3) replacing corn bran from the composite DGS with a treated 

corn stover byproduct mixture (COMP vs. STV) to test if the CaO treated corn stover can 

replace the fiber removed from DDGS by secondary fermentation processes; 4) pelleting 

the treated corn stover byproduct mixture (PEL-STV vs. STV) to test the effect of 

pelleting CaO treated corn stover that replaced the fiber portion of DDGS. Treatment 

differences were considered significant when P ≤ 0.05 with tendencies between P > 0.05 

and P ≤ 0.10. 

Dietary treatments were modified on d 35 due to S-PEM. The cause of S-PEM 

was due to high sulfur content of CDS. The maximum tolerable concentration of dietary 

sulfur in diets containing more than 85% concentrate is 0.30% (NASEM, 2016). Before d 

35, all diets except CON exceeded 0.30% dietary sulfur with BRN-LOW having the 

greatest dietary sulfur with 0.72%. Condensed distillers solubles and DDGS were 

reduced by 11.25% and replaced with DRC. Increasing the NDF content, primarily from 

forages, of the diet reduces the risk of S-PEM and decreases the amount of ruminal H2S 

produced (Nichols et al., 2013; Morine et al., 2014a, b). We replaced 5% (DM basis) of 

HMC with grass hay. The high sulfur CDS was replaced and reintroduced throughout a 6 

day step-up period, and experimental treatments resumed on d 41. The cause of high 

sulfur in the CDS and DDGS was a result of high sulfur in the water used in the dry grind 

process at the ethanol plant that supplied both CDS and DDGS. Sulfur from DGS is a 
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combination of organic (origin from corn) and inorganic (origin from chemicals during 

the dry grinding process). Sarturi et al. (2013) studied the effects of organic and inorganic 

sulfur sources on rumen availability. The authors reported that organic S sources were 

100% ruminally available and S from WDGS had greater degradation in the rumen 

resulting in greater ruminal H2S gas production compared to organic sources. Therefore, 

the source of high S concentration causing S-induced PEM was CDS and DDGS. 

RESULTS AND DISCUSSION 

CON vs. DDGS 

 Performance and carcass data are provided in Table 2.4. Steers fed DDGS instead 

of CON (i.e. replacing 50% dry-rolled corn with DDGS) had increased carcass adjusted 

final BW (655 vs. 631 kg for DDGS and CON, respectively; P < 0.01), increased DMI 

(12.9 vs. 11.9 kg/d, respectively; P < 0.01) and increased ADG (1.89 vs. 1.74 kg/d, 

respectively; P < 0.01) and no difference (P = 0.80) for G:F. Previous research has 

reported that replacing up to 40% (DM basis) of DDGS in the diet resulted in greater 

DMI, ADG, and improved G:F (Buckner et al., 2007; Klopfenstein et al., 2008). The 

feeding value of DDGS has been documented to be approximately 112% the value of 

corn (Bremer et al., 2011). The 12% improvement in feeding value of DGS has been 

attributed to the fat and RUP of DGS (Larson et al., 1993). Improvements in cattle 

performance have been attributed to the greater feeding value of DDGS (Buckner et al., 

2007; Bremer et al., 2011). In the current trial, the feeding value of DDGS was 101% the 

value of corn. Feed efficiency was not different for CON and DDGS (0.145 vs. 0.144, 

respectively; P = 0.80). While feeding DGS has been reported to improve G:F, studies in 

which DGS was included at 50% or greater in the diet, have reported poorer G:F response 
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compared to lower inclusions of DGS (Vander Pol et al. 2006; Depenbusch et al., 2009; 

Nuttelman et al., 2011). Klopfenstein et al. (2008) summarized five trials comparing 10, 

20, 30, and 40% DDGS inclusion (DM basis) to a corn control. There was a cubic 

response observed for G:F with the optimal inclusion of DDGS being 10%. Feed 

efficiency continued to decline from 20 to 40% DDGS with 40% DDGS having a similar 

G:F as the corn control. Depenbusch et al., (2009) evaluated DDGS at 15, 30, 45, 60, or 

75% (DM basis) fed to heifers in finishing diets. Dry matter intake, ADG, and final BW 

responded quadratically to increasing levels of DDGS and were optimized at 15% DGS. 

Feed efficiency linearly decreased as inclusion of DDGS increased. In the current study, 

no difference in G:F for CON and DDGS may be due to the high inclusion of DDGS. The 

inclusion of 50% DDGS (DM basis) in the diet was selected so that individual feed 

ingredients (i.e. corn bran, CDS, and HPDG) could be included at large enough inclusion 

rates so that treatment differences could be detected when comparing smaller components 

of DDGS. Hot carcass weight was 15 kg more for steers fed DDGS (P < 0.01) compared 

to CON. Increased HCW with DDGS inclusion has been reported in previous 

publications (Benson et al., 2005; Buckner et al., 2007). However, several publications 

reporting poor growth performance at 50% or greater DDGS inclusion reported lower 

HCW (Gunn et al., 2009; Depenbusch et al., 2009). There were no differences (P = 0.34) 

for LM area between CON and DDGS. Steers fed DDGS had increased 12th rib fat (1.61 

vs. 1.43 cm2, respectively; P < 0.01) compared to CON. Marbling was not different 

between DDGS and CON (P = 0.25).  

DDGS vs. COMP 
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 Performance and carcass data are provided in Table 2.4. Replacing DDGS (91.1% 

DM, 34.4% CP, 35.9% NDF, 8.7% fat, and 0.40% S; DM basis) with similar proportions 

of CDS, corn bran, and HPDG (COMP; 57.2% DM, 33.2% CP, 32.0% NDF, 7.2% fat, 

and 0.57% S; DM basis) decreased final BW (655 vs. 623 kg, respectively; P < 0.01) and 

decreased DMI (12.9 vs. 12.4 kg/d, respectively; P = 0.05). Average daily gain was 

greater for cattle fed DDGS (1.89 vs. 1.69 kg/d; P < 0.01) compared to COMP, 

respectively. Steers fed DDGS had improved G:F compared to COMP (0.145 vs. 0.132, 

respectively; P < 0.01). The COMP diet had a calculated feeding value of 83% relative to 

corn, which was lower than the feeding value of DDGS (101%). Hot carcass weights 

were heavier for cattle fed DDGS compared to COMP (413 vs. 393 kg, respectively; P < 

0.01). There were no differences (P = 0.83) in LM area between DDGS and COMP. 

There was increased 12th rib fat (1.61 vs. 1.53 cm2; P = 0.02) for DDGS compared to 

COMP, respectively. There were no differences (P = 0.82) in marbling between DDGS 

and COMP. Previous research examined an ethanol byproduct, Dakota Bran (Poet 

Nutrition, Sioux Falls, SD), which is a blend of corn bran and CDS (53% DM, 14.7% CP, 

32.0% NDF, 10.9% fat, and 0.82% S; DM basis; Buckner et al. 2011b). Authors replaced 

equal parts of DRC and HMC in the finishing diet with 15, 30, or 45% Dakota Bran. As 

inclusion of Dakota Bran increased, ADG and G:F improved linearly (P < 0.01). Steers 

consuming 30% Dakota Bran or DDGS had similar growth performance and carcass 

characteristics. These results show that Dakota Bran, a product low in protein and high in 

fiber, can provide similar energy as DDGS. In the current study, combining 37.5% CDS, 

25% corn bran, and 37.5% HPDG, as proportions of DDGS, did not result in similar 

performance to DDGS. One explanation for poorer performance of cattle fed COMP 
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could be that one or more of the individual ingredients (i.e. HPDG, CDS, and/or corn 

bran) did not contain a similar nutrient composition as the component (i.e. protein, fat, 

and/or fiber) in DDGS. The individual ingredients in COMP may not have been included 

in the correct proportions to replicate the components in DDGS.   

COMP vs. STV 

 Performance and carcass data are provided in Table 2.4. The composition of the 

byproducts in COMP (57.2% DM, 33.2% CP, 32.0% NDF, and 7.1% fat; DM basis) and 

STV (68.0% DM, 25.4% CP, 44.3% NDF, and 5.4% fat; DM basis; Table 2.3) indicate 

that replacing corn bran with treated corn stover reduced CP and fat concentration while 

providing more NDF. There were no differences (P = 0.88) in final BW between COMP 

and STV. Exchanging corn bran for non-pelleted treated corn stover increased DMI (12.4 

vs. 13.3 kg/d, respectively; P < 0.01) with no difference in ADG (1.69 vs. 1.70 kg/d, 

respectively; P = 0.91), resulting in steers fed STV being 4.5% less efficient in 

comparison to steers fed COMP (0.126 vs. 0.132, respectively; P = 0.04). When corn 

bran was replaced by treated corn stover the feeding value decreased 9%. In the current 

study, there was no difference (P ≥ 0.79) in HCW and LM area between COMP and 

STV. When treated corn stover replaced corn bran, 12th rib fat decreased (1.37 vs. 1.53 

cm2, respectively; P < 0.02). Marbling was not different (P = 0.82) for COMP and STV. 

These data suggest that replacing corn bran with CaO treated corn stover and byproduct 

mixture provides less energy to the diet as a result of lower fat and CP concentrations but 

similar growth performance as a result of increased intake and poorer G:F.  

PEL-STV vs. STV 
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 Performance and carcass data are provided in Table 2.4. The composition of the 

byproducts in STV was 68.0% DM, 25.4% CP, 44.3% NDF, and 5.4% fat (DM basis; 

Table 2.3). The composition of the byproducts in PEL-STV was 73.9% DM, 24.8% CP, 

42.5% NDF, and 5.0% fat (DM basis). There were no differences (P = 0.35) for final BW 

between PEL-STV and STV. Pelleting the treated corn stover, CDS, and HPDG 

decreased DMI, with steers fed PEL-STV consuming 12.8 kg/d in comparison to 13.3 

kg/d for steers fed STV (P = 0.03). Previous authors reported greater DMI for cattle 

consuming pelleted feeds compared to non-pelleted feeds (Peterson et al., 2015). Greater 

DMI has been attributed to faster passage rate as a result of lower total tract digestibility 

(Coleman et al., 1978; Le Liboux et al., 1999) and smaller particle size of pelleted feeds 

(Blaxter et al., 1956; Weir et al. 1959; Moore et al., 1964). Gramkow et al. (2016) 

evaluated a similar CaO treated corn stover pelleted with DGS as the current experiment.  

Digestibility of the pelleted corn stover was not different compared to MDGS. However, 

DMI increased as inclusion of pelleted stover increased in the diet. Cattle in the current 

trial had lower DMI when 38.75% (DM basis) of the diet was pelleted feed. Both STV 

and PEL-STV would have similar particle sizes prior to pelleting. Pelleted corn stover in 

the PEL-STV treatment was exposed to higher heat and pressure from pelleting compared 

to STV. Heat and pressure generated during pellet production further breaks down the 

treated corn stover (Zeeck, 2013). There were no differences between PEL-STV and STV 

for ADG (1.65 vs. 1.70 kg/d, respectively; P = 0.37) and G:F (0.127 vs. 0.126, 

respectively; P = 0.63). The pelleted treated corn stover may have provided more energy 

than the non-pelleted treated corn stover, which allowed the animal to consume less DM 

and perform similar to the non-pelleted treated corn stover. There were no differences (P 
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≥ 0.35) in HCW, LM area, and 12th rib fat between PEL-STV and STV. Marbling had a 

tendency to decrease for steers fed PEL-STV compared to STV (482 vs. 511, 

respectively;; P = 0.07). Pelleting decreased animal intake without affecting growth 

performance or carcass characteristics.  

Linear and Quadratic Responses for Protein 

In order to diversify marketable products and add value to DGS, ethanol plants 

have developed technologies to further fractionate corn. The fiber component is subjected 

to cellulosic fermentation yielding additional ethanol and a DGS lower in NDF content. 

The remaining NDF has been reported to be less digestible and lower in energy relative 

to fiber from traditional DGS (Lundy et al., 2015). Following cellulosic fermentation, 

protein can be separated via protease enzymes and sold in alternative markets (Brehmer 

et al., 2008). Both COMP-MED and COMP-LOW were formulated to replace the protein 

from DGS by removing HPDG and increasing the concentrations of CDS and corn bran. 

The proportion of CDS to corn bran remained the same as in COMP but their 

concentrations were greater as HPDG was removed. These two diets may have nutrient 

compositions similar to future ethanol corn byproducts. There were no differences (P = 

0.19) for final BW between COMP (57.2% DM, 33.2% CP, 32.0% NDF, 7.2% fat, and 

0.57% S; DM basis), COMP-MED (46.7% DM, 31.9% CP, 29.4% NDF, and 6.7% fat; 

DM basis), and COMP-LOW (36.1% DM, 30.5% CP, 26.9% NDF, and 6.2% fat; DM 

basis; Table 2.5). As HPDG was replaced with CDS and corn bran between COMP, 

COMP-MED, and COMP-LOW, DMI quadratically increased (P = 0.04) with COMP-

MED increasing and COMP-LOW decreasing, compared to COMP. Pesta et al. (2015) 

observed a linear decrease in DMI as CDS concentration increased from 0 to 36%. One 
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reason for decreased DMI with greater concentrations of CDS is high S (Sarturi et al., 

2013b), and dietary S of 0.44% S in COMP-LOW in this study may have been enough to 

cause decreased DMI. One steer from COMP-MED and three steers from COMP-LOW 

were diagnosed with PEM, suggesting that the byproducts did contain high levels of S. 

Limiting DMI due to S concentration does not explain why DMI increased from COMP 

to COMP-MED. There were no significant differences (P = 0.16) in ADG due to 

changing portion of protein. Replacing proportions of protein tended (P = 0.10) to 

improve G:F linearly. Pesta et al. (2015) reported as CDS inclusion increased from 0 to 

36%, G:F improved quadratically. The authors calculated that the maximum G:F 

response occurred at 32.5% CDS resulting in cattle being 12% more efficient than those 

fed 0%. The authors note that G:F plateaus at the greatest inclusion of CDS, which means 

that even greater inclusions than tested may be feasible. Limiting factors of inclusions 

greater than 36% CDS include handling properties of the diet (decreasing DM content 

and winter storage capabilities) and addition of dietary fat and/or S. Replacing HPDG 

with proportions of CDS and corn bran resulted in greater feeding values (83 vs. 89 and 

90% relative to corn for COMP vs. COM-MED and COMP-LOW, respectively). There 

were no differences (P = 0.19) for HCW between COMP, COMP-MED, and COMP-

LOW. Removing protein tended to increase LM area quadratically (P = 0.08) and linearly 

decrease 12th rib fat (P = 0.02). There were no differences (P = 0.28) for marbling. 

Displacing half the protein with CDS and corn bran (at equal proportions to COMP) 

caused increased DMI and tended to increase LM area. When protein was completely 

displaced by a combination of CDS and corn bran, DMI, ADG, and G:F were similar to 

COMP. 
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IMPLICATIONS 

Replacing the fiber from DDGS with a treated corn stover mixture supplied less 

energy. As the portion of CDS and fiber (corn bran) from the composite DGS increased, 

finishing performance was similar. If protein in DGS is removed, CDS and corn bran 

may be able to displace the protein without sacrificing animal performance. Combining 

individual ingredients of corn bran, HPDG, and CDS at various inclusion levels did not 

mimic the fiber, protein, and fat fractions of DDGS suggesting some component(s) was 

missing. 
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Table 2.1. Dietary treatments containing modified components of distillers grains fed to steers1. 

 Treatment 

Item CON3 DDGS PEL-

STV6 

STV COMP COMP-

MED 

COMP-

LOW 

Ingredient, % DM2        

HMC 31.50 31.50 31.50 31.50 31.50 31.50 31.50 

DRC 50.00 ̶ ̶ ̶ ̶ ̶ ̶ 

DDGS ̶ 50.00 ̶ ̶ ̶ ̶ ̶ 

CDS ̶ ̶ 11.25 11.25 18.75 24.40 30.00 

Treated Corn 

Stover4,5 

̶ ̶ 38.75 38.75 ̶ ̶ ̶ 

Corn Bran7 ̶ ̶ ̶ ̶ 12.50 16.20 20.00 

HPDG ̶ ̶ ̶ ̶ 18.75 9.40 ̶ 

Alfalfa hay 5.50 5.50 5.50 5.50 5.50 5.50 5.50 

Corn Silage 4.00 4.00 4.00 4.00 4.00 4.00 4.00 

Liquid Molasses 5.00 5.00 5.00 5.00 5.00 5.00 5.00 

Supplement8        

Fine ground corn 0.725 1.534 3.022 3.022 1.534 1.534 1.534 

Limestone 1.430 1.976 0.488 0.488 1.976 1.976 1.976 

Salt 0.300 0.300 0.300 0.300 0.300 0.300 0.300 

Urea 1.355 - - - - - - 

Tallow 0.100 0.100 0.100 0.100 0.100 0.100 0.100 

Beef trace mineral9 0.050 0.050 0.050 0.050 0.050 0.050 0.050 
Vitamins A, D, and E10 0.015 0.015 0.015 0.015 0.015 0.015 0.015 

Rumensin 9011 0.0165 0.0165 0.0165 0.0165 0.0165 0.0165 0.0165 

Tylan 4012 0.0087 0.0087 0.0087 0.0087 0.0087 0.0087 0.0087 
1All values presented on a DM basis. 
2HMC = high-moisture corn; DRC = dry-rolled corn; DDGS = dried distillers grain plus solubles; CDS = 

condensed distillers solubles; HPDG = high protein dried distillers grains plus solubles. 
3Supplemented with urea at 1.36% of diet to meet the DIP requirement. 
4Corn stover treated with CaO by Pellet Technology USA, LLC, Gretna, NE. 
5Treated corn stover at 12.50%, 7.50% condensed distillers solubles, and 18.75% high-protein dried distillers 

grains plus solubles processed by Pellet Technology USA, LLC, Gretna, NE. 
6Treated corn stover, condensed distillers solubles, and high-protein dried distillers grains pelleted by Pellet 

Technology USA, LLC, Grenta, NE. 
7Corn bran is isolated from dry-milling process and is not purified bran (contains more protein). 
8Supplement formulated to be fed at 4% dietary DM.  
9Premix contained 10%Mg, 6% Zn as ZnO, 4.5% Fe as FeSO4, 2% Mn as MnO, 0.5% Cu as CuSO4, 0.3% I 

as Ca(IO3)2(H2O), and 0.05% Co as CoCO3.  
10Premix contained 1,500 IU vitamin A, 3,000 IU vitamin D, and 3.7 IU vitamin E per g. 
11Formulated to provide 375 mg∙steer∙d-1 monensin (Rumensin; Elanco Animal Health, Greenfield, IN). 
12Forumated to provide 90 mg∙steer∙d-1 tylosin (Tylan; Elanco Animal Health). 
13DM basis. 
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Table 2.2. Composition of dietary treatments containing modified components of distillers 

grains fed to steers1. 

 Treatment 

Item CON3 DDGS PEL-

STV6 

STV COMP COMP-

MED 

COMP-

LOW 

Dietary 

Composition13 

       

DM 81.7 82.2 73.4 70.4 65.3 60.0 54.7 

OM 94.4 92.3 90.7 90.7 91.2 90.6 89.9 

CP 15.5 22.7 18.2 18.5 22.1 21.5 20.8 

NDF 12.2 25.8 29.1 30.0 23.8 22.5 21.3 

ADF 6.7 14.8 17.3 18.0 11.2 10.4 9.6 

Lignin 1.5 3.0 3.0 3.3 1.9 1.8 1.7 

Fat 3.66 6.10 4.32 4.50 5.33 5.14 4.95 

Ca 0.78 0.97 0.55 0.58 1.01 1.02 1.03 

P 0.26 0.60 0.71 0.72 0.69 0.78 0.87 

K 0.74 1.17 1.42 1.43 1.32 1.47 1.61 

S 0.16 0.31 0.41 0.41 0.40 0.42 0.44 
1All values presented on a DM basis. 
2HMC = high-moisture corn; DRC = dry-rolled corn; DDGS = dried distillers grain plus 

solubles; CDS = condensed distillers solubles; HPDG = high protein dried distillers grains plus 

solubles. 
3Supplemented with urea at 1.36% of diet to meet the DIP requirement. 
4Corn stover treated with CaO by Pellet Technology USA, LLC, Gretna, NE. 
5Treated corn stover at 12.50%, 7.50% condensed distillers solubles, and 18.75% high-protein 

dried distillers grains plus solubles processed by Pellet Technology USA, LLC, Gretna, NE. 
6Treated corn stover, condensed distillers solubles, and high-protein dried distillers grains 

pelleted by Pellet Technology USA, LLC, Grenta, NE. 
7Corn bran is isolated from dry-milling process and is not purified bran (contains more 

protein). 
8Supplement formulated to be fed at 4% dietary DM.  
9Premix contained 10%Mg, 6% Zn as ZnO, 4.5% Fe as FeSO4, 2% Mn as MnO, 0.5% Cu as 

CuSO4, 0.3% I as Ca(IO3)2(H2O), and 0.05% Co as CoCO3.  
10Premix contained 1,500 IU vitamin A, 3,000 IU vitamin D, and 3.7 IU vitamin E per g. 
11Formulated to provide 375 mg∙steer∙d-1 monensin (Rumensin; Elanco Animal Health, 

Greenfield, IN). 
12Forumated to provide 90 mg∙steer∙d-1 tylosin (Tylan; Elanco Animal Health). 
13DM basis. 
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Table 2.3. Nutrient analysis for ingredients containing modified components of 

distillers grains fed to steers. 

 Ingredient 

% DM 

basis 

HMC1 DRC1 DDGS1 Pelleted 

Treated 

Corn 

Stover2,3,4 

Treated 

Corn 

Stover2,3 

Corn 

Bran5 

HPDG1 CDS1 

DM 71.4 89.9 91.1 85.1 77.4 37.0 92.3 35.5 

OM 98.2 98.4 95.0 87.1 87.1 97.6 97.2 85.3 

CP 11.1 11.1 34.4 21.8 19.1 24.1 37.7 34.8 

NDF 9.8 8.7 35.9 52.7 55.1 56.3 40.3 7.4 

ADF 2.8 4.1 20.2 31.7 33.5 20.2 18.6 2.8 

Lignin 0.8 1.2 4.3 5.4 6.0 2.8 2.8 0.8 

Fat 4.3 3.9 8.7 4.5 5.0 5.5 8.4 7.0 

Ca 0.04 0.03 0.04 1.36 1.61 0.09 0.05 0.09 

P 0.31 0.26 0.94 0.55 0.65 0.39 0.50 2.23 

K 0.42 0.38 1.19 1.03 1.36 0.35 0.50 2.94 

S 0.10 0.10 0.40 0.40 0.42 0.25 0.42 0.92 
1HMC = high-moisture corn; DRC = dry-rolled corn; DDGS = dried distillers grains 

plus solubles; CDS = condensed distillers solubles; HPDG = high protein dried 

distillers grains plus solubles. 
2Corn stover treated with CaO by Pellet Technology USA, LLC, Gretna, NE. 
3Treated corn stover at 12.50%, 7.50% condensed distillers solubles, and 18.75% high-

protein dried distillers grains plus solubles processed by Pellet Technology USA, LLC, 

Gretna, NE. 
4Treated corn stover, condensed distillers solubles, and high-protein dried distillers 

grains pelleted by Pellet Technology USA, LLC, Grenta, NE. 
5Corn bran is isolated from dry-milling process and is not purified bran (contains more 

protein). 



 

 
7
7
 

 

 0 

Table 2.4. Effects of modifying different components of distillers grains on animal performance and carcass 

characteristics. 

 Treatment1  P - value 

Item CON DDGS PEL-

STV 

STV COMP SEM CON 

vs. 

DDGS  

DDGS 

vs. 

COMP 

COMP 

vs. 

STV 

STV 

vs 

PEL-

STV 

Initial BW, kg 367 368 368 368 367 1 0.65 0.65 0.52 0.74 

Final BW, kg2 631 655 617 625 623 6 <0.01 <0.01 0.88 0.35 

DMI, kg/d 11.9 12.9 12.8 13.3 12.4 0.2 <0.01 0.05 <0.01 0.03 

ADG, kg3 1.74 1.89 1.65 1.70 1.69 0.04 <0.01 <0.01 0.91 0.37 

G:F3 0.144 0.145 0.127 0.126 0.132 0.002 0.80 <0.01 0.04 0.63 

Feeding Value4 100 101 76 74 83 - - - - - 

HCW, kg 398 413 389 394 393 4 <0.01 <0.01 0.88 0.35 

LM area, cm2 85.3 83.8 84.8 83.9 83.5 1.1 0.34 0.83 0.79 0.56 

12th rib fat, cm 1.43 1.61 1.35 1.37 1.53 0.05 0.01 0.02 0.02 0.73 

Marbling5 529 511 482 511 514 11 0.25 0.82 0.82 0.07 
1CON = 50% dry-rolled corn; DDGS = 50% dried distillers grains plus solubles; PEL-STV = pelleted 7.50% condensed 

distillers solubles, 12.5% treated corn stover, 18.75% high-protein dried distillers grains plus solubles, with an additional 

11.25% condensed distillers solubles added at mixing; STV = 7.5% solubles, 12.5% treated corn stover, 18.75% high-

protein dried distillers grains plus solubles, with an additional 11.25% condensed distillers solubles added at mixing; 

COMP = 18.75% solubles, 12.5% corn bran, and 18.75% high-protein dried distillers grains plus solubles. 
2Calculated from HCW/common dress (63%).  
3Calculated from carcass weight, adjusted to 63% common dressing percent. 
4Feeding Value Calculation: [((compared treatments G:F – CON G:F) / CON G:F) / compared treatments inclusion 

rate*100+100] 
5Marbling score: 400 = Small00. 
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Table 2.5. Effects of modifying different components of distillers grains on animal performance and carcass 

characteristics. 

 Treatment1  P - value 

Item CON DDGS COMP COMP-

MED 

COMP-

LOW 

SEM CON 

vs. 

DDGS  

DDGS 

vs. 

COMP 

Lin2 Quad3 

Initial BW, kg 367 368 367 367 369 1 0.65 0.65 0.11 0.43 

Final BW, kg4 631 655 623 635 629 6 <0.01 <0.01 0.48 0.19 

DMI, kg/d 11.9 12.9 12.4 12.8 12.3 0.2 <0.01 0.05 0.66 0.04 

ADG, kg5 1.74 1.89 1.69 1.77 1.72 0.04 <0.01 <0.01 0.58 0.16 

G:F5 0.144 0.145 0.132 0.136 0.137 0.002 0.80 <0.01 0.10 0.51 

Feeding Value6 100 101 83 89 90 - - - - - 

HCW, kg 398 413 393 400 396 4 <0.01 <0.01 0.48 0.19 

LM area, cm2 85.3 83.8 83.5 87.1 86.1 1.1 0.34 0.83 0.10 0.08 

12th rib fat, cm 1.43 1.61 1.53 1.43 1.38 0.05 0.01 0.02 0.02 0.67 

Marbling7 529 511 514 512 497 11 0.25 0.82 0.28 0.67 
1CON = 50% dry-rolled corn; DDGS = 50% dried distillers grains plus solubles; COMP = 18.75% solubles, 12.5% corn 

bran, and 18.75% high-protein dried distillers grains plus solubles; COMP-MED = 24.4% solubles, 16.2% corn bran, and 

9.4% high-protein dried distillers grains plus solubles; COMP-LOW = 30% solubles and 20% corn bran. 
2Lin. = P-value for the linear response of protein with COMP, COMP-MED, COMP-LOW. 
3Quad. = P-value for the quadratic response of protein with COMP, COMP-MED, COMP-LOW. 
4Calculated from HCW/common dress (63%).  
5Calculated from carcass weight, adjusted to 63% common dressing percent. 
6Feeding Value Calculation: [((compared treatments G:F – CON G:F) / CON G:F) / compared treatments inclusion 

rate*100+100] 
7Marbling score: 400 = Small00. 
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ABSTRACT 

Three studies evaluated the relative contribution of excess rumen undegradable protein 

(RUP) from distillers grains plus solubles (DGS) on growth performance, carcass traits, 

nutrient digestibility, ruminal VFA concentrations and pH. In Exp. 1, crossbred steers (n 

= 324; initial BW = 291; SD = 24 kg) were utilized in a randomized block design to 

determine the relative contributions of protein on the feeding value of DGS. Protein in 

wet DGS (WDGS) was simulated using corn gluten meal (CGM; 8.75 and 17.5% 

inclusion, LOW-CGM and HIGH-CGM, respectively; DM basis) to provide similar RUP 

as 20 (20DGS) and 40% WDGS (40DGS; DM basis), respectively. In addition to CGM, 

10% (DM basis) condensed distillers solubles (CD) was added to HIGH-CGM (CGM-

CDS) to compare to 40DGS diet. All treatments were compared to a dry-rolled corn 

control (CON). In Exp. 2, six duodenally fistulated steers were utilized in an unbalanced 

6 × 6 row-column design with six periods and four treatments (CON, 40DGS, HIGH-

CGM, CGM-CDS) to evaluate site of nutrient digestion. In Exp. 3, six ruminally 

fistulated steers were utilized in an unbalanced 6 × 6 row-column design with six periods 

and four treatments (CON, 40DGS, HIGH-CGM, CGM-CDS) to evaluate bacterial 

purine:N, ruminal VFA concentration, and ruminal pH. Both Exp. 2 and 3 used modified 

DGS. In Exp. 1, a quadratic increase (P = 0.04) in ADG was observed as CGM increased 

from 0% (1.65 kg) to 17.5% (1.73 kg). A linear increase (P < 0.01) in G:F was observed 

as CGM increased from 0% (0.161) to 17.5% (0.169). Isolating the protein portion of 

20% WDGS by feeding 8.75% CGM decreased (P < 0.01) G:F compared to 20% WDGS. 

Similarly, protein from 40% WDGS replaced by 17.5% CGM increased (P < 0.01) DMI 

and decreased (P < 0.01) G:F compared to 40% WDGS. Relative to the control diet, 
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20DGS, 40DGS, LOW-CGM, HIGH-CGM, and CGM-CDS had 134, 125, 110, 129, and 

121% the feeding value of corn, respectively. In Exp. 2, total tract digestibilities of DM 

and OM were less (P ≤ 0.03) for steers fed 40DGS compared to CON, HIGH-CGM, and 

CGM-CDS (OM digestibilities of 72.9, 84.7, 80.5, and 84.3%, respectively; SEM = 

3.1%). Total tract NDF digestibility was not different (P = 0.64) among treatments. 

Excess protein used as an energy source from DGS accounts for the majority of the 

feeding value response observed when feeding DGS. 

Key Words: distillers grains plus solubles, finishing, protein 
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INTRODUCTION 

 As advances in technology continue in the ethanol industry, isolating and 

separating components of distillers grains plus solubles (DGS) is becoming more 

prevalent. These changes may influence the use of DGS in feedlot diets. Currently, 

ethanol plants are able to separate a portion of the protein from DGS for use in alternative 

markets. Previous research has examined the fiber, protein, and fat of DGS. Lodge et al. 

(1997) evaluated composites of DGS using wet corn gluten feed, condensed distillers 

solubles (CDS), corn gluten meal (CGM), and tallow formulated to be similar in nutrient 

profiles as wet DGS (WDGS). The feeding value of the composite DGS and WDGS, both 

included at 40% of the diet (DM basis), were 124% and 131% relative to corn 

(Klopfenstein et al., 2008). The feeding value of only protein or only fat from DGS were 

both 118% relative to corn. Oglesbee et al. (2016) combined 17.5% CGM, 14% corn 

bran, and 3% solvent extracted germ meal (DM basis) to replicate the protein and fiber 

portions of DGS. The feeding value, calculated from performance data, for WDGS, fiber 

component, and protein component were 130%, 83%, and 121%, respectively, relative to 

corn. Conroy et al. (2016) isolated protein, fiber, and CDS from DGS. The feeding values 

for WDGS, protein, fiber, and CDS were 136%, 118%, 96%, and 82%, respectively, 

relative to corn. All authors concluded that protein and fat from DGS are the majority of 

the feeding value of DGS. Limited research has examined isolating only the protein 

portion of DGS. Further investigation on the relative contributions of the protein fraction 

from DGS is required to determine feeding value of protein from DGS.  

The objectives of these experiments were to: isolate and evaluate the protein from 

DGS on animal performance and carcass characteristics in finishing diets (Exp 1); 
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evaluate protein from DGS on site and extent of nutrient digestibility (Exp 2); and 

evaluate protein from DGS effect on ruminal VFA concentration and pH (Exp 3). 

MATERIALS AND METHODS 

All procedures involving animal care and management were approved by the 

University of Nebraska’s Institutional Animal Care and Use Committee. 

Experiment 1 

Crossbred calf-fed steers [n = 324; 291 kg (SD = 24) initial BW] were utilized in 

a generalized randomized block design at the University of Nebraska Panhandle Research 

and Extension Center feedlot (Scottsbluff, NE). Before the start of the experiment, steers 

were received, given an identification tag, and vaccinated with an infectious bovine 

rhinotracheitis, parainfluenza-3, bovine viral diarrhea virus, bovine respiratory syncytial 

virus modified live virus vaccine (Bovi-Shield Gold 5 Way; Pfizer Animal Health, New 

York City, NY), vaccinated with a Clostridium chauvoei, C. septicum, C. novyi, C. 

sordelli, C. perfringens types C and D bacterin toxoid (Vision 7 Somnus with spur; 

Merck Animal Health, De Soto, KS), and treated with Ivomec (Ivomec; Merial, Duluth, 

GA) for internal and external parasite control. Steers were limit-fed (2% of BW) a diet 

consisting of 15% straw, 25% alfalfa hay, 35% corn silage, and 25% WDGS (DM basis) 

for five d prior to weighing to equalize gut fill (Watson et al., 2013). Steers were 

individually weighed using a hydraulic squeeze chute with load cells mounted on the 

chute (Silencer, Moly Manufacturing Inc., Lorraine, KS: scale readability ± 0.45 kg) for 

two consecutive days (d 0 and 1) to establish initial BW (Stock et al., 1983). Steers were 

blocked by BW into two blocks (light and heavy) and stratified by BW within block, and 

assigned randomly to 36 pens.  
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 Pens were assigned randomly to one of six dietary treatments with six replications 

per treatment and 9 steers per pen. Dietary treatments are provided in Table 3.1. In the 

experimental diets, the protein portion of WDGS was mimicked by CGM (74.2% CP, 

7.0% NDF, 3.5% fat) to provide similar protein as 20 and 40% WDGS. Corn gluten meal 

is produced from the wet milling processing of corn grain. Corn gluten meal is high in 

protein, approximately 68% CP (NASEM, 2016). Previous work has estimated that the 

percentage of rumen undegradable protein (RUP) from CGM ranges from 46-86% (% of 

CP; Zinn et al., 1981; Stern et al., 1983; Titgemeyer et al., 1989). The most current RUP 

estimate is 69% of CP (NASEM, 2016). Therefore, the protein component of distillers 

grains could be examined without the addition of other components (i.e. fiber and fat). 

Diets were formulated to provide 360 mg/steer of Monensin (Rumensin, Elanco Animal 

Health) and 90 mg/steer of Tylosin (Tylan, Elanco Animal Health) daily via micro-

machine.  

 Steers were implanted on d 1 with 16 mg of estradiol and 80 mg of trenbolone 

acetate (Component TE-IS, Elanco Animal Health) and re-implanted with 24 mg of 

estradiol and 120 mg of trenbolone acetate (Component TE-S, Elanco Animal Health) on 

d 90. Steers were individually weighed once at the end of the experiment, and a 4% 

pencil shrink was applied for calculation of final live BW. Carcass-adjusted performance 

was calculated using HCW adjusted to a common dressing percent of 63%. 

Feed bunks were assessed at approximately 0600 h and managed for trace (≤0.2 

kg/steer) amounts of feed remaining in the bunk each morning at time of feeding. Feed 

was delivered with a truck mounted mixer and delivery unit (Roto-Mix model 274, Roto-

Mix, Dodge City, KS; scale readability ± 0.91 kg) each morning at 0800 h. Steers were 

adapted to finishing diets over a 21-d period with a series of 4 diets containing 20, 15, 10, 
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and 5% of both alfalfa hay and wheat straw for 3, 4, 7, and 7 d, respectively, with DRC 

replacing alfalfa hay and wheat straw. Concentration of wet distillers grains with solubles 

(20 and 40%; WDGS; Bridgeport Ethanol LLC, Bridgeport, NE; 31.1% CP, 29.8% NDF, 

7.4% fat), corn silage (15%), and liquid supplement (6%) were included at the same 

concentration in the adaptation diets as the finishing diets (DM basis; Table 3.1). Corn 

gluten meal (ADM Corn Processing, Columbus, NE; 81.4% DM, 74.2% CP, 7.0% NDF, 

3.5% fat) was included in the DRC-based diets at 8.75 or 17.50% (DM basis), 

respectively, replacing corn. The CGM used in Exp 1 was delivered as needed from 

November 2014 until May 2015 and was stockpiled in a concrete bunker silo through the 

remainder of the experiment. The CDS (Bridgeport Ethanol LLC, Bridgeport, NE; 19.3% 

CP) used in Exp 1 was stored in liquid bulk tanks. The liquid supplement for CON 

contained 1.34% Ca to meet the NRC (1996) requirements and 1.3% urea (DM basis) to 

meet or exceed rumen degradable protein requirements (NRC, 1996). The liquid 

supplement for 20DGS, 40DGS, LOW-CGM, HIGH-CGM, and CGM-CDS contained 

1.4% limestone (71% Ca by atomic weight) to meet the NRC (1996) requirements. 

Ingredient and diet samples were collected weekly and dried in a 60°C forced-air oven 

for 48 h to determine DM of the samples (AOAC International, 1997; Method 930.15). 

Composited ingredient samples were sent to a commercial laboratory (Servi-Tech 

Laboratories, Hastings, NE) and analyzed for CP (AOAC International, 2000; Method 

990.03), NDF (ANKOM, 2006), ether extract (AOAC International, 2006; Method 

2003.6), Ca, P, S (Mills and Jones, 1996), and total starch (AOAC International, 2000; 

Method 996.11) content. Dry-rolled corn was processed at the research feedlot using a 

roller mill. 
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Cattle were shipped according to projections made utilizing interim BW and ADG 

to target a final BW of 635 kg. Steers were harvested at a commercial abattoir (Cargill 

Meat Solutions, Fort Morgan, CO) on d 182 (heavy block) and d 193 (light block). All 

carcass data were collected by Diamond T Livestock Services (Yuma, CO). Hot carcass 

weight and liver scores were recorded on day of harvest. After a 48-h chill, LM area, 

marbling score, and 12th-rib fat were recorded. Yield grade was calculated from the 

following formula: 2.50 + (6.35 x 12th rib fat thickness, cm) + (0.2 x 2.5 [KPH]) + 

(0.0017 x HCW, kg) - (2.06 x LM area, cm2) from USDA (1997). Final BW was carcass-

adjusted using HCW and a common dressing percent (63%) to calculate ADG and G:F. 

Hot carcass weights were used to reduce errors associated with gut-fill differences among 

dietary treatments (Meyer et al., 1960; Watson et al., 2013). Feeding value was calculated 

from the following formula: [((compared treatments G:F – CON G:F) / CON G:F) / 

compared treatments inclusion rate*100 + 100]. Dietary NEm and NEg values were 

calculated for each treatment based on intake and performance of cattle. These data were 

analyzed as dietary NE for each pen, similar to performance data using equations from 

the NRC (1996) as described by Vasconcelos and Galyean (2008). 

 Performance and carcass characteristics were analyzed using the MIXED 

procedure of SAS (SAS Institute, Inc., Cary, N.C.) with pen as the experimental unit. The 

model included block and dietary treatment as a fixed effects. Liver abscesses were 

analyzed as a binomial response using the GLIMMIX procedure of SAS (SAS Institute, 

Inc., Cary, N.C.) with animal as the experimental unit. The model included block and 

dietary treatment. Dead or chronic steers were removed from analysis. Five steers were 

removed from the experiment due to injury or respiratory issues. Two steers were 
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removed from the experiment from CON due to chronic illness. One steer was removed 

from the experiment from HIGH-CGM treatment due to a broken leg. One steer was 

removed from CGM-CDS due to ruptured internal organs. Linear and quadratic contrasts 

were developed to compare DGS concentration (20 vs. 40) and protein concentration. 

Pairwise comparisons were pre-planned to determine the addition of CDS (HIGH-CGM 

vs. CGM-CDS) and feeding value of protein from DGS (20DGS vs. LOW-CGM; 40DGS 

vs. HIGH-CGM). Treatment differences were considered significant when P ≤ 0.05 with 

tendencies between P > 0.05 and P ≤ 0.10. Treatment comparisons were made using pair-

wise comparisons when the F-test statistic was significant. 

Experiment 2 

Six duodenally fistulated crossbred steers (380 kg initial BW; SE = 50) were 

utilized in an unbalanced 6 × 6 row-column design, with six periods and four treatments, 

at the University of Nebraska Metabolism Lab (Lincoln, NE). Each period consisted of 

21-d with 16-d adaptation followed by a 5-d collection period. Dietary treatments were 

similar to Exp. 1 (Table 3.2). Modified distillers grains plus solubles (MDGS; Flint Hills 

Resources, Fairmont, NE; 34.1% CP, 38.5% NDF, 10.8% fat) was utilized in Exp 2 and 

Exp 3. Diets were offered once daily at 0800 allowing for ad libitum intake. Feed refusals 

were collected from d 16 to 20, weighed, and subsampled to determine nutrient intake. 

Steers were individually housed in 2.1 x 3.7 m pens equipped with slatted floors and 

given ad litbitum access to water. All diets contained 5% dry meal supplement that 

provided 375 mg/steer daily of monensin (Rumensin; Elanco Animal Health, Greenfield, 

IN) and 90 mg/steer daily of tylosin (Tylan; Elanco Animal Health). Supplements were 

mixed weekly in a mobile ribbon mixer (model L-1000A Food Mixer; Leland Detroit 
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Manufacturing Co., Fort Worth, TX) and stored in 37-L barrels. The barrels were stored 

at room temperature (20°C). Diets were mixed weekly in a stationary ribbon mixer 

(model S-5 Mixer; H.C. Davis Sons Manufacturing Co., Inc., Bonner Springs, KS) and 

stored in 200-L barrels. The barrels were stored in a cooler held at 4°C to ensure diet 

quality was maintained. 

Fecal output was estimated by top dressing titanium dioxide (TiO2; 10 g/d) at time 

of feeding (0800) throughout the period. Fecal and duodenal samples were collected from 

d 17 to 21 at 0800, 1200, 1600 h. A single 250-mL fecal aliquot and two 250-mL 

duodenal aliquots were retained from each collection. Fecal samples were composited by 

day (wet weight basis) within steer, lyophilized (Virtis Freezemobile 25ES; Life 

Scientific, Inc., St. Louis, MO), and ground through a 1-mm screen using a Wiley mill 

(number 4; Thomas Scientific, Swedesboro, NJ). The lyophilized and ground daily 

composites were then composited on a dry weight basis by steer within collection period. 

Fecal samples were analyzed for TiO2 concentration as described by Myers et al. (2004). 

Concentration of TiO2 was then used to calculate fecal DM output using the following 

equation (Cochran and Galyean, 1994): g marker dosed per d/concentration of marker in 

feces.  

One 250mL duodenal sample was stored at 4°C. The second 250mL duodenal 

sample was lypholized (Virtis Freezemobile 25ES; Life Scientific, Inc.) and ground 

through a 1-mm screen using a Wiley mill (number 4; Thomas Scientific). The steer x h 

sample was then composited on an equal dry weight basis by collection period. Duodenal 

samples were analyzed for TiO2 concentration as described by Myers et al. (2004). 

Concentration of TiO2 was then used to calculate OM flow using the following equation 
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(Cochran and Galyean, 1994): g marker dosed per d/concentration of marker in duodenal 

sample.  

Individual feed ingredients were dried in 60°C forced-air oven (model LBB2-21-

1; Despatch Industries) for 48 h (AAOC, 1965; method 935.29) weekly to ensure that 

accurate DM were used when mixing dietary treatments. Samples of individual 

ingredients were taken prior to mixing diets, composited by period, lyophilized (Virtis 

Freezemobile 25ES; Life Scientific, Inc.), and ground through a 1-mm screen using a 

Wiley mill (number 4; Thomas Scientific). Feed samples were analyzed for OM, CP, 

NDF, fat, and starch to calculate nutrient composition of dietary treatments (Table 3.2). 

Duodenal and fecal samples were analyzed for DM, OM, NDF, and starch. Laboratory 

DM was determined after drying in a 100°C forced-air oven for 24 h (AOAC, 1990; 

methods 930.15). Ash and OM were determined by placing samples in a muffle furnace 

for 6 h at 600°C (AOAC, 1999; method 4.1.10). Crude protein was determined by using a 

combustion chamber (TruSpec N Determinator; Leco Corporation, St. Joseph, MI; 

AOAC, 1999; method 990.03). Neutral detergent fiber analysis was conducted using the 

procedure described by Van Soest et al. (1991) with modifications to the analysis of corn 

and byproducts described by Buckner et al. (2013). The modifications applied to corn 

prior to NDF analysis consisted of grinding corn through a 0.5-mm screen fitted on a 

Tecator Cyclotec Mill (ThermoFisher Scientific, Eden Prairie, MN). Additionally, 2 

doses (0.5 mL/dose) of α-amylase (catalog number FAA; ANKOM Technology, 

Macedon, NY) were added during the hour boil in NDF solution. The modification 

applied to the byproducts was a biphasic lipid extraction (Bremer et al., 2010) prior to 

NDF analysis (Buckner et al., 2013). Ether extract was determined by a biphasic lipid 
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extraction procedure described by Bremer (2010). Briefly, samples were heated in a 1:1 

mixture of hexane and diethyl ether for 9 h, dilute HCl was added, and samples were 

centrifuged to separate the lipid layer from other liquid. Lipid layer was pipetted off, 

heated to drive off remaining solvent, and weighed. Starch content was determined using 

spectrophotometry (Spectra Max 250 Spectrometer, Molecular Devices, Sunnyvale, CA) 

after converting starch to glucose using an enzyme kit (Megazyme International Ireland 

Ltd., Wicklow, Ireland; method 996.11; AOAC, 2003). 

Nutrient composition of dietary treatments and feces were used to calculate total 

tract digestibility of DM, OM, NDF, and starch. Total tract digestibility was calculated 

using the following equation (Cochran and Galyean, 1994): [(kg of nutrient fed − kg of 

nutrient refused – kg of nutrient in feces)/(kg of nutrient fed − kg of nutrient refused)] × 

100. Steers from Exp. 2 were only duodenally fistulated. Experiment 3 was conducted to 

provide a purine:nitrogen ratio in order to account for microbial nutrient contributions. 

True ruminal digestibility was calculated as the difference between the amount of nutrient 

ingested and the amount present at the duodenal cannula after correcting for microbial 

nutrient contributions. 

Throughout the experiment, challenges resulted from issues with either duodenal 

cannulae or animal health. After the fourth period, 4 animals had been removed over the 

course of the trial. Overall, eight experimental observations were removed from the initial 

6 periods. A seventh and eighth period were added to provide additional 

replications/treatment. As a result of complications with animals, nutrient digestibility 

data were analyzed as a Row x Column design with 4 dietary treatments (CON, 40DGS, 

HIGH-CGM, and CGM-CDS) and 8 periods using the MIXED procedures of SAS (SAS 
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Inst. Inc., Cary, NC). Steer within period was the experimental unit. Steer was included in 

the random statement. The model included treatment and period as independent fixed 

effects. Treatment differences were considered significant when P ≤ 0.10 with tendencies 

between P > 0.10 and P ≤ 0.15. 

Experiment 3 

Six ruminally fistulated crossbred steers (350 kg initial BW; SD = 43) were 

utilized in an unbalanced 6 × 6 row-column design, with six periods and four treatments, 

at the University of Nebraska Metabolism Lab (Lincoln, NE). Each period consisted of 

14-d with 11-d adaptation followed by collections from d 12 to 14. Exp. 3 was performed 

in order to measure ruminal pH, ruminal VFA concentrations, and correct for microbial 

cell flow into the duodenum in Exp 2. Corrections for microbial cells required isolating 

bacterial cells from rumen contents and analyzing purine:nitrogen. Dietary treatments 

were the same as Exp. 2 (Table 3.2). Experiment 3 was performed after Exp. 2. Diets 

were offered once daily at 0800 at ad libitum intake. Feed refusals were collected from d 

11 to 13, weighed, and subsampled to determine nutrient intake. Steers were housed 

similar to Exp 2. Feed and supplement were mixed and stored similar to Exp 2. 

Supplement in Exp 3 included the same ingredients as Exp 2.  

A suction strainer technique was used to collect rumen fluid samples 

(approximately 50 mL) at 0900, 1300, and 1700 h on d 12 and 0700 (1 h pre-feeding), 

1100, 1500, and 1900 h on d 13 of each collection period. All 7 time points were 

combined to provide a 12 h measurement of VFA concentration. During each sampling, 

the suction probe was moved around the rumen to make sure a representative sample of 

rumen fluid was collected. Rumen fluid samples were immediately frozen after collection 
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and remained frozen until VFA concentration was measured. At the time of analysis, 

rumen fluid samples were thawed in a cooler (4°C) to ensure no additional fermentation 

occurred. After thawing samples were prepared according to Erwin et al. (1961) and 

analyzed for VFA concentration using a Trace 1300 gas chromatograph (Thermo Fisher 

Scientific, Inc., Omaha, NE) fitted with a Zebron capillary column (Phenomenex Inc., 

Torrance, CA; catalog number 7HM-G009-22). The column was 30 m in length with an 

inside diameter of 0.32 mm and a film thickness of 1 μm. Crotonic acid (catalog number 

107- 93-7; Sigma-Aldrich, St. Louis, MO) was used as an internal standard for all 

samples. Each sample collected was analyzed twice for VFA concentration to ensure an 

accurate value was obtained. Total run time on the gas chromatograph was 9.75 min. 

During analysis, the inlet and flame ionization detector temperatures were held at 280°C. 

Oven temperature started at 160°C and increased 8°C per minute until it reached 200°C. 

Helium (catalog number SGSPPULW800P; Matheson Tri-Gas, Lincoln, NE) was used as 

the carrier gas. Column carrier flow was set at 2.4 mL/min. Flow rates of compressed air 

(catalog number SGSPPULW700; Matheson Tri-Gas) and hydrogen (catalog number 

SGSPPULW500P; Matheson Tri-Gas) were set at 350 and 30 mL/min, respectively.  

Wireless pH loggers (Dascor, Inc., Escondido, CA) were placed in the rumen on d 

7, prior to feeding, and recorded pH measurements every minute until d 14 of each 

collection period. Only pH measurements from d 10 to 13 were used to estimate rumen 

pH. Probes were attached to a weight to ensure the electrode remained in the ventral sac 

of the rumen. All probes were calibrated prior to being placed in the rumen each 

collection period by submersing them in pH 4 and 7 standard solutions. Ruminal pH 
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measurements from each period were adjusted using the beginning and ending calibration 

values. All pH data were exported onto a computer where data were sorted.  

 Samples of whole rumen (2 kg) contents were taken from the ventral portion of 

the rumen on d 14, blended (model NJ600WM 30 NINJA; Intertek, London, UK) into a 

homogenous mixture, strained through 4 layers of cheesecloth, and centrifuged to isolate 

bacterial cells (Leupp et al., 2009). Whole rumen contents were flash frozen using liquid 

nitrogen for isolation of bacterial cells. Samples were blended on high speed for 1 min 

and strained through 4 layers of cheesecloth. Liquid was then placed in 250-mL 

centrifuge bottles and centrifuged at 500 × g for 20 min at 4°C to remove feed particles 

and protozoa. Supernatant was removed and centrifuged again at 500 ×g for 20 min at 

4°C. Bacteria were separated from free supernatant by centrifuging at 30,000 × g for 20 

min at 4°C and were subsequently frozen at −4°C and lyophilized. Duodenal contents 

from Exp. 2 and ruminal bacterial isolates from Exp. 3 were analyzed for purine 

concentration to determine microbial flow using a modified Zinn and Owens (1986) 

procedure with a more dilute HClO4 to hydrolyze material containing purines (as 

described by Crawford et al., 2008). Purine concentration was determined on a 

spectrophotometer (Spectra Max 250 Spectrometer, Molecular Devices) at 260 nm.  

 Throughout the experiment, challenges resulted from issues with animal health. 

After the first period, one animal was removed. After the fifth period, one animal was 

removed. As a result, one observation from CON and 40DGS and two observations from 

CGM-CDS were not analyzed. Data for VFA concentration and average ruminal pH were 

analyzed as a repeated measure using the MIXED procedure of SAS. Time within day 

was the repeated measure. The model included day, time, treatment, and all resultant 
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interactions, in addition to period as an independent fixed effect. Data for all other 

ruminal pH traits were analyzed using the MIXED procedure of SAS. The model 

included treatment and period as an independent fixed effect. Six covariance structures 

were tested (unstructured, variance components, Cholesky, autoregressive, Toeplitz, and 

compound symmetry), and the structure that resulted in the lowest Bayesian information 

criterion (compound symmetry) was determined the best fit (Littell et al., 1998). 

Treatment differences were considered significant when P ≤ 0.10 with tendencies 

between P > 0.10 and P ≤ 0.15. 

RESULTS AND DISCUSSION 

Experiment 1  

Linear and Quadratic Responses for CON, 20DGS, and 40DGS 

 There was a tendency for a linear increase for final BW (600 vs. 613 kg for CON 

vs. 40DGS, respectively; P = 0.06) due to WDGS inclusion (Table 3.3). As WDGS 

inclusion increased from 0 to 40%, DMI decreased linearly (10.3 vs. 9.7 kg for CON vs. 

40DGS, respectively; P < 0.01) with a tendency for a linear increase in ADG (1.65 vs. 

1.71 kg for CON vs. 40DGS, respectively; P = 0.06). Increasing WDGS inclusion 

linearly improved G:F (0.161 vs. 0.176 for CON vs. 40DGS, respectively; P < 0.01). 

These results support previous data with varying levels of WDGS (Firkins et al., 1985; 

Ham et al., 1994; Watson et al., 2014; Oglesbee et al., 2016). Cattle fed 20DGS and 

40DGS had a feeding value of 134% and 125% relative to corn, respectively. This is 

comparable to the meta-analysis by Klopfenstein et at. (2008), which reported feeding 

value of 40% WDGS was 131% compared to corn. As WDGS inclusion increased, HCW 

tended (P = 0.06) to increase. All other carcass traits were not impacted (P ≥ 0.21) by 
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WDGS inclusion. There was no difference (P > 0.19) in liver abscess scores among 

CON, 20DGS, and 40DGS.  

Linear and Quadratic Responses for Protein 

 The protein portion of WDGS was mimicked by CGM at concentrations equal to 

the protein contained in 20 and 40% WDGS. Increasing protein concentrations 

quadratically increased (P = 0.04) final BW (Table 3.4). Cattle fed HIGH-CGM were 16 

kg heavier compared to CON. There were no differences (P ≥ 0.13) in DMI between 

CON, LOW-CGM and HIGH-CGM. Gain increased quadratically (P = 0.04) as CGM 

increased. Cattle fed 17.5% CGM (protein concentration equal to 40% WDGS) gained 

1.73 kg/d compared to CON which gained 1.65 kg/d. As protein increased in the diet, 

G:F increased linearly (0.161 vs. 0.169 for CON vs. HIGH-CGM, respectively; P < 

0.01). There was a quadratic increase (P = 0.04) for HCW with steers fed HIGH-CGM 

having the greatest HCW at 388 kg compared to CON and LOW-CGM. There were no 

differences (P = 0.12) in dressing percent as protein increased. There tended to be a 

quadratic increase (P < 0.10) in LM area with HIGH-CGM having the largest LM area, 

CON intermediate, and LOW-CGM with the smallest. There were no differences (P ≥ 

0.22) in calculated yield grade and 12th rib fat among CON, LOW-CGM, and HIGH-

CGM. Marbling tended to increase linearly (P = 0.10) as protein concentration increased. 

There were no differences (P = 0.19) for liver abscesses between CON, LOW-CGM, and 

HIGH-CGM.  

Several studies have fed cattle concentrations of DGS to exceed the cattle’s’ MP 

requirement and reported greater energy per kg of DM for distillers grains or DGS than 

corn it replaced (Farlin et al., 1981; Firkens et al., 1985; Larson et al., 1993; Ham et al., 
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1994; Trenkle et al., 1997). In the current experiment, all diets were formulated to meet 

or exceed metabolizable protein requirements (NRC, 1996). Based on animal 

performance and nutrient analysis, MP balance was calculated using equations from NRC 

(1996). Cattle consuming CON, 20DGS, and LOW-CGM had an MP balance of -9, 118, 

and 208 g/kg SBW0.75, respectively. Likewise, cattle consuming 40DGS, HIGH-CGM, 

and CGM-CDS had 301, 477, and 443 g/kg SBW0.75, respectively. Therefore, 

improvements in animal performance over corn is a result from excess protein, primarily 

RUP, being utilized more efficiently than the corn it replaced. These results indicate an 

energy response for CGM, not a protein response.  

HIGH-CGM vs. CGM-CDS 

 The addition of 10% CDS (CGM-CDS) decreased final BW (602 vs. 616 kg, 

respectively; P = 0.04) compared to HIGH-CGM (Table 3.4). Conroy et al. (2016) 

observed a similar response when 10% CDS was added with 14% CGM in a corn-based 

diet. In that study, compared to 10% CDS only, the addition of 14% CGM increased DMI 

but ADG and G:F were not different. In this experiment, DMI tended to be lower (P = 

0.08) for cattle fed CGM-CDS compared to HIGH-CGM. Average daily gain decreased 

for CGM-CDS, with steers gaining 1.66 kg/d in comparison to 1.73 kg/d for steers fed 

HIGH-CGM (P = 0.08). In a similar experiment by Oglesbee et al. (2016), the addition of 

8% CDS to a distillers grains fiber composite diet resulted in improved DMI and ADG. 

The authors reported no difference (P = 0.32) in G:F between HIGH-CGM and CGM-

CDS. Olgesbee et al. (2016) observed no effect of CDS on G:F. Conroy et al. (2016) 

observed poorer G:F when 10% of corn was replaced with CDS. Supplementing CDS 

decreased ADG and DMI at a similar rate, which did not change G:F. Condensed 
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distillers solubles has variable impacts on performance when combined with DGS 

composite diets. Belyea et al. (1998) examined the variability in distillers solubles from 

one wet milling ethanol plant. The authors found that metabolizable energy of CDS (2400 

kcal/kg) was lower than corn (3400 kcal/kg). Although the CDS from their experiment 

was derived from the wet milling industry similar sources of variation could be observed 

from dry milling plants. Potential variability between ethanol plants may help explain the 

differences observed between the current trial and Olgesbee et al., (2016) and Conroy et 

al. (2016). Compared with HIGH-CGM, feeding CGM-CDS decreased HCW (379 vs. 

388 kg, respectively; P = 0.04), Conroy et al. (2016) observed a numerical decrease of 8 

kg with the inclusion of 10% CDS. The addition of 10% CDS tended to decrease dressing 

percent (63.0% vs. 63.5%, respectively; P = 0.06) compared to HIGH-CGM. There were 

no differences (P ≥ 0.21) in LM area and calculated yield grade between HIGH-CGM 

and CGM-CDS. There was a decrease in 12th rib fat (1.16 vs. 1.29 cm, respectively; P = 

0.05) for CGM-CDS compared to HIGH-CGM. There were no differences (P ≥ 0.19) in 

marbling score and liver abscesses between both HIGH-CGM and CGM-CDS. The result 

of poorer ADG lead HCW, dressing percent, and 12th rib fat to decrease compared to 

HIGH-CGM. However, recent data with the addition of lower inclusion levels of CDS 

(approximately 10%) in DGS-based diets appears to have variable impact on 

performance and carcass characteristics (Oglesbee et al., 2016; Conroy et al., 2016). 

Further research may need to be performed studying the interactions of CDS with DGS 

composite diets.  

20DGS vs. LOW-CGM 
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 Isolating the protein portion of 20% WDGS by feeding 8.75% CGM (LOW-

CGM) decreased final BW (596 vs. 608 kg, respectively; P = 0.05) compared to 20DGS 

(Table 3.5). There were no differences (P = 0.16) in DMI between 20DGS and LOW-

CGM. Steers fed LOW-CGM tended to have decreased ADG (1.63 vs. 1.69 kg, 

respectively; P = 0.09) compared to 20DGS. This resulted in steers fed LOW-CGM being 

5.8% less efficient than steers consuming 20DGS (0.162 vs. 0.172, respectively; P < 

0.01). Lodge et al. (1997) fed 10.5% CGM to steers as part of a DGS composite 

treatment. When CGM was removed from the diet, the feeding value of the DGS 

composite without CGM decreased from 124 to 118%, respectively. This suggests that 

protein in the DGS composite contributed a majority of the feeding value observed for 

the DGS composite. In the current experiment, the feeding value for protein was less than 

that of WDGS (110 vs. 134% for LOW-CGM vs. 20DGS, respectively) relative to corn. 

Lower inclusion rates of protein (i.e. LOW-CGM) do not provide excess MP which can 

be used as energy. Therefore, within lower inclusion rates of DGS, protein will contribute 

less towards the feeding values compared to greater inclusion rates of DGS. There was a 

tendency for decreased HCW (P = 0.09) for LOW-CGM compared to 20DGS. All 

carcass traits and liver abscess scores were not different (P ≥ 0.17) between 20DGS and 

LOW-CGM. 

40DGS vs. HIGH-CGM 

 When comparing 40% WDGS to HIGH-CGM, there were no differences (P = 

0.65) in final BW; however, steers fed HIGH-CGM consumed 0.5 kg/d more than 

40DGS (10.2 vs. 9.7 kg, respectively; P < 0.01; Table 3.5). There were no differences (P 

= 0.61) for ADG between 40DGS and HIGH-CGM. This translated into steers 



99 

 

 

consuming 40DGS having improved G:F values compared to HIGH-CGM (0.176 vs. 

0.169, respectively; P < 0.01). Lodge et al. (1997) compared a distillers composite 

treatment containing 12.2% CGM to 40% DDGS in finishing lamb diets. There was no 

difference in lamb finishing performance between a distillers composite diet with 12.2% 

CGM and 40% DDGS. Unlike the LOW-CGM vs. 20DGS comparison, the feeding value 

of protein was greater than WDGS (129 vs. 125% for HIGH-CGM vs. 40DGS, 

respectively). The MP requirements of the animals for both 40DGS and HIGH-CGM 

were met according to NRC (1996). Improved feeding values for protein were a result of 

excess RUP being digested. deaminated and used by the animal for energy. Therefore, 

similar feeding values for 40DGS and HIGH-CGM demonstrated feeding greater levels 

of protein meet the protein requirements of the animal and supplied additional energy. 

Oglesbee et al. (2016) reported the feeding value of a diet with 17.5% CGM was 121%, 

which was lower than WDGS at 130% the value of corn. The addition of CGM to the 

composite DGS diet increased the feeding value by 30%, which was the animals’ 

response to additional energy being provided by excess RUP from CGM. In this 

experiment there were no differences (P ≥ 0.26) for carcass traits or liver abscess scores 

between 40DGS and HIGH-CGM.  

 Displacing a portion of corn grain with other feed ingredients, such as CGM or 

CDS, was considered when designing the experimental treatments. The inclusion of 26-

50.9% (DM basis) corn grain in calf-fed diets leads to improved feed efficiency 

compared to inclusions greater than 50.9% corn (Watson et al., 2016). In the current 

experiment the CGM diets replaced only 8.75 and 17.5% of corn compared to the WDGS 

diets which replaced 20 and 40%. This did not affect the comparison between 20DGS 
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and LOW-CGM (59.00 vs. 70.25% DRC, respectively). This may have affected G:F 

between the HIGH-CGM and 40DGS (61.50 vs. 39.00% DRC, respectively) comparison 

since 40DGS had considerably less corn grain in the diet. This means that part of the G:F 

response observed by HIGH-CGM may have come from lower inclusion of corn and not 

entirely from excess RUP.  

Experiment 2 and 3 

 Nutrient intake and digestibility data are presented in Table 3.6 for Exp 2. Dry 

matter intake was greater (P = 0.08) for 40DGS compared to HIGH-CGM and CON, but 

not different than CGM-CDS. Greater DMI for DGS based diets compared to corn has 

been well documented in previous research (Klopfenstein et al., 2008). Corrigan et al. 

(2009), observed an increase of 1.5 kg for OM intake (OMI) when steers consumed 40% 

WDGS (DM basis) compared to corn. In this study, OMI was numerically greater (P = 

0.17) for 40DGS compared to CON (7.4 vs. 6.6 kg; respectively) suggesting cattle on 

40DGS had intakes that previous data support (Klopfenstein et al., 2008). Neutral 

detergent fiber intake was greater (P < 0.01) for 40DGS than all other treatments. The 

40DGS diet had approximately twice the NDF content of CON, HIGH-CGM, and CGM-

CDS (26.1 vs. 14.8, 13.6, and 13.2% NDF; respectively). Corrigan et al. (2009) and 

Vander Pol et al. (2009) both reported similar results, NDF intake for cattle consuming 

40% WDGS was greater than corn diets. In the current study, starch intake was greatest 

(P < 0.01) for CON and HIGH-CGM with CGM-CDS greater than 40DGS. Previous 

work has reported starch intake to be lowered with increased levels of DGS (Corrigan et 

al., 2009, Luebbe et al., 2012, and Vander Pol et al., 2009). Replacing 10% of DRC with 
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CDS reduced the starch content in the diet by 12.7% and subsequently lowered starch 

intake by 8.6%.  

Fecal DM, OM, NDF, and starch output were greater (P < 0.08) for 40DGS 

compared to other treatments. This can be explained by OMI being numerically greater 

for 40DGS and total tract digestibility for OM and starch being lower for steers fed 

40DGS. Flow of feed OM, bacterial OM, total OM, NDF, and starch into the duodenum 

were not different (P ≥ 0.52; Table 3.7) among treatments. Although cattle fed 40DGS 

had numerically greater feed OM, likely due to the greater DMI of cattle consuming 

40DGS compared to CON, HIGH-CGM, and CGM-CDS. 

There was no difference (P = 0.16) in total tract DM digestibility between 

treatments, but 40DGS was numerically lower than all other treatments. A similar 

relationship was observed for total tract OM digestibility, which tended to be lower (P < 

0.14) for 40DGS compared other treatments (Table 3.6). A similar response was 

observed for Corrigan et al. (2009), who reported lower total tract OM digestibility for 

40% WDGS compared corn-based diets. Total tract OM digestibility for DGS in the 

current study is similar to Corrigan et al. (2009) and Luebbe et al. (2012; 76.0% vs. 79.3 

and 78.6%, respectively). Klopfenstein et al. (2008) reported that DGS improves ADG 

and G:F compared to corn, while having lower digestibility than corn. Hamilton et al. 

(2016) suggest that diets containing DGS have additional digestible energy supplied by 

DGS that is not accounted for when evaluating only digestible OM. The relationship of 

digestible OM and digestible energy from Hamilton et al. (2016) supports the results 

from the current studies with lower OM digestibility for cattle fed 40DGS than cattle fed 

CON (Exp 2) and cattle fed 40DGS had better (P < 0.01) G:F and tended (P = 0.06) to 
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have improved ADG compared to cattle fed CON (Exp 1). Therefore, less of the OM was 

digested in the DGS diet but the DGS diet supplied more energy that the animal could use 

for growth. There was no difference in total tract NDF digestibility (P = 0.53) among 

treatments. Steers consuming 40DGS and CGM-CDS had numerically greater total tract 

NDF digestibility compared to CON and HIGH-CGM (59.3 and 55.9 vs. 47.9 and 48.0%, 

respectively). Total tract starch digestibility was lower (P < 0.01) for 40DGS compared 

to other treatments. Distillers grains plus solubles contains less starch as a result of starch 

fermentation for ethanol production. The small amount of starch available in DGS may 

be difficult to access and have lower digestibility by the animal, as well as microbes, 

because the ethanol plant already exposed the starch to yeast and other microbes during 

ethanol production. Ham et al. (1994) observed an improvement in total tract starch 

digestion when wet distillers grains was paired with thin stillage. Other than DM, thin 

stillage and CDS should have similar nutrient profiles. In the current study, the addition 

of CDS (32.4% CP, 4.7% NDF, and 6.7% fat) to HIGH-CGM did not negatively affect 

starch digestion. Vander Pol et al. (2009) suggests that supplemental corn oil impedes 

starch digestibility relative to fat supplied by CDS or WDGS. In the current study, 

additional oil from CDS was likely separated off by centrifugation. According to Jolly et 

al. (2013), 50% of ethanol plants were removing additional corn oil from CDS in 2012. In 

this study, the concentration of fat (6.7% DM basis) from CDS may not have been 

enough to limit total tract starch digestion. 

Ruminal and post ruminal apparent and true OM, NDF, and apparent and true 

starch digestibility were not different (P > 0.18) among treatments (Table 3.7; Exp 2). 

Ruminal NDF digestibility was numerically greater (P = 0.35) for 40DGS compared to 
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CON, HIGH-CGM, and CGM-CDS (65.9 vs. 44.6, 51.1, and 49.2 %; respectively). Both 

Vander Pol et al. (2009) and Luebbe et al. (2012) observed numerical improvements for 

ruminal NDF digestibility for inclusions of 40-45% WDGS compared to DRC (14.8 and 

16.5 percent unit increase, respectively). Luebbe et al. (2012) suggest greater ruminal 

NDF digestibility may be the result of a dilution effect. As DGS replaces corn in the diet, 

the amount of starch decreases, which may promote an increase in ruminal NDF 

digestion. Corrigan et al. (2009) reported greater 22-h in situ NDF digestibility when 

samples (i.e. DRC, WDGS, corn bran) were incubated in steers fed 40% WDGS 

compared to corn-based diets. Therefore, as DGS concertation increases, the rumen 

environment appears to be more favorable and promotes greater NDF digestibility. 

Postruminal OM digestibility was numerically (P = 0.18) lower for 40DGS compared to 

CON, HIGH-CGM, and CGM-CDS (47.7 vs. 61.3, 64.0, and 69.4%; respectively). We 

measured a bacterial purine:N ratio of 0.1 from our rumen samples. We believe that this 

ratio is not accurate because it overestimated bacterial OM flow from the duodenum. 

Overestimated bacterial OM flow resulted in relatively high microbial efficiency 

estimates. Based on findings from Cooper et al. (2002), we decided to adjust the data 

using an assumed purine:N ratio of 0.3. Microbial CP flow through the duodenum was 

not different (P = 0.88) among treatments. Microbial efficiency was calculated using g of 

microbial CP divided by g of fermentable OM in the rumen. There was no difference (P 

= 0.72) in microbial efficiency among treatments.  

 Dry matter intakes for Exp 3 were similar to Exp 2 (Table 3.8) with cattle 

consuming 40DGS (P = 0.06) having the greatest DMI. Unlike Exp 2 where cattle fed 

CON had the lowest DMI, in Exp 3 cattle fed CGM-CDS tended to have the lowest DMI. 
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Hour within day was evaluated for average ruminal pH and a treatment × h interaction (P 

< 0.01; Figure 3.1) was observed. At time of feeding (0800) and for 2 h after, cattle 

consuming the CON treatment had a greater pH (P = 0.01) than HIGH-CGM and CGM-

CDS. Cattle fed 40DGS had lower ruminal pH (P = 0.01) than cattle fed CON treatment 

from 0900 to 1100. At 1100, cattle fed CON treatment had the greatest ruminal pH (P < 

0.04), 40DGS was greater than HIGH-CGM, and CGM-CDS was intermediate between 

CON and 40DGS. At 4 and 5 h post-feeding, cattle fed CON, 40DGS, and CGM-CDS 

treatments had no difference (P > 0.07) in ruminal pH, whereas cattle fed HIGH-CGM 

maintained a lower ruminal pH (P < 0.05). From 1400 to 1600, cattle consuming CON, 

40DGS, and CGM-CDS were not different (P > 0.07); however, cattle consuming HIGH-

CGM had a lower ruminal pH (P < 0.04). Ruminal pH was not different (P > 0.05) 

between treatments from 1700 to 0200. Cattle consuming CON, 40DGS, and HIGH-

CGM had no difference (P > 0.06) in rumen pH from 0300 to 0700, whereas cattle on the 

CGM-CDS treatment maintained a lower pH (P < 0.05).  

The addition of CGM to the diet appears to have an impact on ruminal pH. The 

ruminal pH response cannot be explained by DMI. Cattle consuming HIGH-CGM had 

similar DMI as cattle fed CON and cattle fed CGM-CDS consumed less DM than cattle 

fed HIGH-CGM and CON. Therefore, factor(s) other than DMI were likely the cause of 

lower ruminal pH for both CGM treatments. Time below pH 5.6 was not different among 

treatments however, area below pH 5.6 was greater for CGM diets. These results suggest 

all cattle were exposed to subacute acidosis for a similar amount of time but CGM fed 

cattle were subjected to a lower pH at time of subacute acidosis compared to CON and 

40DGS fed cattle.  
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  Acetate molar proportion was not different (P = 0.18) between treatments. 

Propionate molar proportion had a treatment × h interaction (Figure 3.2; P = 0.09). From 

1 h to 11 h post-feeding, propionate molar proportion remained greatest (P < 0.09) for 

HIGH-CGM compared to all other treatments. Butyrate molar proportion had a treatment 

× h interaction (Figure 3.3; P = 0.03). From 1 to 11 h post-feeding, butyrate molar 

proportion remained lowest (P < 0.08) for HIGH-CGM compared to all other treatments. 

Acetate:Propionate ratio was lower (P = 0.08) for HIGH-CGM compared to the other 

treatments. Total VFA concentration had a treatment × h interaction (Figure 3.4; P = 

0.10). At 1300, CON and HIGH-CGM were the greatest (P = 0.10) total VFA 

concentration with 40DGS and CGM-CDS were the lowest VFA concentrations. At 

1500, CON had the greatest (P = 0.05) total VFA concentration, 40DGS had the lowest, 

and HIGH-CGM and CGM-CDS were intermediate. At 1700, HIGH-CGM had the 

greatest (P = 0.03) total VFA concentration, 40DGS and CGM-CDS had the lowest, and 

CON was intermediate. The time points for peak total VFA concentration for HIGH-

CGM agree with the pH data. The pH for HIGH-CGM was lowest from 4 to 8 h post-

feeding and the total VFA concentration was greatest for HIGH-CGM 8 h post-feeding. 

Effects of HIGH-CGM on ruminal pH may be correlated with total VFA concentration. 

Russell (1998) reported approximately 25% of the change in A:P ratios are associated 

with lower ruminal pH. Cattle fed CGM had lower average ruminal pH and tended to 

have lower minimum ruminal pH than cattle fed CON and 40DGS. As described 

previously, lactic acid from CGM may have promoted rumen bacteria to produce 

propionate however, Exp. 3 only measured VFA concentration so it is difficult to explain 

why HIGH-CGM had greater propionate concentrations than the other treatments. This 
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helps explain the lower average ruminal pH for cattle fed HIGH-CGM. Since the protein 

content of CGM was greater than that of DGS, less CGM was required to match the CP 

of DGS in the diet. As a result, there was more starch and less NDF in both HIGH-CGM 

and CGM-CDS compared to 40DGS. When the primary energy source that the rumen 

microbial population uses changes from NDF to starch, the A:P ratio generally decreases 

(Grant, 1997; Coe et al., 1999; Sayer, 2004). The difference in NDF and starch intake for 

HIGH-CGM, compared to 40DGS, helps explain the increase in propionate 

concentration. Ham et al. (1994) reported lower propionate concentration and a greater 

A:P ratio for 40% wet distillers grains with 15% thin stillage compared to 15% thin 

stillage only in corn-based diets. With the exception of fat content and DM, CDS can 

have similar nutritive properties to thin stillage. The similarities of CDS and thin stillage 

may help explain the lower propionate and greater A:P ratio when CDS was added to 

HIGH-CGM. With these combinations of factors, it is difficult to specify why ruminal 

pH dropped for steers fed CGM diets. The trend line for total VFA concentration for each 

treatment was tested for linear and quadratic relationships. The total VFA concentration 

trend line for HIGH-CGM was quadratic (P = 0.03) and linear (P = 0.05) for CGM-CDS.  

IMPLICATIONS 

These studies provide further evidence that as DGS concentration increases in the 

diet, cattle have greater finishing performance even though digestibility of DGS is lower 

compared to corn. Similarly, isolating protein from DGS by utilizing CGM resulted in 

similar finishing performance. Protein from DGS did not contribute towards the lower 

digestibility of DGS. Providing excess RUP from DGS contributes greatly to the 

performance of DGS. The average feeding value for CGM at inclusion rates equal to the 
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protein in WDGS at 20 and 40% was 122. Wet DGS had an average feeding value of 128 

at 20 and 40% inclusion rates. These results reaffirm that protein accounts for the 

majority of the feeding value response in DGS. 
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Table 3.1. Composition of dietary treatments containing protein components of distiller grains fed to steers1 (Exp. 1). 

 Treatment 

Item CON 20DGS 40DGS LOW-CGM HIGH-CGM CGM-CDS 

Ingredient, % DM2       

DRC 75.50 59.00 39.00 70.25 61.50 51.50 

WDGS ̶ 20.00 40.00 ̶ ̶ ̶ 

Corn Silage 15.00 15.00 15.00 15.00 15.00 15.00 

CGM ̶ ̶ ̶ 8.75 17.50 17.50 

CDS ̶ ̶ ̶ ̶ ̶ 10.00 

SBM 3.50 ̶ ̶ ̶ ̶ ̶ 

Supplement3,4       

Limestone 1.340 1.400 1.400 1.400 1.400 1.400 

Urea 1.300 - - - - - 

Salt  0.300 0.300 0.300 0.300 0.300 0.300 

KCl 0.200 - - - - - 

Dietary Composition       

DM 71.5 61.1 50.8 71.1 70.8 64.3 

CP 13.9 13.0 17.3 14.3 20.0 21.0 

NDF 14.8 18.9 23.0 14.6 14.4 13.5 

Fat 2.8 3.7 4.6 2.9 2.9 2.6 

Ca 0.51 0.53 0.54 0.52 0.52 0.52 

P 0.28 0.37 0.49 0.28 0.30 0.45 

K 0.71 0.71 0.88 0.53 0.52 0.82 

S 0.11 0.20 0.31 0.16 0.22 0.32 
1All values presented on a DM basis. 
2DRC = dry-rolled corn; WDGS = wet distillers grains plus solubles; CGM = corn gluten meal; CDS = condensed 

distillers solubles; SBM = soybean meal. 
3Supplement formulated to be fed at 6% of dietary DM. 
4Supplement formulated to provide a dietary DM inclusion of 30 mg/kg Zn, 50 mg/kg Fe, 10 mg/kg Cu, 20 mg/kg Mn, 

0.1 mg/kg Co, 0.5 mg/kg I, 0.1 mg/kg Se, 1.0 IU/g vitamin A, 0.125 IU/g vitamin D, 0.0015 UI/g vitamin E, 360 

mg∙steer∙d-1 monensin (Elanco Animal Health, Greenfield, IN), and 90 mg∙steer∙d-1 tylosin (Elanco Animal Health).  
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1 Table 3.2. Composition of dietary treatments containing protein components of distiller 

grains fed to steers1 (Exp. 2 and 3). 

 Treatment 

Item CON 40DGS HIGH-CGM CGM-CDS 

Ingredient, % DM2     

DRC 76.5 40.0 62.5 52.5 

MDGS ̶ 40.0 ̶ ̶ 

Corn Silage 15.0 15.0 15.0 15.0 

CGM ̶ ̶ 17.5 17.5 

CDS ̶ ̶ ̶ 10.0 

SBM 3.5 ̶ ̶ ̶ 

Supplement3     

Fine ground corn 1.273 2.977 2.786 2.977 

Urea 1.405 - - - 

Limestone 1.639 1.541 1.549 1.541 

Salt 0.291 0.278 0.280 0.278 

Tallow 0.121 0.160 0.117 0.160 

KCl 0.179 - 0.180 - 

Beef trace minerals4 0.049 0.046 0.047 0.046 

Vitamin A, D, and E5 0.017 0.016 0.016 0.016 

Rumensin 906 0.016 0.015 0.015 0.015 

Tylan 407 0.011 0.010 0.011 0.010 

Nutrient Composition, %     

DM 83.6 69.7 83.6 78.5 

CP 12.5 18.5 19.6 22.1 

NDF 14.8 26.1 13.6 13.2 

Fat 3.6 6.5 3.5 3.8 

Starch 55.6 32.6 48.8 42.6 
1All values presented on a DM basis. 
2DRC = dry-rolled corn; MDGS = Modified distillers grains plus solubles; CGM = corn 

gluten meal; CDS = condensed distillers solubles; SBM = soybean meal. 
3Supplement formulated to be fed at 5% of dietary DM. 
4Premix contained 10%Mg, 6% Zn as ZnO, 4.5% Fe as FeSO4, 2% Mn as MnO, 0.5% 

Cu as CuSO4, 0.3% I as Ca(IO3)2(H2O), and 0.05% Co as CoCO3.  
5Premix contained 1,500 IU vitamin A, 3,000 IU vitamin D, and 3.7 IU vitamin E per g. 
6Formulated to provide 375 mg∙steer∙d-1 monensin (Rumensin; Elanco Animal Health, 

Greenfield, IN). 
7Forumated to provide 90 mg∙steer∙d-1 tylosin (Tylan; Elanco Animal Health). 
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Table 3.3. Linear and quadratic effect of distillers grains on finishing performance and carcass characteristics (Exp. 1). 

 Treatment1  P - value 

Item CON 20DGS 40DGS SEM DGS Lin.2 DGS 

Quad.3 

Initial BW, kg 291 292 292 0.5 0.23 0.95 

Final BW, kg4 600 608 613 4 0.06 0.86 

DMI, kg/d 10.3 9.8 9.7 0.1 <0.01 0.21 

ADG, kg4 1.65 1.69 1.71 0.02 0.06 0.83 

G:F4 0.161 0.172 0.176 0.002 <0.01 0.12 

Feeding Value5 - 134 125 - - - 

NEm6 1.89 1.99 2.02 0.01 <0.01 0.06 

NEg6 1.24 1.33 1.37 0.01 <0.01 0.07 

HCW, kg 378 383 386 3 0.06 0.87 

Dressing, % 63.5 63.3 63.6 0.2 0.64 0.21 

LM area, cm2 87.2 87.4 89.0 1.1 0.26 0.62 

Calculated YG7 2.93 2.96 2.95 0.09 0.91 0.85 

12th-rib fat, cm 1.21 1.21 1.24 0.04 0.58 0.81 

Marbling8 422 428 429 9 0.60 0.85 

Liver abscess, % 21.2 18.5 14.8 0.5 0.41 0.89 
1CON = 75.5% DRC; 20DGS = 20% wet distillers grains plus solubles; 40DGS = 40% wet distillers grains plus solubles. 
2Lin. = P-value for the linear response of wet distillers grains inclusion for CON, 20DGS, 40DGS. 
3Quad. = P-value for the quadratic response of wet distillers grain inclusion for CON, 20DGS, 40DGS. 
4Calculated from carcass weight, adjusted to 63% common dressing percent. 
5Feeding Value Calculation: [((compared treatments G:F – CON G:F) / CON G:F) / compared treatments inclusion 

rate*100+100] 
6Dietary NE equations from the NRC (1996) as described by Vasconcelos and Galyean (2008). 

7Yield Grade Calculation: 2.50 + (6.35 x 12th rib fat thickness, cm) + (0.2 x 2.5 [KPH]) + (0.0017 x HCW, kg) - (2.06 x LM 

area, cm2) from USDA (1997) 
8Marbling score: 400 = Small00. 
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Table 3.4. Linear and quadratic effect of isolated protein from distillers grains on finishing performance and carcass 

characteristics (Exp. 1). 

 Treatment1  P - value 

Item CON LOW-

CGM 

HIGH-

CGM 

CGM-CDS SEM Protein 

Lin.2 

Protein 

Quad.3 

HIGH-

CGM vs. 

CGM-CDS 

Initial BW, kg 291 291 292 291 0.5 0.58 0.41 0.11 

Final BW, kg4 600 596 616 602 4 0.02 0.04 0.04 

DMI, kg/d 10.3 10.0 10.2 10.0 0.1 0.85 0.13 0.08 

ADG, kg4 1.65 1.63 1.73 1.66 0.02 0.02 0.04 0.04 

G:F4 0.161 0.162 0.169 0.166 0.002 <0.01 0.19 0.32 

Feeding Value5 - 110 129 121 - - - - 

NEm6 1.89 1.91 1.95 1.94 0.01 <0.01 0.59 0.85 

NEg6 1.24 1.26 1.30 1.30 0.01 <0.01 0.69 1.00 

HCW, kg 378 376 388 379 3 0.02 0.04 0.04 

Dressing, % 63.5 63.1 63.5 63.0 0.2 0.95 0.12 0.06 

LM area, cm2 87.2 85.8 89.1 87.1 1.1 0.24 0.10 0.21 

Calculated YG7 2.93 3.04 3.00 2.85 0.09 0.61 0.50 0.24 

12th-rib fat, cm 1.21 1.27 1.29 1.16 0.04 0.22 0.75 0.05 

Marbling8 422 433 443 426 9 0.10 0.94 0.19 

Liver abscess, % 21.2 9.3 11.3 11.8 0.5 0.19 0.27 0.94 
1CON = 75.5% DRC; LOW-CGM = 8.75% corn gluten meal to mimic the protein portion of 20DGS; HIGH-CGM = 17.5% 

corn gluten meal to mimic the protein portion of 40DGS; CGM-CDS = 17.5% corn gluten meal and 10% solubles. 
2Lin. = P-value for the linear response of corn gluten meal for CON, LOW-CGM, HIGH-CGM. 
3Quad. = P-value for the quadratic response of corn gluten meal for CON, LOW-CGM, HIGH-CGM. 
4Calculated from carcass weight, adjusted to 63% common dressing percent. 
5Feeding Value Calculation: [((compared treatments G:F – CON G:F) / CON G:F) / compared treatments inclusion 

rate*100+100] 
6Dietary NE equations from the NRC (1996) as described by Vasconcelos and Galyean (2008). 

7Yield Grade Calculation: 2.50 + (6.35 x 12th rib fat thickness, cm) + (0.2 x 2.5 [KPH]) + (0.0017 x HCW, kg) - (2.06 x LM 

area, cm2) from USDA (1997) 
8Marbling score: 400 = Small00. 
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Table 3.5. Effect of excess rumen ungradable protein from distillers grains on finishing performance and carcass characteristics 

(Exp. 1). 

 Treatment1  P - value 

Item CON 20DGS 40DGS LOW-

CGM 

HIGH-

CGM 

SEM 20DGS vs.  

LOW-CGM2 

40DGS vs.  

HIGH-CGM2 

Initial BW, kg 291 292 292 291 292 0.5 0.32 0.51 

Final BW, kg3 600 608 613 596 616 4 0.09 0.65 

DMI, kg/d 10.3 9.8 9.7 10.0 10.2 0.1 0.16 <0.01 

ADG, kg3 1.65 1.69 1.71 1.63 1.73 0.02 0.08 0.61 

G:F3 0.161 0.172 0.176 0.162 0.169 0.002 <0.01 0.01 

Feeding Value4 - 134 125 110 129 - - - 

NEm5 1.89 1.99 2.02 1.91 1.95 0.01 <0.01 <0.01 

NEg5 1.24 1.33 1.37 1.26 1.30 0.01 <0.01 <0.01 

HCW, kg 378 383 386 376 388 3 0.09 0.66 

Dressing, % 63.5 63.3 63.6 63.1 63.5 0.2 0.64 0.69 

LM area, cm2 87.2 87.4 89.0 85.8 89.1 1.1 0.32 0.95 

Calculated YG6 2.93 2.96 2.95 3.04 3.00 0.09 0.53 0.69 

12th-rib fat, cm 1.21 1.21 1.24 1.27 1.29 0.04 0.41 0.49 

Marbling7 422 428 429 433 443 9 0.65 0.26 

Liver abscess, % 21.2 18.5 14.8 9.3 11.3 0.5 0.17 0.60 
1CON = 75.5% DRC; 20DGS = 20% wet distillers grains plus solubles; 40DGS = 40% wet distillers grains plus solubles; LOW-

CGM = 8.75% corn gluten meal to mimic the protein portion of 20DGS; HIGH-CGM = 17.5% corn gluten meal to mimic the 

protein portion of 40DGS. 
2Comparison of the protein portion of WDGS, mimicked by corn gluten meal, and WDGS.  
3Calculated from carcass weight, adjusted to 63% common dressing percent. 
4Feeding Value Calculation: [((compared treatments G:F – CON G:F) / CON G:F) / compared treatments inclusion rate*100+100] 
5Dietary NE equations from the NRC (1996) as described by Vasconcelos and Galyean (2008). 

6Yield Grade Calculation: 2.50 + (6.35 x 12th rib fat thickness, cm) + (0.2 x 2.5 [KPH]) + (0.0017 x HCW, kg) - (2.06 x LM area, 

cm2) from USDA (1997) 
7Marbling score: 400 = Small00. 
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Table 3.6. Effects of excess rumen ungradable protein from distillers grains in finishing steers 

diets on intake and total tract digestibility (Exp. 2). 

 Treatments   

Item CON1 40DGS2 HIGH-

CGM3 

CGM-

CDS4 

SEM P - value 

Steers, n 7 8 8 7 - - 

Intake, kg/d       

DM 6.8c 7.8a 7.1bc 7.5ab 0.5 0.08 

OM 6.6 7.4 6.9 7.1 0.5 0.17 

NDF 1.0b 2.0a 1.0b 1.0b 0.01 <0.01 

Starch 3.8a 2.6c 3.5a 3.2b 0.2 <0.01 

Fecal output, 

kg/d 

      

DM 1.21b 2.02a 1.23b 1.24b 0.25 0.02 

OM 1.11b 1.79a 1.10b 1.08b 0.21 0.02 

NDF 0.52b 0.91a 0.46b 0.43b 0.09 0.02 

Starch 0.289b 0.337a 0.159b 0.231b 0.044 0.04 

Total tract 

digestibility, % 

      

DM 79.6 74.4 82.3 83.1 3.1 0.16 

OM 81.0 76.0 83.4 84.5 2.8 0.14 

NDF 47.9 59.3 48.0 55.9 7.3 0.53 

Starch 92.1a 86.6b 94.8a 92.1a 1.3 <0.01 
a,b,cMeans within a row with different superscripts differ (P ≤ 0.10). 
1Control (CON) treatment containing 76.5% dry-rolled corn (DRC), 15.0% corn silage, 3.5% 

soybean meal, and 5.0% supplement. 
2Modified distillers treatment containing 40.0% DRC, 40.0% modified distillers grains plus 

solubles, 15.0% corn silage, and 5.0% supplement. 
3Treatment formulated to mimic protein portion of 40DGS with corn gluten meal (CGM) at 

17.5%, 62.5% DRC, 15.0% corn silage, and 5.0% supplement. 
4Treatment formulated to mimic protein portion of 40DGS with the addition of corn gluten 

meal at 17.5% and condensed distillers solubles at 10.0%, 52.5% DRC, 15.0% corn silage, 

and 5.0% supplement. 
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Table 3.7. Effects of excess rumen ungradable protein from distillers grains in finishing steers 

diets on ruminal and post-ruminal digestibility (Exp. 2). 

 Treatment   

Item CON1 40DGS2 HIGH-

CGM3 

CGM-

CDS4 

SEM P - value 

Steers, n 4 4 6 5 - - 

DMI, kg/d 6.8c 7.8a 7.1bc 7.5ab 0.5 0.08 

Ruminal digestibility, % 
      

Apparent OM5 44.2 49.9 50.9 50.4 5.5 0.81 

True OM5,6 54.7 59.7 58.4 58.1 4.9 0.90 

NDF 44.6 65.9 51.1 49.2 7.1 0.35 

Apparent Starch5 70.7 68.7 75.6 75.5 6.2 0.36 

True Starch5,6 71.2 69.3 76.0 76.2 6.2 0.35 

Duodenal flow, kg/d       

Bacterial OM6 0.68 0.64 0.68 0.65 0.14 0.98 

Feed OM 2.60 2.75 2.42 2.62 0.45 0.94 

Total OM 3.25 3.44 2.85 3.09 0.57 0.89 

NDF 0.52 0.61 0.43 0.48 0.09 0.52 

Starch 0.89 0.68 0.94 0.97 0.18 0.72 

Postruminal digestibility, % entering 
      

OM 61.3 47.7 64.0 69.4 6.2 0.18 

Starch 73.8 83.5 73.3 72.0 6.2 0.59 

Microbial CP flow, kg/d 0.32 0.27 0.24 0.25 0.08 0.88 

Microbial Efficiency7 21 16 18 17 3 0.77 
a,b,cMeans within a row with different superscripts differ (P < 0.10). 
1Control (CON) treatment containing 76.5% dry-rolled corn (DRC), 15.0% corn silage, 3.5% 

soybean meal, and 5.0% supplement. 
2Modified distillers treatment containing 40.0% DRC, 40.0% modified distillers grains plus 

solubles, 15.0% corn silage, and 5.0% supplement. 
3Treatment formulated to mimic protein portion of 40DGS with corn gluten meal (CGM) at 

17.5%, 62.5% DRC, 15.0% corn silage, and 5.0% supplement. 
4Treatment formulated to mimic protein portion of 40DGS with the addition of corn gluten meal at 

17.5% and condensed distillers solubles at 10.0%, 52.5% DRC, 15.0% corn silage, and 5.0% 

supplement.  
5Calculation of apparent vs. true used data from Exp 3 to account for bacterial cells flowing into 

the duodenum. 
6Caculated using assumed purine:N ratio of 0.3 from Cooper et al. (2002). 
7Microbial Efficiency, g of Microbial CP/g of OM fermented in the rumen. 
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Table 3.8. Effects of excess rumen undegradable protein from distillers grains in finishing steers diets on ruminal volatile fatty acid 

concentration (Exp. 3). 

 Treatment  P-value5 

Item CON1 40DGS2 HIGH-

CGM3 

CGM-CDS4 SEM F-Test Int. 

Steers, n 8 7 8 7    

DMI, kg/d 10.1ab 11.5a 9.8ab 9.0b 0.6 0.06 - 

Ruminal VFA        

Acetate, mol/100 mol 50.5 48.7 45.3 48.6 1.7 0.18 0.41 

Propionate, mol/100 mol 33.2b 35.6b 42.6a 34.5b 2.3 0.03 0.09 

Butyrate, mol/100 mol 12.4 11.6 7.8 11.4 1.7 0.22 0.03 

Acetate:propionate 1.7a 1.4a 1.1b 1.5a 0.2 0.08 0.21 

Total, mM 107.1 89.9 105.0 96.3 5.9 0.16 0.10 
a,bMeans within a row with different superscripts differ (P < 0.10). 
c,dMeans within a row with different superscripts tened to differ (P > 0.10 and P ≤ 0.15). 
1Control (CON) treatment containing 76.5% dry-rolled corn (DRC), 15.0% corn silage, 3.5% soybean meal, and 5.0% supplement. 
2Modified distillers treatment containing 40.0% DRC, 40.0% modified distillers grains plus solubles, 15.0% corn silage, and 5.0% supplement. 
3Treatment formulated to mimic protein portion of 40DGS with corn gluten meal (CGM) at 17.5%, 62.5% DRC, 15.0% corn silage, and 5.0% 

supplement. 
4Treatment formulated to mimic protein portion of 40DGS with the addition of corn gluten meal at 17.5% and condensed distillers solubles at 

10.0%, 52.5% DRC, 15.0% corn silage, and 5.0% supplement.  
5F-test = overall F-test representing variation due to treatment, Int. = interaction of treatment × hour 
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Figure 3.1. Ruminal pH of cattle fed 4 different dietary treatments was monitored over 6 periods. The 

control (CON) treatment contained 76.50% dry-rolled corn (DRC), 15.00% corn silage, 3.50% soybean 

meal, 3.55% supplement, and 1.45% urea. The 40DGS treatment contained 40.00% DRC, 40.00% modified 

distillers grains plus solubles, 15.00% corn silage, and 5.00% supplement. The HIGH-CGM treatment 

contained 62.50% DRC, 17.50% corn gluten meal (CGM), 15.00% corn silage, and 5.00% supplement. The 

CGM-CDS treatment replaced 10% of DRC from the HIGH-CGM diet with condensed distillers solubles. 

There was an hour × treatment interaction (P < 0.01). Treatment differences (P < 0.05) within time points 

are marked with a letter (a, b, c, d, e, f, g, h, i, and j) to signify statistical differences between treatments 

within that time point. Time points marked with an “a” indicate that the CON treatment had the greatest pH 

and HIGH-CGM and CGM-CDS had the lowest. The 40DGS treatment was intermediate. Time points 

marked with a “b” indicate that the CON treatment had the greatest pH and HIGH-CGM and CGM-CDS 

treatments were the lowest. The 40DGS treatment had a greater pH than the HIGH-CGM and CGM-CDS 

treatments. Time points marked with a “c” indicate that the CON treatment had the greatest pH and the 

remaining 3 treatments are the same. Time points marked with a “d” indicate that the CON had the greatest 

pH and the HIGH-CGM treatment had the lowest. The 40DGS treatment had a greater pH than the HIGH-

CGM, and the CGM-CDS treatment was intermediate between CON and 40DGS. Time points marked with 

an “e” indicate that the CON and CGM-CDS treatments had the greatest pH and the HIGH-CGM treatment 

had the lowest. The 40DGS treatment was intermediate. Time points marked with an “f” indicate that 

40DGS and CGM-CDS treatments had the greatest pH and the HIGH-CGM treatment had the lowest. The 

CON treatment was intermediate. Time points marked with a “g” indicate that the HIGH-CGM treatment 

had the greatest pH and the CGM-CDS treatment had the lowest. The CON and 40DGS treatments were 

intermediate. Time points marked with an “h” indicate that the 40DGS treatment had the greatest pH and 

the CGM-CDS treatment had the lowest. Time points marked with an “i” indicate that the CON treatment 

had the greatest pH and that the CGM-CDS treatment had the lowest. Time points marked with a “j” 

indicate that CON, 40DGS, and HIGH-CGM treatment had a greater pH than the CGM-CDS treatment.  
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Figure 3.2. Ruminal propionate of cattle fed 4 different dietary treatments was monitored 

over 6 periods. The control (CON) treatment contained 76.50% dry-rolled corn (DRC), 

15.00% corn silage, 3.50% soybean meal, 3.55% supplement, and 1.45% urea. The 

40DGS treatment contained 40.00% DRC, 40.00% modified distillers grains plus 

solubles, 15.00% corn silage, and 5.00% supplement. The HIGH-CGM treatment 

contained 62.50% DRC, 17.50% corn gluten meal (CGM), 15.00% corn silage, and 

5.00% supplement. The CGM-CDS treatment replaced 10% of DRC from the HIGH-

CGM diet with condensed distillers solubles. There was an hour × treatment interaction 

(P < 0.10). Treatment differences (P < 0.10) within time points are marked with a letter 

(a, b, and c) to signify statistical differences between treatments within that time point. 

Time points marked with an “a” indicate that the HIGH-CGM treatment had the greatest 

propionate concentration and 40DGS and CGM-CDS had the lowest. The CON treatment 

was intermediate. Time points marked with a “b” indicate that the HIGH-CGM treatment 

had the greatest propionate concentration and CON had the lowest. The 40DGS and 

CGM-CDS treatments were intermediate. Time points marked with a “c” indicate that the 

HIGH-CGM treatment had the greatest propionate concentration and the remaining three 

treatments were lower in propionate concentration. Each treatments’ trend line by time 

was tested for linear and quadratic relationships and none were found. 
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Figure 3.3. Ruminal butyrate of cattle fed 4 different dietary treatments was monitored over 6 

periods. The control (CON) treatment contained 76.50% dry-rolled corn (DRC), 15.00% corn 

silage, 3.50% soybean meal, 3.55% supplement, and 1.45% urea. The 40DGS treatment 

contained 40.00% DRC, 40.00% modified distillers grains plus solubles, 15.00% corn silage, and 

5.00% supplement. The HIGH-CGM treatment contained 62.50% DRC, 17.50% corn gluten meal 

(CGM), 15.00% corn silage, and 5.00% supplement. The CGM-CDS treatment replaced 10% of 

DRC from the HIGH-CGM diet with condensed distillers solubles. There was an hour × 

treatment interaction (P < 0.10). Treatment differences (P < 0.10) within time points are marked 

with a letter (a, b, c, and d) to signify statistical differences between treatments within that time 

point. Time points marked with an “a” indicate that the CON and CGM-CDS treatments had the 

greatest butyrate concentration and HIGH-CGM had the lowest. The 40DGS treatment was 

intermediate. Time points marked with a “b” indicate that the CON treatment had the greatest 

butyrate concentration and HIGH-CGM had the lowest. The 40DGS and CGM-CDS treatments 

were intermediate. Time points marked with a “c” indicate that the CGM-CDS treatment had the 

greatest butyrate concentration and HIGH-CGM had the lowest. The CON and 40DGS treatments 

were intermediate. Time points marked with a “d” indicate that the CON and 40DGS treatments 

had the greatest butyrate concentration and HIGH-CGM had the lowest. The CGM-CDS 

treatment was intermediate. Each treatments’ trend line by time was tested for linear and 

quadratic relationships and none were found. 
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Figure 3.4. Ruminal total VFA of cattle fed 4 different dietary treatments was monitored 

over 6 periods. The control (CON) treatment contained 76.50% dry-rolled corn (DRC), 

15.00% corn silage, 3.50% soybean meal, 3.55% supplement, and 1.45% urea. The 

40DGS treatment contained 40.00% DRC, 40.00% modified distillers grains plus 

solubles, 15.00% corn silage, and 5.00% supplement. The HIGH-CGM treatment 

contained 62.50% DRC, 17.50% corn gluten meal (CGM), 15.00% corn silage, and 

5.00% supplement. The CGM-CDS treatment replaced 10% of DRC from the HIGH-

CGM diet with condensed distillers solubles. There was an hour × treatment interaction 

(P < 0.10). Treatment differences (P < 0.10) within time points are marked with a letter 

(a, b, and c) to signify statistical differences between treatments within that time point. 

Time points marked with an “a” indicate that the HIGH-CGM and CON treatments had 

the greatest total VFA concentration and 40DGS and CGM-CDS had the lowest. Time 

points marked with a “b” indicate that the CON treatment had the greatest total VFA 

concentration and 40DGS had the lowest. The HIGH-CGM and CGM-CDS treatments 

were intermediate. Time points marked with a “c” indicate that the HIGH-CGM 

treatment had the greatest total VFA concentration and the 40DGS and CGM-CDS 

treatments had the lowest. The CON treatment was intermediate. Each treatments’ trend 

line by time was tested for linear and quadratic relationships. The CGM-CDS treatment’s 

trend line is linear (P = 0.05). The HIGH-CGM treatment’s trend line is quadratic (P = 

0.03).  
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