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Abstract

Mitochondrial diseases are a prevalent, heterogeneous class of diseases caused by
defects in oxidative phosphorylation, whose severity depends upon particular genetic
mutations. These diseases can be difficult to diagnose, and current therapeutics have
limited efficacy, primarily treating only symptoms. Because mitochondria play a pivotal
role in numerous cellular functions, especially ATP production, their diminished activity
has dramatic physiological consequences. While this in and of itself makes treating
mitochondrial disease complex, these organelles contain their own DNA, mtDNA,
whose products are required for ATP production, in addition to the hundreds of
nucleus-encoded proteins. Drosophila offers a tractable whole-animal model to under-
stand the mechanisms underlying loss of mitochondrial function, the subsequent cel-
lular and tissue damage that results, and how these organelles are inherited. Human and
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Drosophila mtDNAs encode the same set of products, and the homologous nucleus-
encoded genes required for mitochondrial function are conserved. In addition, Dro-
sophila contain sufficiently complex organ systems to effectively recapitulate many
basic symptoms of mitochondrial diseases, yet are relatively easy and fast to genetically
manipulate. There are several Drosophila models for specific mitochondrial diseases,
which have been recently reviewed (Foriel, Willems, Smeitink, Schenck, & Beyrath,
2015). In this review, we highlight the conservation between human and Drosophila
mtDNA, the present and future techniques for creating mtDNA mutations for further
study, and how Drosophila has contributed to our current understanding of mitochon-
drial inheritance.

1. MITOCHONDRIA PLAY DIVERSE ROLES

Mitochondria are thought to have arisen through endosymbiosis

(Margulis, 1970). As such, in metazoans mitochondria are the only organ-

elle, other than the nucleus, which contains its own DNA, mtDNA. The

mtDNA in different species encodes a variable number of products; how-

ever, animal mtDNA represents the most stripped-down version of the

genome (Gray, 2012). The 16 kb human mtDNA codes for 13 proteins,

22 tRNAs, and 2 rRNAs. All 13 proteins are components of the electron

chain complexes (ETC) I, III, IV, and V (the ATP synthase). Almost all

the DNA is coding—for example, there are no introns in the resulting

mRNAs and very few gaps in coding sequence.DrosophilamtDNA encodes

the same transcripts as human mtDNA, albeit in a slightly different genomic

order (Fig. 1). This fundamental similarity makes the fly an excellent model

for studying mitochondrial function.

The evolution between the nucleus and mitochondria has culminated in

mitochondria taking on highly specialized functions, offering an environment

to support a variety of biochemical reactions required for the cell. Because

mitochondria have such a small genome, they rely heavily on imported

proteins encoded in the nucleus. The best known mitochondrial product is

ATP, produced via the ETC and oxidative phosphorylation (OXPHOS).

However, mitochondria are also required for fatty acid beta oxidation, heme,

steroid, and nucleotide biosynthesis and are integral to apoptosis. In fact, under

specialized conditions it is possible for yeast and cultured cells to survive

without functional OXPHOS (i.e., loss of mtDNA); however, they cannot

survive in the complete absence of the organelle (Chandel & Schumacker,

1999; Goldring, Grossman, Krupnick, Cryer, & Marmur, 1970; Morais,

Gregoire, Jeannotte, & Gravel, 1980; Nagley & Linnane, 1970). All of these
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Fig. 1 Human and Drosophila mitochondrial DNA encode the same products. Human mtDNA (top) is approximately 3 kb shorter than
DrosophilamtDNA (bottom). The size difference is predominantly due to the expanded “A+T-rich” region in Drosophila, which varies among
different Drosophila species. Human mtDNA is transcribed as three polycistrons (arrows): two for the heavy strand (HS), which encodes most
of the products, and one for the light strand (LS). The LS promoter (LSP) starts in the D-loop region (indicated by dashed line), where the origin
of replication is found. HSP1, which includes the rRNAs, expresses at higher levels compared to HSP2. Drosophila mtDNA is thought to be
transcribed as five polycistrons. Note that the products are relatively evenly encoded on both strands, in contrast to human mtDNA. Some
segments maintain the same sequence (e.g., ATP8!mt:tRNAGly). ATP, ATP synthase (orange, Complex V); CO, cytochrome c oxidase
(purple, Complex IV); Cytb, cytochrome b (yellow, Complex III); ND, NADH dehydrogenase (green, Complex I).



basic biochemical reactions are required for both Drosophila and human

cells, and because Drosophila mtDNA encodes the same products as human

mtDNA, Drosophila mitochondria function requires essentially the same

nuclear genes as human mitochondria.

2. MITOCHONDRIAL DISEASES—CAUSES AND EFFECTS

Human mitochondrial diseases mostly result from a loss of OXPHOS.

The term “mitochondrial function” is used broadly so it is important to be as

specific as possible when characterizing any particular loss in biochemical

function. There are estimated to be between 1000 and 1500 proteins

encoded in the nucleus that are imported or associated with mitochondria

(Area-Gomez & Schon, 2014). Thus, mitochondrial disease arises through

mutations in either nuclear DNA or mtDNA. As with any nuclear gene,

mitochondrial disease due to mutations in nuclear genes can be inherited

in a Mendelian fashion as either a dominant or recessive trait. In comparison

to mutations in disease-causing nucleus-encoded mitochondrial genes, there

are over 250 verified disease-causing point mutations in mtDNA. Because

mitochondria cannot be made de novo, they are inherited through the

mother, and thus mtDNA mutations are exclusively maternally inherited.

The 13 proteins encoded by mtDNA are translated in the mitochondrial

matrix using mtDNA-encoded tRNAs (mt:tRNAs) and the mitochondrial

ribosome, which consists of the mt:rRNAs and nucleus-encoded proteins.

This suite of mt:tRNAs is all that is required for translation in human and

Drosophila mitochondria. Human and Drosophila mtDNA is transcribed as

a series of polycistrons (Fig. 1). The mt:tRNAs are thought to function as

“punctuation,” with most of the mRNAs separated by at least one mt:tRNA

(Ojala, Montoya, & Attardi, 1981). Thus, it is critical that each mt:tRNA

and every product of the genome be properly excised allowing each mRNA

to be further processed and translated. Of the known disease-causing point

mutations in mtDNA, over half are found in mt:tRNAs. This is somewhat

surprising, given that the 22mt:tRNAs encode only 9% of the genome. One

explanation could be that mutations in the protein-coding regions are too

deleterious and incompatible with life.

The known mutations that cause human mitochondrial disease have

been extensively reviewed (Area-Gomez & Schon, 2014; Chinnery,

1993; Dimauro & Davidzon, 2005; Lightowlers, Taylor, & Turnbull,

2015). In general, they give rise to defects in the musculature and nervous

system. However, while mutations in nuclear DNA and mtDNA would be
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expected to cause a decrease in OXPHOS, the different mutations have var-

iable onset and features, from symptoms as mild as eye muscle weakness

(external ophthalmoplegia) to infant mortality. There is even evidence that

defects in OXPHOSmay be a cause of miscarriage (Tay, Shanske, Kaplan, &

DiMauro, 2004). Why deficits in the proteins involved in ATP production

give rise to such different outcomes largely remains a mystery. In the case of

disease caused by mutations in nuclear genes, all cells should have the same

genotype. However, for mutations in mtDNA, one reason for differences in

tissue deficits could be the threshold effect (Picard et al., 2014; Rossignol

et al., 2003; Stewart & Chinnery, 2015). Each cell contains many mitochon-

dria, and each mitochondrion usually contains multiple copies of mtDNAs.

Mutations in mtDNAs are usually heteroplasmic (a mixture of wild type and

mutant), thus tissues with a higher mutation load would be expected to be

more severely affected. But a recent finding suggests that many associated

symptoms, secondary to a prominent trademark phenotype that arose

beyond the threshold point, can appear even when a particular mutation

load is well below the threshold mark. Picard and colleagues found that a

predominant pathogenic mutation in a mitochondrial tRNA gene (mtDNA

3243A>G; mutation in mt:tRNALeu(UUR)) has an effect on nuclear gene

expression when present at well below the threshold point (Picard et al.,

2014). Heteroplasmic cells harboring different mutational loads of this par-

ticular mutation have striking variations in their gene expression profile.

This could explain why patients with the same mutation manifest different

clinical symptoms. For example, patients with mtDNA 3243A>G that have

high levels of mutated mtDNA exhibit mitochondrial encephalomyopathy,

whereas patients with lower levels can suffer from type II diabetes, deafness,

or even be on the autistic spectrum (Goto, Nonaka, & Horai, 1990; Pons

et al., 2004; van den Ouweland et al., 1992).

3. HOW CAN STUDYING DROSOPHILA CONTRIBUTE TO
OUR UNDERSTANDING OF HUMAN MITOCHONDRIAL
DISEASES?

As a model organism, Drosophila can help our understanding of mito-

chondrial diseases in several specific ways. The first takes advantage of the

rich history of cell biology in Drosophila. From dissected tissues taken from

wild-type and mutant flies, mitochondria can be clearly visualized at the

organelle level in fixed or live tissues (Cox & Spradling, 2006; Sen,

Damm, & Cox, 2013). This allows for a detailed and accurate view of
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location, numbers, and morphology. In addition, with molecular and bio-

chemical assays, researchers can assay which mitochondrial functions are

compromised in vivo in Drosophila carrying various gene mutations.

The second advantage to using Drosophila to study deficits in mitochon-

drial function is that they have complex central and peripheral nervous sys-

tems, and contain the various organ systems that are frequently affected in

humans suffering frommitochondrial disease, such as skeletal and heart mus-

cles. These organ systems are far simpler than those in humans, allowing for

detailed analysis of the progression of tissue degeneration either during

development or aging. Seizures are one feature of mitochondrial diseases

such as myoclonic epilepsy with ragged-red fibers (MERRF) and mito-

chondrial encephalomyopathy with lactic acidosis and stroke-like episodes

(MELAS). This clinical feature is easily mimicked in Drosophila by assaying

for bang-sensitivity, the paralysis and seizures that can occur after mechanical

stimulation (Engel & Wu, 1994; Fergestad, Bostwick, & Ganetzky, 2006;

Ganetzky &Wu, 1982). Bang-sensitivity occurs in mutants for several genes

involved in metabolism in general, and mitochondrial function in particular

(Burman et al., 2014; Celotto et al., 2006; Fergestad et al., 2006; Royden,

Pirrotta, & Jan, 1987; Zhang et al., 1999). Another symptom of certain

mitochondrial diseases is brain degeneration which can cause cerebellar

ataxia, for example, found in MELAS, Leigh syndrome and myoclonic epi-

lepsy, myopathy, and sensory ataxia. Drosophila with mtDNA mutations

with bang-sensitivity also exhibit progressive brain degeneration (Burman

et al., 2014; Celotto et al., 2006). Finally, cardiomyopathy occurs with

mutations of multiple nucleus-encoded and mtDNA-encoded genes

(Antonicka et al., 2003; Jaksch et al., 2000; Loeffen et al., 2001;

Majamaa-Voltti, Peuhkurinen, Kortelainen, Hassinen, & Majamaa, 2002;

Papadopoulou et al., 1999; Wahbi et al., 2010). In Drosophila, knockdown

of several proteins found in the ETC Complex I (NDUFS2, NDUFS7, and

NDUFC2) specifically in the heart caused significant, abnormal heart dila-

tion (Tricoire, Palandri, Bourdais, Camadro, & Monnier, 2014).

An additional advantage is the ease of genetic manipulation inDrosophila.

RNAi knockdown of single proteins in each ETC complex can be tempo-

rally and spatially controlled using the UAS/GAL4 system, which has been

done for a subset of ETC and OXPHOS proteins (listed in table 1 of

Foriel et al., 2015). In addition, mutant analysis has been very helpful in

determining the molecular mechanisms underlying mitochondrial dys-

function, sometimes offering unexpected results. For instance, tko25t (technical

knockout) is a recessive mutation in the nucleus-encoded mitochondrial
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ribosomal protein S12. This bang-sensitive mutation confers a developmental

delay and has long been considered a model for mitochondrial disease because

the mutation targets the respiratory chain and causes seizures and deafness

(Jacobs et al., 2004; Toivonen et al., 2001). The main pathological symptom

identified in tko25t was oxidative stress. Thus, it was assumed that decreasing

oxidative stress would ameliorate the effect of the tko mutation. However, a

recent finding shows that expressing neither the alternative oxidase (AOX,

from Ciona instestinalis) nor NADH dehydrogenase (ndi1, from yeast) could

rescue the phenotype of tko25t mutant flies (Kemppainen, Kemppainen, &

Jacobs, 2014). These results imply that the tko25tmutation affects greatermito-

chondrial function such that merely targeting oxidative stress cannot afford a

remedy.

A major challenge in mitochondrial disease therapy is establishing the

root cause against which potential therapeutics can be generated. While

the pathological manifestation of a mitochondrial disease looks simple,

namely, loss of OXPHOS, it is difficult to dissect what component(s) of that

complex structure is compromised. The basic functional moiety of a mito-

chondrion is its OXPHOS network. For example, if one of the 44 compo-

nents of Complex I does not function properly, it may be reflected in

abnormal Complex I activity. However, a traditional clinical approach

may not be adequate to identify the primary cause of the nonfunctional

Complex I, whereas a model system allows various forms of experimenta-

tion not possible in patients. Even if a particular subunit is mutated, it can be

difficult to predict what specific aspect of the molecular complex is deficient.

This creates difficulties for rational therapeutic design. Thus, using Drosoph-

ila offers tremendous potential for identifying the exact molecular mecha-

nism behind any pathological symptoms and could aid in more targeted

drug delivery and discovery.

4. MITOCHONDRIAL DISEASES CAUSED BY mtDNA
MUTATIONS

Since mitochondria cannot be made de novo and contain their own

DNA, they are maternally inherited through the egg’s cytoplasm. Thus,

mutations in mtDNA, and therefore mitochondrial diseases, are inherited

through the mother. Common mitochondrial diseases occur from point

mutations in all products encoded by mtDNA: protein-coding regions,

tRNAs, and rRNAs. For example, maternally inherited forms of Leber

hereditary optic neuropathy are due to point mutations in the subunits of

7Fly Models of Human Diseases



the NADH dehydrogenase complex (Complex I) ND1, ND2, ND4, and

ND4L. Point mutations in different mt:tRNAs cause different symptoms

and disease (MELAS,MERRF, CPEO as a few of the examples). All of these

mutations have effects on the stoichiometry of the protein complexes used

for OXPHOS which is the underlying cause of a decrease in mitochondrial

output.

What have we learned from flies harboring deleterious mutation in their

mtDNA? Currently, there are three fly models to examine specific muta-

tions; however, this is an area with great potential (discussed later). The first

model is a serendipitously identified point mutation in mt:ATP6 (Celotto

et al., 2006). The bang-sensitivity of Drosophila mutant for adenine nucleo-

tide translocase type 1 (ANT1, called stress sensitive (SesB) inDrosophila) was

separable from a second, cytoplasmically inherited bang-sensitivity found to

be caused by a single point mutation in mt:ATP61. The mt:ATP61mutation

exists at near homoplasmy and gives rise to neurodegenerative phenotypes

reminiscent of those found in mitochondrial diseases caused by mutations in

ATP6. This model has been useful for studying the bioenergetic changes

that occur before and after neurological symptoms occur (Celotto, Chiu,

Van Voorhies, & Palladino, 2011).

The second model used a mitochondrially targeted restriction endonu-

clease to generate a single-site cleavage in the mtDNA. This idea was first

tested in tissue culture cells by theMoraes laboratory, then subsequently suc-

cessfully used in Drosophila to create an intact organism containing a muta-

tion in cytochrome c oxidase subunit I (mt:CoI, Complex IV) as well as a

small insertion and small deletion in mt:ND2 (mt:ND2ins1 and mt:ND2del1,

respectively) (Bacman, Williams, Pinto, & Moraes, 2014; Srivastava &

Moraes, 2001; Xu, DeLuca, & O’Farrell, 2008). In Drosophila, a single XhoI

site is located in CoI. Xu et al. conditionally expressed a transgene encoding

mitochondrially targeted XhoI exclusively in the germline. Upon germline

expression, most mtDNA was irreparably cleaved, giving rise to sterile

females; however, at a low level, mtDNA with mutations which rendered

the DNA impervious to XhoI cleavage were selected for. These mutations

were able to replicate and repopulate the germline. As would be expected,

certain mutations were silent; however, others caused amino acid changes

that affected CoI function (Xu et al., 2008). Adults homoplasmic for mt:

CoIR301S mtDNA had 50% of the normal CoI levels, age-related reduction

in ATP levels, and neurological and muscular defects, thus largely recapit-

ulating many of the general symptoms exhibited in human mitochondrial

diseases.

8 A. Sen and R.T. Cox



The mt:ND2del1mutation, which removes three highly conserved resi-

dues at positions 186–188, was recently further characterized (Burman

et al., 2014). This work is a good example of how Drosophila exhibit tissue

phenotypes associated with humanmitochondrial disease, while also helping

define the molecular function of a particular protein in one of the ETC

Complexes. Complex I is the largest complex, with �44 proteins. Burman

et al. found that mt:ND2del1 mutants were bang-sensitive and had reduced

life spans, similar tomt:ATP61mutants. The mutant adults had neurodegen-

erative vacuoles in aged fly brains, suggesting a progressive neurodegener-

ative phenotype, while the musculature remained intact. To pinpoint any

defects in respiration, the authors determined that under maximally

demanding conditions, the mutants showed a Complex-I-dependent respi-

ratory defect, but no defect in Complex-II- and Complex-IV-dependent

respiration. The total amount of assembled CoI was reduced, as was the

mitochondrial membrane potential and amount of ATP. Together, these

data support a role for mt:ND2 in the proton pumping mechanism of Com-

plex I, the first time this has been shown in a eukaryote.

There are also disadvantages to using Drosophila to study mtDNA muta-

tions. One disadvantage is that any organismwith a highmtDNAmutational

load will potentially eventually die. Therefore, while it is trivial to maintain a

lethal mutation in a nuclear gene in Drosophila, maintaining mtDNA muta-

tions can be challenging over many generations. In the case of themt:ATP61

mutation, for reasons that are unknown, this mutation is sustained nearly

homoplasmically in a background of the SesB1 allele of ANT1. Thus, to

examine and characterize the effect of a 100% mt:ATP61 mutation load,

the SesB mutation need simply be crossed out of the strain. In the case of

the CoI mutation located at the XhoI restriction site, while this stock will

eventually die, it can be generated reproducibly over and over again by

expressing the mitochondrially targeted XhoI in the germline.

5. DISEASE-CAUSING POINT MUTATIONS ARE MOST
PREVALENT IN mt:tRNAs—CONSERVATION BETWEEN
HUMAN AND DROSOPHILA

A thorough and continuously updated compilation of humanmtDNA

mutations and polymorphisms indicates that there are a total of 305 disease-

causing modifications in mt:tRNAs andmt:rRNAs, with the numbers likely

growing (Lehmann et al., 2015; Lott et al., 2013). This is an unusually large

number given that only about 9% of mtDNA codes for tRNAs. There are

9Fly Models of Human Diseases



various nucleus-encoded factors that are involved in processing mt:tRNA

from their immature transcripts, as well as those that are responsible for post-

translational modifications. Mutations in mt:tRNA residues that are sites for

processing and modification can cause mitochondrial disease (Powell,

Nicholls, & Minczuk, 2015). What are the possible effects of these muta-

tions? mt:tRNAmutations may affect tRNA processing. Mature mt:tRNAs

are embedded within the newly synthesized polycistronic transcript (Fig. 1).

Due to this “punctuation” model, precursor mt:tRNA processing is critical

not only to generate mature mt:tRNAs but also to cleave out the mt:

mRNAs (Ojala et al., 1981). Recently, the mitochondrial cognate of RNase

Z, the endoribonuclease responsible for 30-end tRNA cleavage, was iden-

tified in Drosophila. The authors showed that specific loss of the mitochon-

drial form affected mt:RNA processing, causing larval lethality, cell-cycle

defects, and an increase in reactive oxygen species (Xie & Dubrovsky,

2015). A mitochondrial protein-only RNase P, containing no enzymatic

RNA, performs the 50-end cleavage of mt:tRNAs (Holzmann et al.,

2008). Recently, the three Drosophila orthologs comprising this complex

have been identified and abolishing any of them causes lethality, loss of

ATP, and aberrant mt:RNA processing (Sen et al., 2016). Potentially, muta-

tions in the nucleotide residues that participate in the interaction between

the mt:tRNA and either of these enzyme complexes responsible for cleavage

could hinder processing, leading to not only a reduction in mt:tRNAs but

also normal polycistron processing.

A second possible effect of mt:tRNA point mutations is on their unique

stem–loop hairpin structure since the primary sequence is responsible for

forming this secondary conformation. Mutations in residues contributing

to this stable structure may lead to unstable mt:tRNA molecules that could

be susceptible to enzymatic degradation. For example, a recent study byDuff

et al. described how a single mutation in mt:tRNATrp caused a wide range of

defects (Duff et al., 2015). A homoplasmic 5559A>Gmutation in cells from

a family affected with Leigh syndrome not only altered the processing and

stability of mt:tRNATrp but also affected the stability of many other mito-

chondrial tRNAs, mRNAs, and rRNA.

Another tRNA-specific problem could be due to improper charging.

The main function of tRNAs is to read the genetic code and transfer the

respective amino acid residues onto the nascent polypeptide. But to do

so, tRNAs must get charged with the appropriate amino acid by aminoacyl

tRNA synthetase (ARS). In mitochondria, this charging process requires

cross talk between nucleus-encoded mitochondrial tRNA synthetase

10 A. Sen and R.T. Cox



(mtARS) and mt:tRNAs (Tyynismaa & Schon, 2014). As these two com-

ponents rely on each other for proper function, mutations in either may lead

to a cascade of functional abnormalities. For example, mutations in 9 of

19 total mtARs, encoded by the nuclear genome, are associated with mito-

chondrial disease in a tissue-specific manner (Konovalova & Tyynismaa,

2013). Despite having wide-spread consequences in causing mitochondrial

disease, mutations in mt:tRNAs are not yet treatable. Repairing these muta-

tions is not possible, due to the maternal inheritance of mtDNA. Recent

studies have shown that their functional incompatibility can lead to devel-

opmental defects inDrosophila, and cell growth defects in yeast and mamma-

lian cell culture (Meiklejohn et al., 2013; Perli et al., 2016; Wang et al.,

2016). However, researchers have shown that engineered nucleus-encoded

mtARSs can be used to suppress the effect of deleterious mt:tRNA muta-

tions, which is easier to accomplish than altering mtDNA.

A comprehensive list of diseases related to mutations in mt:tRNAs is

available at Mitomap (Brandon et al., 2005; Ruiz-Pesini et al., 2007).

Due to their prevalence, there is a great deal of interest in mt:tRNAs point

mutations and how they contribute to disease (Yarham, Elson, Blakely,

McFarland, & Taylor, 2010). Using Drosophila to model human mitochon-

drial diseases caused by mt:tRNA mutations would be useful to determine

the specific effect each mutation has on mt:tRNA processing, stability, and/

or modification. To highlight the conservation between Drosophila and

human mt:tRNAs, Fig. 2 shows a pair-wise structural alignment of all

22 tRNAs using the LocARNA alignment tool (Smith et al., 2010; Will,

Joshi, Hofacker, Stadler, & Backofen, 2012). This program compares pri-

mary sequences as well as the structural compatibility of input RNA

sequences, which is especially important as this indicates any potential dis-

ruptions caused by different mutations on secondary structure. Using

LocARNA, all mt:tRNA pairs produce highly compatible canonical clover-

leaf tRNA structures (examples shown in Fig. 2C and D), except for mt:

tRNASer(AGY) and mt:tRNAPro. The confirmed disease-causing point

mutations are marked with asterisks below each pair. We have also marked

the residues where unique mutations have been reported (Genebank fre-

quency 0, thus not due to polymorphism). Of a total of 145 mutant residues,

77 are conserved inDrosophila, and some of these conserved residues, which

are structurally more compatible than others, would be excellent targets for

mutagenesis. Using these alignments, along with weighted-based pathoge-

nicity scoring models, allows prioritization of which residues would be best

targeted for mutation studies (Blakely et al., 2013; Yarham et al., 2011).
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AUUCUU
......

*** **

(((((((..(((..........)))((((((.(....)))))))....((((((.....)
UAGAUUGAAGCCAGUUGAUUAGGGUGCUUAGCUGUUAACUAAGUGUUUGUGGGUUUAAGU
-UAAUUGAAGCCA---AAAAGAGGCAUAUCACUGUUAAUGAUAUAAUUGAAUUUU----A
.........10........20........30........40........50.........

)))))))))))).
CCCAUUGGUCUAG
AAUUCCAAUUAAG
.........70..

** *

((((((...((((......)))).(((((((...)))))))...((((((......))))
AAGGUAUUAG-AAAAACCAUUUCAUAACUUUGUCAAAGUUAAAUUAUAGGCUAAAUCCUA
AAAAAAUUAGUUAAAAUCAUAACAUUAGUAUGUCAAACUAAAAUUAUUAAAUAA--UUAA
.........10........20........30........40........50.........

)))))))).
UAUAUCUUA
UAUUUUUUA
.........

**

)))))).
GGGGCUU
AAGGCUU
.......

(((((((..((((....)))).(((((((...)))))))....((((........)))))
AGCUCCGAGGUGA-UUUUCAUAUUGAAUUGCAAAUUCGAAGAAGCAGCUUCAAACCUGCC
GGUCUUAUAGUCAAUAAUGAUAUCAAACUGCAAUUUUGAAGGAGUAAGUU-----UUACU
.........10........20........30........40........50.........

**

)).)))))))).......
UCAUAGUCCUA------G
UAUUAAAUAUAAAAUCAU
.........70.......

((((((((.((((........)))).(((((((...)))))))((((((((...))))))
UAGGAUGGGGUGUGAUAGGUGGCACGGAGAAUUUUGGAUUCUCAGGGAUGGGUUCGAUUC
UAUAUUUUGGUGU---AUGAUGCACAAAAGUUUUUGAUACUUUUAGAAAUAGUUUAAUUC
.........10........20........30........40........50.........

)))))))).
GCGAGAAUA
UUAUAAAUU
.........

*** ****

(((((((((((((.....))))((((((.......))))))((.(.((....))).)).)
GUUCUUGUAGUUGAAAUACAACGAUGGUUUUUCAUAUCAUUGGUCGUGGUUGUAGUCCGU
AUUUAUAUAGUUUAAAUAAAACCUUACAUUUUCAUUGUAAUAAU--AAAAUAUUACAUUU
.........10........20........30........40........50.........

**

(((((((..((((.....)))).(((((.(...).)))))....(((((......)))))
ACUCUUUUAGUAUAAAUAGUACCGUUAACUUCCAAUUAACUAGUUUUGACAACAUUCAAA
AUCUAUAUAGUAUAAA-AGUAUAUUUGACUUCCAAUCAUAAGGUCUAUU--AAUUAAUAG
.........10........20........30........40........50.........

))))))).
AAAGAGUA
UAUAGAUA
........

*

(((((((..((((.....))))((((((((...))))))))...(((((.......))))
GUAAAUAUAGUUUAACCAAAACAUCAGAUUGUGAAUCUGACAACAGAGGCUUACGACCCC
AUUUAAAUAGUUUAAAAAAAAUACUAAUUUGUGGUGUUAGUGAUAUGAA---AAUAUUCA
.........10........20........30........40........50.........

)))))))).
UUAUUUACC
UUUUAAAUC
.........

* ** ** **** ** *

(((((((..(((.......))).(((((((...))))))).....(((((.......)))
AGAAAUAUGUCUGAU-AAAAGAGUUACUUUGAUAGAGUAAAUAAUAGGAGCUUAAACCCC
AAUGAAUUGCCUGAUAAAAAGGAUUACCUUGAUAGGGUAAAUCAUGCAGUUUU-----CU
.........10........20........30........40........50.........

))))))))).
CUUAUUUCUA
GCAUUCAUUG
.........7

*** ** * ***** *** *** *

(((((((..(((............))).(((((.......))))).....((((((....
GUUAAGAUGGCAGAGCCCGGUAAUCGCAUAAAACUUAAAACUUUACAGUCAGAGGUUCAA
UCUAAUAUGGCAGA------UUAGUGCAAUAGAUUUAAGCUCUAU-AUAUAAAGUAUU--
.........10........20........30........40........50.........

.))))))))))))).
UUCCUCUUCUUAACA
UUACUUUUAUUAGAA
.........70....

**** ***

(((((((..(((((.....))))).((((((....).)))))....(((((.......))
ACUUUUAAAGGAUAACAGCUAUCCAUUGGUCUUAGGCCCCAAAAAUUUUGGUGCAACUCC
ACUAUUUUGGCAGAUUAG---UGCAAUAAAUUUAGAAUUUAUAUAUGUGAUUU---UUAU
.........10........20........30........40........50.........

)))))))))).
AAAUAAAAGUA
UACAAAUAGUA
.........70

*** ***** ***

(((((((..(((.......)))((((((.......))))))....(((((.........)
CACUGUAAAGCU--AACUUAGCAUUAACCUUUUAAGUUAAAGAUUAAGAGAACCAACACC
CAUUAGAUGACUGAAAGCAAGUACUGGUCUCUUAAACCAUUUAAUAGUAA-AUUAGCACU
.........10........20........30........40........50.........

))))))))))).
UCUUUACAGUGA
UACUUCUAAUGA
.........70.

* **

((((((((.........((((((.(....)))))))......(((((.......))))))
GAGAAAGC----UCA--CAAGAACUGCUAACUCAUGCC--CCCAUGUCU-AACAACAUGG
GAAAUAUGAUGAUCAAGUAAAAGCUGCUAACUUUUUUCUUUUAAUGGUUAAAUUCCAUUU
.........10........20........30........40........50.........

))))))).
CUUUCUCA
AUAUUUCU
........

**** ** *

((((((..((((((...))))))((((((((...))))))))..((((((.......)))
GAAAAA-GUCAUGGAGGCCAUGGGGUUGGCUUGAAACCAGCUUUGGGGGGUUCGAUUCCU
AGUUAAUGAGCUUGA-AUAAGCAUAUGUUUUG--AAAACAUAAGAUAGAAUUUAAUUUUC
.........10........20........30........40........50.........

))))))))).
UCCUUUUUUG
UAU-UAACUU
.........7

*

((((((((.((((......)))))(((((.(...).)))))....((((.....))))))
GUCCUUGUAGUAUAAACUAAUACACCAGUCUUGUAAACCGGAGAUGAAAACCUUUUUCCA
GUUUUAAUAGUUU-AAUAAAAACAUUGGUCUUGUAAAUCAAAAAUAAGAUUAUUUCUUUU
.........10........20........30........40........50.........

)))))..
AGGAC-A
AAAACUU
.......

**** ** ****

((((((((.((((.......))))))(((.((....))..)))..((((((....)))))
AGAAAUUUAGGUUAAAUACAGACCAAGAGCCUUCAAAGCCCUCAGUAAGUUGCAAUACUU
AAGGCUUUAAGUU-AAUA-AAACUAAUAACCUUCAAAGCUAUAAAUAAAGAAAUUUCUUU
.........10........20........30........40........50.........

))))))).
AAUUUCUG
AAGCCUUA
........

*

(((((((..(((((...))).)).(((((((...)))))))....(((((.....)))))
GGUAAAAUGGCUGA--GUGAAGCAUUGGACUGUAAAUCUAAAGACAGGGGUUAGGCCUCU
GAUUAAGUGGCUGAAGUUUAGGCGAUAGAUUGUAAAUCUAUAUAUAAGAUUUA--UUCUU
.........10........20........30........40........50.........

))))))).
UUUUACCA
CUUAAUCA
........

** ***

(((((((..((((........)))).(((((.......)))))....(((((.......)
CAGAGUGUAGCUUAACA--CAAAGCACCCAACUUACACUUAGGAGAUUUCAACUU-AACU
CAAUUUAAAGCUUAUUAAGUAAAGUAUUUCAUUUACAUUGAAAAGAUUUUUGUGCAAAUC
.........10........20........30........40........50.........

)))))))))))..
UGACCGCUCUGA-
AAUAUAAAUUGAG
.........70..

*** ** * **

(((((((.(((((.........)))))(((((((...)))))))....((((.......)
GUUUAUGUAGCUUACCUCCUCAAAGCAAUACACUGAAAAUGUUUAGACGGGCUCACAUCA
AUCCAAAUAGCUUA--UACU-AGAGUUUGACAUUGAAGAUGUUAUGGAGAUUAU---UAA
.........10........20........30........40........50.........

)))))))))).
CCCCAUAAACA
AUCUUUGGAUA
.........70

(((((((..((((.....))))((((((.......))))))...(((((.......))))
AGUAAGGUCAGCUAAAUAAGCUAUCGGGCCCAUACCCCGAAAAUGUUGGUUAU-ACCCUU
AAAAAGAUAAGCUAAUUAAGCUACUGGGUUCAUACCCCAUUUAUAAAGGUUAUAAUCCUU
.........10........20........30........40........50.........

)))))))).
CCCGUACUA
UUCUUUUUA
.........

* **

**

**

(((((((.(((((.((((....(((((((((...)))))))))....)))))))...)).
CAGAGAAUAGUUUAAAUUAGAAUCUUAGCUUUGGGUGCUAAUGGUGGAGUUAAAGACUUU
AGG----UAGUUU-AUUUAAAAUAUUAAUUUUGGGGAUUAAUG--AAAAAGAAAUUUCUU
.........10........20........30........40........50.........

))))))).
UUCUCUGA
UUCUCUUG
........

**

**

** **

**

**

**

**

**

** **

**

**

**

(((((((..((((.....)))).(((((.......)))))....(((((((...))))))
AAGGGCUUAGCUUAAUUAAAGUGGCUGAUUUGCGUUCAGUUGAUGCAGAGUGGGGUUUUG
AGGGUUGUAGUUAAA-UAUAACAUUUGAUUUGCAUUCAAAAAGUAUUGAAU---AUUCAA
.........10........20........30........40........50.........

)))))))).
CAGUCCUUA
UCUACCUUA
.........

Ala Hs 5655
Dm 5981

Phe Hs  577
Dm 6401

Val Hs  1602
Dm 14,130

Leu
(UUR)

Hs 3230
Dm 3012

Ile Hs 4263
Dm    1

Gln Hs 4400
Dm  165

Met Hs 4402
Dm  171

Trp Hs 5512
Dm 1264

Asn Hs 5729
Dm 6119

Cys Hs 5826
Dm 1383

Tyr Hs 5891
Dm 1468

Ser Hs  7514
Dm 11,637(UCN)

Asp Hs 7518
Dm 3840

Lys Hs 8295
Dm 3768

Gly Hs 9991
Dm 5543

Arg Hs 10,450
Dm  6055

His Hs 12,138
Dm  8205

Glu Hs 14,742
Dm  6252

Ser Hs 12,207
Dm  6184(AGY)

Leu Hs 12,266
Dm 12,733(CUN)

Thr Hs 15,888
Dm  9837

Pro Hs 16,023
Dm  9963
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Fig. 2 mt:tRNA comparison between human and Drosophila. (A) A graph showing the
amino acid composition (in percent) of mitochondria-encoded proteins in human and
Drosophila. Amino acids are represented in single letter code. The number of disease-
causing point mutations in each mt:tRNA are indicated at the top of each column.
(B) Pair-wise alignment between human and Drosophilamt:tRNAs using the web-based
LocARNA tool. The tRNA sequences were obtained from human (accession # NC_
012920) and Drosophila (accession # U37541) mitochondrial genome sequences. The
nucleotide start of each sequence is on the left. The gray boxes underneath each align-
ment indicate conserved nucleotide identity. To show the general location of the stems
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Arrows point to conserved disease-causing residues on the consensus struc-

tures of mt:tRNALys and mt:tRNALeu (Fig. 2D and E). These two tRNAs,

along with mt:tRNASer, are the most frequently mutated mt:tRNAs in

mitochondrial disease (Lott et al., 2013; Ruiz-Pesini et al., 2007).

6. DROSOPHILA MODELS OF mtDNA-INDUCED DISEASE:
UNTAPPED FUTURE POTENTIAL

There are multiple, devastating maternally inherited mitochondrial

diseases. Developing additional fly models containing mtDNA mutations

would be very useful for understanding the effect of each specific mutation

on assembly and level of ETC complexes, on different tissues, and for

determining how and what level of mutation load gives rise to deficits in

organ and cell-type function. In addition, being able to generate specific

mtDNA mutations at will would allow researchers to determine at the

cellular and developmental level the molecular mechanisms governing

inheritance. Given that there are only three models for mtDNA mutations

in flies (ATP61,mt:CoI, andmt:ND2), what are the future prospects for gen-

erating more?

There are several potential ways to generate models of mtDNA-

dependent mitochondrial disease in Drosophila. The first way is to use the

restriction endonuclease method described earlier to generate mutations

in mtDNA (Xu et al., 2008). This method has the advantage that it appears

robust in manufacturing escaper flies harboring mtDNA mutations through

germline selection. Furthermore, this method can be used repeatedly to

regenerate the fly stock, since the genetics underlying the technique is

relatively simple. However, the disadvantage is that these single-cut endo-

nucleases recognize specific locations in the fly mtDNA genome, which

limits the number of positions that would be affected (Table 1). In addition,

any given location is not guaranteed to have a deleterious effect.

and loops, a schematic of a canonical tRNA cloverleaf structure in stretched-form is
shown at the top, with the complementary stems the same color. (C) The color
coding indicates whether the nucleotides are conserved and if they form a Watson–
Crick base pair. The color-coding matrix for sequence compatibility was obtained
from the LocARNA site (Smith, Heyne, Richter, Will, & Backofen, 2010). (D and E)
mt:tRNALeu(UUR) (D) and mt:tRNALys (E) show generalized compatible secondary struc-
tures for each tRNA based on the sequence alignment. The arrows indicate some
common point mutations found in human mitochondrial diseases that are conserved
in Drosophila.
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Table 1 Restriction Endonucleases with Only One Site in Drosophila melanogaster
Mitochondrial DNA
Endonuclease Site Gene

BsmFI 287 ND2

BsrBI 558 ND2

BglII 800 ND2

EcoRV 1359 tRNACys

NruI 1473 COI?

BsgI 1642 COI

Bst1107I 2005 COI

Tsp45I 2182 COI

AvaI 2368 COI

XhoI 2368 COI

NsiI00 3158 tRNALeu

SapI 3310 COII

NciI 3646 COII

DrdI 4245 ATPase 6

BssSI 4922 COIII

StyI 4938 COIII

PleI 5305 COIII

AhdI 5462 COIII

HpaI 6751 ND5

AflII 7417 ND5

PstI 7514 ND5

Bsu36I 9613 ND4L

BsaBI 10,671 CytB

BsmBI 10,711 CytB

NdeI 11,656 tRNASer

BbsI 13,160 lrRNA

BsrGI 14,207 srRNA

BanI 14,741 srRNA

8 out of the 13 protein-coding regions have sites and only 3 out of 22 mt:tRNAs have sites.
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To get around this problem, a method that is beginning to be explored

involves the evolving technology of genome editing combined with

mitochondrially targeted nucleases. Transcription activator-like effector

nucleases (TALEN) technology has recently been shown to abolish neuro-

genic weakness with ataxia and retinitis pigmentosa-associated mtDNA

mutations in patient heteroplasmic cells by targeting and cleaving mutated

mtDNAs (Reddy et al., 2015). TALEN technology targeting nuclear genes

has been shown to be robust inDrosophila, thus adapting the modification of

mitochondrially targeted TALEN developed for mammals could be used to

cleave the Drosophila mtDNA genome at any site (Beumer et al., 2013;

Katsuyama et al., 2013; Liu et al., 2012; Zhang, Ferreira, & Schnorrer,

2014). This method could potentially generate escaper flies repopulated

with nuclease-resistant mtDNA, as is the case with mitochondrially targeted

XhoI (Xu et al., 2008).

A method with the potential to create any mtDNAmutation on demand

in Drosophila involves clustered regularly interspaced short palindromic

repeats (CRISPR)/Cas9 technology (Sander & Joung, 2014). Recent work

indicated this method can cleavemtDNA at the CoI locus in HEK cell mito-

chondria using a mitochondria-targeted Cas9 protein and introducing guide

RNAs specific for mtDNA (Jo et al., 2015). While the authors show CoI is

cut, it is not clear how the guide RNAs get into the mitochondria to mark

the CoI locus, though various RNAs are known to be imported into

eukaryotic mitochondria (Wang, Shimada, Koehler, & Teitell, 2012).

CRISPR/Cas9 works very effectively in Drosophila on nuclear genes, and

this technology appears to be more effective than gene targeting by homol-

ogous recombination in flies (Rong & Golic, 2000; Rong et al., 2002). In

the nucleus, this genome editing involves homology-directed repair that

uses an exogenously supplied oligo DNA encoding the desired change as

a template for repair. Thus, for this technology to work on mtDNA for

directed mutagenesis, there must be the appropriate repair mechanisms.

Homologous recombination between mtDNA molecules has been clearly

demonstrated for the first time in Drosophila, and the proteins required for

double-strand break repair are present in mitochondria (Duxin et al.,

2009; Ma & O’Farrell, 2015; Sage, Gildemeister, & Knight, 2010; Tann

et al., 2011; Thyagarajan, Padua, & Campbell, 1996). Thus, it may be pos-

sible to use CRISPR/Cas9 to induce specific nucleotide changes in mtDNA

to mimic human disease-causing mutations.

Point mutations in mtDNA lead to decreases in the proteins comp-

rising the ETC complexes. While this likely occurs through a variety of
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mechanisms (e.g., too few tRNAs, unstable mRNAs, nonfunctional pro-

teins), targeted knockdown of individual mt:mRNAs would be useful in

order to understand and characterize the resulting developmental and tissue-

specific effects. Nucleus-encoded noncoding RNAs are imported into

mitochondria in all species (Sieber, Duchene, & Marechal-Drouard,

2011). Wang et al. successfully targeted wild-type mt:tRNAs to mitochon-

dria using a 20-ribonucleotide stem–loop sequence from H1 RNA, the

RNA component of RNase P (Wang, Shimada, Zhang, et al., 2012). They

demonstrated this method could correct deficits in mt:tRNAs in cultured

cells containing mtDNA mutations. Using a variation on this theme in

Drosophila, Towheed et al. combined a similar approach with the idea of

RNA silencing (Towheed, Markantone, Crain, Celotto, & Palladino,

2014). The 5S rRNA was originally thought to be a component of only

cytoplasmic ribosomes; however, it is also imported into mitochondria

where its function is not entirely clear (Magalhaes, Andreu, & Schon,

1998; Yoshionari et al., 1994). Towheed et al. identified the Drosophila

ortholog of mitochondrial 5S rRNA and used the stem–loop leader

sequence to target antisense RNA to mitochondria (Towheed et al.,

2014). This technique resulted in translational inhibition of mt:ATP6 and

a 40–50% reduction in protein levels, which phenocopied ATP61 mutant

flies. Called mitochondrial-targeted RNA expression system (mtTRES),

the authors used the GAL4/UAS system to conditionally express the mt:

ATP6 antisense mRNA, thus giving them spatial and temporal control.

The final method to create mutated mtDNA that has not been exploited

inDrosophila, but has much potential, is creating a so-called mutator fly using

a proof-reading-deficient mitochondrial polymerase gamma (PolG). PolG,

the catalytic subunit of mtDNA polymerase, is a highly processive enzyme

that contains three exonuclease domains responsible for excising and

repairing mismatched nucleotides during replication (Kaguni & Olson,

1989; Wernette, Conway, & Kaguni, 1988). First described in yeast, PolG

mutations were created by mutating conserved residues in the exonuclease

domains, which led to an increase in mtDNA mutations as assayed by

increased erythromycin resistance (Foury & Vanderstraeten, 1992). Eryth-

romycin, an antibiotic that targets bacterial ribosomes, affects mitochondrial

ribosomes due to the conserved mode of action between mitochondrial and

bacterial ribosomes. mtDNAmutator mice have been successfully generated

that lead to an increase in mtDNA mutations (Trifunovic et al., 2004). The

Drosophila ortholog of PolG is called Tamas (Iyengar, Roote, & Campos,

1999). Mutations in tamas are lethal, and mutations in human PolG are
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known to cause mitochondrial disease (Wong et al., 2008). One problem

with creating a mutator fly is that ectopically overexpressing tamas from a

transgene leads to a decrease in mtDNA and lethality (Lefai et al., 2000).

Using CRISPR/Cas9 would get around this problem by altering tamas at

the endogenous locus, and thus the same exonuclease mutations used in

yeast and mouse could be introduced under control of the endogenous pro-

moter. A mutator fly would be useful for generating randommtDNAmuta-

tions and studying their effect on specific tissues, as well as inheritance. In

addition, this would potentially be a good model for examining the effect

of increased mtDNA mutation load on aging.

7. MITOCHONDRIAL INHERITANCE AND QUALITY
CONTROL CHECKPOINTS

MtDNA has a higher mutation rate than nuclear DNA. In Drosophila,

for example, it is 10� higher than the nucleus (Haag-Liautard et al., 2008;

Vermulst et al., 2007). Coupled with seemingly more rudimentary DNA

repair mechanisms, an outstanding question is how oocytes generally main-

tain high levels of highly functional mitochondria. During inheritance,

mitochondria can undergo a rapid change in genotype, giving rise to the

hypothesis that there is a genetic bottleneck. Evidence supports that this bot-

tleneck may take place during oogenesis; however, where and how this hap-

pens is not fully understood (Wallace & Chalkia, 2013). Studies in bovine

indicated that a change in mtDNA genotype can be rapid, and data from

mouse have tried to pinpoint the developmental timing of the bottleneck

by estimating changes in mtDNA copy number at different times during

fetal oogenesis (Cao et al., 2007; Hauswirth & Laipis, 1982; Jenuth,

Peterson, Fu, & Shoubridge, 1996). This bottleneck was thought to be

due to random genetic drift; however, there is increasing evidence that it

may serve as a purifying mechanism to ensure only the most fit mitochondria

populate the oocyte (Fan et al., 2008; Freyer et al., 2012; Stewart et al.,

2008).

Women with disease-causing point mutations in mtDNA have a high

probability of having children affected by the disease (Taylor & Turnbull,

2005). They may not manifest any disease symptoms until later in life, or

at all, and thus may already have children. Prognoses in these cases are hard

to make. A woman whose germline is heteroplasmic can have viable oocytes

with different levels of mutated mtDNA, thus siblings can inherit different

disease severity. There are only limited tools to determine which oocytes
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have a lower mutation load. One possible remedy recently advanced is

nuclear transfer, using the affected oocyte’s nucleus and an enucleated donor

egg containing normal mitochondria (Mitalipov & Wolf, 2014). While this

method is now legal in the United Kingdom, a better understanding of the

molecular mechanisms underlying mitochondrial inheritance is required to

provide their patients with an accurate prognosis.

Drosophila are an ideal model in which to study the mechanisms respon-

sible for mitochondrial inheritance. Drosophila oogenesis is well character-

ized (Spradling, 1993). The stem cells can be unambiguously identified,

each developmental stage is present for examination, and mitochondria

can be visualized at the single-organelle level (Cox & Spradling, 2003).Dro-

sophila oocyte formation shares a surprisingly large number of similarities

with vertebrate oogenesis (Matova & Cooley, 2001). For example, both

Drosophila and vertebrate germ cells spend part of their life as a cluster of

interconnected cells called cysts (Pepling, de Cuevas, & Spradling, 1999).

The presence of cysts allows the germ cells to share cytoplasmic components,

such as microtubules, Golgi, centrosomes, and mitochondria (Cox &

Spradling, 2003; Lei & Spradling, 2016; Pepling & Spradling, 1998).

A prominent structure in oocytes is a mitochondrial cloud or Balbiani body

(Kloc, Bilinski, & Etkin, 2004). InDrosophila, this highly conserved structure

forms when a subset of mitochondria from connected sister germ cells moves

into the oocyte using the microtubule cytoskeleton and molecular motors

(Cox & Spradling, 2003, 2006). Since only a subset of mitochondria is trans-

ported into the oocyte to populate the oocyte for the first half of oogenesis,

this raises the possibility that these mitochondria may be the most highly

functional. Microtubule motor complexes appear to be important,

suggesting that the ability of a particular organelle to bind to the motor

and be transported may be part of the mechanism; however, this has not

been directly tested.

Models of mitochondrial inheritance in Drosophila have given insight to

the potential mechanisms underlying mitochondrial inheritance during

oogenesis. The original studies examining the mitochondrial bottleneck

in mouse and Drosophila took advantage of natural size differences and neu-

tral polymorphisms between mtDNAs and did not look at competition

between deleterious mutations and wild-type mtDNA (Jenuth et al.,

1996; Kann, Rosenblum, & Rand, 1998; Solignac, G�enermont,

Monnerot, & Mounolou, 1984; Solignac, Genermont, Monnerot, &

Mounolou, 1987). Recent work has used cytoplasmic injection to create

heteroplasmic flies containing wild-type and mutated mtDNAs, followed
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by monitoring of mitochondrial purification over time (Hill, Chen, & Xu,

2014; Ma, Xu, & O’Farrell, 2014). The authors of these studies have

exploitedDrosophila to pinpoint the stages when mtDNA purification is tak-

ing place during oogenesis.

By carefully analyzing the percent heteroplasmy in flies over multiple

generations, Ma et al. were able to demonstrate that there is a mtDNA puri-

fying mechanism that takes place during oogenesis (Ma et al., 2014). They

created heteroplasmic flies containing either two mutant mtDNAs (mt:CoI

and mt:ND2) or wild type and mutant. This recreated a more physiological

situation, where most mtDNA is wild type, and a small proportion contains a

deleterious lesion in the mtDNA. In agreement with previous work, dele-

terious mtDNAmutations paired heteroplasmically with wild-type mtDNA

were lost, giving clear-cut evidence that there is a purifying mechanism for

mutated mtDNA. When two mtDNAs for lesions in two different genes

were combined, they complemented each other and were maintained,

resulting in viable flies. This observation is satisfying, since each cell contains

manymtDNAmolecules that should be able to complement function; how-

ever, this had not been demonstrated. As with mouse, the change in heter-

oplasmy took place quickly between mothers and their eggs, supporting that

mtDNA genotype shifts happen during oogenesis. As one of the mutations

was temperature sensitive, the authors were able to perform temperature

shift experiments to test when during oogenesis any selection may be occur-

ring. By doing this, they found that the selection occurs after germ cell

mitotic expansion, and thus a large proportion of the selection occurs in

the later germarium stages or later during oogenesis. This coincides with

when the motor-driven Balbiani body formation occurs.

What mechanism could cause this mutant mtDNA selection during

oogenesis? One possibility is that wild-type mtDNAs have a replicative

advantage over mutated mtDNAs. Hill et al. developed a method using

5-ethynyl-20-deoxyuridine (EdU), a thymidine analog, to examine mtDNA

replication in dissected ovaries (Hill et al., 2014). This was the first time that

mtDNA replication had been visualized during oogenesis. In wild-type flies,

they found mtDNA replication was particularly high very early in germ cell

development. This occurs right after the germ cells have completed their

mitoses and have started their meiotic program at stage 2b. In addition,

the mtDNA replication was dependent on mitochondrial function and

membrane potential as germ cells containing the temperature sensitive,

deleterious point mutation mt:CoIT300I had greatly reduced replication.

The timing of increased mtDNA replication occurred around the same
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developmental time as Ma et al. (2014) postulated selection occurs. These

two elegant studies together demonstrate the advantages of using Drosophila

to study mtDNA inheritance: the combination of genetic manipulation

(through injection to create heteroplasmic flies), the short generation time

which allows mtDNA genotypes to be followed over many generations,

immunofluorescence, and the ability to generate large sample sizes.

8. CONCLUDING REMARKS: LOSS OF MITOCHONDRIAL
FUNCTION BROADLY IMPACTS HUMAN DISEASE

Mitochondrial disease is usually defined by loss of OXPHOS. Human

mitochondrial disease is thought to affect as many as 1 in 5000 people, and

there are no cures and few effective treatments (Schaefer, Taylor,

Turnbull, & Chinnery, 2004). Because Drosophila mtDNA is so similar to

human mtDNA, there is much potential to study the cell and developmental

consequences of loss of nucleus-encoded mitochondrial proteins, and also

mutations in mtDNA. Recent manipulation of deleterious mutant mtDNA

has allowed Drosophila researchers to start to uncover the molecular mech-

anisms governing mtDNA inheritance and selection. Of course, mitochon-

dria are responsible for generating many other important metabolites and are

also pivotal in cell biological processes such as apoptosis and signaling. Due

to a high demand for energy, muscle and neurons are cell types particularly

sensitive to alterations in mitochondrial output. Decreases in mitochondrial

function can lead to cardiomyopathy and heart problems, Parkinson’s disease

(reviewed in this issue), as well as other neurodegenerative diseases. Studying

mitochondria in Drosophila will continue to inform and enlighten

researchers about human mitochondrial diseases.
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