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Abstract 
Natural stable isotope ratios (δ15N) of humans can be used for nutritional analyses and dietary recon-
struction of modern and historic individuals and populations. Information about an individual’s met-
abolic state can be obtained by comparison of tissue and dietary δ15N. Different methods have been 
used to estimate dietary δ15N in the past; however, the validity of such predictions has not been com-
pared to experimental values. For a total of 56 meals and 21 samples of 24-h diets, predicted and ex-
perimental δ15N values were compared. The δ15N values were predicted from self-recorded food intake 
and compared with experimental δ15N values. Predicted and experimental δ15N values were in good 
agreement for meals and preparations (r = 0.89, p < .001) as well as for the 24-h diets (r = 0.76, p < 
.001). Dietary δ15N was mainly determined by the amount of fish, whereas the contribution of meat 
to dietary δ15N values was less pronounced. Prediction of human dietary δ15N values using standard-
ized food records and representative δ15N data sets yields reliable data for dietary δ15N intake. A dif-
ferentiated analysis of the primary protein sources is necessary when relating the proportion of ani-
mal-derived protein in the diet by δ15N analysis.  

Keywords: Diet study, food, human, nitrogen-15, protein 

1. Introduction 
There are multiple applications for natural nitrogen stable isotope ratio (δ15N) analysis of hu-
man hair, nail, blood and excreta. Analysis of δ15N is frequently used for both nutritional anal-
ysis and dietary reconstruction of individuals and populations [1–3]. Additionally, human δ15N 
values serve as biomarkers for the dietary intake of meat, fish or sweeteners [4–14]. 
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In principle, the δ15N value of an organism is characterized by the isotopic composition of 
its diet. However, as the lighter isotope is preferentially metabolized and excreted, organisms 
become enriched in 15N compared to their diet [15]. Different dietary practices are known to 
affect human δ15N values (for an overview see [16]). Especially marine fish is enriched in 15N 
with δ15N values around +12‰ [17], leading to increased δ15N values in individuals who con-
sume marine fish when compared to their non-fish-consuming counterparts [5, 7, 9, 12, 18, 
19]. Terrestrial meat is less enriched in 15N, and only beef and lamb exhibit elevated δ15N when 
compared to plants [17]. Increased meat consumption might be identified by analysis of δ15N 
of human tissue, as differing nitrogen isotopic compositions of hair of vegans, vegetarians and 
omnivores have been reported [8, 20–23]. Despite these interpretations, the influence of in-
creased meat consumption on δ15N in human hair, blood or urine in experimental studies has 
not always led to clearly identifiable differences [2, 24]. The δ15N of red blood cells has also 
been used to represent the dietary intake of long-chain polyunsaturated fatty acids from fish 
[7] or as a correction factor for the amount of sweeteners in the diet [6]. 

Aside from the influence of the diet, several metabolic factors also affect human δ15N val-
ues, such as pregnancy [25], malnutrition and starvation [26–29], liver cirrhosis [30] and di-
abetes [31]. The proposed effect of malnutrition and starvation on δ15N values is explained 
by “recycling” of endogenous nitrogen, which is enriched in 15N when compared to the diet. 
Such an effect was proposed for increasing δ15N values along a hair shaft towards the point 
of death [27] or during a period of nutritional stress with increased physical activity [32]. In 
contrast, the opposite effect of protein anabolism, that is, an increased incorporation of di-
etary nitrogen, which is depleted in 15N, has been described in pregnant women [25] and in 
patients recovering from anorexia nervosa [28]. The identification of these various metabolic 
states requires the comparison of δ15N in a biological specimen with the dietary δ15N intake. 
However, despite an increasing number of studies using human δ15N data for the interpre-
tation and reconstruction of dietary habits, the fundamental principles of 15N enrichment in 
the human body are still not fully understood. In addition, only a handful of studies have at-
tempted to estimate δ15N values for human diets in order to determine diet–body offsets [1, 
19, 33–37]. In order to differentiate dietary and physiological factors, the correct assessment 
of δ15N dietary intake is essential, even though laborious and time-consuming. The most ac-
curate assessment of dietary δ15N is obtained via analysis of duplicate diets [4, 33]. Another, 
less accurate, approach is the prediction of human dietary δ15N by means of combining self-
reported diets with reference data sets of δ15N values of “typical” food items consumed by 
the participants [see 19, 34, 35]. In recent years, different approaches have been used for the 
estimation of human δ15N dietary intakes (Table 1), spanning from the use of average coun-
try-specific diet compositions [1, 36], household food consumption surveys [35] and self-re-
ported dietary records or food frequency questionnaires [19, 34, 37] to the use of the dupli-
cate meal method [4, 33]. Dietary δ15N intakes have been estimated and interpreted both on 
the group level as well as on the individual level, even though information about accuracy and 
uncertainty of these estimations are lacking. 

Common dietary analyses utilize substantial databases [e.g. 38] and are frequently validated 
against reference methods [e.g. 39]. To our knowledge, no attempts have been made to vali-
date the prediction of the δ15N of human diets. The purpose of this study was to validate the 
prediction of dietary δ15N by comparing predicted δ15N for (1) single meals and diet prepa-
rations and (2) for 24-h diets against δ15N as measured by elemental analysis–isotope ratio 
mass spectrometry (EA-IRMS). The secondary, exploratory goal of our study was to estimate 
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the impact of different protein sources on the predicted food item’s δ15N values as the anal-
ysis of human δ15N values can provide information about the consumer’s preferred source of 
protein. This is based on the fact that δ15N values (of food items) increase with increasing po-
sition in the food web. However, a distinct interpretation of the underlying principles is neces-
sary. Natural stable nitrogen isotopes from animal proteins have to be divided into different 
categories due to their different δ15N values, as a sole differentiation between omnivorous, 
vegetarian or vegan diets is inadequate. 

2. Materials and methods 
The present study involved the comparison of predicted dietary δ15N, which was estimated 
for samples of single meals and preparations as well as for 24-h diets, against dietary δ15N as 
measured by EA-IRMS. 

2.1. Diets, meals and preparations 
Samples of single meals and preparations (n = 56), which contain more than one primary pro-
tein source (Table 2) were collected between 2003 and 2011 as part of various studies con-
ducted in our labs [17,19]. All food was readily prepared and suitable for consumption. A small 
aliquot (approximately 10 g) was sampled from each meal or preparation. The aliquot was di-
luted with three- to five-fold amount of demineralized water and homogenized using a food 
processor. About 10 ml of the suspension were separated, finely homogenized and dried in 
vacuo at room temperature. Dried samples were stored at room temperature in a dry area that 
was protected from sunlight. 

2.2. Duplicate diets 
Complete 24-h diets were collected during two different studies: For study (I), 14 authentic 
24-h diets were randomly chosen from a nutritional study with small children in Germany (Ruhr 
and Steinfurt District, North Rhine-Westphalia) in 1998, which were collected using the dupli-
cate method [40]. Collected diets were homogenized, lyophilized and stored at – 80 °C until 
stable isotope ratio analysis. Collection of these duplicate meals was accompanied by a food 
record completed by the parents [40]. Parents recorded the type and amount of their chil-
dren’s intake using household measures (cup, plate, spoon, etc.), units (slices, pieces, etc.) and 
portion sizes (small, medium and large). For the present analysis, food records were analyzed 

Table 1. Studies analyzing modern human δ15N values including estimation of dietary δ15N intake.

Population  n  Method  Ref

USA  9  National food consumption statistics  [36]
Japan  42  National food consumption statistics  [1]
Several*  65  National food consumption statistics (?)  [43]
Papua New Guinea  49  14-day household food consumption survey  [35]
Fiji  20  14-day self-reported dietary record  [34]
Germany  3  3-day self-reported dietary record  [19]
UK  11  Duplicate meal method  [33]
Papua New Guinea  115  7-day food frequency questionnaire  [37]

* Including Japan, Korea, Brazil, Netherlands and China.
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for protein content of each single food item based on the nutrient database LEBTAB, which is 
based on common food tables and contains additional data of commercially produced foods 
calculated from simulated recipes using labelled ingredients and nutrients [41].  

Table 2. Products and meals tested including protein content.

Main protein                                                    Protein content                                                      δ15N (‰)
source from  Description                                   (g/100 g)                   na               experimental           calculated

Cereals  Whole-grain bread  7  2  2.3 ± 0.3  2.9 ± 1.4
 White bread  8  2  2.7 ± 0.2  2.9 ± 1.4
 Rye bread  10  2  3.1 ± 0.1  2.8 ± 1.4
 Crispbread  10  3  3.2 ± 0.6  3.2 ± 1.4
 Croissant  8  4  3.1 ± 0.3  3.6 ± 1.1
 Cake  6  4  4.7 ± 0.2  4.5 ± 1.1
 Nut cake  10  4  3.5 ± 0.1  3.6 ± 1.0
 Biscuits  6  3  4.3 ± 0.3  3.7 ± 1.3
 Chocolate biscuit  8  4  3.8 ± 0.2  4.7 ± 1.1
 Chocolate cereal bar  2  3  3.0 ± 0.2  3.4 ± 1.5
 Pasta  5  2  3.0 ± 0.2  3.6 ± 1.3
 Pretzel sticks  11  3  4.4 ± 0.3  3.9 ± 1.2
Vegetables  Green leaf salad with dressing  4  2  7.2 ± 0.2  4.2 ± 1.8
 Brown sauce  1  2  1.3 ± 0.4  4.4 ± 1.6
 Mashed potatoes  2  2  4.5 ± 0.4  4.0 ± 2.2
 Fried mashed potatoes  1  3  2.4 ± 0.3  4.2 ± 1.5
 Gnocchi  4  4  3.5 ± 0.2  3.6 ± 1.7
 Polenta  8  3  1.4 ± 0.3  3.7 ± 1.7
 Lentil stew with sausage  5  4  2.1 ± 0.2  3.9 ± 1.3
 Millet with vegetables  7  2  2.9 ± 0.3  3.2 ± 2.7
 Pizza  11  4  4.7 ± 0.3  4.0 ± 1.0
 Soya Bolognese  16  2  2.4 ± 0.2  1.3 ± 1.6
 Vegetarian Pilaf from millet  13  3  2.7 ± 0.2  3.1 ± 1.4
Meat  Breaded pork cutlet  19  3  4.2 ± 0.1  4.5 ± 1.7
 Meat loaf  20  4  4.3 ± 0.2  5.4 ± 1.2
 Beef roulade  15  4  7.4 ± 0.3  6.4 ± 2.1
 Beef with pasta and vegetables  29  3  6.8 ± 0.1  5.7 ± 1.7
 Cheeseburger  20  4  6.2 ± 0.1  5.1 ± 1.0
 Minced meat sauce  4  3  5.3 ± 0.3  5.3 ± 1.3
 Pizza Bolognese  9  4  6.3 ± 0.6  5.4 ± 1.3
Dairy  Chocolate  9  2  3.8 ± 0.3  5.6 ± 1.6
 Chocolate milk  3  2  6.5 ± 0.2  5.3 ± 1.7
 Chocolate with almonds  9  3  4.4 ± 0.3  4.9 ± 1.3
 Chocolate–hazelnut spread  1  3  5.4 ± 0.1  3.4 ± 1.7
 Omelet  10  2  5.1 ± 0.4  5.1 ± 1.7
 Yogurt dressing  1  2  6.2 ± 0.4  5.2 ± 1.8
 Yogurt low-fat with fruits  4  2  6.0 ± 0.3  5.0 ± 1.5
 Protein bar  18  5  6.6 ± 0.1  4.8 ± 1.4
 Rice pudding  3  2  4.6 ± 0.4  5.2 ± 1.6
Fish  Calamari, omelet, vegetables  17  4  8.4 ± 0.2  8.8 ± 2.9
 Herring salad  16  4  9.6 ± 0.4  10.9 ± 3.5
 Fish ball  14  4  5.8 ± 0.4  11.4 ± 3.8
 Fish fingers  13  3  11.8 ± 0.3  11.6 ± 3.9
 Breaded fillet of fish  15  3  11.9 ± 0.3  11.6 ± 3.9
 Tuna with peppers, corn pasta  15  3  12.6 ± 0.1  10.5 ± 3.5
 Tuna ragout with corn pasta  15  5  10.5 ± 0.2  10.2 ± 3.2
 Tuna with vegetables, polenta  12  3  12.5 ± 0.4  11.3 ± 3.8

a. Number of protein sources used for calculation.   
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For study (II), seven 24-h duplicate diets were collected in 2010 from seven adults (three 
males and four females) in Cologne (North Rhine-Westphalia, Germany). Each 24-h diet was 
homogenized as an aqueous suspension and an aliquot of approximately 10 ml was dried over 
phosphorous pentoxide. The dried samples were finely ground and stored at room tempera-
ture until stable isotope ratio analysis. Collecting of duplicate diets was accompanied by com-
pletion of a validated food record [39]. Food records were analyzed for protein content using 
commercial software (EBISpro 7.0, University of Hohenheim, Germany) based on the present 
German food code [38]. 

2.3. Stable isotope ratio measurements 
Samples (approximately 200 μg) were loaded into tin capsules and analyzed by EAIRMS us-
ing an elemental analyzer Eurovektor EA 3000 (Hekatech, Wegberg, Germany) coupled to 
a continuous-flow isotope ratio mass spectrometer Delta C (Thermo Fisher Scientific, Bre-
men, Germany). Nitrogen isotope ratios are expressed relative to atmospheric nitrogen (AIR). 
Working standard gas (N2, purity 5.0; Linde, Munich, Germany) and a working standard (cre-
atine-monohydrate, AlzChem, Trostberg, Germany) were scale calibrated using IAEA-N-1 
(+0.4‰) and IAEA-N-2 (+20.3 ‰) (both from IAEA, Vienna, Austria). The standard devia-
tion of three repeated measurements of the working standard was ±0.2‰. Analysis of the 
samples were carried out in triplicate and checked every sixth measurement for zero blank 
analysis. Instrument stability was checked accordingly by analysis of the working standard 
every sixth measurement. 

2.4. Calculation of predicted δ15N for meals and diets 
δ15N values were predicted using a recently published comprehensive data set for δ15N  
values of contemporary human food items [17]. Data are representative for the so-called 
glocal1 supermarket present in today’s Western communities. All δ15N values for food items 
and preparations in this work were derived from this data set. Diets, meals and preparations 
were analyzed for their primary constituents such as cereals, vegetables, kind of meat, etc. 
as specified by the nutritional software. If meals and preparations were not specified in the 
database, typical recipes and compositions from cookbooks or online databases were used. 
Each meal or diet was analyzed for the protein content of each food item, which were clas-
sified in food categories characterized by distinct δ15N values [17]. In principle, there is a 
differentiation between vegetable, meat and terrestrial animal products and fish. However, 
there are still further differentiations due to their stable nitrogen isotopic compositions, for 
instance between legumes (pulses) and fruits, cereals, etc. [9]. Predicted stable nitrogen iso-
tope ratios of meals and diets (δ15Ndiet) were calculated based on the proportion of pro-
tein from n different food categories (Pi) over the total protein of the meal or diet (P), which 
was multiplied with the reference value of the nitrogen isotopic composition of the respec-
tive food category (δi):  

δ15Ndiet(predicted) = (P1δ1 + P2δ2 + … )/P                                             (1) 
 

1. Glocal is a portmanteau of global and local. 
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2.5. Estimation of measurement and prediction uncertainties 
Uncertainties of experimental and predicted δ15N values of meals and diets were estimated as 
follows: due to methodological and natural variations, the published δ15N values for the dif-
ferent food categories are associated with uncertainties between ±0.8 and ±3.4‰ (1σ) [17]. 
The amount of protein in human food items varies typically around ±7 %, as estimated from 
a reference food composition table [42]. In this study, the uncertainties of the estimated δ15N 
values of meals and diets (udiet) were calculated combining the reported uncertainties for δ15N 
values (uδi) and a constant value of 0.07 for the protein content (uP) of the different food items 
(for calculation see Supplementary Information): 

udiet = √(δ1
2 + δ2

2 + … )uP
2 + ((P1uδ1)2 + (P2uδ2)2 + …)                            (2) 

2.6. Data analysis 
For both data sets, the regression coefficient and the standard error of estimate (SEE) were 
calculated, which were obtained by simple linear regression between predicted and ex-
perimental values. In addition, Bland–Altman analysis was performed to estimate the 95 
% limits of agreement between the methods and to identify potential bias. Statistical sig-
nificance was set at p < .05. Unless otherwise stated, values are reported as means ± stan-
dard deviations (s). All statistical analyses were performed using R version 3.0.2 and Mi-
crosoft Excel 2013. 

3. Results and discussion 

3.1. Meals and preparations 
A total of 47 meals and preparations were analyzed which contained components from more 
than one food category as specified in the δ15Ndatabase [17]. Fifteen meals and preparations 
contained 2 different sources, 16 samples 3, 14 samples 4 sources and 2 preparations were 
composed out of 5 sources. Experimental δ15N values were between +1.3 and +12.5‰ (Table 
2). The lowest experimental δ15N values were found in vegetarian or legumes-based meals and 
preparations. The highest δ15N-values meals were found in meals and preparations with fish 
as main protein source. Predicted values for the different samples ranged between +1.3 and 
+11.6‰. Estimated uncertainties (1σ) for these preparations and meals were between ±1.0 
and ±3.8‰, with a mean of ±1.6‰. 

There was a high degree of correlation between predicted and experimental δ15N values for 
these meals and preparations (r = 0.89, p < .001, Figure 1), and the SEE was ±1.3‰. Bland–Alt-
man analysis revealed almost no difference between experimental and calculated δ15N values 
(mean bias: +0.1‰), but very wide limits of agreement (+2.6 to –2.7‰). There was no signif-
icant proportional bias (p = .21, Figure 1). 

3.2. 24-h diets 
A total number of 21 experimental 24-h samples were analyzed. The mean predicted δ15N 
value across all 24-h samples was identical to the mean experimental δ15N value (both +4.3 
± 0.7‰). Predicted δ15N values ranged between +3.4 and +6.1‰, and likewise, experimental 
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δ15N values ranged between +3.2 and +6.3‰. Predicted and experimental δ15N values were 
highly significantly correlated with each other (r = 0.76, p < .001, Figure 2). The SEE was ±0.5‰. 
Bland–Altman analysis revealed no significant difference among predicted and experimental 
δ15N, and limits of agreement between the two methods were –1.0 to +1.0‰. There was no 
significant proportional bias (p = .29, Figure 2). 

3.3. Influence of protein choice 
In order to analyze the effect of different plant and animal protein sources on the δ15N val-
ues of typical human meals, we predicted δ15N values for the food items and meals spec-
ified in a routinely used food record. The used food record lists food items, which repre-
sent foods frequently consumed in Germany and specifically used by athletes (for details 
see [39]). Most of the items listed contain protein (181). Additionally, 166 food items were 

Figure 1. Correlation analysis (left) and Bland–Altman plot of predicted and experimental δ15N values 
for meals and preparations. The dotted line represents the perfect agreement among methods. The 
solid horizontal line on the right represents the mean difference between predicted and experimental 
values, and the dashed horizontal represent the 95 % limit of agreement. The solid black data point 
represents an outlier deemed as ‘fish cake’ by the research subject (see discussion for interpretation).   

Figure 2. Correlation analysis (left) and Bland–Altman plot of predicted and experimental δ15N values 
for 24-h diets. The dotted line represents the perfect agreement among methods. The solid horizon-
tal line on the right represents the mean difference between predicted and experimental values, and 
the dashed horizontal represent the 95 % limit of agreement.  
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added, which not had been initially listed and were noted by subjects during their comple-
tion of the food record. Out of this compilation, 192 items and meals contained more than 
1 protein source. For these 192 items and meals δ15N values were calculated and they were 
analyzed for their main protein source: either legumes (δ15N of +1.1‰), plants (+3.3‰, 
excluding legumes), pork and poultry (+4.1‰), dairy and eggs (+5.2 ‰), beef and lamb 
(+6.5‰) or fish (+12.4‰) [17]. 

4. Discussion 

4.1. Validation results 
The main purpose of our study was to assess the validity of δ15N values predicted using a food 
record combined with nutritional and nitrogen stable isotope data sets when compared to ex-
perimental δ15N values obtained via EA-IRMS. The duplicate method represents the most ac-
curate possibility to assess human dietary δ15N intake. However, the duplicate method’s dis-
advantage is the high amount of work necessary for collecting and processing the samples. 
Therefore in practice, the use of food records and representative data sets for calculation of di-
etary δ15N values seems to be appropriate. The duplicate meal method’s disadvantage of po-
tential alteration of the subject’s habitual diet is negligible for our purposes. Overall, we found 
a satisfying accuracy and precision between the predicted dietary δ15N values for both single 
meals and preparations as well as for 24-h diets. The estimation of δ15N for single foods and 
meals based on food records and previously published δ15N values is associated with a rela-
tive high uncertainty, which is due to the variation of the natural abundances of δ15N of food 
items. For some meals and preparations, large differences between experimental and calcu-
lated mean values were observed. A difference between experimental and calculated δ15N val-
ues in the range of ±3‰ most likely results from inadequate prediction of δ15N dietary values 
rather than from errors in the measurement of δ15N, which are around ±0.2‰. The classifica-
tion and identification of a certain meal or preparation was conducted by the subject collect-
ing the sample. If such a classification is incorrect due to missing information or false identifi-
cation, it might lead to erroneous δ15N prediction. One of our samples with a predicted δ15N 
of +11.4‰ had an experimental δ15N of +5.8‰. This sample was classified as “fish cake.” 
For the theoretical calculation, the δ15N value for marine fish was used, which was probably 
wrong. Even if the δ15N value for freshwater fish would be used, which is approximately 2‰ 
lower [17], theoretical and experimental δ15N values would differ. It is possible that this sam-
ple was misclassified as “fish cake” by the subject, or that the proportion of fish in the meal 
was lower than accounted for by our nutritional software. Secondly, differences between ex-
perimental and calculated δ15N values may originate from differing protein sources. We have 
previously shown that some modern commercial fish species exhibit δ15N values that deviate 
significantly from naturally occurring δ15N values for marine fish (+12.4‰) [17]. For instance, 
commercial shark catfish (“pangasius”), a popular food in Germany, has an experimental δ15N 
of +5.1‰ [17]. Using this value for calculation of the “theoretical” δ15N value for fish cake, the 
result would be in accordance with the experimental values. 

These findings suggest that it is inappropriate to estimate the δ15N value for a single or few 
food items or preparations in terms of a “snapshot,” but a good opportunity to estimate the 
dietary δ15N intake for a population or a mean value for an individual over a longer period. 
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4.2. Influence of protein choice 
Dietary δ15N values are reflective of the δ15N values of the main protein source(s) in the diet. 
If a diet is rich in fish, δ15N values are elevated, and a diet high in legumes will result in lower 
δ15N values. Using the present data set of representative δ15N values [17] as well as country 
nutrition statistics, the mean δ15N value for the typical German diet would be around +4.3‰, 
which is consistent with our experimental results for the 24-h diets. Consequently, an increased 
proportion of protein sources with δ15N values lower than +4.3‰ (especially legumes) would 
result in lower dietary δ15N (Figure 3). On the contrary, an increased proportion of food items 
with δ15N values higher than +4.3‰ (especially fish, but also beef, lamb, dairy and eggs) would 
result in higher dietary δ15N values. Whereas changes in the proportion of pork or poultry 
protein in the diet will not change the overall dietary δ15N, a fact that has been recognized in 
an experimental study [24]. 

In principal “you are what we eat – (plus a few per mil)” [44], and despite physiologi-
cal or pathophysiological metabolic conditions, human δ15N values are strongly controlled 
by the dietary δ15N. There is no doubt that a high proportion of fish or sea mammals in the 
diet can be identified by δ15N analysis of human hair [14, 19], nails [18] or blood [5, 7]. How-
ever, our results suggest that it is difficult to conclude by analysis of δ15N of human tissue or 
excreta on the amount of dietary meat, as the influence of increased dietary meat propor-
tion does not lead to such increased δ15N values for a diet as it was shown for fish. Likewise, 

Figure 3. Predicted stable nitrogen isotope ratios for meals and food based on items used in a food 
frequency questionnaire [39] versus the fractional protein content of the main protein source in a food 
item. Each data point represents one food item or meal consisting of more than one protein source. f 
= 1: all protein in the food item or meal derives from the certain food source, f = 0: no protein derives 
from the certain source. Dashed horizontal line represents the mean stable nitrogen isotopic compo-
sition of German diets as calculated in the study.  



10 Hülsemann et al .  in Environmental and Health Studies,  2017
  
differentiating between omnivores and ovo–lacto vegetarians is likely impossible based solely 
on δ15N, whereas δ15N analysis can be used to identify individuals who consume a vegan diet 
or a diet rich in legumes. To summarize, there is need for more intervention studies looking 
at the influence of dietary or metabolic changes on human (or animal) δ15N values, if the in-
formation apparently included in tissue or metabolite δ15N values shall be used for answering 
archaeological, forensic, nutritional or physiological questions.   
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Supplementary information 

Calculation of the uncertainty of estimation of dietary δ15N 

The δ15N of a diet is calculated by the proportional amount of protein in the different protein 

sources (P1, P2 …) relative total protein (P) multiplied by the different isotope ratios (δ1, δ2 

…): 
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The uncertainty of the diet (udiet) is calculated using the uncertainty of the δ15N value for each 

food item (uδi) as well as of the mean uncertainty of the proportional protein content 

estimation (up) multiplied with the partial derivatives of δdiet:  
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If P and Pi are expressed as relative amounts it is P = 1 and thus P can be deleted leading to: 
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