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Atomically informed nonlocal semi-
discrete variational Peierls-Nabarro 
model for planar core dislocations
Guisen Liu1, Xi Cheng1,2, Jian Wang3, Kaiguo Chen4 & Yao Shen1

Prediction of Peierls stress associated with dislocation glide is of fundamental concern in understanding 
and designing the plasticity and mechanical properties of crystalline materials. Here, we develop a 
nonlocal semi-discrete variational Peierls-Nabarro (SVPN) model by incorporating the nonlocal atomic 
interactions into the semi-discrete variational Peierls framework. The nonlocal kernel is simplified by 
limiting the nonlocal atomic interaction in the nearest neighbor region, and the nonlocal coefficient is 
directly computed from the dislocation core structure. Our model is capable of accurately predicting the 
displacement profile, and the Peierls stress, of planar-extended core dislocations in face-centered cubic 
structures. Our model could be extended to study more complicated planar-extended core dislocations, 
such as <110> {111} dislocations in Al-based and Ti-based intermetallic compounds.

Prediction of Peierls stress associated with dislocation glide is of fundamental concern in understanding and 
designing the plasticity and mechanical properties of crystalline materials. Peierls stress (τp) is the minimum 
external stress to move a straight dislocation without thermal activation. Atomistic simulations were extensively 
used to study Peierls stress of dislocations1–4, though having limitations. For example, ab-initio density functional 
theory (DFT) calculations can accurately calculate dislocation core structure1,2, but it is computationally expen-
sive or even impossible for studying Peierls stress because of the finite number of atoms in the model. Molecular 
dynamics/statics (MD/MS) simulations with empirical potentials is capable for predicting dislocation core struc-
ture and Peierls stress associated with a glide dislocation3,4, but reliable empirical interatomic potentials might be 
unavailable to some complex materials.

Instead, the continuum-scale Peierls-Nabarro (PN) model5–7 provides an attractive approach to study Peierls 
stress of a dislocation, for its simplicity and efficiency in incorporating the nonlinear feature of the dislocation 
core into the long range elastic fields. In these models, the nonlinear feature of the dislocation core (disregistry 
profile) is confined in the slip plane, and a constitutive law (i.e. sinusoidal) is developed to describe the atomic 
interactions across the slip plane. For the region far away from the slip plane, linear elasticity is used to describe 
stress and strain field caused by the dislocation. In this framework, the dislocation energy comes from two terms, 
namely the misfit energy in the slip plane and the elastic energy stored in the two half-spaces. The solution to the 
variational of the dislocation energy is considered as the core structure (disregistry profile). Peierls stress can be 
obtained by finding the minimum stress to overcome the energy barrier, which was obtained by summing the 
misfit energy of the atom pairs associated with the rigidly translation of the disregistry profile. In the last several 
decades, the original PN model5,6 has been greatly improved8–14. The atomic interactions in the slip plane was 
better described by incorporating the generalized stacking fault energy or so-called γ-surface10,11, which can 
be obtained by MD/MS or more accurate ab initio DFT calculations15,16; the original one dimensional model 
was extended to two or three dimensional cases12,13; numerical variational methods were introduced to solve 
the model instead of the original analytical methods8. Of particular importance is the semi-discrete variational 
Peierls-Nabarro (SVPN) model9,17, which overcame two major inconsistency of the PN model by discretely sum-
ming the atomic misfit energy, and allowing the disregistry profile to relax itself as the dislocation moves under an 
external stress, in contrast to the original rigid disregistry profile. With these efforts, the SVPN model9,17 is able to 
better predict Peierls stress for the dislocation with a compact core, and can also be applied to study dislocation 
properties under applied stress18 and surface effects on Peierls stress19.

1State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong 
University, Shanghai, 200240, China. 2Department of Mechanical Engineering, Stanford University, CA94305, USA. 
3Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, NE68588, USA. 4Center 
for Compression Science, China Academy of Engineering Physics, Mianyang, 621900, China. Correspondence and 
requests for materials should be addressed to Y.S. (email: yaoshen@sjtu.edu.cn)

received: 20 October 2016

accepted: 30 January 2017

Published: 02 March 2017

OPEN

mailto:yaoshen@sjtu.edu.cn
proyster2
Typewritten Text
This work is licensed under a Creative Commons Attribution 4.0 International License.



www.nature.com/scientificreports/

2Scientific RepoRts | 7:43785 | DOI: 10.1038/srep43785

All these improvements were made under the assumption that the constitutive law and the misfit energy 
linking the two elastic half-spaces depend only on the disregistry profile at a local site, while ignoring the interac-
tions associated with the large gradient of the nonlinear disregistry in the core region. The original assumption is 
appropriate within the regions far away from the dislocation core, where the disregistry is almost constant with a 
negligible gradient. In fact, the nonlocal atomic interactions within the dislocation core have great impact on the 
dislocation energy20. Miller et al.20 proposed a nonlocal kernel to consider the nonlocal effects in dislocation core 
and derived its approximate analytical form in real space. They attributed the nonlocal interactions to a modifi-
cation of the atomic misfit energy, and the nonlocal coefficients were computed by calibrating the misfit energy 
against the one obtained by atomistic simulations. This method remarkably improves the prediction of the misfit 
energy, but the core structure did not change much, and sometimes deviated further away from the atomistic 
results. Schoeck21 proposed an average method to calculate misfit energy in around a characteristic distance to 
account for the large displacement gradient, leading to significant lower Peierls energy and Peierls stress. In this 
work, we developed a nonlocal SVPN model by incorporating the nonlocal atomic interactions into the SVPN 
model, wherein the form of the nonlocal interaction energy term is inspired from the nonlocal kernel derived 
by Miller et al.20 but extended to multi-dimension, and the nonlocal coefficient is computed directly according 
to the dislocation core structure. We applied our model to study core structure and Peierls stress of dislocations 
with planar core in typical face-centered cubic (FCC) metals, such as copper, silver and aluminum, which are of 
intermediate, low and high stacking fault energy, respectively. The results are validated against MD simulations, 
and also compared with experiments.

Results
Model development. The nonlocal SVPN model is developed by firstly deriving the total energy for a dis-
location and then determining the nonlocal coefficients. Total energy associated with a dislocation is a functional 
of its disregistry vector8 u(x), the relative displacement of the atom pairs across the slip plane perpendicular to the 
dislocation line sense x with respect to the perfect crystal. The disregistry vector generally has three components 
uk, k =  1, 2, 3 denoting the disregistry profiles along the x-, y-, and z- directions respectively. Incorporating the 
nonlocal atomic interactions20 into the dislocation energy functional of local SVPN model9,17, the energy func-
tional is written as:
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where the four terms on the right hand correspond to the elastic energy stored in the two half-spaces7,8, the 
atomic misfit energy in the glide plane7, the work done by the external applied stress9,17, and the nonlocal inter-
action energy to capture the large slip gradients in dislocation core20, respectively. The first three energy terms are 
the bases of the SVPN model9,17, where H is the anisotropic Stroh tensor22,23, depending on the dislocation line 
direction and elastic constants; γ[u(x)] is the generalized stacking fault energy; τk is the applied shear stress in 
the slip plane along the k direction. The last nonlocal energy term is an extension of the original one dimensional 
form ref. 20 by linearly adding the interaction along the k direction. am is the nonlocal coefficient, and increasing 
m corresponds to incorporating the interactions further and further away from the local site. ∆ x is the atomic 
spacing in the slip plane perpendicular to the dislocation line. The nonlocal energy can be thereafter considered 
as the interaction of the disregistry at a local atomic site u(x) with that at the m-nearest neighbor site u(x ±  m∆x), 
until with the disregistry at the M-nearest neighbor u(x ±  M∆x).

Equation (1) is a generalized integral form for the dislocation total energy, as a functional of the three dimen-
sional disregistry vector u = (u1, u2, u3). While for a dislocation with Burgers vector being a/2< 110>  in FCC 
metals, which always tends to dissociate into two Shockley partials on the close-packed plane {111}, the disregis-
try vector has only two components, u1 and u3, in the xoz slip plane, with normal direction being along the y-axis. 
By piecewise linearly interpolating the disregistry profiles at atomic sites xi (xi =  (i −  N/2) ∙ ∆ x, with N ∙ ∆ x =  200∆ x 
being the cut off distance in dislocation energy calculation, ∆ x is 3 b/2 for a screw and b for an edge  
dislocation), the same method used in local SVPN model9,17 to discretize each energy term, the total energy func-
tional is discretized as:
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where the discrete coefficient χij for the elastic energy term is,
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Components of Stroh tensor Hij for dislocations in typical FCC metals were calculated following anisotropic  
theory22, with elastic constants obtained by molecular statics simulations using embedded-atom-method  
potential24–26 for better comparison with MD simulations. Values for Hij can be found in ref. 27, which are listed 
in Table 1 with H13 =  0. ρ ≡ − ∆+x u x u x x( ) [ ( ) ( )]/k i k i k i1  is the dislocation density in the k direction. The two 
dimensional γ-surface γ[u1(x), u3(x)] is obtained by interpolating between the relaxed γ -surface calculated from 
molecular statics simulations with quadratic serendipity shape function28.

The discretized nonlocal energy term in equation (2) intuitively illustrates the concept of the nonlocal inter-
action, which is the interaction of the disregistry at a local site xi with disregistry at the m-near neighboring site 
xi ±  m∆x, or more straightforwardly the interaction between the local atom pairs and its m-near neighboring 
atom pairs. Considering the rapid decay of the nonlocal influence, as implied by the fact that a1 is by far larger 
than all the other nonlocal coefficients20, we simplify the nonlocal energy term by accounting for only the nearest 
neighbor nonlocal interaction, and setting the secondary nonlocal coefficients am (m >  1) to be zero. The simpli-
fication is also in coincidence with atomistic simulations, where the cut-off distance used in the empirical poten-
tials limits the range of the nonlocal interactions to only the nearest neighbor region. So the simplified nonlocal 
energy term is:
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where the only unknown parameter is the nonlocal coefficient a1 (see Table 1 for all cases studied in this work). 
They are all directly computed from the dislocation core structure, and the details of the computations can be 
found in Methods. Replacing the nonlocal energy term in equation (2) with the equation (4), the discretized total 
energy form for a dislocation is derived as:
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The core structure and Peierls stress of a glide dislocation can be calculated by solving the disregistry vector u that 
minimizes the total energy functional for the dislocation.

Equilibrium core structure of dislocations under zero applied stress. The nonlocal SVPN model 
can well predict core structures of dislocations that have planar cores. We firstly apply the nonlocal SVPN model 
to calculate core structure of dislocations in copper, which has an intermediate stacking fault energy. Figure 1a 
shows the fully relaxed disregistry profiles for a dislocation with Burgers vector =



b a/2[101] on the (111) plane 
in copper at zero applied stress. For both the screw and edge dislocations in copper, the two components of the 
disregistry profiles predicted by the nonlocal SVPN model are all in good agreement with MD simulations, while 
the local SVPN model17 predicted a much narrower core. We further apply our model to dislocations in silver and 
aluminum, which has relative low and high stacking fault energy, respectively. To better illustrate the difference in 
their cores, we plot half of the main component (u3, which is parallel to the direction of the full Burgers vector 
=



b a/2[101]) of the disregistry vector predicted by the nonlocal model and MD simulations in Fig. 1b. It clearly 
demonstrated the improvement of the nonlocal model in predicting the core structure of a dislocation in FCC 
metals with both low and relative high stacking fault energy.

To further illustrate how the nonlocal energy term affect the core structure, we compare the splitting distance 
(or the stacking fault width w) between the two partials in Table 2 obtained from the local/nonlocal SVPN model, 
MD simulations and also anisotropic elastic theory23 predictions (see Methods for details to calculate w). Clearly, 

b (Å) μ (GPa) γisf (mJ/m2)

H11 (GPa) H33 (GPa) a1 (μ/b)

screw edge screw edge screw edge

Cu 2.556 41.2 44.3 6.05 3.55 3.38 5.94 0.575 0.905

Ag 2.851 25.6 17.7 3.92 2.21 2.11 3.85 0.523 0.246

Al 2.892 29.7 129.4 3.68 2.42 2.41 3.68 0.556 0.657

Table 1.  Parameters used in our model. The values of components of Stroh tensor Hij in GPa, nonlocal 
coefficient a1 in units of μ/b, for the 1/2< 110>  dislocations in FCC metals.
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w for all the dislocations predicted by the nonlocal SVPN model are in good agreement with MD results, while 
it was underestimated by the local SVPN model. Also, the nonlocal model and MD simulations predictions for 
w of the dislocations in copper and aluminum are in better agreement with experiments29 or DFT calculations30 
or MS simulations31 with the same potentials used, than the local SVPN model, though the local model is close 
to the anisotropic theory prediction. While for the dislocations in silver, the nonlocal model and MD predictions 
for w is closer to the theory calculations and the experiments32 than the local model. Comparison of w in Table 2 
straightforwardly demonstrates that the nonlocal energy term improves the core structure for dislocations in FCC 
with low or high stacking fault energy.

Prediction of Peierls stress. Peierls stress predicted by both the nonlocal SVPN model and MD simula-
tions is intuitively recognized as a critical resolved shear stress, above which a dislocation is displaced signifi-
cantly, and below which a dislocation only slightly adjusts its core without obvious forward movement. Figure 2 
shows how a screw dislocation in copper responses to increasing resolved shear stress (RSS). Figure 2a explains 
the critical resolved shear stress is detected as 4 MPa (9.7 ×  10−5 μ), above which the disregistry profiles steps for-
ward about 20b. This corresponds to a system instability, which can also be seen from the variations of the misfit 
energy with increasing RSS as illustrated in Fig. 2b. Before reaching the critical stress, the misfit energy increases 
as the dislocation is overcoming the Peierls barrier aided by the resolved shear stress, but its misfit energy drops 
down as long as the dislocation starts to move. This conforms to the impression how the dislocation overcomes 
the Peierls barrier aided by external stress.

Peierls stress for an edge dislocation in copper is similarly calculated by the nonlocal SVPN model, which is 
2 MPa (4.8 ×  10−5 μ, see Table 3). Obviously, Peierls stress of the edge dislocation is smaller than that of a screw 
dislocation, in consistent with its wider core than the mixed dislocation, as can be seen from their core structure 
in Fig. 1a. More importantly, the Peierls stress of the edge dislocation predicted by the nonlocal SVPN model is 
much more closer to the experimental value ~0.3 MPa (0.7 ×  10−5 μ)33, than the local SVPN model17 predicted 
69 MPa (1.7 ×  10−3 μ), which was more than two orders of the magnitude.

To better understand the nonlocal effects on Peierls stress, Table 3 lists the Peierls stress predicted by MD sim-
ulations and local SVPN model for comparison. Magnitude of Peierls stress given by the nonlocal SVPN model 
is on the same order of MD results, 1.4 and 1.5 times of the MD calculations for the screw and edge dislocation 
dislocations in copper, respectively. While the local SVPN model overestimates Peierls stress about 40 to 50 times 
higher than MD calculations. We further applied our model for predicting Peierls stress of a/2< 110>  screw and 
dislocations in silver and aluminium, and results are also compared in Table 3. Table 3 shows that Peierls stress 
predicted by the nonlocal SVPN model is much closer to MD results than the local SVPN model. Compared with 
the experimental estimations33 of Peierls stress for dislocations in FCC, generally around 10−5 μ, the nonlocal 
SVPN model is an immense improvement than the local SVPN model. These findings indicate that, the nonlo-
cal SVPN model significantly improves the Peierls stress for the dislocations in FCC metal than the local SVPN 
model.

Figure 1. Fully relaxed disregistry profiles at zero applied stress for the 1/2< 110>  screw and edge dislocations 
in (a) copper and (b) silver and aluminum, calculated by different methods.

Cu (screw) Cu (edge) Al (screw) Al (edge) Ag (screw) Ag (edge)

Local SVPN 3.72 13.07 1.77 3.97 3.81 17.41

Nonlocal SVPN 5.54 14.75 2.79 5.50 7.43 25.33

MD 5.50 14.40 3.07 5.37 7.54 25.22

Anisotropic 3.90 13.60 1.31 3.17 6.59 25.36

Reference 7.029 14.929 2.630 5.231 ~ ~2932

Table 2.  Comparison of the stacking fault width (w in units of b) for dislocations in FCC metals.
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Discussion
The nonlocal atomic interaction energy term introduced in the nonlocal SVPN model can smoothen the disreg-
istry profile, and bring the disregistry profiles of dislocations in FCC metals in good agreement with MD simula-
tions, and as a result, improving Peierls stress. To further understand the mechanism, we calculate the variations 
of each dislocation energy term predicted by the nonlocal SVPN model with respect to the local SVPN model9,17 
in Fig. 3. The misfit energy of all the dislocations predicted by the local SVPN model9,17 is around 0.1 μb2. After 
introducing the nonlocal energy term in the nonlocal SVPN model, the misfit energy increases (positive ∆ Emisfit), 
and elastic energy decreases (negative ∆ Eelastic). ∆ Emisfit for all the dislocations studied in this work is around 
0.034~0.039 μb2, which is about 30% increase compared with the local SVPN model. The additional nonlocal 
energy term Enonlocal for dislocations in FCC is about 0.012~0.034 μb2, which is comparable but smaller than  
∆ Emisfit.

By combining the original one-dimensional nonlocal Peierls formulation20 and the local SVPN model9,17, the 
proposed nonlocal SVPN model appears to be a more reliable one. All the results presented above indicate that 
the nonlocal SVPN model can significantly improve the predictions of both core structure and Peierls stress, and 
with the predictions being in better agreement with MD calculations and with experimental estimations33. The 
rationale is that, nonlocal SVPN model consolidates the nonlocal atomic interactions20 and the advantages of the 
local SVPN model9,17, in an effective and simple way. In the framework of SVPN model, most limitations of the 
original PN model are overcome except the nonlocal interactions, which is compensated for by the additional 
nonlocal energy term. More importantly, this nonlocal energy term introduced in our model explicitly accounts 
for the nonlocal interactions in two dimensions, though in a simple linear superposition way, which is is an 
augment of the original one-dimensional nonlocal Peierls formulation20. Moreover, we compute the nonlocal 
coefficient in a new way, directly from the core structure obtained by atomistic simulations, rather than the orig-
inal way which calibrates the misfit energy calculated by atomistic simulations20. The original treatment of the 
nonlocal coefficient20 leads to the conclusion that, the nonlocal effects can improve the prediction of misfit energy, 
but cannot change the core structure much, or sometimes predict even more inaccurate core structure compared 
with atomistic simulations. In contrast, the new approach presented in our model to determine the nonlocal 
coefficient is physically more realistic, because the nonlocal coefficient should reflect the strength of the nonlocal 
interactions, and its influences on the core structure.

Last but not least, there is only one nonlocal coefficient that needs to be computed in the nonlocal SVPN 
model, because we simplified the nonlocal kernel in the original work20 to account for the nearest neighbour 

Figure 2. Response of the screw dislocation in copper with increasing resolved shear stress calculated by the 
nonlocal SVPN model. (a) Variations of the disregistry profiles (core structure) under increasing resolved shear 
stress. Peierls stress, determined as the critical stress to move the screw dislocation, is 4 MPa. (b) Variations of 
the misfit energy as resolved shear stress increases. The critical stress is marked as above which the misfit energy 
undergoes an abrupt drop.

Peierls stress τp (in MPa)

Nonlocal 
SVPN MD Exp.33

Local SVPN 
(a1 = 0)

Cu
screw 4 2.9

~0.3
117

edge 2 1.4 69

Ag
screw 4 3.1

~0.9
125

edge 1 0.8 54

Al
screw 46 37

~1.4
275

edge 10 2.6 119

Table 3.  Peierls stress for the dislocations FCC metals predicted by the nonlocal SVPN model, MD 
simulations and previous SVPN models.
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nonlocal influence, by setting the secondary nonlocal coefficients to be zero. This simplification not only makes it 
easier to directly compute the nonlocal coefficient from dislocation core structures, but also effectively improves 
the core structure and Peierls stress for dislocations with planar core, such as dislocations in silver and copper with 
relative low stacking fault energy, and also dislocations in aluminium with relative high stacking fault energy. This 
is of special value to apply the nonlocal SVPN model to accurately predict Peierls stress, especially for dislocations 
with complex core structures. The reasons are as follows: (1) important input of the nonlocal SVPN model includ-
ing elastic constants and generalized stacking faults energy can be accurately obtained by combing experiments34  
and ab initio calculations15; (2) the dislocation dependent nonlocal coefficient can be directly computed from 
core structures, which can be acquired by experiment techniques, such as high resolution transmission electron 
microscopy35,36; (3) the original one dimensional nonlocal formulation is generalized into two dimension in this 
work, which can also be easily extended to three dimensional condition, and therefore can well describe disloca-
tions with complex core structures.

Methods
Nonlocal SVPN model for a dislocation in FCC metal. Coordinate system in Fig. 4 is adopted to pres-
ent a straight dislocation with Burgers vector =



b a/2[101] on (111) slip plane in FCC metal, such as copper. It 
tends to dissociate into two Shockley partials connected with stacking faults. The x-, y-, and z axes are along [121], 
[111] and [101] crystalline directions, respectively. For an edge dislocation in Fig. 4, dislocation line is along x axis, 
while the screw dislocation line is along z axis, parallel to Burgers vector 



b. Their core structures can be described 
by a generally three dimensional disregistry vector u(z) for an edge dislocation or u(z) for a screw dislocation, 
being defined as the relative displacement between the atom pairs across the slip plane, where z (x) denotes the 
coordinate perpendicular to the edge (screw) dislocation line. For simplicity, we use u(x) to denote u(z) for the 
edge dislocation in the energy expressions. Suppose the dislocation is confined in the slip plane, the disregistry 
vector u has two components, uk(x), k =  1 or 3, representing the disregistry along x and z axis, respectively. 
Illustration of the two components of the disregistry vector is shown below the dissociation.

The nonlocal coefficient a1 is determined in two steps: (1) Calculate the disregistry profiles at any a1 and zero 
stress by minimizing the total energy in equation (5), with a Volterra dislocation (step function) taken as the 
initial trial profile and its values at the two ends are fixed during the energy minimization, same to the approach 
in local SVPN model17. (ii) Find the optimal a1 that minimizes the sum of the squared errors of the dominating 
disregistry profile (main component u3) calculated by the nonlocal model and MD simulations:

∑=





−





a u x u xarg min [ ( ) ( )]
(6)i

a
i

MD
i1 3 3

21

The nonlocal coefficient a1 determined from equation (6) for the screw and edge dislocations is listed in Table 1.
Core structure and Peierls stress are obtained from the energy functional in three steps. Firstly, compute the 

equilibrium dislocation core structure under zero stress by minimizing the total energy in equation (5). Secondly, 
gradually increase the applied stress in equation (5), and calculate the equilibrium disregistry profiles under each 
glide stress by minimizing the total energy. For the edge and screw dislocations in Fig. 4, only τyz (=  τ3 =  τRSS) 
is applied. We apply the external stress in this way just to simplify the Schmid factor to be one. Finally, find the 
critical resolved shear stress when the system instability happens, and this critical glide stress is determined as 
Peierls stress. Note the model input such as components of the Stroh tensor Hij, generalized stacking fault energy 
surfaces, are all the same with those in ref. 27.

Molecular dynamics simulations. The core structures calculated by MD is the calibration criterion used 
in this work to determine the nonlocal coefficient of the nonlocal SVPN model, and the Peierls stress calculated 
by MD is to further examine the nonlocal SVPN model. Figure 5a shows a screw dislocation model for MD simu-
lations, including two parts: the relaxed region inside the simulations box, where the atoms are free to move dur-
ing the relaxation when shear stress is applied, and the rigid region (grey region), which acts as a fixed boundary 

Figure 3. Variations of each energy term for a dislocation predicted by the nonlocal model in this work 
with respect to those calculated by the local SVPN model17 at zero stress.
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during the relaxation. Periodic boundary conditions are used along the direction of dislocation line, and the sim-
ulation box has three dimensions, Lx ×  Ly ×  Lz, with the same coordinates in Fig. 4. The dislocation is introduced 
in the dislocation center according to isotropic linear displacement field23, followed by energy minimization to get 
the fully relaxed dislocation. The relaxed core structure for the screw dislocation at zero applied stress is shown in 
Fig. 5a, where the atoms are colored by the centro-symmetry deviation parameter7. Similarly, an edge dislocation 

Figure 4. Illustration of a full (a) edge and (b) screw dislocation dissociating into two Shockley partials 
connected with stacking faults on the (111) plane in FCC metals.

Figure 5. MD simulations model for (a) a screw and (b) an edge dislocation in copper, where the relaxed region 
is surrounded by the rigid region in grey color.
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model is shown in Fig. 5b. Apparently, the edge dislocation is much more dissociated than the screw dislocation, 
as shown as disregistry profiles in Fig. 1.

To determine Peierls stress, shear stress is applied to the dislocation at a constant strain rate 107/s, followed 
by minimizing the potential energy after each loading. The relaxed disregistry profiles for the screw and edge 
dislocations during the shear deformation are plotted in Fig. 6. Peierls stress is determined as the critical resolved 
shear stress before which the dislocation starts to move evidently in the crystal, being 2.9 MPa and 1.4 MPa for the 
screw and edge dislocations in copper, respectively.

The dislocation model shown in Fig. 5 can be easily transplanted into screw and edge dislocations in silver and 
aluminum, with only difference in the lattice constant and the empirical interatomic potentials. Core structure 
and Peierls stress can be similarly calculated.

Stacking fault width (w) between two Shockley partials. For the local/nonlocal SVPN model and 
MD calculations, we determine the stacking fault width (w) directly from the disregistry profile u3. For all the 
dislocations concerned in this work w is defined as the distance between the centres of the two Shockley partials, 
indicated as where the disregistry profile u3 equals to 0.75 b and 0.25 b, respectively. We use this definition is 
because the dissociation of dislocations in aluminium is not obvious due to its relative high stacking fault energy.

Following anisotropic elastic theory23, the equilibrium stacking fault width (w) between the two Shockley 
partials can also be calculated as,

γ
=


 −



w H H banisotropic theory: 1

3 2 (7)isf
33 11

2

γisf is the intrinsic stacking fault energy (see Table 1), Hij is the component of the anisotropic Stroh tensor (refer to 
Fig. 4 for the coordinates details and Table 1 for the specific values).
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