
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln
Faculty Publications from the Department of
Electrical and Computer Engineering Electrical & Computer Engineering, Department of

2016

Coordinate-Invariant Lyddane-Sachs-Teller
Relationship for Polar Vibrations in Materials with
Monoclinic and Triclinic Crystal Systems
Mathias Schubert
University of Nebraska - Lincoln, mschubert4@unl.edu

Follow this and additional works at: http://digitalcommons.unl.edu/electricalengineeringfacpub

Part of the Computer Engineering Commons, and the Electrical and Computer Engineering
Commons

This Article is brought to you for free and open access by the Electrical & Computer Engineering, Department of at DigitalCommons@University of
Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications from the Department of Electrical and Computer Engineering by an
authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

Schubert, Mathias, "Coordinate-Invariant Lyddane-Sachs-Teller Relationship for Polar Vibrations in Materials with Monoclinic and
Triclinic Crystal Systems" (2016). Faculty Publications from the Department of Electrical and Computer Engineering. 369.
http://digitalcommons.unl.edu/electricalengineeringfacpub/369

http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Felectricalengineeringfacpub%2F369&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/electricalengineeringfacpub?utm_source=digitalcommons.unl.edu%2Felectricalengineeringfacpub%2F369&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/electricalengineeringfacpub?utm_source=digitalcommons.unl.edu%2Felectricalengineeringfacpub%2F369&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/electricalengineering?utm_source=digitalcommons.unl.edu%2Felectricalengineeringfacpub%2F369&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/electricalengineeringfacpub?utm_source=digitalcommons.unl.edu%2Felectricalengineeringfacpub%2F369&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.unl.edu%2Felectricalengineeringfacpub%2F369&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.unl.edu%2Felectricalengineeringfacpub%2F369&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.unl.edu%2Felectricalengineeringfacpub%2F369&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/electricalengineeringfacpub/369?utm_source=digitalcommons.unl.edu%2Felectricalengineeringfacpub%2F369&utm_medium=PDF&utm_campaign=PDFCoverPages


Coordinate-Invariant Lyddane-Sachs-Teller Relationship for Polar Vibrations
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A coordinate-invariant generalization of the Lyddane-Sachs-Teller relation is presented for polar
vibrations in materials with monoclinic and triclinic crystal systems. The generalization is derived from an
eigendielectric displacement vector summation approach, which is equivalent to the microscopic
Born-Huang description of polar lattice vibrations in the harmonic approximation. An expression for a
general oscillator strength is also described for materials with monoclinic and triclinic crystal systems.
A generalized factorized form of the dielectric response characteristic for monoclinic and triclinic materials
is proposed. The generalized Lyddane-Sachs-Teller relation is found valid for monoclinic β-Ga2O3, where
accurate experimental data became available recently from a comprehensive generalized ellipsometry
investigation [Phys. Rev. B 93, 125209 (2016)]. Data for triclinic crystal systems can be measured by
generalized ellipsometry as well, and are anticipated to become available soon and results can be compared
with the generalized relations presented here.

DOI: 10.1103/PhysRevLett.117.215502

The Lyddane-Sachs-Teller (LST) relation [1] sets two
important ratios equal for a material with polar vibrations.
The square of the ratio of the frequency of longitudinal
optic lattice vibrations (phonons) (ωLO) to the frequency of
transverse optical lattice vibration (ωTO) for long wave-
lengths, independent on the phonons’ displacement vectors,
equals the ratio of the dielectric permittivity at zero
frequency εdc with the dielectric permittivity at frequencies
above the TO and LO vibrations where the material is
widely transparent (ε∞) [2],

εdc
ε∞

¼
�
ωLO

ωTO

�
2

: ð1Þ

The LST relation is a fundamental statement, and can be
found in many textbooks on condensed matter physics and
semiconductor optics [3–11]. The LST relation has been
used extensively, either to predict a missing parameter out
of the set of the fundamental four, εdc, ε∞, ωLO, ωTO, or to
check for consistency among the experimentally and/or
computationally obtained phonon mode and dielectric
permittivity parameters. The LST relation is playing a
crucial role in the understanding of the physics of ferro-
electric materials [12]. For example, lattice instabilities in
ferroelectric [13] perovskite titanates such as SrTiO3 and
ðBa; SrÞTiO3 [14,15] across the phase transition affect
static dielectric constants and phonon modes. The LST
relation has been expanded previously to include situations
where multiple branches of phonon modes occur, and the
role of poles and zeros in the complex plane to describe
the dielectric response functions was identified [16–18].

A generalization of the LST relation for arbitrary crystal
symmetry was derived by Cochran and Cowley (CC-LST)
[19], which explicitly includes the phonon displacement
vector dependence

εdc;αα
ε∞;αα

¼
YN
l¼1

�
ωðαÞLO;l
ωðαÞTO;l

�
2

; ð2Þ

where α denotes a direction along a given Cartesian axis,
εdc;αα, ε∞;αα are diagonal tensor components of the static and
high-frequency dielectric permittivity (dielectric function
tensor, ε), respectively, and ωðαÞTO;l and ωðαÞLO;l are the
frequencies of N modes whose displacements, transverse
and longitudinal to their corresponding wave vectors,
respectively, are parallel to the α direction [19].
Venkataraman, Feldkamp, and Sahni later extended the
CC-LST relation to arbitrary directions [3]. The CC-LST
relation has been found correct for anisotropic materials
whosemajor axes of polarization align with orthogonal axes
[9,18,20]. Such situations include materials with cubic,
hexagonal, trigonal, tetragonal, and orthorhombic crystal
systems [21]. Contemporary semiconductor materials are
cubic (for example, diamond structure silicon, and zinc
blende structure group-III phosphides, arsenides, and
selenides), or hexagonal (for example, wurtzite structure
group-III nitrides). Very recently, the monoclinic phase of
metal-oxide β-Ga2O3 (gallia) has emerged as a potential
candidate for use in high-power transistors and switches due
to a very large electric break down field value of 8 MVcm−1
[22]. First devices exhibited excellent characteristics such

PRL 117, 215502 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

18 NOVEMBER 2016

0031-9007=16=117(21)=215502(6) 215502-1 © 2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.117.215502
http://dx.doi.org/10.1103/PhysRevLett.117.215502
http://dx.doi.org/10.1103/PhysRevLett.117.215502
http://dx.doi.org/10.1103/PhysRevLett.117.215502


as a nearly ideal pinch-off of the drain current, an off-state
breakdown voltage over 250 V, a high on-off drain current
ratio of around 104, and small gate leakage current [23]. Few
reports exist on long wavelength characterization of mono-
clinic LiAlSi2O6 [24,25], MgCaSi2O6 [26], CdWO4 [27],
CuO [28], MnWO4 [29], and Y2SiO5 [30], where the
application of the LST relation was not discussed. A
generalized ellipsometry analysis [9] of phonon modes
and free charge carrier properties in β-Ga2O3 was reported
very recently, and an alternative approach to theLSTrelation
was suggested formaterialswithmonoclinic symmetry [31].
Virtually no information is available on triclinic materials,
which appears as a widely uncharted field of condensed
matter physics.
For mononclinic and triclinic systems, the CC-LST

relations become problematic, because, in general, for such
systems an α direction cannot be found anymore along
which the displacement directions of multiple TO and LO
modes line up. For example, the displacement vectors of all
TO and LO modes within the monoclinic plane of β-Ga2O3

each possess a different direction, which was obtained from
experiment and verified by density-functional theory cal-
culations [31]. Furthermore, the ratios equaled in Eq. (2)
depend on the choice of the α direction, and, hence, the
choice of the coordinate system within which an exper-
imentally determined tensor ε is cast. Hence, the CC-LST
parameters ωðαÞLO;l do not necessarily coincide with the
LO mode frequencies in crystals with monoclinic and
triclinic symmetries [32]. The purpose of this present work
is to provide a generalization of the LST relation to a
coordinate-invariant form, which comprises the parameters
of all long wavelength active phonon frequencies regard-
less of their displacement directions. This form is then
applicable to any crystal symmetry, regardless of the choice
of the Cartesian coordinate system within which the
dielectric response is described. The Letter follows a
derivation of a general expression of the dielectric function
tensor for materials with polar vibrations in the harmonic
approximation. A simple superposition of eigendielectric
displacement polarizability functions using Lorentzian
oscillators and their displacement vector dependence leads
to a coordinate-dependent tensor description, from where a
general, coordinate-invariant LST relation is obtained.
The oscillators approach is equivalent to the result of the
microscopic description of the long wavelength lattice
vibrations given by Born and Huang in the harmonic
approximation [33], where the interatomic forces are
considered constant and the equations of motion are
determined by harmonic potentials.
Vibration modes, which can be excited by long wave-

length electromagnetic waves (long wavelength active
phonon modes) in materials can be represented as intrinsic
dielectric polarizations (eigendielectric displacement
modes). Each mode produces an electric dipole charge
oscillation. The dipole axis can be associated with a

characteristic vector (unit eigen displacement vector êl).
The orientations of the N eigenvectors, êl, and the
frequency responses of their eigendisplacements determine
the optical character of a given, dielectrically polarizable
material. For certain or all frequency regions, the optical
behavior may be isotropic, uniaxial, or biaxial [34]. Within
the frequency domain, and within a Cartesian system
with unit axes x, y, z, the dielectric polarizability P under
the influence of an electric phasor field E along êl ¼
êx;lxþ êy;ly þ êz;lz is then given by a complex-valued
response function ϱl (Fig. 1) [31]

Pêl ¼ ϱlðêlEÞêl: ð3Þ

Function ϱl must satisfy causality and energy conserva-
tion requirements, i.e., the Kramers-Kronig (KK) integral
relations and Imfϱg ≥ 0, ∀ω ≥ 0 [35,36]. The energy
(frequency) dependent contribution to the long wavelength
polarization response of an uncoupled electric dipole
charge oscillation is commonly described using a
Kramers-Kronig consistent oscillator function [9,37]

ϱlðωÞ ¼
Al

ω2
TO;l − ω2

; ð4Þ

where Al and ωTO;l denote the amplitude and resonance
frequency parameters of a vibration mode with transverse
optical (TO) character, and ω is the frequency of the driving
electromagnetic field. The effect of mode damping (broad-
ening) is omitted here for convenience, and it can be shown
that nonzero broadening does not change the findings here
[38]. The eigenvectors are located along certain, fixed
spatial directions within a given sample of material.
Explicit coupling between different eigendisplacement
modes, which may lead to description of chiral properties,
are ignored here. The linear polarization response of a
material with N eigendisplacement modes is then obtained
from summation

FIG. 1. Unit vector ê, characteristic for a dielectric eigenpolar-
izability vibration Pê, whose frequency response is rendered by a
complex-valued response function ϱ.
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P ¼ χE ¼
XN
l¼1

Pêl ¼
XN
l¼1

Alðêl ⊗ êlÞ
ω2
TO;l − ω2

E; ð5Þ

where ⊗ is the dyadic product [39]. The index l numerates
the contributions of all independent dipole oscillations. It is
required here that ωTO;l > 0∀l [40]. The field phasors
displacementD, andE are related by the dielectric function
tensor (ε0 is the vacuum permittivity)

D ¼ ε0ðε∞ þ χEÞ ¼ ε0εE; ð6Þ
where a symmetric tensor ε∞ may account for the high
frequency appearance of ε. The high frequency limit here is
meant as a frequency region with frequencies sufficiently
large against the vibration modes summed over in
Eq. (5), and yet small against potential other electronic
polarizabilities whose transition energies are at even higher
frequencies. The key leading to the LST relation is to
inspect the determinant of the dielectric tensor, detfεðωÞg,
for ω → 0 and for ω → ∞. Six real-valued physical
material parameters may be required to describe the static
(dc) behavior. At high frequencies, similarly six frequency
independent elements may be required:

detfεðω ¼ 0Þg ¼ εdc;xxεdc;yyεdc;zz þ 2εdc;xyεdc;yzεdc;xz

− ðεdc;xxε2dc;yz þ εdc;yyε
2
dc;xz þ εdc;zzε

2
dc;xyÞ;
ð7Þ

detfε∞g ¼ ε∞;xxε∞;yyε∞;zz þ 2ε∞;xyε∞;yzε∞;xz

− ðε∞;xxε
2
∞;yz þ ε∞;yyε

2
∞;xz þ ε∞;zzε

2
∞;xyÞ: ð8Þ

According to Eq. (5) each element of ε possesses up to
(N þ 1) terms

ðεÞij ¼ detfε∞gêi;∞êj;∞

þ
XN
l¼1

ϱlêi;lêj;l; i; j ∈ fx; y; zg: ð9Þ

Hence, ε is symmetric, and a function of frequency ω. At
long wavelength and in the harmonic approximation, all
terms in Eq. (9) are independent on the magnitude of the
displacement, i.e., the strength and direction of the electric
field. The dielectric function tensor in Eq. (6) has six
independent complex-valued parameters (spectra), which
can be obtained by experiment, for example, using gener-
alized spectroscopic ellipsometry [9,31,42]. Two character-
istic sets of N optical modes, transverse optical (TO; ωTO;l),
and longitudinal optical (LO; ωLO;l), can be obtained,
respectively, from the roots of the determinants of ε−1,
and ε,

0 ¼ detfε−1ðωTO;lÞg; 0 ¼ detfεðωLO;lÞg; ð10Þ

and a proof for this statement is obtained below. The
solutions of Eq. (10), the TO and LO mode of the material
rendered by εðωÞ, are invariant under coordinate
rotation, e.g., described by rotation matrix A [9],
since detfAεðωÞA−1g ¼ detfAg detfεðωÞg detfA−1g ¼
detfεðωÞg. The displacement vectors for the TO and LO
modes, êTO;l and êLO;l, respectively, are obtained from the
eigenvector solutions of Eq. (10) [43],

0 ¼ ε−1ðωTO;lÞêTO;l; 0 ¼ εðωLO;lÞêLO;l; ð11Þ

and it can be shown that êTO;l are identical with êl in
Eq. (3). The LO mode displacement vectors, êLO;l, must be
obtained numerically, which requires explicit knowledge of
all tensor elements of εðωÞ. The latter can be obtained, for
example, from density-functional perturbation theory cal-
culations [44], and from matching model equations using
Eqs. (5)–(6) to experimental data [31]. The displacement
vectors of all TO and LO modes is thereby determined, and
the index l unambiguously identifies mode and vector via
Eq. (11). However, vectors êTO;l and êLO;l change upon
coordinate rotation, but as an entity, leaving their relative
orientation with each other unchanged. Such coordinate
rotation is equivalent to rotating a specimen under inves-
tigation during experiment, or producing a surface with a
different cut from a bulk crystal. It is clear that the internal
displacement vectors remain their relative orientation while
changing their overall orientation with respect to a chosen
Cartesian laboratory coordinate system. For 0 < ω < ∞,
one can express the determinant of ε through a complex-
valued function f, or f†,

detfεðωÞg ¼ detfεð∞Þg þ fðωÞ
¼ detfεð∞Þg½1þ f†ðωÞ�; ð12Þ

where f† is obtained from f by normalization with
detfεð∞Þg. The sum 1þ f† contains up to 6ð1þ NÞ3
terms. Each term has the following structure:

êi;lêj;lϱðlÞêi;mêj;mϱðmÞêi;nêj;nϱðnÞ; ð13Þ
where the mode indices are fl; m; ng ∈ f“∞”; 1;…; Ng,
and the coordinate indices are fi; jg ∈ fx; y; zg [45]. In the
calculation of the determinant of ε all terms occur in cyclic
permutations of the indices and by alternating plus and
minus signatures of all product terms. It is crucial to
recognize that in this summation all terms with at least
two equal mode indices in l, m, n cancel out. As a result,
none of the terms in Eq. (9) occur in the sum 1þ f† with a
multiplicity higher than 1. This is consequential when
the sum 1þ f† is then factorized into a fraction decom-
position with common denominator. The denominator then
contains the product over all poles at ðω2

TO;ðlÞ − ω2Þ with

l ¼ 1;…; N. This result is obtained straightforward by
carrying out all multiplications and by summing all terms in
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1þ f† for arbitrary but fixed N. The numerator then
presents itself with a polynomial in ω2 with order equal
to N. Hence, the numerator can be factorized according to
the Gauß-d’Alembert theorem of algebra by which a
polynomial p of degree n possesses n roots in the complex
plane [46]. Hence, for the sum 1þ f† one expects N roots
in ω2, which are identical then with the squares of the
frequencies ωLO;ðlÞ in Eq. (10). The determinant of ε can be
expressed as follows:

detfεðωÞg ¼ detfεð∞Þg
YN
l¼1

�
ω2
LO;l − ω2

ω2
TO;l − ω2

�
; ð14Þ

and the statements in Eq. (10) can be easily verified. The
factorized form in Eq. (14) can be seen as a generalized,
coordinate-invariant dielectric function, characteristic for
any given material regardless of its crystal system. The
particular usefulness of this function originates from its
poles and zeros, which reveal all TO and LO frequencies,
respectively, of a material under investigation within the
spectral range over which the individual components of
εðωÞmay have been determined, either from computational
theory or from experiment. Function detfεðωÞg further
factorizes into components for higher symmetries, and
which is not further discussed here. Pavinich and Belousov
suggested use of the subdeterminant of the dielectric tensor
within the a-c plane for long wavelength phonon mode
analysis of monoclinic LiAlSi2O6 [24]. A derivation of the
Pavinich and Belousov equation for monoclinic crystal
systems is shown by Schubert et al. [31] and applied to
β-Ga2O3. Setting ω ¼ 0 in Eq. (14), a generalization of the
LST relation is then obtained

detfεð0Þg
detfεð∞Þg ¼

YN
l¼1

�
ωLO;l

ωTO;l

�
2

; ð15Þ

where the product expands over all N vibration modes
contained within Eq. (5). Note that the displacement vector
for every TO and LOmode follows from Eq. (11), and all of
which may be different. Equations (14) and (15) are the
central results of this Letter. The relations are valid for
materials with all crystal systems, and specifically for
triclinic. For monoclinic, when without loss of generality
the (x, y) plane may be considered as the monoclinic plane,
the LST relation is [31]

εdc;zz
ε∞;zz

εdc;xxεdc;yy − ε2dc;xy
ε∞;xxε∞;yy − ε2∞;xy

¼
YN;K

l¼1;k¼1

�
ωLO;l

ωTO;l

ωLO;k

ωTO;k

�
2

; ð16Þ

where the products expand over allN modes l andK modes
k, respectively, with displacement parallel and
perpendicular to the monoclinic plane. Dividing Eq. (16)
by the CC-LST relation for α ¼ z, the monoclinic LST
relation reduces to the form shown in Ref. [[31]], and where
it was verified using experimentally determined parame-
ters. For orthorhombic, the generalized LST relation is

εdc;xx
ε∞;xx

εdc;yy
ε∞;yy

εdc;zz
ε∞;zz

¼
YM;N;K

m¼1;l¼1;k¼1

�
ωLO;m

ωTO;m

ωLO;l

ωTO;l

ωLO;k

ωTO;k

�
2

; ð17Þ

where the products expand over allM modesm,N modes l,
and K modes k, respectively, with displacement parallel to
axis x, y, and z, respectively. Cyclic division of Eq. (17) by
the CC-LST relation, e.g., for α ¼ x and y, recovers Eq. (2),
e.g., for α ¼ z. Hexagonal, tetragonal and trigonal follow
from Eq. (17), where for example z maybe chosen parallel
to the c axis, andM þ N modes are polarized perpendicular
to z, and K modes parallel to z. For cubic, all modes N
with displacement parallel to x, y, and z have identical
frequencies

�
εdc
ε∞

�
3

¼
YN
l¼1

�
ωLO;l

ωTO;l

�
6

; ð18Þ

and which is the isotropic LST relation in three dimensions.
The latter is identical with Eq. (1), after taking the third
root, for a material with cubic crystal system and single-
mode behavior, e.g., GaAs, where N ¼ 3, A1 ¼ A2 ¼
A3 ¼ A, ê1∥½1; 0; 0�, ê2∥½0; 1; 0�, ê3∥½0; 0; 1�, ωTO;1 ¼
ωTO;2 ¼ ωTO;3 ¼ ωTO, ωLO;1 ¼ ωLO;2 ¼ ωLO;3 ¼ ωLO, and
ω2
LO ¼ ω2

TO þ A=ε∞. Finally, a generalized, coordinate-
invariant oscillator strength which combines the polar-
izability of all long wavelength active vibration modes in a
given sample can be derived from Eq. (15) [7,10,35]:

F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
detfεð0Þg
detfεð∞Þg − 1

�YN
l¼1

ω2
TO;ðlÞ

3

vuut ; ð19Þ

where the product runs over all N polar lattice modes. The
appearance of the third root in Eq. (19) reflects the fact that
the derivation comprises all modes in all three dimensions.
The value of Eq. (19) consists in the possibility to express a
generalized, coordinate-invariant oscillator strength in units
of the vacuum permittivity ε0, which can be calculated
without explicit knowledge of any LO frequency.
In a recent experiment, the dielectric function tensor

components of single crystal monoclinic β-Ga2O3 were
measured by generalized ellipsometry in the long wave-
length spectral range [31]. All long wavelength active
phonon modes predicted by theory were detected as well as
their eigenvectors within the monoclinic plane. The tensors
of the static and high frequency dielectric constants were
determined from experiment and the generalized form of
the LST relation was found fulfilled accurately, lending
experimental support to the findings reported here. No
other experimental data appear to be available for materials
with monoclinic or triclinic crystal systems, and future
experiments may provide further tests of the LST relations
provided here.
A coordinate-invariant generalization of the Lyddane-

Sachs-Teller relation is derived for polar vibrations in
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materials with monoclinic and triclinic crystal systems.
The generalization is derived from an eigendisplacement
vector summation approach, which is equivalent to the
microscopic Born-Huang description of polar lattice vibra-
tions. The generalized relation is found valid for mono-
clinic β-Ga2O3, where accurate experimental data became
available recently from a comprehensive generalized
ellipsometry investigation. Data for materials with triclinic
crystal systems can be measured by generalized ellipsom-
etry as well, and are anticipated to become available soon
and results can be compared with the generalized relation
discussed here.
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for Nanohybrid Functional Materials (EPS 1004094), the
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Center (DMR 1420645), and Grant No. CMMI 1337856.

*schubert@engr.unl.edu; http://ellipsometry.unl.edu
[1] R. H. Lyddane, R. Sachs, and E. Teller, Phys. Rev. 59, 673

(1941).
[2] The region of transparency should be a region with little or

no dispersion, for example, as exhibited by a wide band gap
material in the visible spectral range. The LST relation then
can be used to connect the index of refraction in the visible
or near infrared spectral region with its counter part at zero
frequencies through all LO and TO frequencies.

[3] G. Venkataraman, L. A. Feldkamp, and V. C. Sahni,
Dynamics of Perfect Crystals (MIT Press, Cambridge,
Massachusetts, and London, England, 1975).

[4] C. Pidgeon, in Handbook on Semiconductors: Optical
Properties of Solids, edited by M. Balkanski (North-
Holland, Amsterdam, 1980), Vol. 2, p. 223.

[5] C. M. Wolfe, N. Holonyak, and G. E. Stillmann, Physical
Properties of Semiconductors (Prentice Hall, New Jersey,
1989).

[6] C. Kittel, Introduction To Solid State Physics (Wiley India
Pvt. Ltd., New Delhi, 2009).

[7] C. Klingshirn, Semiconductor Optics (Springer-Verlag,
Berlin, 1995).

[8] P. Yu and M. Cardona, Fundamentals of Semiconductors
(Springer, Berlin, 1999).

[9] M. Schubert, Infrared Ellipsometry on Semiconductor
Layer Structures: Phonons, Plasmons and Polaritons,
Springer Tracts in Modern Physics Vol. 209 (Springer,
Berlin, 2004).

[10] M. Grundmann, The Physics of Semiconductors (Springer,
Berlin, Heidelberg, 2006).

[11] H. Fujiwara, Spectroscopic Ellipsometry (John Wiley &
Sons, New York, 2007).

[12] A. A. Sirenko, C. Bernhard, A. Golnik, A. Clark, J. Hao, W.
Si, and X. Xi, Nature (London) 404, 373 (2000).

[13] W. Cochran, Adv. Phys. 9, 387 (1960).
[14] G. Shirane and Y. Yamada, Phys. Rev. 177, 858 (1969).
[15] J. L. Servoin, Y. Luspin, and F. Gervais, Phys. Rev. B 22,

5501 (1980).

[16] H. Takahashi, Phys. Rev. B 11, 1636 (1975).
[17] D.W. Berreman and F. C. Unterwald, Phys. Rev. 174, 791

(1968).
[18] F. Gervais and B. Piriou, J. Phys. C 7, 2374 (1974).
[19] W. Cochran and R. A. Cowley, J. Phys. Chem. Solids 23,

447 (1962).
[20] S. Schöche, T. Hofmann, R. Korlacki, T. E. Tiwald, and

M. Schubert, J. Appl. Phys. 113, 164102 (2013).
[21] W. Kleber and H.-J. Bautsch, Einführung in die Kristallog-

raphie (de Gruyter, Oldenbourg, 2010).
[22] K. Sasaki, M. Higashiwaki, A. Kuramata, T. Masui, and S.

Yamakoshi, J. Cryst. Growth. 378, 591 (2013).
[23] M. Higashiwaki, K. Sasaki, A. Kuramata, T. Masui, and S.

Yamakoshi, Phys. Status Solidi A 211, 21 (2014).
[24] V. F. Pavinich and M. V. Belousov, Opt. Spektrosk. 45, 1114

(1978).
[25] A. N. Lazarev, in Vibrational Spectra and Structure, edited

by J. R. Durig (Elsevier, Amsterdam, 1998).
[26] M. V. Belousov and V. F. Pavinich, Opt. Spektrosk. 45, 920

(1978).
[27] G. E. Jellison, M. A. McGuire, L. A. Boatner, J. D. Budai,

E. D. Specht, and D. J. Singh, Phys. Rev. B 84, 195439
(2011).

[28] A. B. Kuzmenko, D. van der Marel, P. J. M. van Bentum,
E. A. Tishchenko, C. Presura, and A. A. Bush, Phys. Rev. B
63, 094303 (2001).

[29] T. Möller, P. Becker, L. Bohatý, J. Hemberger, and M.
Grüninger, Phys. Rev. B 90, 155105 (2014).

[30] S. Hoefer, R. Uecker, A. Kwasniewski, J. Popp, and T. G.
Mayerhoefer, Vibrational Spectroscopy 83, 151 (2016).

[31] M. Schubert, R. Korlacki, S. Knight, T. Hofmann, S.
Schöche, V. Darakchieva, E. Janzén, B. Monemar, D.
Gogova, Q.-T. Thieu et al., Phys. Rev. B 93, 125209 (2016).

[32] Experimental evidence for this statement is obtained in
Ref. [31]: The CC-LST parameters ωðαÞTO;l and ωðαÞLO;l in
Eq. (2) can be read from the poles and zeros of the
experimental spectra, respectively, for example, in εxx when
α ¼ x, or in εyy when α ¼ y, where the zeros do not coincide
with the LO mode frequencies found for displacement
within the monoclinic plane. Note that ωðαÞTO;l and
ωðαÞLO;l also change upon coordinate rotation of ε, and
thus depend on the choice of coordinates within which an
experiment is reported.

[33] M. Born and K. Huang, Dynamical Theory of Crystal
Lattices (Clarendon, Oxford, 1954).

[34] M. Born and E. Wolf, Principles of Optics, 7th ed.
(Cambridge University Press, Cambridge, England, 2002).

[35] M. Dressel and G. Grüner, Electrodynamics of Solids
(Cambridge University Press, London, 2002).

[36] J. D. Jackson, Classical Electrodynamics (J. Wiley & Sons,
New York, 1975).

[37] J. Humlìček and T. Zettler, in Handbook of Ellipsometry,
edited by E. A. Irene and H.W. Tompkins (William Andrew
Publishing, Norwich, NY, 2004).

[38] The influence of broadening onto the LST relations for high
symmetry materials was discussed in Ref. [16].

[39] Equation (5) is equivalent to Eq. (4.158) in Ref. [3], which is
also referred to as oscillator approach.

[40] The Drude quasi-free-electron model [41] is equivalent to
Eq. (4) with ωTO;l ¼ 0, because no restoring force exists on

PRL 117, 215502 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

18 NOVEMBER 2016

215502-5

http://dx.doi.org/<1>1R.&thinsp;H. Lyddane, R. Sachs, and E. Teller, Phys. Rev. 59, 673 (1941).PHRVAO0031-899X10.1103/PhysRev.59.673<2>The region of transparency should be a region with little or no dispersion, for example, as exhibited by a wide band gap material in the visible spectral range. The LST relation then can be used to connect the index of refraction in the visible or near infrared spectral region with its counter part at zero frequencies through all LO and TO frequencies.<3>3G. Venkataraman, L.&thinsp;A. Feldkamp, and V.&thinsp;C. Sahni, Dynamics of Perfect Crystals (MIT Press, Cambridge, Massachusetts, and London, England, 1975).<4>4C. Pidgeon, in Handbook on Semiconductors: Optical Properties of Solids, edited by M. Balkanski (North-Holland, Amsterdam, 1980), Vol.&nbsp;2, p.&nbsp;223.<5>5C.&thinsp;M. Wolfe, N. Holonyak, and G.&thinsp;E. Stillmann, Physical Properties of Semiconductors (Prentice Hall, New Jersey, 1989).<6>6C. Kittel, Introduction To Solid State Physics (Wiley India Pvt. Ltd., New Delhi, 2009).<7>7C. Klingshirn, Semiconductor Optics (Springer-Verlag, Berlin, 1995).<8>8P. Yu and M. Cardona, Fundamentals of Semiconductors (Springer, Berlin, 1999).<9>9M. Schubert, Infrared Ellipsometry on Semiconductor Layer Structures: Phonons, Plasmons and Polaritons, Springer Tracts in Modern Physics Vol.&nbsp;209 (Springer, Berlin, 2004).<10>10M. Grundmann, The Physics of Semiconductors (Springer, Berlin, Heidelberg, 2006).<11>11H. Fujiwara, Spectroscopic Ellipsometry (John Wiley & Sons, New York, 2007).<12>12A.&thinsp;A. Sirenko, C. Bernhard, A. Golnik, A. Clark, J. Hao, W. Si, and X. Xi, Nature (London) 404, 373 (2000).NATUAS0028-083610.1038/35006023<13>13W. Cochran, Adv. Phys. 9, 387 (1960).ADPHAH0001-873210.1080/00018736000101229<14>14G. Shirane and Y. Yamada, Phys. Rev. 177, 858 (1969).PHRVAO0031-899X10.1103/PhysRev.177.858<15>15J.&thinsp;L. Servoin, Y. Luspin, and F. Gervais, Phys. Rev. B 22, 5501 (1980).PRBMDO0163-182910.1103/PhysRevB.22.5501<16>16H. Takahashi, Phys. Rev. B 11, 1636 (1975).PLRBAQ0556-280510.1103/PhysRevB.11.1636<17>17D.&thinsp;W. Berreman and F.&thinsp;C. Unterwald, Phys. Rev. 174, 791 (1968).PHRVAO0031-899X10.1103/PhysRev.174.791<18>18F. Gervais and B. Piriou, J. Phys. C 7, 2374 (1974).JPSOAW0022-371910.1088/0022-3719/7/13/017<19>19W. Cochran and R.&thinsp;A. Cowley, J. Phys. Chem. Solids 23, 447 (1962).JPCSAW0022-369710.1016/0022-3697(62)90084-7<20>20S. Sch&ouml;che, T. Hofmann, R. Korlacki, T.&thinsp;E. Tiwald, and M. Schubert, J. Appl. Phys. 113, 164102 (2013).JAPIAU0021-897910.1063/1.4802715<21>21W. Kleber and H.-J. Bautsch, Einf&uuml;hrung in die Kristallographie (de Gruyter, Oldenbourg, 2010).<22>22K. Sasaki, M. Higashiwaki, A. Kuramata, T. Masui, and S. Yamakoshi, J. Cryst. Growth. 378, 591 (2013).10.1016/j.jcrysgro.2013.02.015<23>23M. Higashiwaki, K. Sasaki, A. Kuramata, T. Masui, and S. Yamakoshi, Phys. Status Solidi A 211, 21 (2014).PSSABA1862-630010.1002/pssa.201330197<24>24V.&thinsp;F. Pavinich and M.&thinsp;V. Belousov, Opt. Spektrosk. 45, 1114 (1978).OPSUA30030-400X<25>25A.&thinsp;N. Lazarev, in Vibrational Spectra and Structure, edited by J.&thinsp;R. Durig (Elsevier, Amsterdam, 1998).<26>26M.&thinsp;V. Belousov and V.&thinsp;F. Pavinich, Opt. Spektrosk. 45, 920 (1978).OPSUA30030-400X<27>27G.&thinsp;E. Jellison, M.&thinsp;A. McGuire, L.&thinsp;A. Boatner, J.&thinsp;D. Budai, E.&thinsp;D. Specht, and D.&thinsp;J. Singh, Phys. Rev. B 84, 195439 (2011).PRBMDO1098-012110.1103/PhysRevB.84.195439<28>28A.&thinsp;B. Kuzmenko, D. van der Marel, P.&thinsp;J.&thinsp;M. van Bentum, E.&thinsp;A. Tishchenko, C. Presura, and A.&thinsp;A. Bush, Phys. Rev. B 63, 094303 (2001).PRBMDO0163-182910.1103/PhysRevB.63.094303<29>29T. M&ouml;ller, P. Becker, L. Bohat&yacute;, J. Hemberger, and M. Gr&uuml;ninger, Phys. Rev. B 90, 155105 (2014).PRBMDO1098-012110.1103/PhysRevB.90.155105<30>30S. Hoefer, R. Uecker, A. Kwasniewski, J. Popp, and T.&thinsp;G. Mayerhoefer, Vibrational Spectroscopy 83, 151 (2016).VBSSBB0090-191110.1016/j.vibspec.2016.01.004<31>31M. Schubert, R. Korlacki, S. Knight, T. Hofmann, S. Sch&ouml;che, V. Darakchieva, E. Janz&eacute;n, B. Monemar, D. Gogova, Q.-T. Thieu , Phys. Rev. B 93, 125209 (2016).PRBMDO2469-995010.1103/PhysRevB.93.125209<32>Experimental evidence for this statement is obtained in Ref.&nbsp;<31>: The CC-LST parameters &omega;(&alpha;)TO,l and &omega;(&alpha;)LO,l in Eq.&nbsp;(2) can be read from the poles and zeros of the experimental spectra, respectively, for example, in &epsiv;xx when &alpha;=x, or in &epsiv;yy when &alpha;=y, where the zeros do not coincide with the LO mode frequencies found for displacement within the monoclinic plane. Note that &omega;(&alpha;)TO,l and &omega;(&alpha;)LO,l also change upon coordinate rotation of &epsiv;, and thus depend on the choice of coordinates within which an experiment is reported.<33>33M. Born and K. Huang, Dynamical Theory of Crystal Lattices (Clarendon, Oxford, 1954).<34>34M. Born and E. Wolf, Principles of Optics, 7th&nbsp;ed. (Cambridge University Press, Cambridge, England, 2002).<35>35M. Dressel and G. Gr&uuml;ner, Electrodynamics of Solids (Cambridge University Press, London, 2002).<36>36J.&thinsp;D. Jackson, Classical Electrodynamics (J. Wiley & Sons, New York, 1975).<37>37J. Huml&igrave;&ccaron;ek and T. Zettler, in Handbook of Ellipsometry, edited by E.&thinsp;A. Irene and H.&thinsp;W. Tompkins (William Andrew Publishing, Norwich, NY, 2004).<38>The influence of broadening onto the LST relations for high symmetry materials was discussed in Ref.&nbsp;<16>.<39>Equation&nbsp;(5) is equivalent to Eq.&nbsp;(4.158) in Ref.&nbsp;<3>, which is also referred to as oscillator approach.<40>The Drude quasi-free-electron model <41> is equivalent to Eq.&nbsp;(4) with &omega;TO,l=0, because no restoring force exists on the free charge carriers in this model. Hence, analogous to the derivation of the LST relation in its original paper, for the generalization discussed here, free carrier contributions must be excluded.<41>41P. Drude, Ann. Phys. (Berlin) 319, 677 (1904).ANPYA20003-380410.1002/andp.19043190903<42>42M. Schubert, T.&thinsp;E. Tiwald, and C.&thinsp;M. Herzinger, Phys. Rev. B 61, 8187 (2000).PRBMDO0163-182910.1103/PhysRevB.61.8187<43>In long wavelength linear optics, the dielectric function tensor exhibits poles (zeros) when TO (LO) lattice vibration modes are excited <7,17>. At a TO (LO) mode, the dielectric displacement diverges (vanishes) along the direction of the lattice displacement. Note that TO and LO modes with equal displacement frequency do not couple. Instead, Eqs.&nbsp;(10) and (11) require that in such cases&mdash;when a TO and a LO mode have the same frequency&mdash;that their associated eigenvectors must be orthogonal.<44>44X. Gonze and C. Lee, Phys. Rev. B 55, 10355 (1997).PRBMDO0163-182910.1103/PhysRevB.55.10355<45>The high-frequency tensor contribution can be written as a dyadic product: <\&epsiv;(\&infin;)>ij=det{&epsiv;(&infin;)}e^i,&infin;e^j,&infin;, where e^&infin; represents the unit vector of the high frequency displacement. In Eq.&nbsp;(13), &rhov;(&infin;)=det{&epsiv;(&infin;)}.<46>46I.&thinsp;N. Bronstein and K.&thinsp;A. Semendjajew, Handbook of Mathematics (Harri Deutsch Verlag, Germany, 2008).
http://dx.doi.org/10.1103/PhysRev.59.673
http://dx.doi.org/10.1103/PhysRev.59.673
http://dx.doi.org/10.1038/35006023
http://dx.doi.org/10.1080/00018736000101229
http://dx.doi.org/10.1103/PhysRev.177.858
http://dx.doi.org/10.1103/PhysRevB.22.5501
http://dx.doi.org/10.1103/PhysRevB.22.5501
http://dx.doi.org/10.1103/PhysRevB.11.1636
http://dx.doi.org/10.1103/PhysRev.174.791
http://dx.doi.org/10.1103/PhysRev.174.791
http://dx.doi.org/10.1088/0022-3719/7/13/017
http://dx.doi.org/10.1016/0022-3697(62)90084-7
http://dx.doi.org/10.1016/0022-3697(62)90084-7
http://dx.doi.org/10.1063/1.4802715
http://dx.doi.org/10.1016/j.jcrysgro.2013.02.015
http://dx.doi.org/10.1002/pssa.201330197
http://dx.doi.org/10.1103/PhysRevB.84.195439
http://dx.doi.org/10.1103/PhysRevB.84.195439
http://dx.doi.org/10.1103/PhysRevB.63.094303
http://dx.doi.org/10.1103/PhysRevB.63.094303
http://dx.doi.org/10.1103/PhysRevB.90.155105
http://dx.doi.org/10.1016/j.vibspec.2016.01.004
http://dx.doi.org/10.1103/PhysRevB.93.125209


the free charge carriers in this model. Hence, analogous
to the derivation of the LST relation in its original paper, for
the generalization discussed here, free carrier contributions
must be excluded.

[41] P. Drude, Ann. Phys. (Berlin) 319, 677 (1904).
[42] M. Schubert, T. E. Tiwald, and C. M. Herzinger, Phys.

Rev. B 61, 8187 (2000).
[43] In long wavelength linear optics, the dielectric function

tensor exhibits poles (zeros) when TO (LO) lattice vibration
modes are excited [7,17]. At a TO (LO) mode, the dielectric
displacement diverges (vanishes) along the direction of the
lattice displacement. Note that TO and LO modes with equal

displacement frequency do not couple. Instead, Eqs. (10)
and (11) require that in such cases—when a TO and a LO
mode have the same frequency—that their associated
eigenvectors must be orthogonal.

[44] X. Gonze and C. Lee, Phys. Rev. B 55, 10355 (1997).
[45] The high-frequency tensor contribution can be written as a

dyadic product: ½εð∞Þ�ij ¼ detfεð∞Þgêi;∞êj;∞, where ê∞
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