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Key points 

 Microbial denitrification represents a potentially large loss of N that could limit plant 

productivity across humid tropical forests  

 Ecosystem modeling and stream chemistry data suggests that gas emissions dominate 

(>45-82%) bioavailable N exports from tropical forests 

 Plant uptake of N required to maintain observed net primary production sets an upper 

bound on gaseous N loss from tropical soils  

 

Abstract 

Denitrification and hydrologic leaching are the two major pathways by which nitrogen is lost 

from the terrestrial biosphere. Humid tropical forests are thought to dominate denitrification 

from unmanaged lands globally, but there is large uncertainty about the range and key drivers 

of total N gas emissions across the biome. We combined pantropical measures of small 

watershed stream chemistry with ecosystem modeling to determine total nitrogen gas losses 

proyster2
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and associated uncertainty across humid tropical forests. Our calculations reveal that 

denitrification in soils and along hydrologic flowpaths contributes on average >45% of total 

watershed N losses. However, when denitrification occurs exclusively in shallow soils, 

simulations indicate that gas emissions would exceed N inputs and render plants severely N-

limited, which contradicts observations of widespread N-sufficiency in tropical forests. Our 

analyses suggest an upper bound on soil denitrification of ~80% of total external N losses 

beyond which tropical plant growth would be compromised.  

      

1. Introduction 

     Humid tropical forests cover <10% of the global land surface yet dominate terrestrial 

exchanges of energy, water and carbon with the atmosphere [Pan et al., 2011; Wohl et al., 

2012; le Quéré et al., 2015]. These flows are accompanied by the largest natural fluxes of 

nitrogen (N) between land and atmosphere globally. Annually, humid tropical forests 

transform more N2 via biological N2 fixation, lose more dissolved inorganic N (DIN) to rivers 

and return more N gas to the atmosphere via denitrification than any other forest biome 

[Hedin et al., 2009; Bai et al., 2012; Brookshire et al., 2012a; Cleveland et al., 2013]. These 

large N fluxes influence global climate by fueling plant drawdown of CO2 and microbial 

production of nitrous oxide (N2O), both powerful greenhouse gases. Understanding these 

processes is essential for climate forecasting [Houlton et al., 2015; Thomas et al., 2015] and 

advances hinge on how well we understand how inorganic N losses in tropical soils are 

partitioned among plant uptake, hydrologic leaching and gaseous emissions [Houlton and 

Bai, 2009].
 
Unfortunately, all three of these N sinks are poorly constrained in current global 

models due to a dearth of field data and because considerable uncertainty exists on how best 

to conceptualize plant uptake and microbial denitrification [Thomas et al., 2015], particularly 
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whether they behave as competitive sinks within the soil or avoid competition by being 

separated in space and/or time across the landscape.  

Global mass-balance
 
[Bouwman et al., 2013] and isotope-based models [Bai et al., 2012]

 

identify terrestrial soils as the dominant source of N gas emissions, though significant 

denitrification can also occur along hydrologic flowpaths below the rooting zone and within 

stream and river corridors [Houlton et al., 2006; Mulholland et al., 2008; Groffman et al., 

2009; Fang et al., 2015]. At the watershed scale, DIN retention is most commonly attributed 

to plant uptake [Brookshire et al., 2012a; Gerber and Brookshire, 2014], but it remains 

unclear the extent to which microbial denitrifiers compete with plants for a common nitrate 

pool in the soil rooting zone or whether they rely on residual soil nitrate not accessed by 

plants. Tropical forests have been shown to be a significant CO2 sink [Pan et al., 2011; 

Brienen et al., 2015]. Maintaining that function requires a large and sustained supply of 

bioavailable N [Cleveland et al., 2013]. Thus, understanding how N losses from tropical soils 

constrains plant growth and C sequestration is essential for improving the performance of 

global models of C and N cycling. In contrast to DIN losses which can be directly estimated 

at the watershed level, total N gaseous emissions cannot, owing to methodological limitations 

[Groffman et al., 2009]. While recent studies using natural abundance isotopes of nitrate offer 

a way to constrain total N gas emissions at the watershed level [Houlton et al., 2006; Fang et 

al., 2015], these studies have been conducted at only a handful of tropical sites worldwide, 

making generalization difficult. Here, we apply a novel data-driven modeling approach to 

resolve watershed-level denitrification and the extent to which it may act as a competitive 

sink for inorganic N with tropical plants. 

     In this study, we estimate total N gas emissions across the humid tropics using small 

watershed budgeting. We take advantage of the chemistry of small streams as they reflect the 

cumulative up-stream signature of N uptake by plants and microbial processing within 
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watersheds [Mulholland et al., 2008; Gerber and Brookshire, 2014; Helton et al., 2015]. We 

combine geographically extensive solute chemistry data spanning broad gradients in 

elevation, topography, geology and net primary production (NPP) with a model [Gerber and 

Brookshire, 2014] of soil N processing that integrates DIN production via net mineralization, 

plant N uptake, and solute transport in soils to estimate DIN concentrations in soil water that 

are available for both leaching and denitrification. Discrepancies between modeled DIN in 

soil water (after plant uptake) and those observed in the stream can be used to constrain 

denitrification rates  at the small watershed scale. Our goals were to (1) compare the relative 

sink strength for N among plants, hydrologic leaching and denitrification and their 

association with environmental and biogeochemical factors and (2) quantify minimum and 

maximum bounds on gaseous N losses from tropical forests.  

 

2. Methods 

2.1.  Field Measures 

     From 2007 to 2016 we sampled a total of 126 small watershed (< 5 km
2
) streams 

distributed across ~900 km
2
 of remote mature forests in five countries following protocols in 

Brookshire et al. [2012b]; Brookshire and Thomas [2013]. Most data from montane and 

lowland old-growth forests in Costa Rica (n =51) and Trinidad (n =30) have been reported on 

previously [Brookshire et al., 2012b; Brookshire and Thomas, 2013]. These watersheds were 

sampled seasonally (wet/dry season) over 2007-2008 in Costa Rica (n= 115 samples) and on 

average three times per stream over 2007-2012 in Trinidad (n =110 samples). We sampled 

montane and lowland streams (n =26) in Erawan National Park, Sai Yok National Park and 

the Ratchaburi province in western Thailand over the wet season of 2013; lowland streams (n 

=15) within the Iwokrama Forest reserve in central Guyana during the short transitional dry 

season of 2014; and lowland streams (n =5) near the Madre Selva Biological Station in 
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Amazonian Peru during the wet seasons of 2015 and 2016. For streams sampled multiple 

times, we used site-averages to decrease over-representation in analyses. For all watersheds 

we recorded altitude using a hand-held GPS or used literature values and used reported mean 

annual precipitation. All samples were analyzed using a combination of SEAL Quatro pro 

chromatography or Dionex Ion chromatography for DIN (NO3
-
, NH4

+
 and NO2

-
) and PO4

-
, 

Shimadzu elemental analysis for dissolved organic C (DOC) and total dissolved N (TDN), 

and ICP-OES for cations. Dissolved organic N (DON) was calculated as TDN-DIN.  

 

2.2. Literature Values 

To expand the geographical scope of our original samples, we included published data from 

small streams draining closed-canopy mature forests in which stream chemistry had been 

sampled over time using comparable methods. We included streams from a lowland forest of 

Rondonia (n=1; [Neill et al., 2001]) and montane forests of Atlantic Brazil (n=6; [Andrade et 

al., 2011]), a lowland forest of the Osa Peninsula in Costa Rica (n =1; [Taylor et al., 2015]), 

and montane forests of Puerto Rico (n=3; [McDowell and Asbury, 1994]), Malaysia (n =1; 

[Bruijnzeel et al., 1993] and Rwanda (n=1; [Rütting et al., 2015]). To our knowledge, our 

combined data span the range of reported stream chemistry from the global tropics.  

 

2.3. Ecosystem model 

     We modeled denitrification using previously developed analytical tools
 
[Brookshire et al., 

2012a; Gerber and Brookshire, 2014]. Our basic framework describes the evolution of total 

inorganic N (ammonium and nitrate) concentrations in soil water as determined by inputs and 

first order sink terms: 

 

                           
    

  
 

      

 
                                                                  (1) 
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Where [N] is the combined ammonium and nitrate concentration (kg m
-3

), M is N 

mineralization (kg m
-2

 yr
-1

), A is atmospheric deposition (kg m
-2

 yr
-1

), FA is asymbiotic N2 

fixation (kg m
-2

 yr
-1

), h is the rooting zone depth (defined below), kp the plant uptake rate (yr
-

1
), kw the drainage rate per unit rooting depth (yr

-1
), kD the first order denitrification rate (yr

-1
) 

and  a binary that indicates whether soil denitrification occurs (=1) or not (=0). We 

obtained data for atmospheric N deposition for all watersheds using the average of the years 

2001 through 2010
 
[Lamarque et al., 2011]. We estimated N inputs from asymbiotic N2 

fixation (FA) based on the reported mean and global range for tropical forests
 
[Reed et al., 

2011]. We assume N inputs from symbiotic N2 fixation are integrated into M as this input is 

fed directly into plant biomass. We estimate kw using either reported runoff values or based 

on mean annual precipitation assuming a mean of 0.5 and range of 0.4 -0.625 of precipitation 

contributes to soil drainage Q (m
3
 m

-2
; [Schlesinger and Jasechko, 2014]): 

   
 

 
                                                                                 (2) 

Turnover of available N in soil is fast, such that quasi steady state can be assumed: 

    

  
                                                                                 (3) 

Which yields 

    
          

         
                                                                       (4) 

 

2.4. Net N mineralization 

     To determine net N mineralization for each watershed, we used NPP and plant 

stoichiometry roughly following the approach of Cleveland et al. [2013]. At the heart of this 

calculation is that mineralized N is approximated by detrital N inputs to soils, assuming a 
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system‟s N accumulation is small compared to its throughput. Thus mineralized N (M) is 

calculated as plant N return  

 

             
             

  
                                                                     

(5) 

Where i represent different tissues (i = leaves, stem, coarse roots and fine roots), fi the 

fraction of NPP allocated to the respective tissue, ri the fraction of N retranslocated before 

turnover, and Si the C:N ratio for the respective tissue. The fraction allocated to the different 

tissues, C:N ratios and translocation for broadleaf evergreen trees (representing the tropics) 

was based on Cleveland et al. [2013] but we changed the mean C:N ratio of stems to 275 

based on Martin et al. [2014]. N retranslocation only occurs in leaves.  

     To determine NPP for each watershed we used the Moderate Resolution Imaging 

Spectroradiometer (MODIS) subset tool
 
[ORNL DAAC, 2014] available through Oak Ridge 

National Laboratory. We used the long-term average (2000-2010) NPP for  each site 

coordinate positioned mid watershed at a resolution of 1 km
2
. As many of our watersheds 

within individual countries were geographically clustered, NPP estimates were statistically 

identical. We thus aggregated subsets to a total of 18 geographically independent NPP 

estimates (Table S1). 

             

     2.5. Plant uptake  

     Plant uptake (kp) is calculated based on Gerber and Brookshire [2014], which takes into 

account N transport from the site of mineralization to the root surface and the efficiency of N 

transport across the root surface:  

   
      

 
 

 

   
      

 

        
 

 
  

 

      
 
  

                                      (6) 
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Where h is the rooting zone depth,  the volume fraction of water, mr the root mass (kg m
-2

), 

the root length per mass,  the impedance characterizing the tortuous pathway of solutes in 

the soil, r the root‟s diameter and proot the uptake velocity at the root surface. These 

parameters are shown in Table S2. We note that the above equation is simplified assuming 

that the root volume is much smaller than the soil volume. Fine root mass mr is estimated 

based on NPP allocated to roots (froot), a parameter that defines root longevity or turnover 

(root; [Gill and Jackson, 2000]), and taking into account a factor that determines the amount 

of biomass per unit carbon root, which we fixed at 2: 

                                                                                       (7) 

    We further note that plant uptake operates on all N in the dissolved phase following 

mineralization and thus implicitly integrates dissolved organic and mineral N forms. 

 

  2.6. Denitrification  

        We model denitrification based on whether it occurs within the rooting zone competing 

with plant uptake and leaching (“parallel” denitrification, Dp,  = 1 in equation 1), or whether 

it takes place after soil water leaves the rooting zone (“sequential” denitrification, Ds, = 0). 

In the sequential case, we calculated rates based on the reduction in DIN concentrations 

observed in soils versus streams: 

                                                                                 (8) 

where [N]m is the soil water N concentration calculated based on equation 4 and [N]s is the 

observed stream concentration. In contrast, “parallel” denitrification (Dp) was assumed to 

occur only in the rooting zone of soils, obtained by setting =1, a first order denitrification 

rate that yields observed stream DIN. Using equation 4 yields the following relationship for 

parallel denitrification:  
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                                                                           (9) 

Parallel denitrification assumes that microbial denitrifiers and plants have equal access to a 

homogenous pool of soil N, whereas in the „sequential‟ case, denitrification only occurs 

along the flowpath that links the rooting zone to the stream sampling location after plant 

uptake sets available N concentrations. The parallel case requires kD to be on par with the 

strong plant sink in order to effectively change concentrations. In contrast, the sequential sink 

only has to compete against advective transport through the watershed that could carry N 

away before denitrification can occur.  

 

     2.7. Simulations and sensitivity analysis  

We calculated mean, range, and probability for denitrification based on Monte Carlo 

sampling (n =10,000) of a broad defined range of parameter values within and across sites 

(Table S2). We find that ranges in modeled DIN concentrations from parameter uncertainty at 

each site are much larger than differences across sites (Figure S2). To incorporate this 

uncertainty, we performed simulations across all individual watersheds (n=139) with equal 

weight. Random draws were considered as either a factorial uncertainty or drawn from a 

specific distribution. In the case of factorial uncertainties, we drew from a uniform 

distribution in the interval r = (-1,1), and the parameter was then calculated as 

 

         
                                                                              (10) 

Where par is the randomly selected parameter, par0 is the “best guess”, and x the factorial 

uncertainty. This allowed equal amount of sampling above and below the “best guess”, and a 

mean close to par0. In order to specify the soil depth, we use the exponential distribution 

(beta factor; to infer rooting depth. We allow rooting depth to vary between 5 cm and infinity, 

but assign decreasing probabilities to increasing depths, with f(z) = 1-
z
, where f(z) is the 
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cumulative probability density function of total root mass and beta is parameter of the 

function defining the root distribution with depth
 
[Jackson et al., 1997]. We note that f(z) fits 

the description of the exponential function where  = -log () 

     
     

  
                                                                            (11) 

We used mean and standard deviation of root parameters  and r reported for global tropical 

forests
 
[Jackson et al., 1997]. However, they likely covary and thus independent sampling of 

both of these parameters from their probability density function would unrealistically inflate 

the uncertainty of kp. The covariance can be reduced by taking into account that root mass 

density is approximately the same across different root class sizes. We calculated the 

probability (p) of overestimating DIN concentrations (i.e., resulting from denitrification) for 

each watershed as the proportion of cases in which modeled DIN (from the Monte Carlo 

simulations) > observed DIN. We conducted model sensitivity analysis for all parameters 

using variance-based methods
 
[Saltelli et al., 2010] in two ways. First, we determined for 

each parameter how much model variance would be reduced by fixing that parameter. 

Second, for each parameter we determined how much model variance would remain if all 

other parameters were fixed. We analyzed how stream DIN and  p varies with DOC using 

mixed effects modeling with MAP/MASL ratio as a random effect (using the nlme package 

in R). All analyses were conducted in R
 
[R Development Core Team, 2013].    

 

3. Results and Discussion 

 Stream DIN concentrations varied substantially across watersheds (22-889 g N/L, global 

mean =207 g N/L, n= 139; Figure 1) but did not vary systematically with altitude (MASL), 

mean annual precipitation (MAP), NPP, or with concentrations of rock-derived phosphorus 

and cations (Table S1; Figure S1) thought to limit plant growth across much of the tropics 
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[Townsend et al., 2011; Wright et al., 2011]. In contrast, we document a significant (P < 

0.001) negative relationship between nitrate (NO3
-
) and DOC and significant (P < 0.001) 

positive relationships between ammonium (NH4
+
) and DOC and between nitrite (NO2

-
) and 

DOC across watersheds globally (Figure 1). There were no watersheds that simultaneously 

display high DOC and high NO3
-
 or total DIN. These patterns are consistent with the 

expected imprint of dissimilatory nitrate reduction
 
[Taylor and Townsend, 2010; Helton et al., 

2015]. In particular, the inverse relationship between NO3
-
 and NH4

+
with increasing DOC is 

consistent with increasing dissimilatory NO3
-
 consumption and NH4

+
 accumulation due to 

decreasing chemoautotrophic nitrification and/or reduction of NO3
-
 to NH4

+ 
(DNRA) under 

low oxygen conditions. Simultaneous increases in NO2
-
, which is held at low concentrations 

in oxic waters, is also consistent with NO2
-
 accumulation during DNRA [Philips et al., 2002]. 

Moreover, DOC: NO3
-
 ratios were highest in relatively wet lowland landscapes (high MAP: 

MASL), environments known to be conducive to reducing conditions and high DOC 

production [Groffman et al., 2009]. Further, the decline in total DIN concentrations (P = 

0.035) with increasing DOC points to denitrification of NO3
-
 to N gas as a vector of 

permanent N loss across watersheds.  

     The correlations observed between these solutes are broadly consistent with the signature 

of microbial denitrification at the watershed level but alone cannot constrain the magnitude of 

gas emissions relative to N inputs, internal plant-soil fluxes and dissolved losses. Our 

simulations using NPP and plant tissue specific N data suggest large potential N 

mineralization inputs (which include inputs from symbiotic N2 fixation) of 134 -403 kg N ha
-

1
 yr

-1 
(2.5 and 97.5% quantiles [q2.5-97.5]) across our forests, which greatly exceed external 

inputs from N deposition (q2.5-97.5 = 1.4 – 8.9 kg N ha
-1

 yr
-1

) and asymbiotic N2 fixation (q2.5-

97.5 = 1.1 – 54.2 kg N ha
-1

 yr
-1

; Methods). By comparison, simulations combining water fluxes 

with observed stream N concentrations, indicate that our forests export on average 2.7 kg N 
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ha
-1

 yr
-1 

(q2.5-97.5 = 0.3 -7.9 kg N ha
-1

 yr
-1

) of DIN and 0.9 kg N ha
-1

 yr
-1

 (q2.5-97.5 = 0.04 -3.0 kg 

N ha
-1

 yr
-1

) of dissolved organic N (DON), levels similar to reported global means based on 

long-term monitoring
 
[Brookshire et al., 2012a, 2012b].  

     Combined, these observations suggest that tropical watersheds lose <2% of DIN 

production via streams, equating to >98% of N retained or lost via gas emissions. 

Proportionally low hydrologic N losses could imply N accumulation, yet any net 

accumulation would be small relative to annual internal (uptake-mineralization) fluxes. 

Alternatively, we may underestimate ecosystem N losses if NO3
- 
is removed by 

denitrification in soils, along hydrologic flowpaths below the rooting zone and within 

streams. 

     To further constrain watershed N losses we independently resolved plant-specific N 

retention [Gerber and Brookshire, 2014] using a small set of solute transport and root 

parameters (Equation 6, Table S2). A central prediction of the model is the DIN 

concentration in soil solution remaining after plant uptake that is available for leaching or 

denitrification. Simulations accounting for full parameter uncertainties indicate that our 

model over-predicts stream DIN relative to observations, and thus underestimates the 

watershed-level DIN sink if gas losses are not considered ( = 0 in equation 1), across most 

(76%) sites (Figure 2). These patterns are robust to uncertainties in plant N allocation, runoff, 

soil depth and solute transport, with highest uncertainties in root turnover (which affects root 

mass/surface area and DIN uptake; Table S2 and Figure S2 and S3). Full Monte Carlo 

sampling of the uncertainty range revealed that if DIN retention was governed by plant 

uptake only, concentrations would on average be 84% higher than observed. Moreover, the 

probability of a missing N sink was highest in watersheds with high DOC (Figure 2), further 

implicating denitrification as a major pathway of N export across these forests.  
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     Where do these gaseous losses occur? While global patterns in stream DOC-DIN (Figure 

1) imply significant denitrifier effects at the watershed level, our analyses suggest a large 

(>30 fold) range in potential gaseous fluxes depending on whether denitrification is modeled 

as a „sequential‟ process occurring „downstream‟ of plant uptake or as a „parallel‟ process 

competing with plant uptake in the rooting zone of soils (Figure 3; Methods). When 

occurring sequentially, our model estimates that plants acquire 98% of soil N inputs before 

any external losses occur and „downstream‟ denitrification removes an average of 47% of the 

inorganic DIN that is exported (q2.5-97.5=0.4 -4.6 kg N ha
-1

 yr
-1

). In contrast, when 

denitrification and plant uptake occur in parallel, gas fluxes constitute a remarkable 97% of N 

losses (q2.5-97.5 = 5.1-177.4 kg N ha
-1

 yr
-1

) and plants acquire on average only 64% of inputs. 

While N mass balance is resolved in both cases, sequential denitrification never depletes soil 

DIN and plant uptake matches demand across the full range of N export. This is not the case 

when denitrification occurs in the rooting zone. When DIN concentrations are set within the 

rooting zone prior to leaching (=1), both plant and denitrifier sinks must be sufficiently 

strong to account for observed stream water concentrations and gas losses would render plant 

growth severely N limited across most watersheds (Fig. 3).  

     Such a large N deficit is difficult to reconcile with observations of widespread N 

sufficiency
 
[Hedin et al., 2009] and net C uptake [Brienen et al., 2015] across mature tropical 

forests. For N inputs to roughly balance such losses would also require rates of symbiotic N2 

fixation that are much higher than field estimates indicate
 
[Batterman et al., 2013; Sullivan et 

al., 2014]. Together, these observations suggest that perfect homogeneous access to soil 

nitrate is unlikely, otherwise NPP would be chronically N limited. We explored the 

possibility that parallel denitrification occurs at lower realized rates resulting from 

heterogeneity in the soil environment that would still allow for stoichiometrically balanced 

plant uptake. We calculate that, on average, up to ~20% of soil DIN could be lost via 
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denitrification (equating to 82% of total external N losses) within the range of uncertainty for 

balanced plant uptake (Figure 3) and reasonable estimates of symbiotic N2 fixation. This 

fractional contribution and resulting average gas flux (17 kg N ha
-1

 yr
-1 

; q2.5-97.5 = 1 -35 kg N 

ha
-1

 yr
-1

) is consistent with high spatial and temporal variability in rooting zone microsite O2 

concentrations conducive to nitrate reduction
 
[Liptzin and Silver, 2015] and also corresponds 

well with global
 
[Bai et al., 2012; Houlton et al., 2015] and watershed-scale

 
[Houlton et al., 

2006; Fang et al., 2015] isotope-based estimates which place N gas emissions near 6- 30 kg 

N ha
-1

 yr
-1

. By comparison, empirical measures of NO and N2O fluxes from tropical forest 

soils average ~1-4 kg N ha
-1

 yr
-1

 globally [van Lent et al., 2015], suggesting that our 

sequential model, in which denitrification occurs below the rooting zone, substantially 

underestimates total watershed N emissions. These results support the idea that soil 

denitrification tends to dominate mineral N losses from tropical forests.  

     While our results account for a wide range of uncertainties, our use of mean stream 

chemistry data and our analytical approach for estimating plant N uptake may have 

introduced error into the analysis. First, our geographically extensive sampling approach was 

designed to encompass a broad array of biophysical features. Yet, stream DIN concentrations 

can vary substantially within years due to changes in discharge and therefore upscaling from 

samples collected at different times and frequencies could affect DIN flux estimates. While 

these effects have been accounted for in most of our original data [Brookshire et al., 2012b; 

Brookshire and Thomas, 2013] and for all literature data, it is possible that fluxes from sites 

sampled only once (Guyana and Thailand) are less accurate. However, our simulations do 

account for considerable uncertainty in discharge, and thus DIN fluxes, within and across 

watersheds. Further, though temporal variation is critical for precise estimation of watershed-

specific fluxes, it is less important for our analysis because even the highest of DIN fluxes are 

dwarfed by the size of the internal plant-mineralization cycle.  
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     Second, our model does not explicitly address potential plant uptake of organic N or 

differentiate between NH4
+
 and NO3

-
 but rather integrates uptake of all mobile phase N 

resulting from mineralization [Gerber and Brookshire, 2014] and also implicitly includes 

simple dissolved organic forms. As denitrification acts on NO3
- 
only, it is possible that 

differential N uptake could affect our estimates. For example, exclusive uptake of NH4
+ 

would lead to nitrification as the competing (parallel) process and the key factor in 

determining kD. Regardless, the stream data suggest that nitrification is not a rate-limiting 

step, as observed concentrations of DIN are dominated by NO3
-
. We also consider plant and 

denitrifier fluxes as first-order processes and thus do not explicitly model biological 

competition. Because microbial denitrification requires anaerobic conditions, the process 

should not compete directly with plant uptake in upland soils [Weintraub et al., 2014]. 

However, in mass balance terms, any NO3
-
 transferred from sites of nitrification to anaerobic 

microsites that cannot be accounted for in hydrologic leaching represent a loss from the 

common plant-soil pool and thus a form of parallel denitrification.   

     Our results have important implications for how N losses and inputs are represented in 

Earth system and climate models. Currently, models that have coupled C-N cycles vary 

dramatically in how N losses are partitioned between gaseous and dissolved forms and how 

losses and inputs via symbiotic N2 fixation are parameterized [Thomas et al., 2015]. Our 

stream data and simulations indicate that gas emissions tend to account for at least half of 

total N losses from tropical forests but the magnitude depends critically on the degree to 

which microbial denitrification represents a plant-controllable N loss. Furthermore, our 

approach places mass balance constraints on rates of symbiotic N2 fixation that would be 

necessary to balance such losses and sustain CO2 drawdown by plants.    
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4. Conclusions 

     Our data-driven modeling framework offers a new way to constrain denitrification across 

tropical forests at the small watershed scale. We resolve denitrification based on observed 

hydrologic concentrations, physical consideration of plant uptake, and rates necessary to 

maintain NPP. These constraints narrow global uncertainties in tropical N gas emissions by 

establishing an upper limit to denitrification that would allow for sustained plant draw-down 

of atmospheric CO2. How plant-denitrifier interactions respond to projected climate and 

atmospheric changes could have important implications for the trajectory of the tropical 

forest C sink.  
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Figure 1. Stream DIN and DOC concentrations across humid tropical forests and their 

geographic distribution. The map shows countries (white dots) in which small watersheds 

were sampled. Across watersheds NO3
-
 (red symbols) decreased (P<0.001, n=105) and NH4

+
 

(grey symbols; P<0.001, n=105) and NO2
-
(light blue symbols; P<0.001, n=65) increased with 

increasing DOC and landscape MAP/MASL ratios. Shown are geographic identities of data 

clusters for original sampling campaigns.  
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Figure 2. Simulated versus observed stream DIN and relationship with DOC across 

watersheds. Symbols represent observed and predicted stream DIN concentrations across all 

watersheds (n =139). Symbol colors represent the probability of model over-prediction and 

symbol sizes represent observed DOC concentrations. Unfilled symbols represent sites for 

which DOC data were unavailable. Dashed line represents the 1:1 relationship.     
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Figure 3. Ecosystem N losses and plant sinks across tropical forests. Green symbols 

represent watershed-specific plant N turnover (N demand). Blue and red lines and 95% 

confidence intervals show Loess regressions for calculated plant N uptake constrained by 

stream DIN concentrations, using „sequential‟ and „parallel‟ denitrification regimes, 

respectively. In  the sequential scenario, plant demands are satisfied (i.e. calculated uptake 

rate is within the range of plant demand). If denitrification occurs 100% in soils (parallel 

denitrification), calculated uptake rates fall well below plant demand. For illustration, the 

2.5% quantile for plant N demand across watersheds is indicated by the dashed black line. 

The total grey shaded area shows the range between average „parallel‟ (maximum) and 

„sequential‟ (minimum) denitrification fluxes estimated via 10,000 Monte Carlo simulations. 

The darker shaded area represents the „heterogeneous‟ scenario where 20% of the soil DIN 

sink occurs as parallel denitrification, which is likely sufficient DIN to sustain plant growth 

(red dashed line).  
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