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California's Central Valley grows a significant fraction of grapes used for wine production in the United States.
With increasing vineyard acreage, reduced water availability in much of California, and competing water use in-
terests, it is critical to be able tomonitor regional water use and evapotranspiration (ET) over large areas, but also
in detail at individual field scales to improve water management within these viticulture production systems.
This can be achieved by integrating remote sensing data frommultiple satellite systemswith different spatiotem-
poral characteristics. In this research, we evaluate the utility of a multi-scale system for monitoring ET as applied
over two vineyard sites near Lodi, California during the 2013 growing season, leading into the drought in early
2014. The system employs a multi-sensor satellite data fusion methodology (STARFM: Spatial and Temporal
Adaptive Reflective Fusion Model) combined with a multi-scale ET retrieval algorithm based on the Two-
Source Energy Balance (TSEB) land-surface representation to compute daily ET at 30m resolution. In this system,
TSEB is run using thermal band imagery from the Geostationary Environmental Operational Satellites (GOES; 4-
km spatial resolution, hourly temporal sampling), theModerate Resolution Imaging Spectroradiometer (MODIS)
data (1 km resolution, daily acquisition) and the new Landsat 8 satellite (sharpened to 30m resolution, ~16 day
acquisition). Estimates of daily ET generated in two neighboring fields of Pinot noir vines of different age agree
with ground-based flux measurements acquired in-field during most of the 2013 season with relative mean ab-
solute errors on the order of 19–23% (root mean square errors of approximately 1 mmd−1), reducing to 14–20%
at the weekly timestep relevant for irrigation management (~5 mmwk−1). A model overestimation of ET in the
early seasonwas detected in the younger vineyard, perhaps relating to an inter-row grass cover crop. Spatial pat-
terns of cumulative ET generally correspond tomeasured yieldmaps and indicate areas of variable cropmoisture,
soil condition, and yield within the vineyards that could require adaptive management. The results suggest that
multi-sensor remote sensing observations provide a unique means for monitoring crop water use and soil mois-
ture status at field-scales over extended growing regions, and may have value in supporting operational water
management decisions in vineyards and other high value crops.

Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

California, as the state producing over 90% of wine in the United
States, has seen steady growth in the amount of acreage dedicated to
wine-grape production with approximately 615,000 acres planted in
2014, up from 610,000 in 2013 (California Department of Food and

Agriculture & USDA National Agricultural Statistics Service, 2014).
Given the high value of this crop commodity, the continued growth in
production, and limited water availability in the state, there is signifi-
cant interest in developing efficient water management strategies for
California vineyards. Of particular importance for high quality wine
grapes is controlled water stress at key points during the growing sea-
son. To effectively manage water stress, adequate moisture is main-
tained from bud break until fruit set, followed by moderate water
stress through veraison (change of color of grapes) and ripening in
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order to focus plant resources on fruitmaturation rather than foliage ex-
pansion (Robinson, 2006). Ideally, this balancing of water stress would
require daily monitoring of vineyard soil moisture status, but ground-
based measurements may not always be representative of whole-field
conditions and are costly to install and maintain, especially for large
scale and distributed production systems. One method to efficiently as-
sess and monitor water use and stress in vineyards is through satellite
based estimation of evapotranspiration (ET), quantifying the net loss
of water vapor from the crop field to the atmosphere.

ET is amajor surfacewater balance component in semi-arid environ-
ments typical of many viticulture areas (Moussa, Chahinian, &
Bocquillon, 2007). For vineyards, ET is usually modeled as a function
of potential ET under unstressed conditions and vegetation cover
fraction (Riou, Pieri, & Le Clech, 1994; Riou, Valancogne, & Pieri, 1989).
However, more complex Soil–Vegetation–Atmosphere Transfer
(SVAT) models have been developed to estimate seasonal ET and ac-
count for common soil management practices in viticulture such as
the use of grass cover between rows (Montes, Lhomme, Demarty,
Prevot, & Jacob, 2014). ET has been estimated for vineyards using
weighing lysimeters, eddy covariance, or energy balance using the
Bowen ratio but such “point measurements” are difficult to extrapolate
to whole fields and basins and in-field spatial variability is missed
(Teixeira, Bastiaanssen, & Bassoi, 2007). Thus, complete field-scale
maps of ET can be of significant value in managing vineyards and effi-
ciently planning irrigation schemes, particularly when implemented
over extensive acreages.

Irrigation amounts at 80% of full potential ET have been found to
maximize berry size for raisin and table grapes (Williams, 2001).
Over-irrigation can reduce yield and compromise quality in certain
grape varieties (Chaves et al., 2007; Williams, Grimes, & Phene, 2010),
but there is still debate over amounts and timing of irrigation for a
given environment and grape variety (Chaves et al., 2007). Regardless
of the debate on application amount, it is clear that ET and water use
estimates are necessary to effectively manage high productivity and
quality in viticultural systems.

Land-surface temperature (LST), derived from thermal infrared
(TIR) imagery acquired from satellites such as Landsat, has successfully
been used to estimate ET over a range of spatial scales. This is because
LST is sensitive to local moisture variations, providing valuable informa-
tion on surface energy budget partitioning (Anderson, Allen, Morse, &
Kustas, 2012). Several workable approaches to TIR-based ET mapping
have been developed (e.g., Bastiaanssen, Menenti, Feddes, & Holtslag,
1998; Su, 2002; Allen, Tasumi, & Trezza, 2007; Anderson, Kustas, et al.,
2012). Due to large uncertainties in determining absolute LST, most of
these approaches use relative variability in LST,measured either tempo-
rally (time-differential methods) or spatially (end-member pixel
scaling), tomore accurately estimate ET. The Surface Energy Balance Al-
gorithm for Land (SEBAL; Bastiaanssen et al., 1998) and the Mapping
Evapotranspiration with Internalized Calibration (METRIC; Allen et al.,
2007) are examples of approaches using TIR end-member pixels to rep-
resent limiting and non-limitingmoisture conditions. The Atmosphere–
Land Exchange Inverse (ALEXI; Anderson, Norman, Diak, Kustas, &
Mecikalski, 1997; Anderson et al., 2007) model uses the time-
differential approach, measuring the morning LST rise and relating the
change to surface moisture and heat fluxes. Another approach for esti-
mating ET, the crop coefficient approach, uses meteorological data and
crop specific coefficients instead of LST (Allen, Pereira, Raes, & Smith,
1998). Crop coefficient techniques, however, do not capture short-
term variability in soil moisture and vegetation stress conditions
(Anderson, Allen, et al., 2012)which are important to vineyardmanage-
ment. Vegetation stress and soil moisture status do have a thermal sig-
nature, which is effectively exploited in energy balance approaches.

For viticultural decision making, water use information is most use-
ful at field or sub-field scales, making the 30 m resolution of Landsat
imagery particularly important. Unfortunately, the Landsat overpass
frequency is often insufficient, typically with an ~16 day revisit interval

or longer if cloud cover is persistent. While there are TIR satellites that
provide daily coverage (e.g., geostationary satellites, and moderate res-
olution polar orbiting systems like the Moderate Resolution Imaging
Spectroradiometer — MODIS), these are too coarse in resolution (km-
scale or larger) to provide the required field-scale information. There-
fore, an integrated multi-sensor approach that combines the benefits
of the high spatial resolution of Landsat and the high temporal resolu-
tion of MODIS and geostationary satellites to provide daily field-scale
ET estimates may be of significant benefit to vineyard managers.

In this paper, we extend themulti-sensor ETmapping technique de-
scribed by Cammalleri, Anderson, Gao, Hain and Kustas (2013, 2014) to
viticultural systems and evaluate its performance in comparison with
field measurements. This energy balance approach combines multi-
scale and multi-temporal sharpened TIR imagery from geostationary
satellites (4 km, hourly), MODIS (1 km, daily) and Landsat (30 m, ~bi-
weekly to monthly) using the Spatial and Temporal Adaptive Reflec-
tance Fusion Model (STARFM) data fusion methodology developed by
Gao, Masek, Schwaller, and Hall (2006). Cammalleri et al. (2013)
described initial implementation and evaluation of the ET fusion meth-
odology over rainfed corn and soybean fields in the Walnut Creek
watershed (Iowa) using flux data collected during the Soil Moisture Ex-
periment of 2002 (SMEX02). It was subsequently tested for corn and
cotton under both rainfed and irrigated management at two sites with
contrasting climate conditions: a semi-arid site (part of the Bushland
Evapotranspiration and Agricultural Remote sensing EXperiment
2008; BEAREX08, Evett et al., 2012) near Bushland, TX, and at a more
temperate Ameriflux site near Mead, NE (Cammalleri, Anderson, Gao,
et al. 2014). Both of these studies used data from Landsats 5 and 7.

This paper discusses application of the multi-scale ET data fusion
system to a new kind of crop (wine grapes) grown in a Mediterranean
climate, and to data collected with the new Thermal Infrared Sensor
(TIRS) system on-board Landsat 8, which was launched in Feb of
2013. The vineyard architecture presents unique challenges to the
Two-Source Energy Balance (TSEB) model that forms the land-surface
representation in the retrieval algorithm, given the highly structured
nature of the vine rows and the common practice of growing a cover
crop between rows to control springtime soil moisture conditions. The
data fusion algorithmwas applied over a region in the California Central
Valley near the city of Lodi for the 2013 growing season, and evaluated
with micrometeorological data collected in two Pinot noir vineyards at
different stages of maturity. The satellite-based flux retrievals are com-
pared to eddy covariance measurements, as well as in-field soil mois-
ture and yield data.

In Section 2 we provide a description the data fusion package,
followed by a description of the study area and input and evaluation
datasets in Section 3. Results and conclusions are presented in
Sections 4 and 5, including planned future work.

2. Model descriptions

A schematic overview of the data fusion processing package, includ-
ing inputs and image processing steps, is shown in Fig. 1. Themain diag-
nostic input, the land surface temperature (LST), can be retrieved from
various thermal imaging sensors over a range of different spatial and
temporal resolutions. Remotely sensed LST inputs drive a multi-scale
surface energy balance algorithm (Anderson, Kustas, et al., 2012), as de-
scribed below.

2.1. ALEXI

The multi-scale energy balance modeling scheme has its foundation
on coarse-scale regional flux estimates from the Atmosphere–Land Ex-
change Inverse (ALEXI) model, driven primarily by a diagnostic mea-
surement of the morning rate of surface temperature rise, which can
be acquired from geostationary satellites. The use of a time-differential
LST measurement, rather than absolute instantaneous measurements
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of LST, reduces model sensitivity to errors in temperature retrieval due
to atmospheric and emissivity correction (Anderson et al., 1997). This
is analogous to the use of within-scene temperature scaling in locally
calibrated algorithms like METRIC, but in ALEXI the scaling is in time
rather than in the space domain.

ALEXI is based on the Two-Source Energy Balance (TSEB) land sur-
face representation of Norman, Kustas, and Humes (1995) with im-
proved parameterizations described in Kustas and Norman (1999).
The TSEB treats the radiometric temperature (TRAD) as the average of
soil (Ts) and vegetation (Tc) temperature components weighted by frac-
tional vegetation cover (fc). These component temperatures are used to
solve the energy balance for the soil (subscript s), canopy (subscript
c) and combined system associated with a mixed pixel:

ðRns þ RncÞ–G ¼ Hs þ Hcð Þ þ λEs þ λEcð Þ ð1Þ

where Rn is net radiation, G is the soil heat flux, H is sensible heat, and
λE is latent heat. Ts and Tc constrain estimates of Hs and Hc, partitioning
of net radiation between the soil and canopy layers, as well asG. Canopy
transpiration λEc is estimated using a modified Priestley–Taylor
approach with the coefficient indirectly regulated by stress signals con-
veyed by Tc, and the soil evaporation, λEs, is computed as a residual to
Eq. (1).

To support regional applications, ALEXI couples TSEB with an atmo-
spheric boundary layer (ABL) model to simulate changes in near-
surface air temperature (Ta) that are consistent with TSEB modeled
surface fluxes (Anderson et al., 1997, 2007). The TSEB is applied at
two times during the morning hours, at approximately 1.5 h after
local sunrise (t1) and 1.0 h before local noon (t2). The ABL component
of ALEXI relates the rise in Tawithin themixed layer over the time inter-
val (t1 to t2) to the time-integrated influx of H from the surface, thus
providing a means for surface energy closure (McNaughton & Spriggs,
1986; Anderson et al., 1997). Anderson et al. (1997) demonstrated
that ALEXI is most sensitive to the change in TRAD between t1 and t2,
and relatively insensitive to absolute bias in TRAD. This approach also
eliminates the need for specifying Ta boundary conditions to the sensi-
ble heat computations a priori.

For this study, GOES-East and -West Imager instruments provided
the 11 μm brightness temperature observations used to determine
TRAD at a 4-km spatial resolution (Hain, Crow, Anderson, & Yilmaz,

2014). ALEXI-retrieved latent heat flux (λE2) at time t2 (just before
local noon) is upscaled to 24-h time-integrated daily ET (ETd, mm d−1)
using the ratio of instantaneous to daily insolation:

ETd ¼ f SUN � Rs24=λ ð2Þ

where fSUN = λE2 / Rs2 is the ratio of latent heat to insolation at time t2,
Rs24 (MJ m−2 d−1) is the time-integrated daily insolation rate, and λ is
the latent heat of vaporization. Cammalleri, Anderson, and Kustas
(2014) compared several daily upscaling techniques, including use of
reference ET and evaporative fraction, and found the insolation tech-
nique to be the least biased and least sensitive to errors in retrieval
estimates when tested at an ensemble of flux tower sites within the
US, and over multiple seasonal cycles.

Gaps in the daily ET maps, primarily due to cloud cover which
prevents LST retrieval using thermal band imagery, were filled
using a technique described by Anderson, Kustas, et al. (2012), pre-
serving the ratio of actual-to-reference ET (fRET) during the gap pe-
riods. The fRET timeseries are filtered, smoothed and gap-filled at
each pixel using a Savitzky–Golay filter in an effort to reduce day-
to-day noise while still preserving signals associated with real
changes in surface moisture conditions. Daily ET is recovered by
multiplying the gap-filled fRET fields by maps of daily reference ET,
computed using the Food and Agriculture Organization (FAO) Pen-
man–Monteith formulation for a grass reference site (Allen et al.,
1998).

For a detailed description of the ALEXI model, the reader is referred
to Anderson et al. (1997, 2007). Additional model inputs are discussed
in Section 3.3, below.

2.2. DisALEXI

To map flux distributions at higher spatial resolution than can be
supported by geostationary satellite data, an ALEXI flux disaggregation
scheme known as DisALEXI can be implemented (Norman et al., 2003;
Anderson et al., 2004; Anderson, Kustas, et al., 2012). This disaggrega-
tion approach uses higher resolution TIR imagery from sensors like
Landsat, MODIS and even airborne sensors (Anderson et al., 2011;
Anderson, Kustas, et al., 2012) to spatially disaggregate the coarser-
resolution ALEXI flux estimates. The TSEB is run over each ALEXI pixel

Fig. 1. Schematic overview of the inputs and processing steps in the ET data fusion system.
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area within themodeling domain using high resolution LST imagery ac-
quired at the time of the Landsat/MODIS/aircraft overpass. The air tem-
perature boundary condition (set at a nominal blending height of 50m)
for that ALEXI pixel area is iteratively adjusted until the aggregated 24-h
ET, spatially averaged over the ALEXI pixel, matches the ALEXI 24-h ET.
The reader is referred to Anderson, Kustas, et al. (2012), Cammalleri
et al. (2013) and Cammalleri, Anderson, Gao, et al. (2014) for further
description. In this way, flux conservation is enforced at the scale of
the ALEXI pixel (4 km in this case) betweenmulti-scale ET assessments.

Within the data fusion package, ETd maps are created at 30-m
spatial resolution on predominantly clear Landsat overpass dates
using Landsat thermal imagery sharpened to 30-m as described in
Section 3.3.1.1. In addition, ETd maps were created at 1 km resolution
for each day during the modeling period using the MODIS swath LST
product. The MODIS ETd maps were gapfilled in a manner analogous
to the ALEXI ET time series, by smoothly preserving fRET between sam-
pling dates. These maps were then resampled onto the Landsat 30 m
(UTM) grid using nearest neighbor interpolation for ingestion into
STARFM.

2.3. STARFM

The Spatial and Temporal Adaptive Reflectance Fusion Model
(STARFM) (Gao et al., 2006) was used to fuse the periodic 30-m resolu-
tion Landsat ET maps with the daily 1-km MODIS maps to form a daily
30-m ET product. Again, consistency between Landsat and MODIS ET
is achieved by using the ALEXI ET as a common normalization field in
DisALEXI. STARFM develops spatially distributed weighting factors de-
scribing the spectral and spatial relationship between an existing
Landsat/MODIS image pair that is then used to govern the disaggrega-
tion of MODIS images on days when Landsat data are not available
(the prediction date). The optimal training pair for a given prediction
date is selected by searching all possible pairs (where there are Landsat
and MODIS retrievals on the same day) and determining which MODIS
scene among these pairs is best correlatedwith theMODIS image on the
prediction date. The derived weighting function is then applied to the
MODIS image on the prediction date to disaggregate the image to
Landsat scale. In this application, a single training pair was used for
each prediction date, although STARFM also allows use of two training
pairs from bracketing dates. The reader is referred to Gao et al. (2006)
for more details on the STARFM algorithm, and Cammalleri et al.
(2013) and Cammalleri, Anderson, Gao, et al. (2014) for a schematic
describing applications of STARFM to ET data fusion.

Instantaneous and daily surface energy balance components on
Landsat dates, as well as fused daily ET over the full study period,
were extracted from the 30-m UTM grids at the site of the two towers
using a flux footprint model based on approximations from Hsieh,
Katul, and Chi (2000), with fetch extending upwind of the tower and
horizontal dispersion related to standard deviation in wind direction
as described in Li, Kustas, Anderson, Prueger, and Scott (2008).

3. Experimental site and datasets

3.1. Study area

Wine grape production is expanding in the Central Valley region of
California, an area with characteristic warm days and cool nights and
an evaporative demand ranging from 889 to 1270 mm of water during
the growing season (Williams, 2001). As part of the USDA-ARS Grape
Remote sensing Atmospheric Profiling and Evapotranspiration eXperi-
ment (GRAPEX), two Pinot noir vineyards, located at the border of Sac-
ramento and San Joaquin counties (Fig. 2), were instrumented in 2013
with flux towers and in-field ground measurements of soil moisture
and temperature. The larger, northern field (Site 1; 34.4 ha) ismorema-
ture (7–8 years old) while the vines in the southern field (Site 2; 21 ha)
are 4–5 years old. The height of the vines ranges between 2 and 2.5 m,

with row spacing approximately 3.35 m and average vine spacing
along the rowof 1.52m. Both fields have east–west row orientation. Be-
causewinds are typically from thewest in this area, the towers were lo-
cated on the eastern edge of the fields such that the dominant fetch for
both towers typically lies within the target field boundaries.

Soil moisture is carefully controlled throughout the growing season
to regulate vine water availability at different phenological stages. A
grass cover crop between vine rows germinates in the late winter/
early spring and is used to deplete soil moisture that accumulates
from winter rains. This inter-row grass canopy remains green until
late May/early June when temperatures rise and the dry season com-
mences. In some years, the cover crop may be mowed prior to senes-
cence to further control soil moisture evolution in a given field (see
photograph of Site 2 in Fig. 2 from the 2014 growing season). Drip irri-
gation typically commences sometime later in June and is continued
until harvest if necessary. Decisions to begin irrigation in a field for a
season are triggered by various factors, including visual assessment of
canopy water stress, spot measurements of leaf water potential with
pressure chambers, soil moisture and upcoming weather conditions.
Harvest for Pinot noir in the Central Valley typically occurs in early
September. In 2013, the average yield in the northern field was
25.76 t ha−1 (metric tons per hectare), while in the southern field it
was 16.93 t ha−1.

The area immediately surrounding the study fields is mainly
vineyards of varying cultivars and ages (Fig. 3). New vineyards are
being planted at rapid rates in this area and throughout the county to
meet the growing demand for California wines. Other cultivated areas
in the vicinity of the Lodi vineyards include some fields of hay and alfal-
fa, as well as a few nut tree orchards. Surrounding the cultivated area
along the streambed are large expanses of unirrigated pasture and
grassland, which senesce rapidly in the summer resulting in low ET
and high LST (red areas in Fig. 2).

3.2. Micrometeorological and biological field measurements

GRAPEX measurements include ground, airborne, and satellite re-
mote sensing, surface energy balance, turbulence and mean profile
measurements of wind, temperature and water vapor focusing on
above, below and between vine canopies, surface and sub-surface soil
moisture, along with ground-based biophysical measurements of leaf
area index (LAI) and leaf-level conductance, transpiration and photo-
synthesis. Micrometeorological measurements commenced on day of
year (DOY) 97 (April 7) in 2013, and continued through 2014 and into
2015. Several intensive observation periods (IOPs) were conducted in
2013–2015 to collect biophysicalmeasurements of the vine canopydur-
ing different phenological stages, and high resolution airborne imagery
coincident with Landsat 8 overpass times to provide validation of satel-
lite derived variables. This study focuses on data collected during the
2013 growing season (DOY 97-300).

The two vineyards were instrumented with identical tower-based
sensor packages. Focusing on the micrometeorological and surface
fluxmeasurements associatedwith the eddy covariance (EC) technique,
these sensors include a sonic anemometer (CSAT3, Campbell Scientific,
Logan, Utah), which measures the orthogonal wind velocity compo-
nents, co-located with an open-path gas analyzer (EC-150, Campbell
Scientific)measuring concentrations ofwater vapor and carbondioxide.
Both instruments were mounted 5 m above ground level (agl) facing
due west and operated at a sampling frequency of 20 Hz. (The mention
of trade names of commercial products in this article is solely for the
purpose of providing specific information and does not imply recom-
mendation or endorsement by the US Department of Agriculture.)

Additional instruments above-ground include a four-component net
radiometer (CNR-1, Kipp and Zonen, Delft, Netherlands) mounted at
6 m agl, upward and downward facing quantum sensors (LI-190, Li-Cor,
Lincoln, Nebraska) mounted at 6 m agl to measure incident and reflected
photosynthetically active radiation, a combined humidity and
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temperature sensor (HMP45C, Vaisala, Helsinki, Finland)mounted at 5m,
a pair of thermal infrared thermometers (SI-111, Campbell Scientific)
mounted at 2.5 m tomeasure surface and canopy temperature, and a tip-
ping bucket rain gauge (TE525, Texas Electronics, Dallas, Texas). Subsur-
face sensors include a cross-row transect of five soil heat flux plates
(HFT-3, Radiation Energy Balance Systems, Bellevue,Washington) buried
at a depth of 8 cm. Each heat flux plate was paired with two thermocou-
ples buried at 2 and 5 cm depths and a soil moisture probe (HydraProbe,
Stevens Water Monitoring Systems, Portland, OR) buried at a depth of
5 cm. The soil surface heat flux (G) measurement includes the soil heat
flux across the heat flow transducer (GT) and heat storage in the soil
layer above the transducers (S), such that G = GT + S (see
e.g., Brutsaert, 1982). Soil moisture in the storage layer was estimated
from the HydraProbe soil moisture sensors near each soil heat flux sensor
package. There were also three soil moisture profile systems installed
within 100 m of each tower with sensors located at 30, 60 and 90 cm
depths. Volumetric soil water and temperature were recorded hourly at
these depths.

The eddy covariance data were processed with temperature and
vapor pressure measurements used to correct for oxygen and density
effects on the evaporative and carbon fluxes (Webb–Pearman–
Leuning—WPL correction; Webb, Pearman, & Leuning, 1980). Further
processing included applying a 2-D coordinate rotation (CR) forcing
v = w = 0 (Kaimal & Finnigan, 1994) and corrections for sensor dis-
placement (SD) and frequency response (FR) attenuation (Massman &
Lee, 2002). The CR and FR corrections were found to have a relatively
small effect on thefluxes compared to theWPL. In addition to the turbu-
lent fluxes, mean wind speed and wind direction were computed from
the CSAT3 measurements. Typical closure ratios (H+ λE)/(Rn− G) for
daytime conditionswhere Rn N 0were on the order of 0.91 for Site 1 and
0.80 for Site 2. For comparison with modeled energy balance estimates,

the observed fluxes were corrected for closure errors by assigning the
residual to the latent heat flux (Prueger et al., 2005).

In addition to micrometeorological data, episodic biophysical
measurements were also collected during GRAPEX to monitor LAI de-
velopment in the cover crop and vines. The LAI measurements were
made using a Li-Cor LAI-2000 instrument along several transects
collecting 4 samples (under the vine, a quarter of the distance from
the vine row, in the center of the inter-row, and ¾ of the distance
from the vine row) to obtain an estimate of the effective LAI of the
vine/inter-row system.Measurements weremadewith andwithout in-
cluding the inter-row cover crop, which had a veryminor impact on the
LAI measurements for the field IOPs in June and August. Vines grow in
the early spring and rapidly expand in leaf area mid to late May, and
the observed LAI increased throughout the season until harvest in
early September.

In addition, yield maps for the 2013 harvest in both fields were pro-
vided by E & J Gallo Winery, generated following the protocol of
Bramley and Williams (2001). Advanced Technology Viticulture (ATV,
Joslin, Australia) yield monitor systems were installed on three self-
propelled, over-the-row, trunk-shaking mechanical GH9000 AIM har-
vesters (Agricultural Industrial Manufacturing, Lodi, CA, USA). Yield
monitors consist of a combined dGPS receiver and antenna as well as
a specialized grape weighing and data recording system consisting of
a load cell weight bridge, belt speed sensor and data logger. Harvest
datawere transferred into a clean-up scriptwritten in R Studio software
(RStudio Inc., Boston, MA, USA) to convert mass flow units into tons per
hectare, eliminate outliers, and normalize harvesters. Yield data points
more than three standard deviations from the mean were removed to
reduce scatter which usually results in less than 5% of total yield point
removal. After clean-up, the data were kriged to 3 × 3 m resolution
grids.

Fig. 2. Landsat 8-derived land surface temperature (°C), sharpened to 30m spatial resolution, over the study area in central California, Sacramento County at the border (black line) to San
Joaquin County on July 14th, 2013 at 18:41UTC. Outlined fields highlight Site 1 to the north (7–8 year old Pinot noir vines) and Site 2 to the south (4–5 year old Pinot noir vines). Black dots
denote flux tower locations and soil moisture locations near the towers. Site photos to the right show thematurity of the vines and condition of cover crop on April 8, 2014 (the year after
the study period examined here), as well as the flux tower instrumentation. The orange box indicates the nominal 4 km ALEXI pixel size.
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3.3. Model inputs

3.3.1. Remote sensing data

3.3.1.1. DisALEXI-Landsat. Landsat 8 (L8) data between DOY 90 and 300
of 2013 were collected over the study area (lying in the overlap be-
tween path 43/row 33 and path 44/row 33) and a total of 22 scenes
were processed (see Table 1). Data from the L8TIRS band 10were atmo-
spherically corrected using MODTRAN (Berk, Bernstein, & Robertson,
1989) following procedures described by Li et al., 2004. Measurements
of the atmospheric profile from radiosonde observations, ozone and vis-
ibility estimates were input to MODTRAN to obtain path radiance and
down-welling sky radiance and transmittance, and used to produce sur-
face brightness temperature. The assumed emissivity fields used to con-
vert to surface radiometric temperature (TRAD, or LST)were based on the
methods of French et al. (2005) using estimates of fraction vegetation
cover (Anderson et al., 2007). The resulting 100-m LST images (native
TIRS resolution) were spatially sharpened to the 30-m resolution of
the shortwave L8 bands using a Data Mining Sharpener (DMS) tech-
nique based on regression tree analysis (Gao, Kustas, & Anderson,
2012). This significantly enhances the sharpness of field boundaries,
while still conserving energy at the native 100-m scale of the TIRS
sensor.

Shortwave reflectance band data from L8were calibrated and atmo-
spherically corrected using amodified version of the Landsat Ecosystem
Disturbance Adaptive Processing System (LEDAPS; Masek et al., 2006).
Broadband visible and near-infrared albedo were extracted from the
six reflectance bands output from LEDAPS according to Liang, 2000. In
addition, 30 m maps of leaf area index (LAI) were derived using a

regression tree analysis trained with MODIS 1 km LAI data to maintain
consistency in LAI between Landsat and MODIS processing (see Gao,
Anderson, Kustas, & Wang, 2012; Cammalleri et al., 2013). All model

Fig. 3. Landcover classification map used in DisALEXI processing. National Land Cover Dataset (NLCD) data were modified to include a vineyard classification for the study area.

Table 1
List of 22 Landsat 8 scenes used in this study, DOY and time of acquisition, path and row,
and the transmittance and upwelling path radiance (W m−2 μm−1 sr−1) output from
MODTRAN used to atmospherically correct the thermal band.

Year DOY HHMM
(UTC)

Path Row Transmittance Upwelling path
radiance

2013 106 18:47 44 33 0.923 0.485
2013 115 18:41 43 33 0.803 1.567
2013 131 18:41 43 33 0.875 0.913
2013 154 18:47 44 33 0.746 1.995
2013 163 18:41 43 33 0.731 2.215
2013 170 18:47 44 33 0.789 1.601
2013 179 18:41 43 33 0.808 1.482
2013 186 18:47 44 33 0.886 0.965
2013 195 18:41 43 33 0.787 1.672
2013 202 18:47 44 33 0.823 1.218
2013 211 18:41 43 33 0.871 0.952
2013 218 18:47 44 33 0.825 1.257
2013 227 18:41 43 33 0.868 1.048
2013 234 18:47 44 33 0.852 1.177
2013 243 18:41 43 33 0.777 1.949
2013 250 18:47 44 33 0.837 1.282
2013 259 18:41 43 33 0.785 1.693
2013 266 18:47 44 33 0.733 2.236
2013 275 18:41 43 33 0.695 2.443
2013 282 18:47 44 33 0.785 1.728
2013 291 18:41 43 33 0.865 1.034
2013 298 18:47 44 33 0.892 0.866
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input fields were subset to a study area mask for use within DisALEXI.
The CFmask cloudmask layer (Zhu,Wang, &Woodcock, 2015), recently
included in the Landsat surface reflectance climate data record distrib-
uted by the EROSData Center, was applied to screen out cloud impacted
areas of the domain.

3.3.1.2. DisALEXI-MODIS. Daily MODIS LAI maps were generated from
the 4-day composite product (MCD15A3, Collection 5; Myneni, 2014).
These 4-day maps were smoothed and gapfilled to daily timesteps fol-
lowing the procedure described by Gao et al. (2008), which uses the
TIMESAT algorithm for analyzing satellite time-series data for seasonal-
ity and other temporally dynamic vegetation properties (Jönsson &
Eklundh, 2004). The smoothing procedure gives higher weight to
clear-sky and high quality MODIS LAI retrievals, as identified in the
product quality control layers. Daily MODIS NDVI maps were generated
from 16 day composites (MOD13A2, Collection 5; Huete, Justice, &
Leeuwen, 2014). Input MODIS albedo maps were generated from the
Solar Zenith Angle (SZN)-extended MODIS/Terra + Aqua 30 arc sec
Global Gap-Filled Snow-Free Bidirectional Reflectance Distribution
Function (BRDF) (MODIS BRDF/Albedo CMG Gap-Filled Snow-Free
Product MCD43GF V005) parameters product available by request
from University of Massachusetts Boston (Dr. Crystal Schaaf). Daily al-
bedowas calculated using solar zenith angle and total albedo calculated
as the weighted average of white (25%) and black sky (75%) albedo as-
suming a nominal partitioning of diffuse and direct beam radiation
under clear-sky conditions. Daily LAI, NDVI, and albedo were estimated
using a spline interpolation.MODIS LST and view anglemaps were gen-
erated from Terra instantaneous swath 1 km data (MOD11_L2, Collec-
tion 5; Wan, 2014) using the MODIS Conversion Toolkit (version 2.0)
and geolocation fields (MOD03) to obtain correct georegistration. LST
was sharpened using DMS to reduce the bowtie effect due to off-nadir
pixel smearing. In this case, DMS was run using the 1 km MODIS
NDVI, effectively reproducing the sharpening procedure (Kustas,
Norman, Anderson, & French, 2003) used in prior implementations of
DisALEXI (Cammalleri Anderson, Gao, et al., 2013, 2014).

3.3.1.3. ALEXI-GOES. ALEXI was executed on daily timesteps over a do-
main covering the contiguous United States at a spatial resolution of
4 km. LST inputs were computed from 11 μm brightness temperature
observations from the GOES-EAST (at 75°W) and GOES-WEST (at
105°W) Imager instruments at a spatial resolution of 4-km (nadir).
The raw brightness temperature observations were atmospherically
corrected using atmospheric profiles of temperature and mixing ratio
following the single channel algorithm of Price (1983). Atmospheric
profiles of temperature and mixing ratio used in the atmospheric cor-
rection were computed from the NCEP Regional Reanalysis (NARR)
dataset (Mesinger et al., 2006). Cloud-free pixels are determined by
using the bi-spectral composite threshold techniquewhich applies a se-
ries of threshold tests using GOES 3.7 and 11.0 μm brightness tempera-
ture measurements (Jedlovec, Haines, & LaFontaine, 2008). Vegetation
cover fractionwas obtained from the 4-dayMODIS leaf area index prod-
uct, and albedo information from 16-day MODIS albedo composites
(MOD43C;Moody, King, Platnick, Schaaf, & Gao, 2005. Hourly incoming
shortwave and longwave radiation were provided from the National
Land Data Assimilation System-2 (NLDAS-2) meteorological forcing
dataset at a 0.125° spatial resolution (Cosgrove et al., 2003).

3.3.1.4. High resolution aircraft imagery. During the GRAPEX13 experi-
ment, high resolution aircraft thermal imagery were obtained periodi-
cally from a system operated by Utah State University and used in
prior USDA field experiments (Anderson et al., 2004, 2005, Chavez,
Neale, Hipps, Prueger, & Kustas, 2005; Neale et al., 2012). These images
were used as input to DisALEXI to confirm structure apparent in the
Landsat-resolution ET maps. The system consists of three Kodak
Megaplus1 4.2i digital cameraswith interferencefilters forming spectral
bands in the green (0.545–0.555 μm), red (0.665–0.675 μm) and near

infrared (NIR) (0.790–0.810 μm) wavelengths. The TIR images were
acquired with an Inframetrics 760 Scanner in the 8–12 μm range. De-
tails of image acquisition and processing can be found in Neale et al.
(2012). Visible and thermal band imagery used in this study were
collected on June 12, 2013 (DOY 163) at ~13:15 PST, approximately
2.5 h after the L8 overpass of the GRAPEX site. The original resolution
was 0.05 m for the visible bands (NIR (0.8 μm), Red (0.655 μm), and
Green (0.562 μm)) and 0.38 m for the thermal band. All bands were
aggregated through averaging to 5 m resolution. A simple linear re-
gression between Landsat 8 and the aircraft thermal imagery
(R2 = 0.76) was used to adjust the airborne thermal data for the
time difference in the acquisition before running DisALEXI. Aircraft
red and NIR imagery from the prior day (DOY 162) were used due
to issues with the shortwave sensors on DOY 163. An exponential
function was fit between Landsat 8 LAI and aircraft NDVI, with a R2

value of 0.98. This fitted function was used to provide 5-m resolution
LAI inputs to DisALEXI.

3.3.2. Regional meteorological inputs
ALEXI/DisALEXI also require several meteorological inputs for exe-

cution, including time-series of hourly solar radiation and wind speed
for each modeling date, along with air temperature and vapor pressure
fields used for computing reference ET used in the temporal gap-filling
of ALEXI and DisALEXI-MODIS fields. In addition, ALEXI requires pre-
dawn profiles of atmospheric potential temperature for the ABL closure
routine. In this study hourly insolation, temperature, wind and pressure
fields were obtained from the NARR dataset (Mesinger et al., 2006).
These fields were mapped to the 4 km ALEXI grid and converted to
each sensor's projection at both daily and overpass times for ingestion
into DisALEXI.

3.3.3. LANDCOVER
Landcover class is used to specify surface roughness parameters and

vegetation optical properties used in ALEXI/DisALEXI (Anderson et al.,
2007). The ALEXI model uses the University of Maryland (UMD) global
land cover dataset at 1-km resolution, based on observations from the
Advanced Very High Resolution Radiometer (AVHRR; Hansen, DeFries,
Townshend, & Sohlberg, 2000). For the higher resolution MODIS and
Landsat disaggregation experiments, landcover classification (Fig. 3)
was determined from the 30 m National Land Cover Dataset (NLCD;
Fry et al., 2011). For MODIS, the NLCD map was upscaled to 1 km
using the highest percentage class within eachMODIS pixel. In addition,
the landcover classification was modified in ArcGIS to include a vine-
yard classification as a rough approximation (Fig. 3). In DisALEXI, a
nominal vegetation height of 2.3 m was used to compute roughness
parameters for pixels with vineyard classification.

4. Results and discussion

4.1. Model evaluation

Flux estimates from DisALEXI-Landsat on Landsat overpass dates,
averaged over the tower footprint using methods described by Li et al.
(2008), are compared to EC observations in Fig. 4, both for instanta-
neous (Landsat overpass time) retrievals and upscaled 24-h estimates.
At both the north site (Site 1) and south site (Site 2), simulated instan-
taneous and 24-h fluxes (net radiation, latent heat, sensible heat, soil
flux, solar radiation) on Landsat observation dates fall generally along
the one-to-one line against in-field measurements. Quantitative mea-
sures of all flux comparisons are shown in Table 2. Modeled insolation
and net radiation agree well with local measurements, indicating the
NARR radiative forcing inputs and assumed bulk albedo are reasonable
at these two sites. Landsat-derived 24-h ET fluxes have low root mean
square errors (RMSE) of 0.63 to 0.67mm/d for both sites, while the per-
cent error in ET estimates on Landsat dates (expressed asmean absolute
difference [MAD] divided by the mean observed flux, following
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Fig. 4. (Top panels) Scatterplots comparing observed fluxes and estimates obtained with DisALEXI-Landsat on Landsat overpass dates for instantaneous fluxes (Rs— solar radiation, Rn—
net radiation,λE— latent heat,H— sensible heat,G— soilflux) for the twoflux tower sites. (Bottompanels) Scatterplots comparing observed and Landsat-retrieved 24-hfluxes for twoflux
tower sites in the vineyards.

Table 2
Statistical measures of model performance at Sites 1 and 2 at instantaneous and 24-h (d) timesteps for Landsat overpass dates, and for STARFM daily and weekly output between DOY
100-300.

Site

Variable Rn H G LE Rnd Hd Gd LEd ETd ET(Fusion) ET(Fusion)

Unit W m−2 W m−2 W m−2 W m−2 MJ m−2 d−1 MJ m−2 d−1 MJ m−2 d−1 MJ m−2 d−1 mm d−1 mm d−1 mm wk−1

1 n 22 22 22 22 22 22 22 22 22 199 28
1 Mean P 549 135 103 311 15.72 3.85 1.71 10.16 4.15 4.18 29.53
1 Mean O 553 173 79 297 15.25 3.65 1.49 9.95 4.06 3.97 28.14
1 MBE −4 −37 25 13 0.47 0.20 0.22 0.21 0.09 0.21 1.39
1 RMSE 39 50 32 47 0.91 1.51 0.50 1.54 0.63 0.92 4.93
1 MAD 22 41 26 38 0.74 1.09 0.42 1.18 0.48 0.71 4.04
1 % error 3.9 24.0 33.2 12.7 4.8 29.8 28.4 11.9 11.9 18.8 14.4
1 r2 0.86 0.53 0.09 0.55 0.97 0.34 0.06 0.83 0.83 0.67 0.76
2 n 22 22 22 22 22 22 22 22 22 199 28
2 Mean P 537 153 112 272 15.30 4.54 1.95 8.82 3.60 3.68 25.96
2 Mean O 556 195 143 219 15.11 4.84 2.17 8.11 3.31 3.24 22.89
2 MBE −19 −42 −31 54 0.19 −0.30 −0.22 0.71 0.29 0.44 3.07
2 RMSE 42 63 35 79 0.87 1.22 0.65 1.63 0.67 0.96 5.76
2 MAD 26 55 31 64 0.70 1.01 0.55 1.26 0.51 0.75 4.50
2 % error 4.7 28.0 22.0 29.2 4.6 20.8 25.2 15.5 15.5 23.2 19.6
2 r2 0.87 0.03 0.40 0.40 0.97 0.31 0.04 0.73 0.73 0.46 0.49

a. ET — Evapotranspiration; Rn — net radiation; H — sensible heat; G — soil flux; λE — latent heat; Fusion columns summarize daily and weekly ET output over the full course of the
experiment, d — 24-h fluxes on Landsat dates; the rest are fluxes at the time of Landsat overpass.
b. n— number of data points; mean P—mean predicted/modeled;mean O—mean observed;MBE—mean bias error (mean P−meanO); RMSE— rootmean square error; MAD—mean

absolute difference (absðP−OÞ); % error — percent error is the mean absolute difference divided by the mean observed flux; r2 — coefficient of determination in regression of P on O.
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recommendations by Willmott, 1982; Willmott & Matsuura, 2005)
is 12% for Site 1 and 16% for Site 2 — consistent with results obtained
in earlier studies using DisALEXI (Anderson, Kustas, et al., 2012;
Cammalleri et al., 2013; Cammalleri, Anderson, Gao, et., 2014).

Statistics are also provided in Table 2 for daily and weekly 30-m ET
estimates from the STARFM fusion algorithm (“Fusion” ET), including
both Landsat overpass dates and dates between overpasses. The percent
errors from the fused daily time series are somewhat larger than for the
Landsat dates alone, with values of 19% for Site 1 and 23% for Site 2 and
with RMSE of 0.92 and 0.96 mm/d, respectively. An increase in error is
to be expected, since the majority of the days in this timeseries are re-
covered by fusion rather than direct retrieval from Landsat imagery.
At the weekly timestep, relevant to irrigation management, percent er-
rors reduce to 14 and 20% due to time-averaging of random errors. The
difference in apparent model performance between Sites 1 and 2 is due
primarily to an early season bias at Site 2, which is discussed in detail in
Section 4.2.

The averagemodeled andmeasured ET over the course of the exper-
iment is between 3 and 4mmd−1, with higher rates of water consump-
tion at Site 1 (more mature) than at the younger Site 2. The average ET
values reported here are consistent with other studies of water use in
vineyards; for example, Teixeira et al. (2007) reported average ET of
3.3 mm d−1 in irrigated vineyards in the São Francisco river basin,
Brazil, a semi-arid region with average rainfall of 570 mm per year
andmonthly air temperature averages of 24–30 °C. The correspondence
to in-field measurements supports the applicability of this remote

sensing approach tomonitoring energy flux and evapotranspiration dy-
namics in vineyards.

4.2. Temporal patterns in evapotranspiration (ET)

Timeseries of observed and modeled daily ET for the 2013 growing
season at Sites 1 and 2 are shown in Fig. 5. On average over this period,
the observed ET at Site 1 was 80% of reference ET—matching the target
believed to maximize berry size (Williams, 2001). Observed seasonal
cumulative ET at Site 2 was about 82% of the seasonal ET value for Site
1, but with similar reference ET conditions, resulting in an average
actual-to-reference ET ratio of 65% for this tower site.

The utility of disaggregation as a validation tool is clearly apparent.
In general, agreement between model and tower measurements signif-
icantly improves inmoving from the ALEXI-GOES scale (4-km pixels) to
Landsat scale (30m)— particularly at Site 1. Themodel estimates at the
various scales tend to converge at Site 2 after DOY 210, indicating this
tower site is more representative of the local landscape. The role that
theMODIS ET plays in guiding the temporal interpolation of 30m fluxes
between Landsat overpasses is evident in the STARFM timeseries.
For comparison with STARFM, results are also shown from a simple
Landsat-only interpolation scheme conserving the ratio of actual-to-
reference ET through linear interpolation between Landsat overpasses.
Cammalleri et al. (2013) found significant improvement in daily ET re-
trieved using STARFM over the Landsat-only interpolation in an imple-
mentation over rainfed soybean fields in central Iowa during SMEX02.

Fig. 5. Time series of observed daily ET (blue dots), ET retrievals from ALEXI (gray line), DisALEXI-MODIS (aqua line) and DisALEXI-Landsat (red diamonds), along with 30 m daily ET
estimates from STARFM (solid red line) and Landsat-only interpolation (dotted red line) for Site 1 (top panel) and Site 2 (bottom panel). Rainfall events are shown as blue bars.
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STARFM was better able to capture ET response to a rainfall event that
occurred between Landsat overpasses. In the current study, however,
the STARFM and Landsat-only interpolation techniques show similar
performance (Fig. 5). This is due to the greatly improved temporal sam-
pling available with Landsat 8 at this California site, given its location
within the overlap between adjacent WRS paths and the low cloud
cover during the growing season.

At Site 1, ET estimates from the direct Landsat retrievals and the
fused daily timeseries largely follow the observed values especially in
early and late season. The observed ET is underestimated during the
middle part of the season between approximately DOY 180 and 210.
This departure is preceded by a large precipitation event on DOY 175.
A comparable underestimation in ET is observed during this time period
when the TSEB is applied directly to LST, LAI and meteorological data

collected in the field. This may indicate an enhanced localized response
to the precipitation event that is not completely captured by the ther-
mal signal, as explored further in Section 4.2.

A similar enhancement in EC measurements of latent heat flux was
not observed in Site 2 following this rainfall event, and the fused ET
timeseries for Site 2 agrees well with observations during this time pe-
riod and for the remainder of the experiment season. This is further ev-
idence that the ET enhancement at Site 1 was a very localized surface
phenomenon, and not driven by prevailing meteorological conditions.
However, water consumption is overestimated at Site 2 in the early sea-
son prior to DOY 175. A small wet bias is also evident in the very early
season at Site 1, before DOY 106.

There are several possible sources for the early seasonwet bias in the
DisALEXI-Landsat and fused daily ET estimates. It may reflect biases in

Fig. 6. Comparison of Landsat-retrieved and measured leaf area index (LAI, top panel) and land surface temperature (LST, middle panel) at the time of overpass (~1840 UTC) for each
Landsat overpass date at Sites 1 and 2. Bottom panel shows difference in ET between Sites 1 and 2 as inferred from EC observations and the STARFM retrievals, smoothed with a
10-day moving average. The period prior to DOY 160 when the early season model bias at Site 2 is significant has been highlighted.
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the coarse-scale early springtime ALEXI daily ET estimates over this re-
gion, which form the basis for the spatial disaggregation accomplished
through DisALEXI. To date, studies evaluating ALEXI fluxes through dis-
aggregation have been principally focused on the mid-continent grow-
ing season, starting between DOY 130 and 150. There is evidence to
suggest that the time window for LST rise signal used in ALEXI during
thewinter/early springmay need adjustment to compensate for shorter
daylength. These adjustments will be evaluated in follow-on studies,
looking at continuous model time behavior between the GRAPEX
2013, 2014 and 2015 campaigns. However, given the fact that the
early season is reasonably well-modeled at Site 1, lying within the
sameALEXI pixel, ALEXI biasesmaynot be the primary issue in this case.

The exacerbated early season bias at Site 2 prior to DOY160may also
relate to errors in the Landsat retrievals of LAI and LST— the two prima-
ry DisALEXI inputs that govern disaggregation of the 4-kmALEXI flux to
the subpixel level. Unless the Landsat inputs are significantly different
between the two fields, the disaggregation strategy will apportion sim-
ilar disaggregated fluxes to the two fields. Indeed the difference in
STARFMET between sites appears to bewell correlated in timewith dif-
ferences in Landsat LAI and LST retrievals, with relatively small differ-
ences observed before DOY 160 (Fig. 5). While there were no LAI
observations during the early period, the Landsat-derived LAI appears
to overestimate field values until midseason. However, manual adjust-
ment of Landsat LAI inputs to DisALEXI for vineyard pixels toward
values observed in Sites 1 and 2 did not appreciably impact themodeled
ET. The timeseries in Landsat LST departures between sites appears to
follow observationswell (Fig. 6). Note that the absolute offset in Landsat
LSTwith respect to observations is not as important as in-scene variabil-
ity due to the flux normalization step with respect to the 4-km ALEXI-
based ET estimates.

Another consideration for the early season bias is the presence of the
inter-row cover crop, which is at peak greenness early in the season and
is completely senesced byDOY~160 as the vines leaf out. This transition
involves a migration of transpiring vegetation from the soil surface be-
tween rows, where turbulent exchange is relatively suppressed, to the
tops of the vines which are better coupled with the free atmosphere.
This transition occurred later in the season in 2013 for the younger

vineyard and may require adjustment to substrate and canopy atmo-
spheric resistance factors specific to a vineyard canopy architecture —
effectively adding a “third” understory vegetation layer to the TSEB. In
ongoing work, model behavior will be assessed during the 2013–2014
and 2014–2015 winter periods, and if similar bias behavior is observed,
simple modifications will be developed for viticultural applications of
TSEB.

A final possibility is that there may be exacerbated instrumental
biases near the beginning of the experiment due to local disturbance
to the soil and cover crop near the tower site, introduced during instal-
lation. There is ancillary anecdotal evidence that is consistent with this
theory. Again, extension of the modeling experiment into the 2014
and 2015 field campaigns will help to determine if this was a short-
term (instrumental) or persistent (model) bias.

Fig. 7 demonstrates the relative time behavior of ET fluxes (model
and measurements) and soil moisture conditions during the 2013
growing season. The soil moisture data represent averages of measure-
ments at 30, 60 and 90 cm at 3 locations near the tower in Site 1, and 2
locations in Site 2 (one set of measurements at Site 2 was non-
representative due to issues with the adjacent irrigation tubing). Also
shown are approximate weekly irrigation amounts, expressed in units
of weekly liters per vine, included here to demonstrate the time
variability in rates of water supplied through the drip lines. Given the
average vine spacing within the fields, 1 l per vine translates to approx-
imately 0.2 mm of water. Irrigation scheduling is designed to maintain
relatively constant soil moisture content during the critical period of
grape development, as evidenced in the soil moisture measurements
in Fig. 7. In 2013, irrigation commenced in mid-June as the cover crop
senesced and was suspended one or two days before harvest (around
DOY 245) to prevent the harvesting machines from becoming mired
in mud. Irrigation resumed post-harvest until October 4 (DOY 275).

In terms of cumulative water use, STARFM reproduced observed
values derived from the EC measurements in Site 1 over the period
DOY 106-245 (from first Landsat date to harvest date) within 14 mm
(2% error) due to time-averaging of random daily error component
and good model performance later in the season. Cumulative ET for
Site 2 is more significantly overestimated at DOY 245 by about 84 mm

Fig. 7. Time series of observed (solid lines) and fusion modeled (dotted lines) ET for Sites 1 (red) and 2 (blue) are shown in top panel. Average soil moisture (SM; volumetric water
content ∗ 10) shown as solid lines in bottom panel is plotted with values on the right axis, as well as approximate weekly irrigation rates shown with squares (liters per vine/50).
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(16%), resulting from the early season wet bias discussed above. The
model predicts a lower total ET cumulative value for Site 2 than for
Site 1, in accordance with the observed difference between the two
fields.

4.3. Spatial patterns in evapotranspiration (ET)

Spatial patterns in the fused 30-m flux fields of daily ET over the
course of the growing season are varied and complex. Fig. 8 demon-
strates variability in modeled daily and cumulative ET through the
study period over a 4 × 4 km box, approximating the ALEXI pixel area,
including the GRAPEX vineyards near the center. Early in the season
(DOY 110), ET is relatively uniformly distributed over the area while
the background grasslands are still green. On DOY 140, the highest ET
rates are associated with a few young vineyards in the southeast quad-
rant of the image— likely resulting from early irrigation applied to help
establish the newly planted vines. On DOY 170, four fields of alfalfa
south of the GRAPEX vineyards are highlighted. Alfalfa has a relatively
high water use requirement among agricultural crops. Daily water use
in the GRAPEX vineyards diminishes prior to harvest (around DOY
245 in 2013). ET variations between fields can be a result of different
crop types or irrigation practices, or may relate to different soil charac-
teristics such as texture and water holding capacity. Cumulative ET
gradually increases throughout the season as well (Fig. 8, right column)
but rapidly increases between DOY 230 and 260, the period covering
highest maturity of vines and harvest time.

While most fields in the surrounding area are vineyards of varying
levels of maturity, the four alfalfa fields directly south of the two
GRAPEX field sites have a distinctly different ET signal over time. The
high temporal frequency of clear-sky Landsat acquisitions over this
study area (approximately every 9 days) enables the identification of
when these fields (together roughly 600 by 650m2) were cut (between
DOY 202 and 211, Fig. 9), with the ET signal showing very strongly on
DOY 202 and a few days later is equivalent to background ET. Note
that this scale of change (sub-MODIS pixel scale) is not likely to be ro-
bustly recovered by the Landsat/MODIS fusion process. Such localized
change detection can only be accomplished with sufficient sampling at
the Landsat scale.

Cumulative seasonal ET (Fig. 10) over a broader (9 × 9 km) area sur-
rounding the GRAPEX study site demonstrates the spatial detail in
water use information that can be generated using sharpened L8 TIRS
imagery. Unplanted gullies in vineyards in the southeast are detectable,
as is variability in the low-density residential area in the northwest cor-
ner of the image (in contrast to the dense stand of Eucalyptus trees due
south). At Landsat scale, it is possible to quantify seasonal water use by
crop and landcover type — again, this is not possible with MODIS.

4.4. Subfield variability in water use and yield

To better understand the reliability of sub-field variations in water
use apparent at the Landsat 30-m scale, a high resolution (5 m) 24-h
ET map was derived for the instrumented vineyard fields by applying
DisALEXI to thermal and NDVI imagery obtained by aircraft on the day
of the June 12, 2013 Landsat 8 overpass (DOY 163). The within-field
ET variability at 5 m resolution (Fig. 11b) is generally spatially similar
to that apparent in the 30 m resolution ET estimates (Fig. 11c), albeit
with much finer detail, partially resolving the individual vine rows.
The higher resolution of the aircraft imagery enables identification of
distinct features. For example, an old river bed is seen in both images
in the lower half of the southern field where ET is slightly higher due

Fig. 8. Spatial timeseries (every 30 days) of 24-h ET (left column) and cumulative ET (right
column) over a 4 × 4 km area including the two vineyard sites instrumented for GRAPEX.
Individual fields are easily distinguishable as are times of higher ET (and possible
irrigation).
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to different soil characteristics. The small rectangular areas of low cu-
mulative ET and high LST in the southern end of Site 1 (north field)
are vernal pools — ephemeral ponds which are protected by state and
federal law from new cultivation activities. These areas have not been
planted in vines and are not irrigated. The central part of the northern
field shows higher rates of ET at both scales, coinciding with a region
ofmore vigorous vine growth. Lower ET in the upper left of the northern
field is associatedwith soil texture discontinuities. Themajor soil type in
the two fields is Kimball silt loam but there are small areas within the
field (such as in the upper left corner of the northern field) with silt
loam and gravelly loam soils which have poor to moderate water stor-
age capacity. The area of low ET/high LST at the topmiddle of the north-
ern field is associated with a house, parking area and storage sheds
where equipment is kept for maintaining the fields (blanked in the air-
craft image).

The aircraft imagery fromDOY 163was collected prior to the rainfall
event on DOY 175 (Fig. 5). During the period DOY 180-210when the lo-
calized enhancement in EC latent heatfluxwas observed at Site 1,winds
were primarily from the SW – passing over the vernal pool systems,
which terminate a local drainage systemwithin that field. One possible
explanation for that enhancement might be that the pools and sur-
rounding drainages saturated during the rain event, contributing to
higher evaporative losses within the tower footprint for several days
as the area dried. Given that these features are classified as vernal
pools, this may not be unreasonable. The L8 TIRS data at native resolu-
tion are too coarse to resolve such small scale cooling impacts on the
LST field, and indeed the DMS thermal sharpening technique would er-
roneously impose a higher LST over the low NDVI area associated with
the pools. A high resolution aircraft acquisition during this period
would have helped to identify localized moisture enhancements within
the footprint. In 2014 and 2015, GRAPEX integrated imaging using Un-
manned Aerial Vehicles (UAVs), which may be easier to deploy in
rapid response to episodic change events.

Within-field spatial variability in ET at 30 m resolution, both at daily
and cumulative timesteps (Fig. 11c and d) shows some regions of
general spatial correspondence with yield maps produced for both
fields at harvest (Fig. 11a). Yield in wine grape production is carefully
managed to support bothwine quality and regionalmarketing consider-
ations, and is not always well-correlated (and is sometimes anti-
correlated)with climatic drivers. Thismaymake year-to-year prediction
of at-harvest yield difficult using remote-sensing based vegetation and

stress indicators. The ETmaps at both aircraft and Landsat scale, howev-
er, do provide some information about sub-field variability in realized
yield. For example, the effects of soil texture variations in the upper
left corner of the north field are evident, leading to lower local yields
and seasonal evaporative losses. The region of higher water use in the
central part of this field resulted in higher yields in 2013. Variable
rates of water application across the field, informed by high-resolution
aircraft or medium resolution Landsat imagery, may serve to better ho-
mogenize production across individual fields. Research investigating
multi-year yield variability in the GRAPEX fields, and correlations with
anomalies in ET and vegetation index, is underway.

5. Conclusions

Performance of multi-sensor and scale data fusion approach to
mapping ET using GOES, MODIS and Landsat TIR and shortwave

Fig. 9. Two up close snapshots of Site 1 and Site 2, as well as the alfalfa field just south of these fields. The four alfalfa fields have very high ET on day 202, but just a few days later are
essentially bare due to harvesting.

Fig. 10. Cumulative seasonal ET (mm) map (9 × 9 km) on DOY 290 surrounding the
GRAPEX study.
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imagery was assessed in an application over two vineyard sites in cen-
tral California using data products from the new Landsat 8 satellite.
Both temporal and spatial timeseries of ET show interesting details in
water use variability within the individual fields as well as in contrast
with the surrounding area. Daily ET over the 2013 growing season
was retrieved at 30-m spatial resolution using a Landsat/MODIS fusion
approach with percent errors of 19 and 23% in comparison with EC
measurements from flux tower sites established in irrigated fields
with 8 and 5-year old Pinot noir vines, respectively (Sites 1 and 2),
and RMSE on the order of 1 mm d−1 for the full fused daily timeseries
covering the growing season. In comparison, percent errors for Landsat
overpass dates were 12 and 16% for Sites 1 and 2, respectively (RMSE
~0.5 mm d−1), indicating some degradation in model performance for
days when actual Landsat-scale TIR imagery is not available.

Cumulative ET maps from DOY 106 to 245 (date of first Landsat 8
scene to harvest) demonstrate strong variability in seasonal water use
in relationship to crop type and water management strategy. Cumula-
tive ET was predicted to within 2% for the more mature vineyard (Site
1), while in the younger vineyard site, cumulative ETwas overestimated
by16%due to an early seasonwet bias. This overestimationmayhave an
instrumental component, or may in part relate to issues withmodel pa-
rameterizations of canopy architecture relating to a between-row grass
cover crop used to consume excess springtime moisture. This bias will
be further investigated using data collected between the 2013, 2014
and 2015 growing seasons.

Comparison with a higher resolution (5 m) ET map generated using
TIR and shortwave imagery acquired during a GRAPEX IOP indicated
that much of the sub-field structure in ET apparent at Landsat-scale
can be associated with real features on the ground. General spatial cor-
respondence of fused daily and cumulative ET maps with within-field
variability in at-harvest yield maps suggest potential utility for adaptive
precision management of irrigation applications to homogenize grape
production across fields. Combined utility for yield prediction of syn-
chronized timeseries of daily ET (indicating water limitations) and veg-
etation index maps (indicating growth rate and phenological stage),
both generated using STARFM, is under investigation.

Despite the observed limitations, the ET data fusion methodology
described here can provide detailed information about daily and sea-
sonal water use patterns that may not be easily acquired with other
methodologies. This information, if generated operationally, can be of
utility for irrigation managers at the scale of individual fields as well
as for regional monitoring of water use toward allocation and conserva-
tion efforts.While decisions regarding irrigation amount and timing de-
pend on multiple factors, such as visual appearance, measurements of
leaf water potential, and other plant health measures, daily ET can pro-
vide a more comprehensive measurement of how entire field sites are
faring, especially useful for large operations.

In ongoing work, the data fusion methodology is being applied over
other cropping regions with different management characteristics and
to forested areas as well. The ability to monitor water use effectively
at field scale is significant both for viticulture, where maintaining a del-
icate balance ofmoderatewater stress during the growing season is crit-
ical for wine grape production, and for other agricultural and forest
production systems in regions where there are many competing water
uses and limited water supply.
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