
University of Nebraska - Lincoln University of Nebraska - Lincoln 

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln 

Roman L. Hruska U.S. Meat Animal Research 
Center 

U.S. Department of Agriculture: Agricultural 
Research Service, Lincoln, Nebraska 

2016 

Mitochondrial abundance and efficiency contribute to lean color Mitochondrial abundance and efficiency contribute to lean color 

of dark cutting beef of dark cutting beef 

Russell O. McKeith 
Texas A&M University 

D. Andy King 
USDA-ARS, andy.king@usda.gov 

Adria L. Grayson 
Texas A&M University 

Steven D. Shackelford 
USDA-ARS 

Kerri B. Gehring 
Texas A&M University 

See next page for additional authors 

Follow this and additional works at: https://digitalcommons.unl.edu/hruskareports 

McKeith, Russell O.; King, D. Andy; Grayson, Adria L.; Shackelford, Steven D.; Gehring, Kerri B.; Savell, 
Jeffrey W.; and Wheeler, Tommy L., "Mitochondrial abundance and efficiency contribute to lean color of 
dark cutting beef" (2016). Roman L. Hruska U.S. Meat Animal Research Center. 398. 
https://digitalcommons.unl.edu/hruskareports/398 

This Article is brought to you for free and open access by the U.S. Department of Agriculture: Agricultural Research 
Service, Lincoln, Nebraska at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion 
in Roman L. Hruska U.S. Meat Animal Research Center by an authorized administrator of 
DigitalCommons@University of Nebraska - Lincoln. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@University of Nebraska

https://core.ac.uk/display/84307247?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/hruskareports
https://digitalcommons.unl.edu/hruskareports
https://digitalcommons.unl.edu/usdaars
https://digitalcommons.unl.edu/usdaars
https://digitalcommons.unl.edu/hruskareports?utm_source=digitalcommons.unl.edu%2Fhruskareports%2F398&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/hruskareports/398?utm_source=digitalcommons.unl.edu%2Fhruskareports%2F398&utm_medium=PDF&utm_campaign=PDFCoverPages


Authors Authors 
Russell O. McKeith, D. Andy King, Adria L. Grayson, Steven D. Shackelford, Kerri B. Gehring, Jeffrey W. 
Savell, and Tommy L. Wheeler 

This article is available at DigitalCommons@University of Nebraska - Lincoln: https://digitalcommons.unl.edu/
hruskareports/398 

https://digitalcommons.unl.edu/hruskareports/398
https://digitalcommons.unl.edu/hruskareports/398


Mitochondrial abundance and efficiency contribute to lean color of dark
cutting beef

Russell O. McKeith a,1, D. Andy King b,⁎, Adria L. Grayson a,2, Steven D. Shackelford b, Kerri B. Gehring a,
Jeffrey W. Savell a, Tommy L. Wheeler b

a Department of Animal Science, Texas A&M AgriLife Research, Texas A&M University, College Station 77843-2471, United States
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Beef carcasses exhibiting four levels of dark cutting severity (DCS): Severe,Moderate,Mild, and Shadywere com-
pared to Control carcasses to investigate biochemical traits contributing to the dark cutting condition. Color attri-
butes of Longissimus lumborum (LL) were measured after grading and during simulated retail display.
Mitochondrial abundance and efficiency, bloomed oxymyoglobin, reducing ability, glycolytic potential, myoglo-
bin concentration, and protein solubility and oxidationwere determined. Glycolytic potential and lactate concen-
trations decreased (P b 0.05) as DCS increased. Residual glycogen was greater (P b 0.05) in steaks from Control
carcasses compared to DCS classes. Generally, as DCS increased, LL steaks were darker and less red in color
(P b 0.05). Increased (P b 0.05) oxygen consumption and reducing ability coincidedwith greater myoglobin con-
centration and greater abundance of less efficient mitochondria as DCS increased (P b 0.05). These data suggest
the dark cutting condition is associatedwith greater oxidative metabolism coupled with less efficient mitochon-
dria resulting in depletion of glycogen during stress.

Published by Elsevier Ltd.
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1. Introduction

The dark lean color, and firm and dry texture of dark cutting beef
does not meet expectations for beef product appearance and thus, is
discriminated against by consumers. Moreover, dark cutting beef has
been associated with increased incidence of off-flavor and greater
variability in tenderness compared to normal beef (Calkins & Hodgen,
2007; Wulf, Emnett, Leheska, & Moeller, 2002). Consequently, dark
cutting beef is severely discounted by beef packers at a great cost to
livestock producers. According to the 2011 National Beef Quality
Audit, 3.5% of carcasses presented for grading were affected by the
dark cutting condition (Moore et al., 2012).

Dark cutting beef is attributed to depletion of muscle glycogen
resulting in a less-than-normal pH decline after slaughter, and conse-
quently, greater-than-normal muscle pH. The depletion of muscle
glycogen is thought to be due to long-term stress prior to slaughter.
However, the dark cutting condition occurs in a relatively small number
of carcasses, and within production lots that are housed and managed
together during the weeks leading up to harvest, only a small minority
of animals will produce carcasses that display the dark cutting

condition. Thus, a greater understanding of the factors predisposing
animals to produce carcasses with the dark cutting condition is needed.

Dark cutting beef has been associated with a higher mitochondrial
respiration rate, which helps maintain low oxymyoglobin concentra-
tions. Ashmore et al. (1973) and Lawrie (1958) both reported that
reduced postmortem muscle pH impairs the overall level of oxygen
consumption in normal muscle compared to high pH muscle. These
findings would suggest that mitochondrial function may play a role in
dark cutting beef. However, it is not clear whether this is a causative
relationship or a function of the high pH resulting in conditions more
favorable to maintain mitochondrial function postmortem. Therefore,
the objectives of the present study were to investigate mitochondrial
and glycolytic metabolic traits contributing to lean color and lean
color stability in dark cutting and normal beef.

2. Materials and methods

Animal care and use committee approval was not obtained for
this study because samples were obtained postmortem from a USDA
inspected plant.

2.1. Sample handling and preparation

Beef carcasses (n= 320) were selected from a commercial process-
ing facility that processes young, grain-fed steers and heifers. Carcasses
were evaluated as they were presented for grading at approximately
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36 h postmortem. Selectionwas conducted on 5 selection days over a 2-
month-long period. All carcasses selected for inclusion in the present
study exhibited A maturity scores (9–30 months of age). Carcasses
exhibiting the dark cutting condition (n = 160) were subjectively
identified by trained evaluators.When a dark cutterwas identified, a co-
hort exhibiting normal lean color and firmness with a similar marbling
scorewas selected from the sameproduction lot (feedlot pen), so that to
the greatest extent possible, factors contributing to the incidence of
dark cutting such as breed type, animal age, diet, growth promotants,
and exposure to stressful stimuli were balanced across the affected
and Control groups. Within each selection day, carcasses were assigned
to severity groups based on observed muscle pH: Severe, Moderate,
Mild, and Shady. Normal cohorts selected to match each dark cutter
were included in a separate Control group. Muscle pH was collected
with a Reed SD-230 handheld pH meter (Reed Instruments, Wilming-
ton, NC) on the anterior surface of the Longissimus lumborum exposed
by ribbing between the 12th and 13th rib on the right side of each
carcass. Carcass grade characteristics were collected using an image
analysis-based (VBG2000LED) grading system (Shackelford, Wheeler,
& Koohmaraie, 2003).

After grading, carcasses were placed on a stationary rail and
lean color was assessed with a Hunter Miniscan XE Plus Colorimeter
(Hunter-Lab, Reston, VA) with a 25-mm port. The colorimeter was set
to collect spectral data with Illuminant A and a 10⁰ observer. The CIE
L* (lightness), a* (redness), and b* (yellowness) color-space values
were reported as the average of duplicate readings taken on the anterior
exposed surface of the longissimus thoracis at the 12th–13th rib inter-
face of the left side of each carcass. After fabrication, the beef, loin,
strip loin (similar to IMPS #180; (NAMP, 2003; USDA, 1996), which
includes the longissimus lumborum, were obtained from the left side
of each carcass. Subprimals were transported via refrigerated truck
(0 °C) to the U.S. Meat Animal Research Center abattoir and aged until
13 d postmortem.

On day 13 postmortem, the most anterior 13 cm of each subprimal
was removed and utilized in a concurrent research project. The remain-
ing portion of the subprimal was cut into steaks of which the
longissimus lumborum was used for subsequent measurements. The
first steak (2.54 cm)was placed immediately in simulated retail display.
The second steak (2.54 cm) was utilized for oxygen consumption and
metmyoglobin reducing ability determinations which were completed
within 4 h of the steaks being cut on day 13 postmortem. A third steak
(1.27 cm) was trimmed free of external fat, and visible connective
tissue, diced and frozen in liquid nitrogen, and vacuum packaged for
storage at −80 °C for glycolytic potential, myoglobin concentration,
sarcoplasmic protein solubility, sarcoplasmic carbonyl formation deter-
mination. The fourth steak (1.27 cm) was utilized for mitochondrial
isolation and determination of mitochondrial efficiency, which was
done immediately (13 d postmortem) on fresh, unfrozen tissue.

2.2. Simulated retail display

Steaks cut on day 13 postmortem, were placed on polystyrene
trays with soaker pads and overwrapped with oxygen-permeable
polyvinylchloride (PVC) film [stretchable meat film 55003815; Prime
Source, St. Louis, MO; oxygen transmission rate = 1.4 mL/(cm2·24 h)
at 23 °C]. Steaks thenwere placed under continuous fluorescent lighting
(color temperature = 3500 K; color rendering index = 86; 32 W; T8
Ecolux bulb, model number F32T8/SPX35, GE, GE Lighting, Cleveland
OH) for 11 d. Light intensity at the meat surface was approximately
2000 lx. Retail display was conducted in a refrigerated room (1 °C),
and no temperature fluctuations associated with defrost cycles were
encountered.

Steaks were allowed to bloom at least 2 h after being packaged be-
fore color measurements were collected. Instrumental color readings
were taken on each steak on d 0, 1, 4, 7, and 11 of display using a Hunter
Miniscan XE Plus Colorimeter (Hunter-Lab, Reston, VA) with settings

reported earlier. The CIE L* (lightness), a* (redness), and b* (yellowness)
color-space values were reported as the average of duplicate readings
taken on each steak. Greater L*, a*, and b* values signify increased light-
ness, redness, and yellowness, respectively. Color intensity (also referred
to as chroma or saturation index) was calculated using the following
formula: [(a*2 + b*2)0.5]. Hue angle (redness) was calculated using the
formula: [(arctangent (b*/a*) × 180/3.142]. Overall color change during
retail display (referred to as ΔE) was calculated using the following
formula: [(ΔL*2 + Δa*2 + Δb*2)0.5], where ΔL*, Δa*, and Δb* was the
difference between d 0 and d 1, 4, 7, and 11 values for L*, a*, and b*,
respectively.

2.3. pH and total myoglobin concentration

Steaks designated for determination of total myoglobin concentra-
tion were trimmed free of external fat and epimyseal connective tissue,
diced, and pulverized in liquid nitrogen to produce a homogenous pow-
der. Myoglobin concentration was determined using a modification of
the method reported by Hunt and Hedrick (1977). Duplicate samples
(2.5 ± 0.05 g) were homogenized in 25 mL of 800 mM sodium acetate
(pH = 4.5). The homogenates were then placed in a shaker at 4 °C for
1 h to allow for pigment extraction before centrifugation (38,000 ×g)
for 35min at 4 °C. The supernatantwas then poured into a 50mL conical
tube. To ensure complete pigment removal, the pellet was washed two
times in 10 mL of cold sodium acetate utilizing vortexing and a glass
rod to resuspend the pellet before shaking (4 °C) for 30 min and then
centrifuged as described earlier. Supernatant from both washes were
combined with the supernatant from the initial extraction. Supernatant
was syringedfiltered (Nalgene 0.45 μm, surfactant-free cellulose acetate
membrane; Thermo Fisher Scientific, Rochester, NY) into 1.5 mLmicro-
centrifuge tube. A 200 μL aliquot of the sample was transferred in
triplicate to a 96well plate and blanked against sodiumacetate solution.
Absorbance spectra at 525 nm and 700 nm were collected using a
Spectramax plus 96-well plate reader (Molecular Devices, Sunnydale
CA). Extracted myoglobin pigment concentration (mg/g meat) was
calculated taking the difference between the absorbance at 525 nm
and 700 nm, a millimolar extinction coefficient of 7.6 mM−1 cm−1,
the molecular weight of myoglobin (17,000), and the appropriate
dilution factor.

2.4. Oxygen consumption and nitric oxide metmyoglobin reducing ability

Steaks designated for oxygen consumption and nitric oxide reducing
abilitywere sampledby removing a 2.54 cm×2.54 cm× steak thickness
cube from the center of the steak, taking care to avoid connective tissue
and large pieces of marbling. The cube was divided in half horizontally
exposing the interior of the muscle. The top half including the surface
previously exposed to light and oxygenwas used for nitric oxide reduc-
ing ability determination. The bottom half, including the surface never
exposed to light or oxygen was used for oxygen consumption.

Oxygen consumption was initially determined by the methods
described by King, Shackelford, and Wheeler (2011). The newly
exposed surface was allowed to oxygenate at 4 °C for two hours while
covered with previously described oxygen permeable film. The sample
then was vacuum-packaged and immediately scanned with a Hunter
Miniscan colorimeter with settings previously described that had been
calibrated through the oxygen impermeable film of a vacuum bag. The
vacuum-packaged sample was incubated for 30 min in a 30 °C
waterbath, and scanned with the colorimeter to obtain the spectral
data. Oxygen consumption was recorded as (% OMb before − % OMb
after/% OMb before). Initial analyses indicated that because samples
with greater severity of the dark cutting condition had much lower
initial (bloomed) levels of oxymyoglobin than Control samples, the
percentage of oxymyoglobin deoxygenated was not comparable across
dark cutting classes. This difference was likely due to increased oxygen
consumption in dark cutting samples limiting the extent of oxygenation
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during the initial incubation in atmospheric conditions. Thus, the
bloomed oxymyoglobin levels are reported as an indicator of oxygen
consumption.

The sample for nitric oxide metmyoglobin reducing ability was oxi-
dized in 50 mL of a 0.3% sodium nitrite solution for 30 min at approxi-
mately 20 °C as described by AMSA (2012). The sample was removed
from the solution, blotted, and vacuum packaged. Immediately after
packaging, the samplewas scanned in duplicatewith a HunterMiniscan
colorimeter with the settings already reported. The samplewas allowed
to be reduced in a water bath (30 °C) for 2 h, and scanned again in
duplicate. Surface metmyoglobin was quantified using the equations
defined by AMSA (2012). The proportion of surface metmyoglobin
that was initially recorded after oxidation with nitrite was reported as
initial metmyoglobin formation (IMF).

2.5. Glycolytic potential

Glycolytic potential determination was conducted following a mod-
ified procedure prescribed by Miller, Ellis, Sutton, McKeith, and Wilson
(2000) with additional modifications (Souza et al., 2011). A 3.00 ±
0.05 g sampled of homogenous powder was homogenized in 15.0 mL
of 0.6 N perchloric acid, and 200 μL of this homogenate was then trans-
ferred in duplicate into 1.5 mL microcentrifuge tube. One aliquot was
digested with 1.0 mL of cold amyloglycosidase (AGS) in 0.2 M acetate
buffer (pH = 4.8) and 20 μL 5.4 N potassium hydroxide. In another
1.5 mL microcentrifuge tube 200 μL of homogenate was incubated
with 1mL of 0.2 M acetate buffer (pH= 4.8), and 20 μL 5.4N potassium
hydroxidewithout AGS. TheAGS cleavesα(1–4) glycosidic linkages and
α(1–6) glycosidic linkages in glycogen to yield glucose.

The AGS and non-AGS aliquots were then incubated at 37 °C for 3 h
while inverting samples every 20 min to thoroughly mix. After incuba-
tion, AGS and non-AGS aliquots were placed on ice and 100 μL of cold
3 N perchloric acid was added and then centrifuged (10,000 ×g) at
4 °C for 5 min to allow for pellet precipitation. Concentration of glucose
was determined using a Glucose (HK) Assay Kit (Sigma-Aldrich, St.
Louis, MO) on the non-AGS-digested sample. Concentration of glycogen
plus glucose was determined using the same kit on the AGS digested
sample. Both assays were read at 340 nm using a Spectramax plus 96-
well plate reader along with a standard curve prepared using the
glucose that was supplied in the kit. The amount of glycogen was deter-
mined by the difference in the concentrations of the two assays. Lactate
content was measured by incubating 20 μL of the AGS digested sample
in 180 μL of assay buffer containing 0.2 M glycine, 0.003 M NAD+, and
3 units of lactate dehyrogenase. Glycolytic potential was calculated
utilizing the following formula: GP = 2[(glycogen) + (glucose which
includes glucose-6-phosphate)] + [lactate], and was expressed as
lactate equivalents per g muscle (Monin & Sellier, 1985).

2.6. Mitochondrial isolation and mitochondrial H2O2 production

Beef longissimus muscle mitochondria were isolated according to
Cawthon, McNew, Beers, and Bottje (1999) and Iqbal et al. (2005)
with modifications. Preliminary analyses suggested that assays
conducted more than 2 h after extraction produced spurious results.
Thus, a subset of the carcasses used in this study was selected for
mitochondrial isolation and mitochondrial H2O2 production. Moreover,
assays that exhibited a loss of fluorescence during incubation were
removed from the dataset. Thus, 177 samples with data for H2O2

production with succinate as an energy source were used in the final
analysis. A 10.0 ± 0.10 g of finely minced beef longissimus muscle
was added to 40 mL of isolation buffer (220 mM D-Mannitol, 70 mM
sucrose, 2 mM HEPES, 0.5 mg/mL BSA, 1 mM EGTA, pH 7.4) in a 50 mL
conical tube, and then homogenized in an Eberbock blender on low
for 10 s, followed by further homogenization in a Potter–Elvenhjem
vessel with a Teflon pestle of 0.15 mm clearance (Thomas Scientific,
Swedesboro, NJ). A 500 μL aliquot of Trypsin (40 mg/mL) was then

added to the homogenized sample and then vortexed for 10 s, followed
by centrifugation (1000 ×g) at 4 °C for 11 min. The supernatant then
was filtered through glass wool sandwiched between two layers of
cheese cloth into another 50 mL conical tube. Again, the supernatant
was centrifuged (1000 ×g) for 11 min and then filtered, through glass
wool sandwiched between two layers of cheese cloth, into a 35mL cen-
trifuge tube. The supernatant was then centrifuged (10,000 ×g) at 4 °C
for 15 min. The resulting pellet was washed twice by resuspending the
pellet in approximately 25 ml of wash buffer (220 mM D-Mannitol,
70 mM sucrose, 2 mMHEPES, 0.5 mg/mL BSA, pH 7.4) and centrifuging
(10,000 ×g) at 4 °C for 15 min. The final pellet was resuspended in
500 μL of wash buffer. Protein determination was conducted using a
bicinchoninic acid (BCA) protein assay kit (Pierce; Rockford, IL. USA)
with a BSA standard curve.

Mitochondrial H2O2 production was measured following the meth-
od of Bottje et al. (2002) with modifications. The reaction conditions
for H2O2 measurement included the addition of 90 μg of mitochondrial
protein, 52 μM 2′-7′ dichlorfluorescin diacetate, 50 μL H2O2 buffer
containing 145 mM KCL, 30 mM HEPES, 5 mM KH2PO4, 3 mM MgCl2,
and 0.1 mM EGTA (pH = 7.4). Superoxide dismutase (20 units per
well) was added to each well ensure that all O2•− was converted to
H2O2. Succinate (8 mM) provided the reducing equivalents needed
for the electron transport chain. The total volume for each well was
95 μL. The 96-well black microplate was placed in a Spectra MAX M5
(Molecular Devices, Sunnydale, CA) spectrophotometer set at 37 °C
with excitation/emission wavelengths of 480/530 nm. Fluorescence
was read at 10 and 30min. Electron losswas determined as the percent-
age increase in fluorescence units.

2.7. Mitochondrial abundance

Relative mitochondrial abundance was determined by quantifying
the relative abundance of mitochondrial and genomic DNA. Following
the protocol outlined by the manufacturer, DNA was extracted from
muscle samples using PromegaWizard SV 96Genomic DNAPurification
System (Promega Corp, Madison, WI). Special care was taken to ensure
complete digestion of themuscle sample before isolatingDNA. DNAwas
diluted to a final concentration of 50 ng/μL. Mitochondrial DNA was
quantified by real-time RT-PCR using previously published primers for
cattle (Iwata et al., 2011) and genomic DNAwas quantified using previ-
ously published primers for the follicle stimulating hormone receptor
(FSHR) Marson, Ferraz, Meirelles, Baliero, and Eler (2008). Twenty-
five μL reactions were run using 8.5 μL of water, 12.5 μL of Master Mix
containing SYBR Green (Bio-Rad catalog # 170-8893), 1.5 μL of the
forward primer, 1.5 μL of reverse primer, and 1 μL of DNA. The PCR
was performed as described by (Iwata et al., 2011). Initial denaturation
was for 5min at 95 °C followed by 40 cycles at 95 °C, 58 °C, and 72 °C for
30 s each. Amelting curvewas performed to check the specificity of the
products. Relative amounts of mitochondrial DNA were expressed as
the ratio of the threshold cycle of mitochondrial DNA to the ratio of
the threshold cycle for FSHR (genomic DNA).

2.8. Measurement of protein solubility and carbonyl determination

Protein solubility was used as an indicator of functionality of the sar-
coplasmic proteins in the muscle samples. Carbonyl content (protein
oxidation) was spectrophotometrically determined to indicate the
amount of oxidative damage to the sarcoplasmic protein fraction
following the protocol of Keller, Halmes, Hinson, and Pumford (1993)
and Reznick and Packer (1994) with modifications. A 5 ± 0.1 g sample
of frozenminced beef longissimusmusclewas homogenized in 15mLof
Post Rigor Extraction buffer (100 mM Tris, 10 mM EDTA, 0.05% 2-
mercaptoethanol [MCE]; pH = 8.3) in a 35 mL conical tube. Samples
were then centrifuged (27,000 ×g) for 30 min at 4 °C and filtered
through cheesecloth. Protein determination was conducted with a
BCA reaction using a BSA standard curve. Protein solubilitywas reported
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as mg of soluble protein per gram of wet tissue. Two 1 mL aliquots
adjusted to 6 mg/mL in 1 mM EDTA, 50 mM NaHPO4 (pH = 7.4) were
placed in 15 mL conical tubes. To one tube, 4 mL of 10 mM 2, 4-
dinitrophenylhydrazine (DNPH) (Sigma Aldrich Inc., St. Louis, MO) in
2.5 M HCl was added while in the other tube only 4 mL of 2.5 M HCl so-
lution was added. Samples were incubated for 1 h at room temperature
in the dark with the samples being vortexed every 15 min during
incubation. After incubation, 5 mL of 20% trichloroacetic acid (TCA)
was added to both DNPH and HCl samples and incubated on ice for
10 min. After incubation, samples were centrifuged (1000 ×g) at
room temperature for 7 min and then the supernatant was discarded.
Next, 4 mL of 10% TCA was added to the sample, and the sample
was sonicated to ensure that the sample was completely solubilized.
Following sonication, samples were centrifuged (1000 ×g) at room
temperature for 7 min and then the supernatant was discarded. For
both tubes, the sample pellet was then washed three times in a mixture
of ethanol/ethyl acetate (1:1 by volume) followed by sonication and
then centrifugation (1000 ×g) for 7 min at room temperature. The pre-
cipitated protein pellet was then re-dissolved in 2 mL of 6 M guanidine
hydrochloride (Sigma Aldrich Inc., St. Louis, MO) and incubated at 37 °C
for 10 min.

Protein determination was conducted with a BCA reaction using a
BSA standard curve. Carbonyl content was calculated by obtaining the
a reading at 360 nm for the DNPH-treated samples and these samples
were scanned against the samples treated with 2.5 M HCl on a DU640
spectrophotometer (Beckman Coulter Inc., Fullerton, CA). The protein
carbonyl content (nmol/mg protein) was calculated using the molar
extinction coefficient for DNPH is 22,000 M−1 cm−1 and the following
formula: protein carbonyl content = (absorbance × 106/22,000)/mg
protein.

2.9. Statistical analysis

Data were analyzed as a randomized complete block design using
the PROC GLIMMIX procedure of SAS (SAS Inst., Inc., Cary, NC) compar-
ing dark cutting severity classes to normal cohorts. Selection day was
included as a block. Initial analyses indicated that the individual Control
groups were similar (P N 0.05) with regard to all of the traits measured
in the experiment. Thus, data from Control carcasses were pooled
together for comparisons with the various dark cutter classes. Least
squares means for dark cutter classes were generated with the
LSMEANS statement. When F-tests indicated that dark cutting classifi-
cations differed for a trait, means were separated using the DIFF and
LINES options on the LSMEANS statement.

Color stability data collected during simulated retail display were
analyzed as described above with the addition of day of display and its
square and cube as covariates. The squared day of display term was
added to all models. Day of display cubed was added when lack-of-fit
tests indicated quadratic models were not sufficient to describe the
trends in color change. Regression equations were generated for the
change in color parameters during simulated retail display using
contrasts to calculate the day 0 values (intercept) and β-coefficients
describing the change during simulate retail display. When F-tests indi-
cated these values differed across dark cutting classifications, pair-wise
comparisons were made using orthogonal contrasts. A level of 0.05 was
used to determine differences between dark cutter classes and the
pooled normal cohort group.

3. Results and discussion

Least squares means for glycolytic status and muscle pH of
longissimus lumborum steaks from carcasses from each of the dark
cutter classifications are presented in Table 1. Carcasses were visually
identified as dark cutters by trained evaluators at grading and then
classified by severity within each selection day by muscle pH as mea-
sured at grading. Thus, by definition, muscle pH increased (P b 0.05)

as dark cutting severity class increased. Page, Wulf, and Schwotzer
(2001) evaluated 1000 beef carcasses, 80% of which were within the
pH range of 5.40 to 5.59, which is deemed a normal pH for the beef
longissimus lumborum undergoing postmortem metabolism (Lawrie,
1958; Tarrant &Mothersill, 1977). However, the mean normal (cohort)
pH (5.65) observed in this experiment was greater than the maximum
of that range. Additionally, Page et al. (2001) reported that dark cutting
carcasses had a pH range of 5.87 to 6.89. The mean pH (6.89) of the
Severe dark cutting carcasses in the present experiment was the same
as the upper end of the range observed by Page et al. (2001) and the
maximum pH observed in this study was much greater (7.29).

Glycolytic potential is ameasurement of the amount of glycogen and
lactate present in muscle as an indicator of the glycogen that was
present in the living muscle that could potentially be converted to
lactate, consequently, driving the ultimate pH of meat. In the present
experiment, glycolytic potential was highest (P b 0.05) in longissimus
lumborum steaks from the carcasses with normal lean color and
decreased (P b 0.05) progressively as dark cutting severity increased.
As expected, postmortem lactate content differences across dark cutter
classes mirrored those in glycolytic potential.

The relationships between ultimate pH and glycolytic potential,
residual glycogen, and lactate are presented in Fig. 1. In the present
study, the relationship between glycolytic potential and ultimate pH
was curvilinear. Fitting a quadratic equation for the relationship
betweenglycolytic potential andultimate pH resulted in the equation:Ul-
timate pH = 7.44–0.019 × glycolytic potential + 0.000050 × glycolytic
potential squared (P b 0.001; R2=0.85). A glycolytic potential of approx-
imately 100 μmol/g of tissue was required to achieve ultimate pH values
below 6.0. Moreover, the impact of increasing glycolytic potential beyond
approximately 130 μmol/g, which corresponds to a predicted ultimate pH
value of 5.76, had little effect on ultimate pH values. This suggests that
when glycogen levels are not the limiting factor, postmortem glycolysis,
and thus, pH decline is halted by other factors. Correspondingly, residual
glycogen levels were very small in longissimus lumborum samples with
ultimate pH greater than 5.7 (Fig. 1, panel B). Moreover, the maximum
lactate level observed in the present experiment was 104 μmol/g. These
data suggest that perimortem muscle can convert approximately
50 μmol/g (equivalent to 100 μmol/g lactate) of glycogen and glucose to
lactate before glycolysis is halted by factors other than substrate
depletion.

Glycolytic potential assumes all glycogen is converted to lactate
during the conversion of muscle to meat. However, residual glycogen

Table 1
Least squares means (standard error) for glycolytic status and muscle pH of longissimus
lumborum from carcasses classified by dark cutting severity.

Dark cutter
classification

Ultimate
pH1

Glycolytic
potential, μmol/g2

Glycogen,
μmol/g

Lactate,
μmol/g

Control3 5.7 149.73a 30.39a 88.94a

(0.02) (3.50) (0.97) (1.87)
Shady4 6.1 81.68b 4.97b 71.72b

(0.03) (4.62) (1.55) (2.35)
Mild5 6.4 69.12c 3.11b 63.25c

(0.03) (4.72) (1.58) (2.36)
Moderate6 6.6 56.64d 1.84b 53.17d

(0.03) (4.76) 1.62 (2.38)
Severe7 6.9 44.69e 1.36b 41.93e

(0.03) (4.65) (1.56) (2.36)
P N F b0.001 b0.001 b0.001 b0.001

abcde Least squaresmeans, within a column, lacking common superscripts, differ (P b 0.05).
1 Muscle pHmeasured in longissimus lumborum approximately 36 h postmortem after

carcasses were presented for grading.
2 Expressed as lactate equivalents (i.e.) each glucose molecule is equivalent to 2 lactate

molecules.
3 n = 160.
4 n = 40.
5 n = 40.
6 n = 40.
7 n = 40.
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is present, even in the dark cutting classes. Rhoades et al. (2005) and
England, Matarneh, Scheffler, Wachet, and Gerrard (2014) reported
that the phosphofructokinase enzyme (PFK) was pH sensitive and that
as pH decreased, PFK activity was drastically reduced and the enzyme
kinetics indicated a loss of cooperativity. Thus, it appears that loss of
PFK function, rather than substrate depletion, is the limiting factor of
pH decline in beef carcasseswith normal amounts of glycogen. Residual
glycogen content was much greater in steaks from carcasses exhibiting
normal lean color compared to those displaying the dark cutting condi-
tion (P b 0.05). Glycogen content did not differ (P b 0.05) among the
dark cutter severity classes, although the numeric values of the means
did decrease as dark cutting severity increased. Levels of residual

glycogen in Control carcasses were consistent with the residual glyco-
gen reported by Rhoades et al. (2005). Hanson, Kirchofer, and Calkins
(2001) reported similar residual muscle glycogen levels in longissimus
lumborum carcasses exhibiting normal lean color, but reported residual
muscle glycogen levels in longissimus lumborum from dark cutting
carcasses that were much greater than those found in the present
experiment.

Wulf et al. (2002) reported that carcasses with glycolytic potential
values below approximately 100 μmol/g had higher muscle pH values
because the glycogen stores found in the muscle tissue were depleted.
In regards to muscle glycogen levels, Hanson et al. (2001) reported
that dark cutting conditions were more likely to occur in carcasses
when muscle glycogen concentrations are less than 80 mmol/kg.

Lean color characteristics of the longissimus thoracis of carcasses in
each of the dark cutting classes measured after grading are presented
in Table 2. Muscle lightness (L*) was greatest (P b 0.05) in the carcasses
from the Control class and lowest (P b 0.05) in the longissimus
lumborum of the carcasses from the Moderate and Severe dark cutting
classes. Lightness of the longissimus lumborum from carcasses in the
Shady and Mild dark cutter classes were intermediate. Redness of the
12th rib longissimus thoracis cross section was greater in Control
carcasses than in carcasses from the Shady dark cutter class, which
was greater than in Mild dark cutting class carcasses. Redness (a*)
was least (P b 0.05) inModerate and Severe dark cutting class carcasses.
The same trend across dark cutting classifications was detected for b*,
and chroma (color intensity) values. Hue angle values decreased
(P b 0.05) with each increase in dark cutting severity.

Coefficients for regression equations describing the change in color
parameters of the steaks from carcasses in eachof thedark cutter classes
are presented in Table 3. The intercept estimates indicate that on day 0
of display, longissimus lumborum steaks from Control carcasses were
lighter (P b 0.05) than longissimus lumborum steaks from the other
dark cutter classes. Overall, L* values of longissimus lumborum steaks
from carcasses of the Control class declined slightly during the 11 d of
simulated retail display. Lightness of the longissimus lumborum steaks
from carcasses in the dark cutting classes increased slightly through
the first 4 days of display and then decreased to a point slightly lower
than day 0 values.

On day 0 of display, a* values of longissimus lumborum steaks were
greatest (P b 0.05) in carcasses from the Control class and least
(P b 0.05) in carcasses from the Severe andModerate dark cutter classes.
Steaks from carcasses in the Shady dark cutter class had greater
(P b 0.05) than those from carcasses in the Mild dark cutter class,
which did not differ (P N 0.05) from those in the Moderate dark
cutter class. Coefficients describing the change in a* during simulated
retail display were similar among the dark cutter classes, which were

Fig. 1. Plots of Ultimate pHas a function of glycolytic potential (Panel A), residual glycogen
(Panel B), and lactate (Panel C) in longissimus lumborum steaks from beef carcasses
exhibiting varying degrees of the dark cutting condition and normal controls from the
same production lots.

Table 2
Least squaresmeans (standard error) for color traits of longissimus thoracis fromcarcasses
classified by dark cutting severity after grading.

Dark cutter classification L* a* b* Hue angle Chroma

Control1 42.8a 30.4a 22.4a 33.3a 37.8a

(0.83) (0.37) (0.46) (0.28) (0.56)
Shady2 38.0b 27.0b 19.0b 32.2b 33.0b

(0.96) (0.55) (0.63) (0.34) (0.81)
Mild3 37.1b 25.5c 17.4c 31.3c 30.9c

(0.96) (0.55) (0.63) (0.34) (0.81)
Moderate4 35.0c 23.5d 15.3d 30.3d 28.1d

(0.96) (0.55) (0.63) (0.34) (0.81)
Severe5 34.8c 22.4d 14.1d 29.5e 26.5d

(0.96) (0.55) (0.63) (0.34) (0.81)
P N F b0.001 b0.001 b0.001 b0.001 b0.001

abcde Least squaresmeans, within a column, lacking common superscripts, differ (P b 0.05).
1 n = 160.
2 n = 40.
3 n = 40.
4 n = 40.
5 n = 40.
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different (P b 0.05) from those describing change in the Control car-
casses. Whereas longissimus lumborum steaks from Control carcasses
displayed a gradual decrease in a* values during the first 7 days of
simulated retail display, followed by a more rapid decrease through
the end of the display period, redness increased slightly in longissimus
lumborum steaks from carcasses in the Shady, Mild, Moderate, and
Severe dark cutter classes during the first 5 days of display before
declining to a point similar to the day 0 values. Results pertaining to
b* values were similar to those discusses for a* values.

Values for hue angle on day 0 of display were greatest (P b 0.05) in
longissimus lumborum steaks from Control carcasses. Day 0 hue angle
values were greater (P b 0.05) in longissimus lumborum steaks from
the Shady dark cutter classification than the Moderate and Severe
dark cutter classes. Steaks from the Mild dark cutter classification had
higher (P b 0.05) hue angle values than those from the Severe dark
cutter classification. Although statistical differences were detected in
the β-coefficients describing change in hue angle in among steaks
from the Shady, Mild, Moderate, and Severe dark cutter classes, hue
angle changed very little in these classes during simulated retail display
and, thus, these differences were likely of little practical importance. In
longissimus lumborum steaks from the Control carcasses, hue anglewas
stable until day 6 of display and then increased rapidly.

On day 0 of display, chroma was much greater (P b 0.05) in
longissimus lumborum steaks from Control carcasses than in steaks
from all of the other dark classes. The ranking of the remaining dark
cutter classes for chroma was Shady N Mild N Moderate = Severe. In
longissimus lumborum steaks from Control carcasses, chroma de-
creased throughout the simulated retail display period and on day 11
of display, was lower than in longissimus lumborum steaks of the
other dark cutter classes. In all of the other dark cutter classes, Chroma
increased slightly during the first half of the display period and then
decreased slightly during the last half of the display period. Overall
color change (ΔE) increased during display in longissimus lumborum
steaks from Control carcasses, and the rate of change increased as the
time in display increased. Overall color change increased much more
slowly in longissimus lumborum steaks from carcasses in the Mild and
Moderate dark cutter classes. Color change in longissimus lumborum
steaks from Shady dark cutter carcasses was similar to the change
observed in the steaks from Mild and Moderate dark cutter carcasses
through the first 7 days of display, after which the color change in
longissimus lumborum steaks from Shady dark cutter carcasses was
muchmore rapid. In longissimus lumborum steaks of Severe dark cutter
carcasses, color change relative to day 0 values increased for the first
6 days of display and then decreased through the rest of the display
period.

Protein solubility did not differ across dark cutting classes (P N 0.05),
and all dark cutting severity classes had greater (P b 0.05) protein
solubility than the Control carcasses (Table 4). The amount of soluble

Table 3
Regression coefficients for the change in color variables during simulated retail display in
longissimus lumborum steaks from carcasses classified by dark cutter severity.

Dark cutter classification β0
1 β1

2 β2
3 β3

4

L*
Control5 44.63a −0.55b 0.08a −0.006b

(0.91) (0.19) (0.05) (0.003)
Shady6 35.46b 0.51a −0.12ab 0.004ab

(1.04) (0.38) (0.09) (0.006)
Mild7 33.63b 0.30a −0.09ab 0.003ab

(1.04) (0.38) (0.09) (0.006)
Moderate8 31.53b 0.65a −0.18b 0.010a

(1.04) (0.39) (0.09) (0.006)
Severe9 30.24b 1.29a −0.32b 0.017a

(1.04) (0.39) (0.09) (0.006)
P N F b.0001 b.0001 0.0008 0.0015

a*
Control5 35.63a −1.64b 0.25a −0.0218b

(0.57) (0.22) (0.05) (0.003)
Shady6 29.87b 0.78a −0.08b −0.0031a

(0.78) (0.43) (0.10) (0.006)
Mild7 27.20c 0.82a −0.10b 0.0004a

(0.78) (0.43) (0.10) (0.006)
Moderate8 25.13cd 1.11a −0.15b 0.0048a

(0.78) (0.44) (0.11) (0.006)
Severe9 23.94d 1.96a −0.31b 0.0128a

(0.79) (0.44) (0.11) (0.006)
P N F b.0001 b.0001 b.0001 b.0001

b*
Control5 27.56a −0.39b −0.03a –

(0.58) (0.09) (0.01) –
Shady6 22.21b 1.18a −0.13b –

(0.69) (0.18) (0.02) –
Mild7 19.35c 1.18a −0.12b –

(0.69) (0.18) (0.02) –
Moderate8 17.24d 1.29a −0.11b –

(0.69) (0.19) (0.02) –
Severe9 16.04d 1.67a −0.14b –

(0.69) (0.19) (0.02) –
P N F b.0001 b.0001 b.0001 –

Hue angle
Control5 35.06a −0.54d 0.12a –

(0.39) (0.08) (0.01) –
Shady6 33.51b 0.49c −0.03b –

(0.57) (0.15) (0.01) –
Mild7 32.38bc 0.72bc −0.05b –

(0.56) (0.15) (0.01) –
Moderate8 31.30cd 1.03ab −0.08bc –

(0.57) (0.16) (0.01) –
Severe9 30.38d 1.32a −0.11c –

(0.57) (0.16) (0.01) –
P N F b.0001 b.0001 b.0001 –

Chroma
Control5 44.85a −0.55b −0.09a –

(0.78) (0.14) (0.01) –
Shady6 37.22b 1.47a −0.18b –

(0.99) (0.28) (0.02) –
Mild7 33.37c 1.38a −0.15b –

(0.99) (0.28) (0.02) –
Moderate8 30.51d 1.43a −0.13ab –

(1.00) (0.29) (0.02) –
Severe9 28.94d 1.95a −0.17b –

(1.00) (0.29) (0.02) –
P N F b.0001 b.0001 0.0028 –

ΔE
Control5 1.61 0.37b 0.11a –

(0.56) (0.13) (0.01) –
Shady6 1.90 0.50b 0.01b –

(0.68) (0.26) (0.02) –
Mild7 1.76 0.61b −0.02b –

(0.68) (0.26) (0.02) –
Moderate8 1.88 0.91ab −0.06b –

(0.69) (0.26) (0.02) –
Severe9 1.86 1.62a −0.13c –

(0.69) (0.26) (0.02) –

Table 3 (continued)

Dark cutter classification β0
1 β1

2 β2
3 β3

4

P N F 0.997 0.0006 b.0001 –

abcd β-coefficients, within a column and within a trait, lacking common superscript, differ
(P b 0.05).

1 β-coefficient for the intercept of the regression equation describing change in the trait
during simulated retail display, which is equal to the Day 0 value for a given trait.

2 β-coefficient for the linear term of the regression equation describing change in the
trait during simulated retail display.

3 β-coefficient for the quadratic term of the regression equation describing change in
the trait during simulated retail display.

4 β-coefficient for the cubic term of the regression equation describing change in the
trait during simulated retail display.

5 n = 160.
6 n = 40.
7 n = 40.
8 n = 40.
9 n = 40.
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protein in the sarcoplasmic fraction that can be extracted can be used as
an indication of the amount of denaturation that has occurred inmuscle
tissue. Joo, Kauffman, Kim, and Park (1999) reported in pork that
protein solubility increases with increasing ultimate pH.

Mitochondrial abundance was greater (P b 0.05) in longissimus
lumborum steaks from Severe dark cutting carcasses than in longissimus
lumborum from Moderate dark cutting carcasses, which had greater
(P b 0.05) mitochondrial abundance than longissimus lumborum of
Mild dark cutting carcasses. Mild dark cutting carcasses had greater
(P b 0.05) mitochondrial abundance than longissimus lumborum steaks
from Control carcasses. Ashmore, Doerr, Foster, and Carrol (1971) found
no significant differences in mitochondrial protein recovered, specific
gravity ofmitochondrial succinate dehydrogenase, or respiratory control
ratios betweenmitochondria from Controlmuscles andmuscles injected
with epinephrine to induce dark cutting. It must be noted that Ashmore
et al. (1971) induced dark cutting by administering epinephrine, where-
as the dark cutting studied in the present experiment occurred naturally.

Myoglobin concentration was highest (P b 0.05) in the longissimus
lumborum steaks from carcasses in the Shady, Mild, and Moderate
dark cutting classes. Steaks from carcasses in theModerate dark cutting
classes had greater myoglobin concentration than longissimus
lumborum steaks from Control carcasses with the myoglobin concen-
tration of longissimus lumborum steaks from Severe dark cutting
carcasses being intermediate. Hunt and Hedrick (1977) reported that
dark cutting carcasses had greater myoglobin concentrations than
normal carcasses, and suggested that this could be a result of uncon-
trolled vasodilatation when animals undergo stressful conditions, thus
resulting in blood pooling within the muscle. However, greater mito-
chondrial abundance coupled with greater myoglobin concentration
in longissimus lumborum steaks from dark cutting carcasses in the
present experiment suggests that animals predisposed to the dark
cutting condition have greater oxidative capacity. It is not clearwhether
this greater oxidative capacity is a function of a shift towards redmuscle
fibers in carcasses affected by the dark cutting condition. Another
explanation may be that the increased mitochondrial abundance and
myoglobin concentration is an adaptive response to the inefficiency of
the mitochondrial function.

Previous work has identified site-specific defects in the electron
transport chain resulting in electron loss during respiration (Bottje
et al., 2002; Iqbal et al., 2004; Ojano-Dirain et al., 2004). Measurements

of electron losswere greater (P b 0.05) for longissimus lumborumsteaks
from carcasses in all dark cutter classes than in longissimus lumborum
steaks from carcasses in the Control class (Table 4). Loss of electrons
during electron transport has been associated with decreased feed
efficiency in chickens(Bottje et al., 2002), cattle (Kolath, Kerley,
Golden, & Keisler, 2006), and pigs (Grubbs et al., 2013).

It must be noted that succinate is a substrate which enters the
electron transport chain at Complex II (Bottje et al., 2002). Thus, the
role of Complex I of the electron transport chain in relation to the dark
cutting condition cannot be assessed from the present experiment.
Moreover, the location of the defects resulting in inefficiencies leading
to the dark cutting condition cannot be ascertained from the present
experiment. Further investigation of the electron transport chain with
various substrates and inhibitors in samples from dark cutting and
normal beef samples to identify the specific locations of defects contrib-
uting to the dark cutting condition is warranted.

Perhaps the inefficiencies in energy production during electron
transport exhibited by animals with site specific defects also contribute
to the dark cutting condition. During times of stress, glycogen stores are
mobilized to meet increased energy demands. We speculate that
animals with a greater number of less efficient mitochondria would
ultimately mobilize a greater proportion of their glycogen stores during
times of stress than animals with more efficient mitochondria.

Because the electrons lost during electron transport result in the for-
mation of reactive oxygen species, it was thought that longissimus
lumborum steaks with mitochondria possessing these defects might
have greater oxidative damage than those not possessing those defects.
Thus, protein carbonyls were quantified in the sarcoplasmic fraction of
the steaks. Protein carbonyl levels did not differ (P N 0.05) across dark
cutting classes. It has been reported that metabolic factors associated
withmuscle tissue give rise to the formation of reactive oxygen species,
thus resulting in carbonyl formation, and decreased sulfhydryl content
of the proteins (Hoffman & Hamm, 1978; Martinaud et al., 1997;
Xiong, 2000).

The drastic differences in lean color between the dark cutting classes
precluded the use of themethods for determining oxygen consumption
and nitric oxidemetmyoglobin reducing ability of intact or groundmeat
described by AMSA (2012) because the initial levels of oxymyoglobin
and metmyoglobin in the sample (the initial measurements in the
calculations for oxygen consumption and nitric oxide metmyoglobin

Table 4
Least squares means (standard error) for biochemical traits of longissimus lumborum from carcasses classified by dark cutting severity.

Dark cutter
classification

Protein solubility, % Mitochondrial
abundance1

Myoglobin, mg/g Protein carbonyls2,
μmol/mg

Electron loss3 Bloomed OMb4, % Initial MMb5, %

Control6 21.12b 0.60d 4.36c 2.18 11.02b 91.54a 70.60a

(0.48) (0.01) (0.10) (0.17) (5.35) (1.08) (0.93)
Shady7 22.77a 0.60cd 4.78a 2.30 19.91a 79.56b 59.47b

(0.56) (0.01) (0.14) (0.24) (5.97) (1.40) (1.07)
Mild8 23.43a 0.61c 4.91a 2.20 18.33a 72.97c 55.78c

(0.56) (0.01) (0.14) (0.24) (6.00) (1.40) (1.07)
Moderate9 22.91a 0.63b 4.68ab 2.21 17.84a 67.07d 51.25d

(0.56) (0.01) (0.14) (0.24) (5.89) (1.40) (1.07)
Severe10 22.94a 0.64a 4.46bc 2.60 18.66a 63.25e 49.35e

(0.56) (0.01) (0.14) (0.24) (5.85) (1.40) (1.07)
P N F b0.001 b0.001 b0.001 0.38 0.007 b0.001 b0.001

abcdeLeast squares means, within a column, lacking common superscripts, differ (P b 0.05).
1 Ratio of abundance of mitochondrial DNA to abundance of genomic DNA detected by real-time PCR.
2 Carbonyls detected in the sarcoplasmic fraction.
3 Electrons lost during incubationwith succinate as an energy substrate. Reactive oxygen specieswere converted toH2O2. Data are expressed as the percentage increase in flourescence

units.
4 Percentage of surface myoglobin present in the oxymyoglobin state following 2 h at 4 °C exposed to atmospheric oxygen.
5 Percentage of surface myoglobin in the metmyoglobin state following incubation in 0.3% NaNO2 at 20 °C for 30 min.
6 n = 160 for all variables except electron loss; n = 91 for electron loss.
7 n = 40 for all variables except electron loss; n = 20 for electron loss.
8 n = 40 for all variables except electron loss; n = 19 for electron loss.
9 n = 40 for all variables except electron loss; n = 22 for electron loss.
10 n = 40 for all variables except electron loss; n = 24 for electron loss.
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reducing activity, respectively) were much lower in longissimus
lumborum steaks from the dark cutting classes than in the longissimus
lumborum steaks from Control carcasses. As a result, the percentage of
change in these traits was not comparable across dark cutting classes.
Thus, the level of oxymyoglobin on the steak surface after allowing
two hours for oxygenation (bloomed OMb) was used as a measure
oxygen consumption. Moreover, the initial amount of surface
metmyoglobin (initial metmyoglobin) after incubation with sodium
nitrite was used as a measurement of resistance to oxidation, which
has been suggested an optimal measure of reducing ability (Mancini,
Seyfert, & Hunt, 2008).

As noted earlier, bloomed oxymyoglobin levels were much greater
(P b 0.05) in longissimus lumborum from the Control class than all
other dark cutting severity classes. As dark cutting severity increased,
the concentration of bloomed oxymyoglobin decreased. This is likely a
result of greater functionality in the respiration machinery at higher
muscle pH. Bendall (1972) reported that mitochondrial oxidation is
50–75% higher at a pH of 7.2 than at a pH of 5.8. As a result, greater
respiration by mitochondria maintained a lower concentration of
oxymyoglobin by competing with myoglobin for the available oxygen.
In agreement, Lawrie (1958) concluded that increased concentration
of deoxymyoglobin was due to increased oxygen consumption and
decreased availability of oxygen to bind to myoglobin in meat.

Differences detected across dark cutting classes for nitric oxide
metmyoglobin reducing activity were similar to those detected of
bloomed oxymyoglobin. Decreased initial metmyoglobin formation in
dark cutting carcasses compared to Control carcasses could be due to
greater functionality of reducing mechanisms at higher muscle pH.
Giddings (1974) suggested that mitochondria or sub mitochondrial
particles could potentially play a role inmetmyoglobin reduction in vac-
uum packed meat cuts by scavenging residual oxygen, thus eliminating
the potential for low-oxygen-mediated myoglobin oxidation. Addition-
ally, the mitochondria could serve as a source of reducing equivalents
for mitochondrial pyridine nucleotide reduction, which would provide
the NADH necessary for metmyoglobin reductase to function properly
(Bodwell, Pearson, & Fennel, 1965; Giddings, 1977). Ashmore, Parker,
and Doerr (1972) reported that mitochondria in normal muscle tissue
rapidly lost capacity for respiration due to a decreased muscle pH and
respiration was maintained at higher levels and for longer time periods
in dark cutting beef.

4. Conclusions

Results from this study suggest that dark cutting carcasses favored
oxidative metabolism. Carcasses classified as more Severe dark cutters
had greater mitochondrial abundance than those classified as less
Severe dark cutters or controls. Moreover, dark cutting carcasses gener-
ally had greater myoglobin concentrations than controls. Carcasses
classified as dark cutters also exhibited decreased mitochondrial
efficiency compared to controls selected from the same production
lots. These conditions appeared to combine to cause glycogen depletion
in the animals producing dark cutting carcasses.

The dark cutting condition has long been attributed to depletion of
muscle glycogen in response to stressful stimuli prior to slaughter. How-
ever, the dark cutting condition occurs only sporadically and, generally,
only a small number of animals in a given production lot will deplete
glycogen and produce dark cutting carcasses, although all animals in
the production lot were exposed to the same stimuli. Thus the depletion
of glycogen is not solely due to the occurrence of the stimuli. The results
of thepresent experiment suggest that greater dependence on oxidative
metabolism, coupled with less efficient energy production by respira-
tion may predispose animals to glycogen depletion, and consequently,
the dark cutting condition, because a greater amount of glycogen
would need to be utilized to provide the ATP needed to fuel the stress
response.

Conflict of interest

There are no conflicts of interest. Mention of trade names, proprie-
tary products, or specified equipment does not constitute a guarantee
or warranty by the USDA and does not imply approval to the exclusion
of other products that may be suitable. USDA is an equal opportunity
provider and employer.

Acknowledgments

The authors are grateful to Patty Beska, Kristen Ostdiek, and Pat
Tammen of the US Meat Animal Research Center for their assistance in
the execution of this experiment and to Jody Gallagher of the US Meat
Animal Research Center for her secretarial assistance.

References

AMSA (2012).Meat color measurement guidelines. Champaign, IL: American Meat Science
Association.

Ashmore, C. R., Carrol, F., Doerr, L., Tompkins, G., Stokes, H., & Parker, W. (1973).
Experimental prevention of dark-cutting meat. Journal of Animal Science, 36, 33–36.

Ashmore, C. R., Doerr, L., Foster, G., & Carrol, F. (1971). Respiration of mitochondria
isolated from dark-cutting beef. Journal of Animal Science, 33, 574–577.

Ashmore, C. R., Parker, L., & Doerr, L. (1972). Respiration of mitochondria isolated from
dark cutting beef: Postmortem changes. Journal of Animal Science, 34, 46–48.

Bendall, J. R. (1972). Consumption of oxygen by muscles of beef animals and related
species, and its effect on color of meat. I. Oxygen-consumption in pre-rigor muscle.
Journal of the Science of Food and Agriculture, 23(1), 61–72.

Bodwell, C. F., Pearson, A. M., & Fennel, R. A. (1965). Post-mortem changes in muscle. III.
Histochemical observations in beef and pork. Journal of Food Science, 30, 944–954.

Bottje, W., Iqbal, M., Tang, Z., Cawthon, D., Okimoto, R., Wing, T., & Cooper, M. (2002).
Association of mitochondrial function with feed efficiency within a single genetic
line of male broilers. Poultry Science, 81(4), 546–555.

Calkins, C. R., & Hodgen, J. M. (2007). A fresh look at meat flavor. Meat Science, 77(1),
63–80.

Cawthon, D., McNew, R., Beers, K., & Bottje, W. (1999). Evidence of mitochondrial
dysfunction in broilers with pulmonary hypertension syndrome (Ascites): Effect of
t-butyl hydroperoxide on hepatic mitochondrial function, glutathione, and related
thiols. Poultry Science, 78(1), 114–124.

England, E. M., Matarneh, S. K., Scheffler, T. L., Wachet, C., & Gerrard, D. E. (2014). pH
inactivation of phosphofructokinase arrests postmortem glycolysis. Meat Science,
98(4), 850–857.

Giddings, G. G. (1974). Reduction of ferrimyoglobin in meat. CRC Critical Reviews in Food
Technology, 5, 143–173.

Giddings, G. G. (1977). The basis of color in muscle foods. CRC Critical Reviews in Food
Science and Nutrition, 9, 81–114.

Grubbs, J. K., Fritchen, A. N., Huff-Lonergan, E., Dekkers, J. C. M., Gabler, N. K., & Lonergan,
S. M. (2013). Divergent genetic selection for residual feed intake impacts mitochon-
dria reactive oxygen species production in pigs. Journal of Animal Science, 91(5),
2133–2140.

Hanson, D. J., Kirchofer, K., & Calkins, C. R. (2001). The role of muscle glycogen in dark
cutting beef Available from bhttp://digitalcommons.unl.edu/animalscinbcr/298.N.
(Accessed February 10, 2013).

Hoffman, K., & Hamm, R. (1978). Sulfhydryl and disulfide groups in meats. Advanced Food
Research, 24, 1–111.

Hunt, M. C., & Hedrick, H. B. (1977). Chemical, physical, and sensory characteristics of
bovine muscle from four different quality groups. Journal of Food Science, 42(3),
716–720.

Iqbal, M., Pumford, N., Tang, Z., Lassiter, K., Ojano-Dirain, C., Wing, T., ... Bottje, W. (2005).
Compromised liver mitochondrial function and complex activity in low feed efficient
broilers are associated with higher oxidative stress and differential protein expres-
sion. Poultry Science, 84(6), 933–941.

Iqbal, M., Pumford, N. R., Tang, Z. X., Lassiter, K., Wing, T., Cooper, M., & Bottje, W. (2004).
Low feed efficient broilers within a single genetic line exhibit higher oxidative stress
and protein expression in breast muscle with lower mitochondrial complex activity.
Poultry Science, 83(3), 474–484.

Iwata, H., Goto, H., Tanaka, H., Sakaguchi, Y., Kimura, K., Kuwayama, T., & Monji, Y. (2011).
Effect of maternal age on mitochondrial DNA copy number, ATP content and IVF
outcome of bovine oocytes. Reproduction Fertility Development, 23(3), 424–432.

Joo, S. T., Kauffman, R. G., Kim, B. C., & Park, G. B. (1999). The relationship of sarcoplasmic
and myofibrillar protein solubility to colour and water holding capacity in porcine
longissimus muscle. Meat Science, 52, 291–297.

Keller, R. J., Halmes, N. C., Hinson, J. A., & Pumford, N. R. (1993). Immunochemical
detection of oxidized proteins. Chemical Research in Toxicology, 6, 430–433.

King, D. A., Shackelford, S. D., &Wheeler, T. L. (2011). Relative contributions of animal and
muscle effects to variation in beef lean color stability. Journal of Animal Science, 89,
1434–1451.

Kolath,W. H., Kerley, M. S., Golden, J.W., & Keisler, D. H. (2006). The relationship between
mitochondrial function and residual feed intake in Angus steers. Journal of Animal
Science, 84(4), 861–865.

172 R.O. McKeith et al. / Meat Science 116 (2016) 165–173

http://refhub.elsevier.com/S0309-1740(16)30006-7/rf0005
http://refhub.elsevier.com/S0309-1740(16)30006-7/rf0005
http://refhub.elsevier.com/S0309-1740(16)30006-7/rf0010
http://refhub.elsevier.com/S0309-1740(16)30006-7/rf0015
http://refhub.elsevier.com/S0309-1740(16)30006-7/rf0015
http://refhub.elsevier.com/S0309-1740(16)30006-7/rf0020
http://refhub.elsevier.com/S0309-1740(16)30006-7/rf0020
http://refhub.elsevier.com/S0309-1740(16)30006-7/rf0025
http://refhub.elsevier.com/S0309-1740(16)30006-7/rf0025
http://refhub.elsevier.com/S0309-1740(16)30006-7/rf0025
http://refhub.elsevier.com/S0309-1740(16)30006-7/rf0030
http://refhub.elsevier.com/S0309-1740(16)30006-7/rf0030
http://refhub.elsevier.com/S0309-1740(16)30006-7/rf0035
http://refhub.elsevier.com/S0309-1740(16)30006-7/rf0035
http://refhub.elsevier.com/S0309-1740(16)30006-7/rf0040
http://refhub.elsevier.com/S0309-1740(16)30006-7/rf0040
http://refhub.elsevier.com/S0309-1740(16)30006-7/rf0045
http://refhub.elsevier.com/S0309-1740(16)30006-7/rf0045
http://refhub.elsevier.com/S0309-1740(16)30006-7/rf0045
http://refhub.elsevier.com/S0309-1740(16)30006-7/rf0045
http://refhub.elsevier.com/S0309-1740(16)30006-7/rf0050
http://refhub.elsevier.com/S0309-1740(16)30006-7/rf0050
http://refhub.elsevier.com/S0309-1740(16)30006-7/rf0050
http://refhub.elsevier.com/S0309-1740(16)30006-7/rf0055
http://refhub.elsevier.com/S0309-1740(16)30006-7/rf0055
http://refhub.elsevier.com/S0309-1740(16)30006-7/rf0060
http://refhub.elsevier.com/S0309-1740(16)30006-7/rf0060
http://refhub.elsevier.com/S0309-1740(16)30006-7/rf0065
http://refhub.elsevier.com/S0309-1740(16)30006-7/rf0065
http://refhub.elsevier.com/S0309-1740(16)30006-7/rf0065
http://digitalcommons.unl.edu/animalscinbcr/298.%3E
http://refhub.elsevier.com/S0309-1740(16)30006-7/rf0070
http://refhub.elsevier.com/S0309-1740(16)30006-7/rf0070
http://refhub.elsevier.com/S0309-1740(16)30006-7/rf0075
http://refhub.elsevier.com/S0309-1740(16)30006-7/rf0075
http://refhub.elsevier.com/S0309-1740(16)30006-7/rf0075
http://refhub.elsevier.com/S0309-1740(16)30006-7/rf0080
http://refhub.elsevier.com/S0309-1740(16)30006-7/rf0080
http://refhub.elsevier.com/S0309-1740(16)30006-7/rf0080
http://refhub.elsevier.com/S0309-1740(16)30006-7/rf0085
http://refhub.elsevier.com/S0309-1740(16)30006-7/rf0085
http://refhub.elsevier.com/S0309-1740(16)30006-7/rf0085
http://refhub.elsevier.com/S0309-1740(16)30006-7/rf0090
http://refhub.elsevier.com/S0309-1740(16)30006-7/rf0090
http://refhub.elsevier.com/S0309-1740(16)30006-7/rf0095
http://refhub.elsevier.com/S0309-1740(16)30006-7/rf0095
http://refhub.elsevier.com/S0309-1740(16)30006-7/rf0095
http://refhub.elsevier.com/S0309-1740(16)30006-7/rf0100
http://refhub.elsevier.com/S0309-1740(16)30006-7/rf0100
http://refhub.elsevier.com/S0309-1740(16)30006-7/rf0105
http://refhub.elsevier.com/S0309-1740(16)30006-7/rf0105
http://refhub.elsevier.com/S0309-1740(16)30006-7/rf0105
http://refhub.elsevier.com/S0309-1740(16)30006-7/rf0110
http://refhub.elsevier.com/S0309-1740(16)30006-7/rf0110
http://refhub.elsevier.com/S0309-1740(16)30006-7/rf0110


Lawrie, R. A. (1958). Physiological stress in relation to dark cutting beef. Journal of Science
and Food Agriculture, 9(11), 721–727.

Mancini, R. A., Seyfert, M., & Hunt, M. C. (2008). Effects of data expression, sample
location, and oxygen partial pressure on initial nitric oxide metmyoglobin formation
and metmyoglobin-reducing-activity measurement in beef muscle. Meat Science,
79(2), 244–251.

Marson, E. P., Ferraz, J. B. S., Meirelles, F. V., Baliero, J. C. C., & Eler, J. P. (2008). Effects of
polymorphisms of LHR and FSHR genes on sexual precocity in Bos taurus× Bos indicus
beef composite beef population. Genetics and Molecular Research, 7(1), 243–251.

Martinaud, A., Mercier, Y., Marinova, P., Tassy, C., Gatellier, P., & Renerre, M. (1997).
Comparison of oxidative processes onmyofibrillar proteins from beef duringmatura-
tion and by different model oxidation systems. Journal of Agricultural and Food
Chemistry, 45, 2481–2487.

Miller, K. D., Ellis, M., Sutton, D. S., McKeith, F. K., & Wilson, E. R. (2000). Effects of live
animal sampling procedures and sample storage on the glycolytic potential of
porcine longissimus muscle samples. Journal of Muscle Foods, 11, 61–67.

Monin, G., & Sellier, P. (1985). Pork of low technological quality with a normal rate of
muscle pH in the immediate post-mortem period: The case of the Hampshire
breed. Meat Science, 13, 49–63.

Moore, M. C., Gray, G. D., Hale, D. S., Kerth, C. R., Griffin, D. B., Savell, J. W., ... O'Connor, M.
E. (2012). National Beef Quality Audit-2011: In-plant survey of targeted carcass
characteristics related to quality, quantity, value, and marketing of fed steers and
heifers. Journal of Animal Science, 90, 5143–5151.

NAMP (2003). The meat buyers guide. Reston, VA: North American Meat Processors
Association.

Ojano-Dirain, C. P., Iqbal, M., Cawthon, D., Swonger, S., Wing, T., Cooper, M., & Bottje, W.
(2004). Determination of mitochondrial function and site-specific defects in electron
transport in duodenal mitochondria in broilers with low and high feed efficiency.
Poultry Science, 83(8), 1394–1403.

Page, J. K., Wulf, D. M., & Schwotzer, T. R. (2001). A survey of beef muscle color and pH.
Journal of Animal Science, 79(3), 678–687.

Reznick, A. Z., & Packer, L. (1994). Oxidative damage to proteins: Spectrophotometric
method for carbonyl assay. Methods in Enzymology, 233, 357–363.

Rhoades, R. D., King, D. A., Jenschke, B. E., Behrends, J. M., Hively, T. S., & Smith, S. B.
(2005). Postmortem regulation of glycolysis by 6-phosphofructokinase in bovine M.
Sternocephalicus pars mandibularis. Meat Science, 70(4), 621–626.

Shackelford, S. D., Wheeler, T. L., & Koohmaraie, M. (2003). On-line prediction of yield
grade, longissimus muscle area, preliminary yield grade, adjusted yield grade, and
marbling score ising the MARC beef carcass image analysis system. Journal of
Animal Science, 81, 150–155.

Souza, C. M., Boler, D. D., Clark, D. L., Kutzler, L. W., Holmer, S. F., Summerfield, J. W., ...
Killefer, J. (2011). The effects of high pressure processing on pork quality, palatability,
and further processed products. Meat Science, 87(4), 419–427.

Tarrant, P. V., & Mothersill, C. (1977). Glycolysis and associated changes in beef carcasses.
Journal of Science and Food Agriculture, 28, 739–749.

USDA (1996). Institutional Meat Purchase Specifications Fresh Beef Series 100 USDA Agricul-
tural Marketing Service. Available from: USDA. (1996). Available from: https://www.
ams.usda.gov/sites/default/files/media/IMPS_100_Fresh_Beef%5B1%5D.pdf Accessed
February 11, 2016.

Wulf, D. M., Emnett, R. S., Leheska, J. M., & Moeller, S. J. (2002). Relationships among
glycolytic potential, dark cutting (dark, firm, and dry) beef, and cooked beef palatabil-
ity. Journal of Animal Science, 80(7), 1895–1903.

Xiong, Y. L. (2000). Protein oxidation and implications for muscle food quality. In E. A.
Decker, C. Faustman, & C. J. Lopez-Bote (Eds.), Antioxidants in Muscle Foods. New
York, NY: Wiley.

173R.O. McKeith et al. / Meat Science 116 (2016) 165–173

http://refhub.elsevier.com/S0309-1740(16)30006-7/rf0115
http://refhub.elsevier.com/S0309-1740(16)30006-7/rf0115
http://refhub.elsevier.com/S0309-1740(16)30006-7/rf0120
http://refhub.elsevier.com/S0309-1740(16)30006-7/rf0120
http://refhub.elsevier.com/S0309-1740(16)30006-7/rf0120
http://refhub.elsevier.com/S0309-1740(16)30006-7/rf0120
http://refhub.elsevier.com/S0309-1740(16)30006-7/rf0125
http://refhub.elsevier.com/S0309-1740(16)30006-7/rf0125
http://refhub.elsevier.com/S0309-1740(16)30006-7/rf0125
http://refhub.elsevier.com/S0309-1740(16)30006-7/rf0130
http://refhub.elsevier.com/S0309-1740(16)30006-7/rf0130
http://refhub.elsevier.com/S0309-1740(16)30006-7/rf0130
http://refhub.elsevier.com/S0309-1740(16)30006-7/rf0135
http://refhub.elsevier.com/S0309-1740(16)30006-7/rf0135
http://refhub.elsevier.com/S0309-1740(16)30006-7/rf0135
http://refhub.elsevier.com/S0309-1740(16)30006-7/rf0140
http://refhub.elsevier.com/S0309-1740(16)30006-7/rf0140
http://refhub.elsevier.com/S0309-1740(16)30006-7/rf0140
http://refhub.elsevier.com/S0309-1740(16)30006-7/rf0145
http://refhub.elsevier.com/S0309-1740(16)30006-7/rf0145
http://refhub.elsevier.com/S0309-1740(16)30006-7/rf0145
http://refhub.elsevier.com/S0309-1740(16)30006-7/rf0150
http://refhub.elsevier.com/S0309-1740(16)30006-7/rf0150
http://refhub.elsevier.com/S0309-1740(16)30006-7/rf0155
http://refhub.elsevier.com/S0309-1740(16)30006-7/rf0155
http://refhub.elsevier.com/S0309-1740(16)30006-7/rf0155
http://refhub.elsevier.com/S0309-1740(16)30006-7/rf0160
http://refhub.elsevier.com/S0309-1740(16)30006-7/rf0160
http://refhub.elsevier.com/S0309-1740(16)30006-7/rf0165
http://refhub.elsevier.com/S0309-1740(16)30006-7/rf0165
http://refhub.elsevier.com/S0309-1740(16)30006-7/rf0170
http://refhub.elsevier.com/S0309-1740(16)30006-7/rf0170
http://refhub.elsevier.com/S0309-1740(16)30006-7/rf0175
http://refhub.elsevier.com/S0309-1740(16)30006-7/rf0175
http://refhub.elsevier.com/S0309-1740(16)30006-7/rf0175
http://refhub.elsevier.com/S0309-1740(16)30006-7/rf0175
http://refhub.elsevier.com/S0309-1740(16)30006-7/rf0180
http://refhub.elsevier.com/S0309-1740(16)30006-7/rf0180
http://refhub.elsevier.com/S0309-1740(16)30006-7/rf0185
http://refhub.elsevier.com/S0309-1740(16)30006-7/rf0185
https://www.ams.usda.gov/sites/default/files/media/IMPS_100_Fresh_Beef%5B1%5D.pdf
https://www.ams.usda.gov/sites/default/files/media/IMPS_100_Fresh_Beef%5B1%5D.pdf
http://refhub.elsevier.com/S0309-1740(16)30006-7/rf0195
http://refhub.elsevier.com/S0309-1740(16)30006-7/rf0195
http://refhub.elsevier.com/S0309-1740(16)30006-7/rf0195
http://refhub.elsevier.com/S0309-1740(16)30006-7/rf0200
http://refhub.elsevier.com/S0309-1740(16)30006-7/rf0200
http://refhub.elsevier.com/S0309-1740(16)30006-7/rf0200

	Mitochondrial abundance and efficiency contribute to lean color of dark cutting beef
	
	Authors

	Mitochondrial abundance and efficiency contribute to lean color of dark cutting beef
	1. Introduction
	2. Materials and methods
	2.1. Sample handling and preparation
	2.2. Simulated retail display
	2.3. pH and total myoglobin concentration
	2.4. Oxygen consumption and nitric oxide metmyoglobin reducing ability
	2.5. Glycolytic potential
	2.6. Mitochondrial isolation and mitochondrial H2O2 production
	2.7. Mitochondrial abundance
	2.8. Measurement of protein solubility and carbonyl determination
	2.9. Statistical analysis

	3. Results and discussion
	4. Conclusions
	Conflict of interest
	Acknowledgments
	References


