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Effects of In-Feed Chlortetracycline Prophylaxis in Beef Cattle on
Animal Health and Antimicrobial-Resistant Escherichia coli

Getahun E. Agga, John W. Schmidt, Terrance M. Arthur

U.S. Department of Agriculture, Agricultural Research Service, Roman L. Hruska U. S. Meat Animal Research Center, Clay Center, Nebraska, USA

ABSTRACT

Concerns have been raised that in-feed chlortetracycline (CTC) may increase antimicrobial resistance (AMR), specifically tetra-
cycline-resistant (TETr) Escherichia coli and third-generation cephalosporin-resistant (3GCr) E. coli. We evaluated the impact of
a 5-day in-feed CTC prophylaxis on animal health, TETr E. coli, and 3GCr E. coli. A control group of cattle (n � 150) received no
CTC, while a CTC group (n � 150) received in-feed CTC (10 mg/lb of body weight/day) from the 5th to the 9th day after feedlot
arrival. Over 25% (38/150) of the animals in the control group developed illnesses requiring therapeutic treatment with antimi-
crobials critically important to human medicine. Only two animals (1.3%) in the CTC group required such treatments. Fecal
swab and pen surface occurrences of generic E. coli (isolated on media that did not contain antimicrobials of interest and were
not isolated based on any specific resistance), TETr E. coli, and 3GCr E. coli were determined on five sampling occasions: arrival
at the feedlot, 5 days posttreatment (5 dpt), 27 dpt, 75 dpt, and 117 dpt. On 5 dpt, TETr E. coli concentrations were higher for the
CTC group than the control group (P < 0.01). On 27 dpt, 75 dpt, and 117 dpt, TETr E. coli concentrations did not differ between
groups. 3GCr E. coli occurrences did not differ between control and CTC groups on any sampling occasion. For both groups,
generic, TETr, and 3GCr E. coli occurrences were highest on 75 dpt and 117 dpt, suggesting that factors other than in-feed CTC
contributed more significantly to antimicrobial-resistant E. coli occurrence.

IMPORTANCE

The occurrence of human bacterial infections resistant to antimicrobial therapy has been increasing. It has been postulated that
antimicrobial resistance was inevitable, but the life span of the antimicrobial era has been prematurely compromised due to the
misuse of antimicrobials in clinical and agricultural practices. Direct evidence relating the use of antimicrobials in livestock pro-
duction to diminished human health outcomes due to antimicrobial resistance is lacking, and the U.S. Food and Drug Adminis-
tration has taken an approach to maximize therapeutic efficacy and minimize the selection of resistant microorganisms through
judicious use of antimicrobials. This study demonstrated that prophylactic in-feed treatment of chlortetracycline administered
for 5 days to calves entering feedlots is judicious, as this therapy reduced animal morbidity, reduced the use of antimicrobials
more critical to human health, and had no long-term impact on the occurrence of antimicrobial-resistant E. coli.

In-feed and in-water uses of medically important antimicrobials
for the control and prevention of diseases have become contro-

versial, because it is argued that they unnecessarily expose healthy
animals to medically important antimicrobials and possibly in-
crease the spread of antimicrobial resistance (AMR) (1–3). Re-
stricting the use of medically important antimicrobials in food
animal production has been suggested as a means to reduce AMR
(1, 3–5). Conversely, studies have reported only small quantitative
risks of human-pathogenic bacteria acquiring AMR due the use of
antimicrobials in food animal production (6–9). By the end of
2016, in-feed and in-water applications of medically important
antimicrobials for growth promotion purposes will be banned in
the United States (10). Henceforth, the U.S. Food and Drug Ad-
ministration (FDA) will require a Veterinary Feed Directive for all
in-feed and in-water applications of medically important antimi-
crobials (11). Regardless, concerns remain that restricting the
prophylactic in-feed and in-water uses of medically important
antimicrobials may negatively affect animal welfare, increase ther-
apeutic veterinary uses of antimicrobials of higher importance to
human medicine, and increase zoonotic pathogen load and trans-
mission (12).

Beef cattle are susceptible to bovine respiratory disease (BRD)
during weaning and transitioning into feedlots (13, 14). In-feed
chlortetracycline (CTC) is an option for the management of BRD

currently employed at U.S. cattle feedlots (15, 16). CTC, tetracy-
cline (TET), and oxytetracycline compose the naturally occurring
first-generation tetracycline antimicrobial class (here referred to
as tetracyclines). In 2014, tetracyclines, considered important to
human medicine, were the largest portion of antimicrobials sold
in the United States for use in food-producing animals (17, 18).

TET resistance in Escherichia coli is commonly associated with
the presence of either tet(A) or tet(B) genes (19, 20). The third-
generation cephalosporin (3GC) class of antimicrobials is consid-
ered critically important to human medicine (18). 3GC resistance
in E. coli can be conferred by blaCMY-2 harbored by IncA/C plas-
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mids, which also contain tet(A) (21). Thus, it is possible that in-
feed CTC use in feedlot cattle may coselect and thereby increase
the occurrence of 3GC resistance (22). The objective of this study
was to evaluate the effect of a one-time 5-day in-feed CTC pro-
phylaxis on animal health (morbidity and body weight gain), oc-
currence of tetracycline-resistant (TETr) E. coli, and occurrence of
3GC-resistant (3GCr) E. coli over a 4-month follow-up period.

MATERIALS AND METHODS
Experimental design. Three hundred weaned calves (150 steers and 150
heifers, born between 3 August 2014 and 30 September 2014) from the
U.S. Meat Animal Research Center (USMARC) cow-calf production sys-
tem were used for this trial. Calves arrived at the USMARC feedlot on 9
February 2015. Calves (blocked on birth date, arrival body weight, and
sex) were randomly assigned to two groups (150 calves/treatment group).
On 14 February 2015, 150 calves (5 pens with 30 calves/pen) received
CTC-medicated feed (Aureomycin, chlortetracycline complex equivalent
to 10 mg/lb of body weight/day of chlortetracycline; Zoetis, Kalamazoo,
MI) (CTC group) for five consecutive days (last CTC-medicated feed was
distributed on 18 February 2015). The remaining 150 calves were used as
a control (5 pens with 30 calves/pen) and received feed without CTC
throughout the experiment (control group). Empty pens separated the
groups from each other and from nonstudy animals. Three empty pens
were included in this study (empty group). The calves were fed standard
diets typical of feedlot operations, according to the feedlot feeding proto-
col (see Table S1 in the supplemental material). Body weights were mea-
sured upon arrival and subsequently during sampling occasions. Com-
mon watering troughs were shared between adjacent pens in the same
treatment group. Animals were monitored by cattle operations staff and
received normal veterinary care as required. Animals that required any
therapeutic antimicrobial treatment were removed from the experiment.
The U.S. Meat Animal Research Center Institutional Animal Care and Use
Committee approved this experiment (USMARC IACUC no. 3040-
42000-014-07).

Sample collection and processing. Fecal swabs, pen surface material,
feed, and water samples were collected on five occasions: at feedlot arrival
(arrival, 9 February 2015), 5 days posttreatment (5 dpt, 23 February 2015),
27 days posttreatment (27 dpt, 17 March 2015), 75 days posttreatment (75
dpt, 4 May 2015), and 117 days posttreatment (117 dpt, 15 June 2015).
Fecal swabs were collected directly from the rectum using a foam-tipped
swab (VWR International, Buffalo Grove, IL). Swabs were placed into
15-ml conical tubes containing 5 ml of tryptic soy broth with phosphate
buffer (TSB-PO4; 30 g of TSB, 2.31 g of KH2PO4, and 12.54 g of K2HPO4

per liter; Becton Dickinson, Sparks, MD). Each pen was divided into sim-
ilarly sized quadrants. In each quadrant, the pen surface was sampled by
using a gloved hand to place handfuls of material from the pen surface
(i.e., avoiding obvious fecal pats and no digging) into a sterile bag from
multiple locations within the quadrant until approximately 25 g was ob-
tained. Thus, four samples per pen were collected from all pens, including
the three empty pens. One water trough sample from each trough (4 for
CTC group and 3 for control group) was collected by wetting a sterile
sponge (Whirl-Pak; Nasco, Fort Atkinson, WI) in the trough, sponging
the interior sides of the trough, including the water line, and then placing
the sponge into a sterile bag. In addition, plastic bags were used to collect
one fresh feed sample per pen immediately after feed was dispensed from
the truck into the feed bunk, prior to contact by any animals. All samples
were transported to the laboratory and were processed on the same day.

Fecal swabs were homogenized by vortexing for 30 s, after which a
1-ml aliquot was removed for enumeration. The remaining fecal suspen-
sion was enriched at 42°C for 8 h and then held at 4°C until secondary
enrichments were performed the following day. Water trough sponge
samples were homogenized by hand massaging the sample bags for 15 s,
and a 1-ml aliquot was removed for enumeration. Homogenized water
trough sponge samples were combined with 80 ml of TSB-PO4 and then
incubated at 25°C for 2 h, 42°C for 6 h, and held at 4°C until secondary

enrichments were performed the following day. For pen surface materials
and feed samples, 10 g of the samples was transferred to filter barrier bags,
and 90 ml of TSB-PO4 was added. From each sample suspension, a 1-ml
aliquot was removed and used for enumeration. The remaining pen sur-
face and feed sample suspensions were then enriched at 25°C for 2 h, 42°C
for 6 h, and held at 4°C until secondary enrichments were performed the
following day.

Enumeration and detection of generic, 3GCr, and TETr E. coli. Ge-
neric (isolated on media that did not contain antimicrobials of interest
and were not isolated based on any specific resistance), 3GCr, and TETr E.
coli bacteria were each enumerated and detected as previously described
(23, 24). Briefly, 50 �l of the enumeration aliquot or an appropriate dilu-
tion of the enumeration aliquot was spirally plated using Autoplate 4000
(Spiral Biotech, Norwood, MA) onto CHROMagar E. coli (DRG Interna-
tional, Mountainside, NJ) with no supplemental antimicrobials (CEC),
CEC supplemented with 2 mg/liter cefotaxime (CEC � CTX), or CEC
supplemented with 32 mg/liter tetracycline (CEC � TET). Antimicrobials
were obtained from Sigma-Aldrich Corp., St. Louis, MO, and the antimi-
crobial concentrations were based on previous reports (19, 23, 24). Tet-
racycline was used in agar medium at 32 mg/liter, rather than the 16
mg/liter resistance breakpoint used by the National Antimicrobial Resis-
tance Monitoring System (25), as in our experience, 16 mg/liter tetracy-
cline in agar medium results in large numbers of false-positive colonies.
Agar plates were incubated at 37°C for 24 h. Blue colonies were considered
presumptive E. coli colonies and were enumerated with an automated
colony counter (ProtoCOL 3; Synbiosis, Frederick, MD) (19, 23, 24).

Secondary enrichments were prepared by inoculating 0.5 ml of the
primary enrichment cultures into 2.5 ml of MacConkey broth (Becton
Dickinson, Sparks, MD) with no supplemental antimicrobials (MCB), 2.5
ml of MCB supplemented with 2.4 mg/liter cefotaxime (MCB � CTX), or
2.5 ml of MCB supplemented with 38.4 mg/liter tetracycline (MCB �
TET), as previously described (19, 23, 24). After incubation at 42°C for 18
h, MCB, MCB � CTX, and MCB � TET secondary enrichment cultures
were streaked on CEC, CEC � CTX, and CEC � TET agar plates, respec-
tively, and incubated at 37°C for 18 h to detect generic, 3GCr, and TETr E.
coli, respectively. From each plate, up to two presumptive colonies were
inoculated into TSB and incubated overnight at 37°C. Colony lysates were
prepared from overnight enrichment cultures using BAX DNA buffer
(DuPont Qualicon, Inc., Wilmington, DE), according to the manufactur-
er’s instructions. The colony lysates were used to confirm presumptive E.
coli by using multiplex PCR targeting lacY, lacZ, cyd, and uidA genes (26).

Statistical analysis. The effect of CTC prophylaxis on body weight was
evaluated by multilevel mixed-effects linear regression with a maximum
likelihood estimation method in which treatment and sampling date were
modeled as fixed effects, while repeated measures of animals over time
and pen were modeled as random effects. The impact of CTC prophylaxis
on the morbidity of the animals was assessed by survival analysis with Cox
proportional hazards regression model, and hazard ratio (HR) was calcu-
lated to compare the hazard of morbidity between the CTC and control
groups (27). Times to event of morbidity (in days) were recorded as they
occurred and later used in the survival analysis. End of the study was
considered the last day of the follow-up period.

In order to analyze the data sets, zero values were replaced using the
following criteria. The convention was to assign concentration values to
samples that were prevalence positive (above the lower limit of detection
[LLOD] for the prevalence assay) but enumeration negative (below the
lower limit of enumeration [LLOE] for the enumeration assay). For sam-
ples that fell into this category, the midpoint between detection limits for
each sample type was used to fill the zero values. Samples that were below
the LLOD for the prevalence assay were assigned a value 1 log less than the
LLOD for the prevalence assay for each sample type.

Fecal swab sample enumeration plate counts were converted to log10

CFU per swab values. For fecal swab samples, the LLOE was 2.00 log10

CFU/swab, and the theoretical LLOD was 0.00 log10 CFU/swab. Fecal
swab samples with no E. coli colonies on enumeration plates but with
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E. coli colonies on prevalence plates were judged prevalence positive and
enumeration negative (PP-EN) and were assigned a concentration of 1.00
log10 CFU/swab, because these samples were assumed to have concentra-
tions between 0.00 and 2.00 log10 CFU/swab. Fecal swab samples with no
E. coli colonies on enumeration and prevalence plates were judged prev-
alence negative (PN) and were assigned a concentration of �1.00 log10

CFU/swab, because these samples were assumed to have concentrations of
�0.00 log10 CFU/swab.

Pen surface sample and feed sample enumeration plate counts were
converted to log10 CFU per gram of sample values. For pen surface and
feed samples, the LLOE was 2.30 log10 CFU/g, and the LLOD was �1.00
log10 CFU/g. Pen surface and feed PP and EN samples were assigned a
concentration of 0.65 log10 CFU/g, since these samples were assumed to
have concentrations between �1.00 and 2.30 log10 CFU/g. Pen surface
and feed PN samples were assigned a concentration of �2.00 log10 CFU/g,
since these samples were assumed to have concentrations of less than
�1.00 log10 CFU/g.

Each water trough sponge sample was assumed to contain 20 ml of
liquid. Water trough sample enumeration plate counts were converted to
log10 CFU per milliliter of water values. For water trough samples, the
LLOE was 1.30 log10 CFU/ml, and the LLOD was �1.30 log10 CFU/ml.
Water trough PP-EN samples were assigned a concentration of 0.00 log10

CFU/ml, since these samples were assumed to have concentrations be-
tween �1.30 and 1.30 log10 CFU/ml. Water trough PN samples were
assigned a concentration of �2.30 log10 CFU/ml, since these samples were
assumed to have concentrations of less than �1.30 log10 CFU/ml.

For each sampling occasion, pen-level generic, TETr, and 3GCr E. coli
mean and 95% confidence intervals were determined for fecal swab and
pen surface sample concentrations from multilevel mixed-effects linear
regression models, as described above. For each sampling occasion, pen-
level generic, TETr, and 3GCr E. coli fecal swab and pen surface mean
prevalences (%) were determined from multilevel mixed-effects logistic
regression models. Multiple comparisons were adjusted for by Bonferroni
method. In this experiment, our experimental unit was pen, as CTC was
given in the feed. Our unit of analysis was individual samples (fecal swabs,
pen surface, and feed or water samples) for the concentration data or E.
coli colony for the prevalence data. All statistical analyses were conducted
in STATA 13 (StataCorp LP, College Station, TX). P values less than 5% or
95% confidence intervals were used to make inferences.

RESULTS
Description of animal characteristics. At arrival, mean body
weight, age, and prior antimicrobial treatments did not signifi-
cantly (P � 0.05) differ between the two treatment groups (Table
1). Out of the 12 calves that received antimicrobial treatments
prior to the study, the most common (9/12) antimicrobial admin-
istered was ceftiofur sodium (Naxcel; Zoetis).

Mean body weight, morbidity, and therapeutic antimicrobi-
als administered. Mean body weights did not significantly differ
(P � 0.05) between the treatment groups across all sampling oc-
casions (see Fig. S1 in the supplemental material). Cumulative
morbidities were 38 and 2 animals in the control and CTC groups,
respectively, and survival analysis showed that cattle in the control
group were 28 times more likely to become sick than those in the
CTC group (HR, 27.9; 95% confidence interval [CI], 6.7 to 116.5;
P � 0.001) (Fig. 1). Pneumonia (37/40 animals) was the most
common diagnosis, and tildipirosin (a macrolide) was the most
common (38/40 animals) therapeutic antimicrobial treatment
given (see Table S2 in the supplemental material).

Fecal swab occurrences of generic, TETr, and 3GCr E. coli.
Arrival fecal swab generic E. coli concentrations did not differ (P �
0.98) between the control (4.73 log10 CFU/swab) and CTC (4.81
log10 CFU/swab; Fig. 2A) groups. Similarly, arrival fecal swab

TETr E. coli concentrations did not differ (P � 0.76) between the
control (3.12 log10 CFU/swab) and CTC (3.34 log10 CFU/swab)
groups (Fig. 2B). At 5 dpt, CTC group fecal swab generic E. coli
(4.70 log10 CFU/swab) and TETr E. coli (4.25 log10 CFU/swab)
concentrations were higher (P � 0.01) than their respective con-
trol group concentrations (generic E. coli, 3.51 log10 CFU/swab;
TETr E. coli, 1.86 log10 CFU/swab). The control group 5 dpt fecal
swab generic and TETr E. coli concentrations were lower (P �
0.01) than the arrival concentrations. Conversely, the CTC group
5 dpt fecal swab generic E. coli concentration did not differ (P �
0.99) from the arrival concentration, while the 5 dpt TETr E. coli
concentration was higher (P � 0.01) than that during arrival. At
27 dpt, fecal swab generic E. coli concentrations did not differ (P �
0.93) between groups, nor did concentrations differ from their
respective arrival concentrations (control group, P � 1.00; CTC
group, P � 0.69). Similarly, 27 dpt fecal swab TETr E. coli concen-
trations did not differ between groups (P � 0.99) and did not
differ (control group, P � 0.35; CTC group, P � 0.79) from their
respective arrival concentrations (Fig. 2A and B).

For both groups, 75 dpt fecal swab generic E. coli concentra-

FIG 1 Kaplan-Meier survival plot for the evaluation of the effect of chlortet-
racycline (CTC) prophylaxis on cattle morbidity. Solid line represents the CTC
group. Dashed line represents the control group.

TABLE 1 Animal characteristics at feedlot arrival

Variable
Control
group

CTC
group

P
value

No. of animals 150 150
No. of females 60 90 0.001a

No. that received prior antimicrobial
treatment

8 4 0.234a

Oxytetracycline 0 1
Oxytetracycline and tildipirosin 1 0
Ceftiofur sodium 6 3
Florfenicol 1 0

Body wt (mean � SE) (kg) 181.3 � 2.3 180.9 � 2.3 0.893b

Age (mean � SE) (mo) 5.6 � 0.0 5.5 � 0.0 0.678b

a P values are based on likelihood ratio test comparing the proportions between the two
groups.
b P values are based on two sample t test comparing the mean values between the two
groups.
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tions (control group, 6.13 log10 CFU/swab; CTC group, 5.94 log10

CFU/swab) increased compared to earlier sampling occasions
(P � 0.05) but did not differ from each other (P � 0.63). Likewise,
75 dpt fecal swab TETr E. coli concentrations (control group, 5.22
log10 CFU/swab; CTC group, 5.04 log10 CFU/swab) were higher
than earlier sampling occasions (P � 0.05) but did not differ from
each other (P � 0.90). At 117 dpt, the control group fecal swab
concentration of generic E. coli was higher (P � 0.01) than that of
the CTC group concentration, but the TETr E. coli concentration
did not differ (P � 0.05) between groups. Both generic E. coli and
TETr E. coli concentrations were higher (P � 0.05) than their
respective earlier sampling occasions (Fig. 2).

For 3GCr E. coli, fecal swab prevalences (%) were analyzed,
because enumerable concentrations (�2.00 log10 CFU/swab)
were present in only 0.1% (2 of 1,352 swabs) of the fecal swabs
(data not shown). Fecal swab 3GCr E. coli prevalences did not
differ (P � 0.90) between the control and CTC groups during any
sampling occasion (Fig. 3). For both groups, fecal swab 3GCr E.
coli prevalences on 75 dpt and 117 dpt were �70% and were
higher (P � 0.01) than those during arrival, 5 dpt, and 27 dpt
(�10%).

Pen surface occurrences of generic, TETr, and 3GCr E. coli.
Arrival pen surface generic E. coli concentrations in the control
(1.14 log10 CFU/g) and CTC (1.32 log10 CFU/g) groups did not

differ (P � 0.97, Fig. 4A). Arrival pen surface TETr E. coli concen-
trations in the control (1.29 log10 CFU/g) and CTC (1.24 log10

CFU/g) groups did not differ (P � 1.00, Fig. 4B). At 5 dpt, pen
surface generic E. coli concentrations for the control (2.53 log10

FIG 2 Pen-level fecal swab concentrations of generic (A) and tetracycline-
resistant (B) E. coli. Solid line represents the CTC group. Dashed line repre-
sents the control group. Error bars represent 95% confidence intervals for the
mean concentrations.

FIG 3 Pen-level fecal swab prevalences of third-generation cephalosporin-resis-
tant E. coli. Solid line represents the CTC group. Dashed line represents the control
group. Error bars represent 95% confidence intervals for the mean concentrations.

FIG 4 Pen-level pen surface concentrations of generic (A) and tetracycline-
resistant (B) E. coli. Solid line represents the CTC pens. Dashed line represents
the control pens. Short dashed line represents empty pens. Error bars represent
95% confidence intervals for the mean concentrations.
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CFU/g) and CTC (3.47 log10 CFU/g) groups did not differ (P �
0.13) from each other but were higher (P � 0.05) than their re-
spective arrival concentrations (Fig. 4A). At 5 dpt, the CTC group
pen surface TETr E. coli concentration (3.23 log10 CFU/g) was
higher (P � 0.01) than the control group concentration (1.56
log10 CFU/g; Fig. 4B). The CTC group 5 dpt TETr E. coli concen-
tration was (P � 0.01) higher than its arrival concentration, while
the control group 5 dpt TETr E. coli concentration did not differ
(P � 1.00) from its arrival concentration (Fig. 4B).

Control and CTC group pen surface generic E. coli concentra-
tions on 27 dpt, 75 dpt, and 117 dpt ranged from 5.04 to 6.62 log10

CFU/g and did not differ (P � 0.49) from each other within a
sampling occasion (Fig. 4A). However, these generic E. coli con-
centrations were higher (P � 0.01) than their respective arrival
and 5 dpt concentrations. Similarly, control and CTC group pen
surface TETr E. coli concentrations on 27 dpt, 75 dpt, and 117 dpt
ranged from 4.75 to 5.71 log10 CFU/g and did not differ (P � 0.06)
from each other within a sampling occasion, but they were higher
(P � 0.01) than their respective arrival and 5 dpt concentrations
(Fig. 4B).

Arrival empty group pen surface generic E. coli (1.53 log10

CFU/g) and TETr E. coli (1.24 log10 CFU/g) concentrations did
not differ (P � 0.85) from their respective concentrations for the
control and CTC groups (Fig. 4A). On all subsequent sampling
occasions, empty pen surface generic E. coli concentrations ranged
from 1.45 to 2.03 log10 CFU/g, while TETr E. coli concentrations
ranged from 0.65 to 1.32 log10 CFU/g (Fig. 4). None of these
empty pen group concentrations differed (P � 0.05) from their
respective empty pen group arrival concentrations. On 5 dpt,
empty group pen surface generic E. coli and TETr E. coli concen-
trations did not differ (P � 0.58) from their respective control
group concentrations but were lower (P � 0.02) than their respec-
tive CTC group concentrations. On 27 dpt, 75 dpt, and 117 dpt,
generic and TETr E. coli concentrations from pen surface samples
in the empty pens were lower (P � 0.01) than their respective
control and CTC group pen surface concentrations (Fig. 4).

3GCr E. coli pen surface prevalences were analyzed because
only 1.2% (3 of 260 samples) of the pen surface samples had enu-
merable (�2.30 log10 CFU/g) 3GCr E. coli concentrations (data
not shown). Control and CTC group pen surface 3GCr E. coli
prevalences did not differ (P � 0.18) on any sampling occasion
(Fig. 5). Pen surface 3GCr E. coli prevalences did not differ (P �
0.18) between control (60%), CTC (30%), and empty (58%)
group pens at arrival. On 75 dpt and 117 dpt, 3GCr E. coli preva-
lences in the control and CTC group pens were higher (P � 0.01)
than in empty pens (Fig. 5).

Occurrences of generic, TETr, and 3GCr E. coli in feed and
water troughs. At arrival, 5 dpt, and 27 dpt feed generic E. coli
concentrations ranged from 2.53 to 3.62 log10 CFU/g (see Table S3
in the supplemental material). Notably, for both groups, the feed
generic E. coli concentrations on 75 dpt and 117 dpt were higher,
between 5.01 and 5.13 log10 CFU/g. Within a sampling occasion,
similar feed generic E. coli concentrations were present in the two
groups except on 27 dpt. However, this difference is due to a single
prevalence-positive enumeration-negative sample in the CTC
group (see Table S3). Feed TETr E. coli concentrations at arrival, 5
dpt, and 27 dpt ranged from 0.98 to 1.91 log10 CFU/g. For both
groups, feed TETr E. coli concentrations on 75 dpt and 117 dpt
were between 3.79 and 3.88 log10 CFU/g, higher than those on
their preceding sampling occasions. 3GCr E. coli was not detected

in feed during arrival, 5 dpt, 27 dpt, and 75 dpt sampling occa-
sions. Interestingly, on the 117 dpt sampling occasion, 3GCr E. coli
was prevalent in 100% of the feed samples (see Table S3).

At arrival, 5 dpt, and 27 dpt, water trough generic E. coli con-
centrations ranged from �0.33 to 0.45 log10 CFU/ml (see Table S4
in the supplemental material). On 75 dpt and 117 dpt, water
trough generic E. coli concentrations were higher than those on
their preceding sampling occasions, ranging from 1.83 to 3.01
log10 CFU/ml. Similarly, at arrival, 5 dpt, and 27 dpt, water trough
TETr E. coli concentrations ranged from �0.77 to 0.00 log10 CFU/
ml, while on 75 dpt and 117 dpt, TETr E. coli concentrations were
higher, ranging from 0.59 to 1.81 log10 CFU/ml. 3GCr E. coli was
not enumerable from any water trough sample. 3GCr E. coli was
not detected in water trough samples during sampling occasions
at arrival, 5 dpt, and 27 dpt. 3GCr E. coli was prevalent in 2 of 7
water trough samples from 75 dpt and 5 of 7 water trough samples
from 117 dpt (see Table S4).

DISCUSSION

To our knowledge, two experimental studies have previously in-
vestigated the impact of in-feed CTC applications at beef cattle
feedlots on fecal TETr E. coli levels. Studies published in 2008 by
Platt et al. (28) and in 2013 by Kanwar et al. (22) found that in-feed
CTC increased fecal TETr E. coli detection in the short term. Sim-
ilarly, in the current study, the TETr E. coli concentration from the
fecal swab samples at 5 dpt for the CTC group was 2.39 log10

CFU/swab higher than the control group concentration (Fig. 2B).
We found that the 5 dpt CTC group fecal swab generic E. coli
concentration was significantly (P � 0.01) higher than the 5 dpt
control group concentration. A graph of fecal swab concentra-
tions (Fig. 2B) clearly demonstrates that in-feed CTC administra-
tion increased the fecal swab TETr E. coli concentration immedi-
ately after treatment but that this concentration did not differ
from the control group concentration by 27 dpt. Figure 2 also
indicates that the fecal swab TETr E. coli concentration increase
that occurred between arrival and 5 dpt was responsible for the
CTC group 5 dpt fecal swab generic E. coli concentration remain-
ing the same as the arrival concentration (Fig. 2A).

FIG 5 Pen-level pen surface prevalences of third-generation cephalosporin-
resistant E. coli. Solid line represents the CTC group. Dashed line represents
the control group. Short dashed line represents empty pens. Error bars repre-
sent 95% confidence intervals for the mean concentrations.
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Platt et al. (28) reported a transient reduction in the prevalence
of fecal 3GCr E. coli following in-feed CTC treatment, while Kan-
war et al. (22) reported increased 3GCr E. coli occurrence when a
veterinary 3GC, ceftiofur, was administered followed by in-feed
CTC administration. In contrast to both studies, we found that
fecal swab 3GCr E. coli prevalences did not differ significantly (P �
0.90) between groups on any sampling occasion (Fig. 3). More
importantly, our study provides substantial original evidence that
factors other than in-feed CTC treatment had a greater impact on
TETr and 3GCr E. coli shed by feedlot cattle. For both groups, 75
dpt and 117 dpt fecal swab TETr E. coli concentrations were sig-
nificantly higher than the 5 dpt CTC group concentration (Fig. 2).
Similarly, 75 dpt and 117 dpt 3GCr E. coli fecal swab prevalences
(�70%) were significantly higher than arrival, 5 dpt, and 27 dpt
prevalences (�10%, Fig. 3) in both groups.

Concerns also have been raised that in-feed CTC could in-
crease the occurrence of antimicrobial resistance in pen surface
soil, possibly reinoculating cattle with resistant bacteria or in-
creasing the occurrence of antimicrobial resistance in manure,
which may impact crops or the environment (29–32). To our
knowledge, the impact of in-feed CTC on beef cattle feedlot pen
surface generic, TETr, and 3GCr E. coli occurrences has not been
reported. We conclude that factors other than in-feed CTC ad-
ministration had a greater impact on pen surface TETr E. coli.
While the CTC group 5 dpt pen surface TETr E. coli concentration
was significantly higher (P � 0.01) than the 5 dpt control group
concentration, 27 dpt, 75 dpt, and 117 dpt pen surface TETr E. coli
concentrations for both control and CTC groups were all signifi-
cantly higher than the 5 dpt CTC group pen surface TETr E. coli
concentration (Fig. 4). Graphing each group’s pen surface generic
and TETr E. coli concentrations (Fig. 4) led us to conclude that the
deposition of manure (feces and urine) in occupied pens (control
and CTC groups) was the principal factor contributing to the
increase in TETr E. coli concentrations compared to the empty
pens. We note that for all three groups, TETr E. coli concentrations
were proportional to the generic E. coli concentrations (Fig. 4).
We postulate that the temporal increase in E. coli concentrations
in occupied pens was due to the deposited E. coli populations
themselves, increased nutrients from the deposited manure, or a
combination of these factors. These findings and postulations are
consistent with recent studies that found antimicrobial-resistant
bacteria and antimicrobial resistance genes increased in soils from
pens holding cattle that had not received antibiotics and soils fer-
tilized with manure from dairy cattle that had not received anti-
biotics (30, 33).

We can only speculate on the factors driving the observed in-
creases in TETr and 3GCr E. coli occurrence as sampling occasions
progressed. Generic, TETr, and 3GCr E. coli occurrences in feed
may be a factor because as sampling occasions progressed, generic,
TETr, and 3GCr E. coli occurrences in the feed samples also in-
creased (see Table S3 in the supplemental material). A similar
temporal increase in generic, TETr, and 3GCr E. coli occurrences
was observed in water trough samples as well (see Table S4 in the
supplemental material). We note that the feed and water trough
samplings were limited (10 feed samples and seven water trough
samples were obtained at each sampling occasion). We also note
that E. coli is known to be present in feed and that E. coli on the
cattle head and in the oral cavity could contaminate water troughs
(34–37). Furthermore, we also noted that the ration fed to study
animals at times included the antimicrobials tylosin and monen-

sin (see Table S1 in the supplemental material); however, the pres-
ence of these antimicrobials in feed should not impact E. coli due
to the intrinsic resistance of E. coli to these antimicrobials (38–41).
Other factors potentially impacting the occurrences of E. coli in-
clude ambient temperature and season (42–44). Clearly, confi-
dent attribution of antimicrobial-resistant E. coli occurrences to
specific factors requires additional study.

Morbidities, mostly due to respiratory diseases, were 28 times
more likely for control group cattle than the CTC group cattle
(Fig. 1; see also Table S2 in the supplemental material). Associat-
ing economic losses due to morbidity was beyond the scope of the
study, but bovine respiratory disease morbidities can inflict signif-
icant economic losses on producers and processors (14). We note
that 39 of 40 morbid cattle were treated with therapeutic antimi-
crobials (ceftiofur, enrofloxacin, tildipirosin, or tulathromycin)
from antimicrobial classes (3GCs, fluoroquinolones, and macro-
lides) categorized as “highest priority critically important antimi-
crobials” by the World Health Organization (WHO), while CTC
is placed in a lower classification, “highly important” (18). A com-
parison of the AMR impacts of in-feed CTC prophylaxis to ther-
apeutic treatments with highest priority critically important anti-
microbials was beyond the scope of this study, and we are not
aware of any published studies directly addressing this specific
topic. Regardless, research is needed to address this gap, because
therapeutic doses of some critically important antimicrobials have
been theorized to contribute to antimicrobial resistance more
than in-feed CTC (30, 45).

In summary, we found that CTC administered in-feed for
5-days to feedlot beef cattle (i) reduced morbidity, (ii) reduced the
therapeutic use of highest priority critically important antimicro-
bials, (iii) temporarily increased fecal TETr E. coli concentration,
(iv) temporarily increased pen surface TETr E. coli concentration,
(v) did not impact long-term fecal TETr E. coli concentration, (vi)
did not impact long-term pen surface TETr E. coli concentration,
(vii) did not impact fecal 3GCr E. coli prevalence, and (viii) did not
impact pen surface 3GCr E. coli prevalence. We also found that
regardless of in-feed CTC exposure, generic, TETr, and 3GCr E.
coli occurrences were highest during the last two sampling occa-
sions, 75 and 117 days after in-feed CTC administration ceased.
We conclude that other undefined factors contributed more sig-
nificantly to TETr and 3GCr E. coli occurrence than the use of
in-feed CTC.
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