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Abstract

Despite being well-known for regulating angiogenesis in both normal and tumorigenic 

environments, vascular endothelial growth factor A (VEGFA) has been recently implicated in 

male fertility, namely in the maintenance of spermatogonial stem cells (SSC). The VEGFA gene 

can be spliced into multiple distinct isoforms that are either angiogenic or antiangiogenic in 

nature. Although studies have demonstrated the alternative splicing of VEGFA, including the 

divergent roles of the two isoform family types, many investigations do not differentiate between 

them. Data concerning VEGFA in the mammalian testis are limited, but the various angiogenic 

isoforms appear to promote seminiferous cord formation and to form a gradient across which cells 

may migrate. Treatment with either antiangiogenic isoforms of VEGFA or with inhibitors to 

angiogenic signaling impair these processes. Serendipitously, expression of KDR, the primary 

receptor for both types of VEGFA isoforms, was observed on male germ cells. These findings led 

to further investigation of the way that VEGFA elicits avascular functions within testes. Following 

treatment of donor perinatal male mice with either antiangiogenic VEGFA165b or angiogenic 

VEGFA164 isoforms, seminiferous tubules were less colonized following transplantation with 

cells from VEGFA165b-treated donors. Thus, VEGFA165b and possibly other antiangiogenic 

isoforms of VEGFA reduce SSC number either by promoting premature differentiation, inducing 

cell death, or by preventing SSC formation. Thus, angiogenic isoforms of VEGFA are 

hypothesized to promote SSC self-renewal, and the divergent isoforms are thought to balance one 

another to maintain SSC homeostasis in vivo.
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Introduction

Spermatogonial stem cell (SSC) biology is an emergent subject within reproduction with the 

aim of improving our understanding of male fertility. Whereas many factors have been 

identified that regulate SSC maintenance, little is known about the mechanisms by which 

they function. Recently, a complicated candidate has been implicated in the regulation of 

SSC maintenance: vascular endothelial growth factor A (VEGFA; Caires et al. 2012). 

VEGFA is a powerful mitogen that binds to a number of receptors and co-receptors to elicit 

its effects and was originally identified as having a role in regulating blood vessel 

development (Ferrara and Henzel 1989). VEGFA-targeting drugs are even available as 

anticancer therapeutics, since VEGFA expression is up-regulated in tumorigenesis, a highly 

angiogenic process (Ellis and Hicklin 2008; Ferrara et al. 2004; Goel and Mercurio 2013). 

VEGFA has been the topic of recent reviews with respect to cancer (de Brot et al. 2015; 

Eswarappa and Fox 2015; Kofler and Simons 2015; Papadimitriou et al. 2015; Ricci et al. 

2015). What complicates the Vegfa gene and makes it an outstanding candidate in SSC 

biology, however, is that it can be spliced into divergent isoforms (Bates et al. 2002) with 

distinct physiological functions that are thought either to promote SSC self-renewal or to 

reduce SSC number (Caires et al. 2012). Thus, we plan here to review the literature with a 

particular focus on rodents and the ways that (1) the testis contributes to SSC maintenance 

(2) VEGFA is spliced and functions, and (3) alternative VEGFA splicing contributes to 

regulating the fate of SSCs.

How do cells of the testis contribute to maintenance of SSCs?

The mammalian testis is a repository of many different cell types (both somatic and germ) 

that function in tight collaboration to ensure male fertility. Coordinated effort between the 

various cells allows for the establishment of a specialized niche to foster germ cell 

development (Shinohara et al. 2001). This niche is home to the SSCs, a subpopulation of the 

undifferentiated type A spermatogonia. Type A spermatogonia are divided into three 

subtypes: Asingle or As, Apaired or Apr (2 cells connected by a cytoplasmic bridge), and 

Aaligned or Aal (chains of 4, 8, or 16 cells; de Rooij 1998; Oakberg 1971). SSCs possess the 

ability either to self-renew to maintain a viable stem cell pool or eventually to migrate away 

from the SSC niche to differentiate into mature sperm (Fig. 1). Whether murine 

spermatogenesis is defined by asymmetric or symmetric stem cell division has been debated, 

although Nakagawa and others have demonstrated not only that SSCs divide into two 

daughters and follow the definition of symmetrical division, but also that some became KIT

+ (kit oncogene), suggesting a commitment to differentiation. Work from this laboratory has 

also demonstrated that transit-amplifying cells (Apr and Aal) can detach from their 

cytoplasmic bridges and begin self-renewal when the stem cell pool has been compromised 

(Klein et al. 2010; Nakagawa et al. 2007, 2010). Thus, it is the balance of self-renewal and 

differentiation that is imperative for sustained male fertility resulting in continued 

spermatogenesis (Fig. 1). Chen and Liu (2015) have presented an elegant overview of 

factors contributing to SSC maintenance.

Primordial germ cells (PGCs) are the earliest precursor cells to SSCs and migrate from the 

hindgut to the gonad during mouse embryonic development (Mintz and Russell 1957; 
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Ozdzenski 1969). PGCs become gonocytes (also known as prospermatogonia or 

prespermatogonia) when they are enclosed within seminiferous cords formed by Sertoli and 

peritubular myoid cells, an event that occurs at embryonic day (E) 10.5 in mice and E11.5 in 

rats (de Rooij and Russell 2000). Gonocytes are mitotically arrested at E17 until 

proliferation resumes between postnatal day (P) 1.5 and P3 (Peters 1970). Between P4 and 

P5, gonocytes migrate from the center of seminiferous cords outward towards the basement 

membrane and are thought to transition to SSCs during this time in rodents (McGuinness 

and Orth 1992a; Orth et al. 2000). Transplantation of germ cells from either mice or rats at 

P4-P5 results in robust donor-derived spermatogenesis when microinjected into germ-cell-

depleted recipients (McLean et al. 2003; Orwig et al. 2002). Proliferation and migration 

have been shown to occur simultaneously; however, there is no guarantee either will happen. 

These cells may also begin to differentiate or undergo apoptosis (Culty 2009; McGuinness 

and Orth 1992a, 1992b). The cells that do not migrate away from the seminiferous cords are 

thought to be especially likely to undergo apoptosis (Roosen-Runge and Leik 1968).

The largest component of seminiferous cords and tubules is the Sertoli cell, which, 

consequently, is also the major constituent of the SSC niche given that it houses and 

provides nourishment to male germ cells. However, structural support is also provided by 

peritubular myoid cells (the smooth-muscle-like cells) that surround seminiferous tubules 

and provide contractions to transport spermatozoa into the epididymides for further 

maturation and subsequent storage. Located within the interstitium, the area between the 

seminiferous tubules, are the androgen-producing Leydig cells, macrophages, and testicular 

vasculature. Interestingly, SSC clusters have been noted to be located in portions of the 

seminiferous tubules that border the interstitium rather than other tubules (Yoshida et al. 

2007).

Whereas much is clearly known about PGCs and testis development, little is understood 

with regard to SSC biology; however, many factors have been identified that either promote 

SSC self-renewal or differentiation. Glial-cell-line-derived neurotrophic factor (GDNF) is 

considered to be the major effector of SSC self-renewal (Kubota et al. 2004; Meng et al. 

2000; Naughton et al. 2006; Viglietto et al. 2000), together with fibroblast growth factor 2 

(FGF2; Kanatsu-Shinohara et al. 2005). Each of these growth factors is produced by and 

released from Sertoli cells and bind their respective receptors on male germ cells. FGF2 (and 

other FGF ligands) appear to have their signal transduction mediated through FGFR1 

(Takashima et al. 2015), whereas GDNF binds to a heterodimer receptor comprised of ret 

proto-oncogene (RET) and GDNF family receptor alpha 1 (GFRA1; Airaksinen and Saarma 

2002; Suzuki et al. 2009). The binding of GDNF to its receptors initiates signaling through 

both the MEK (mitogen-activated protein kinase [MAPK]/extracellular signal-regulated 

kinase [ERK] kinase), ERK and phosphatidyl inositol 3-kinase (PI3K)/protein kinase B 

(Akt) pathways, whereas FGF2 signaling is mediated via the MAPK cascade. Other 

effectors of SSC renewal are expressed by germ cells: B cell CLL/lymphoma 6, member B 

(BCL6B; Oatley et al. 2006), nanos homolog 2/3 (NANOS2/3; Sada et al. 2009), forkhead 

box O1 (FOXO1; Goertz et al. 2011), and ets variant 5 (ETV5; Chen et al. 2005). 

Chemokine (C-X-C motif) ligand 12 (CXCL12) and its receptor, chemokine (C-X-C motif) 

receptor 4 (CXCR4; Yang et al. 2013), have also been implicated in SSC self-renewal. Zinc 

finger and BTB domain containing 16 (ZBTB16, also known as PLZF) is a well-accepted 
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marker for all stages of undifferentiated spermatogonia, and some believe that it is also a 

proponent of self-renewal (Buaas et al. 2004). Lin-28 homolog A (LIN28) also marks all 

stages of undifferentiated spermatogonia (Zheng et al. 2009). Finally, two potential markers 

of the As subpopulation that may be considered SSCs have been discovered. Inhibitor of 

DNA binding 4 (ID4) promotes SSC self-renewal and was the first marker identified (Chan 

et al. 2014; Oatley et al. 2011). More recently, paired box 7 (PAX7)–positive spermatogonia 

represent a small subset that possess stem cell potential, are enriched in neonatal testes, and 

are long-lived (Aloisio et al. 2014). Although all these previously mentioned factors have 

been discovered in the mouse germ line, undifferentiated embryonic cell transcription factor 

1 (UTF1) is expressed by a subset of undifferentiated spermatogonia that are maintained for 

a subsequent epithelial cycle rather than differentiating (van Bragt et al. 2008; Fig. 2).

As stated previously, many factors promote the differentiation of SSCs. The major indicator 

of differentiation, KIT, is detectable on germ cells, is expressed in the latest stages of 

undifferentiated spermatogonia, and is retained through the pachytene spermatocyte stage 

(Manova et al. 1990). Its ligand, stem cell factor (SCF or KITL) is secreted by Sertoli cells 

and maintains differentiated cells upon binding, in addition to being a major mediator of 

PGC migration to the embryonic gonad (de Rooij et al. 1999; Laird et al. 2011; Manova et 

al. 1993; Ohta et al. 2000, 2003). Neurogenin3 (NGN3 or NEUROG3) is a transcription 

factor expressed by most, if not all, subtypes of undifferentiated spermatogonia and is thus 

considered a marker of SSCs; however, the cells that differentiate and give rise to 

spermatogenesis have all been revealed to express it (Yoshida et al. 2004). Retinoic acid has 

also been demonstrated to induce the differentiation of spermatogonia and is thought to be 

produced by Sertoli cells (Bowles and Koopman 2007). Stimulated by retinoic acid gene 8 

(STRA8) marks the entry into meiosis (Koubova et al. 2006). Testes of mice null for 

spermatogenesis and oogenesis specific basic helix-loop-helix 1/2 (SOHLH1/2) have KIT-

positive cells that are prevented from entering the spermatocyte stage (Ballow et al. 2006; 

Toyoda et al. 2009). The pluripotency factor, sallike 4 (SALL4), is now considered to be a 

marker of undifferentiated spermatogonia because of its overlapping expression with PLZF: 

it appears to antagonize PLZF and allow for the induction of c-KIT (Gassei and Orwig 2013; 

Hobbs et al. 2012). Lastly, SRY (sex determining region Y)-box 3 (SOX3) has a similar 

expression pattern to those of SOHLH1/2 and NEUROG3 and, when knocked out, results in 

the depletion of meiotic male germ cells, although spermatogonia remain (Laronda and 

Jameson 2011; Raverot et al. 2005; Suzuki et al. 2012; Fig. 2).

Some factors have also been identified that are not produced by Sertoli or germ cells, 

whereas some even have functions other than self-renewal or differentiation. Thymus cell 

antigen 1, theta (THY1) has been shown to be a cell surface marker that enriches SSCs 

(Kubota et al. 2003). THY1-positive spermatogonia are enriched for colony stimulating 

factor 1 receptor (CSF1R), whose ligand, CSF1, is produced by Leydig cells and a small 

number of peritubular myoid cells (Oatley et al. 2009). Thus, interstitial cells secrete 

cytokines to promote self-renewal and maintain the SSC niche. Whereas SIN3A is a 

transcriptional regulator that is expressed by both Sertoli and germ cells within the testis, the 

Sertoli-cell-specific elimination of SIN3A in mice results in complete loss of 

spermatogenesis and failure of the SSC niche to be established (Payne et al. 2010). Finally, a 

recent study was the first to identify a factor that directly inhibits self-renewal, namely 
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ubiquitin ligase F-box and WD-40 domain protein 7 (FBXW7), and that targets c-Myc 

negatively to regulate self-renewal (Kanatsu-Shinohara et al. 2014). As stated previously, 

VEGFA has emerged as a novel regulator of SSC fate decisions.

How is VEGFA expression regulated?

VEGFA is a secreted glycoprotein growth factor that belongs to a family of VEGFs (with 

VEGFB, VEGFC, VEGFD, and placental growth factor [PGF]), of which VEGFA is the 

most studied (Carmeliet and Collen 1998; Ferrara and Henzel 1989). Since its discovery in 

1989, over 55,500 papers appear in PubMed when searching for “VEGF”, a search for 

VEGF-A produces over 38,600 papers, and a search for “VEGFA” gives over 8500 hits. The 

VEGFA gene contains 8 exons and 7 introns with different splice variants of VEGFA 

characterized by the varied representation of exons 6 and 7 and thus altered lengths of the 

final translated product. VEGFA is located on chromosome 6 in humans (Vincenti et al. 

1996), and four distinct isoforms of VEGFA have been identified (VEGFA206, VEGFA189, 

VEGFA165, and VEGFA121) named for the number of amino acids in the protein (Houck 

et al. 1991; Leung et al. 1989). This presence of multiple isoforms is thought to generate a 

chemoattractant gradient to stimulate cell migration within the testis (Bott et al. 2006). 

Larger isoforms such as VEGFA206 and VEGFA189 exhibit a lower mitogenic activity and 

stick close to the extracellular matrix because of multiple heparin-binding domains (Houck 

et al. 1991). VEGFA121 is the smallest, most soluble isoform, is the only one not containing 

a heparin-binding site, and is thus highly diffusible. The function of the most abundant 

isoform, VEGFA165, is considered intermediate, as it has one heparin-binding domain and 

is more diffusible than either VEGFA206 or VEGFA189. Rodent isoforms have been 

identified that are homologous to those found in humans but are shorter by one amino acid 

and are found on chromosome 17 (VEGFA205, VEGFA188, VEGFA164, and VEGFA120; 

De Gregorio et al. 1997; Ferrara et al. 1996) (Fig. 3).

Alternative splicing of the VEGFA gene generates either angiogenic or antiangiogenic 

isoforms thought either to promote vascular growth or to inhibit it, respectively. Sister 

antiangiogenic isoforms for angiogenic isoforms have also been discovered (VEGFA189b, 

VEGFA165b, VEGFA121b; Fig. 3). Rodent VEGFA antiangiogenic isoforms are named 

similarly. These antiangiogenic isoforms prevent cell migration and proliferation and inhibit 

the actions of angiogenic VEGFA isoforms. Since these inhibitory or “b” isoforms 

(VEGFAxxxb where “xxx” is the number of amino acids) are alternative splice variants of 

the same gene, different splice factors are phosphorylated in order to substitute the terminal 

six amino acids. Additionally, various other growth factors are known to regulate VEGFA 

splicing.

Transcription of the human VEGFA gene is induced by hypoxia (Blancher et al. 2000; 

Forsythe et al. 1996). Serine-arginine protein kinase 1 (SRPK1), however, is one of the 

molecules that phosphorylates serine/arginine-rich splicing factor 1 (SRSF1) to favor 

subsequent splicing at the 3′ proximal splice site in order to generate angiogenic isoforms of 

VEGFA (Amin et al. 2011; Mavrou et al. 2015). Upstream of these kinases that promote 

angiogenic splicing are other factors such as Wilms tumor 1 homolog (WT1), insulin-like 

growth factor 1 (IGF1), and transforming growth factor beta (TGFβ; Amin et al. 2011; 
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Nowak et al. 2008). Tumor necrosis factor alpha (TNFα) also increases total VEGFA 

protein while reducing expression of antiangiogenic isoforms, suggesting that it, too, favors 

the splicing of angiogenic VEGFA (Nowak et al. 2008; Fig. 3). In many homeostatic 

environments, other than the placenta, antiangiogenic isoforms are actually expressed more 

highly than the angiogenic isoforms (Bates et al. 2002; Bevan et al. 2008; Varey et al. 2008). 

Little information exists as to the factors that might generate antiangiogenic splice variants 

of VEGFA; however, the inhibition of SRPK1 and SRSF1 favor distal splice site targeting 

and the production of antiangiogenic VEGFA isoforms (Amin et al. 2011; Bates et al. 2002; 

Houck et al. 1991). One such factor known to inhibit SRPK1 and up-regulate antiangiogenic 

VEGFA165b is SRPIN340 (Amin et al. 2011; Oltean et al. 2012; Fig. 3). Interestingly, 

VEGFA is a target for some cancer treatments because of the demonstrated up-regulation of 

angiogenic isoforms of VEGFA and the concomitant reduction in antiangiogenic isoforms in 

renal and prostate carcinomas (Bates et al. 2002; Rennel et al. 2008). Thus, VEGFA requires 

tight regulation, and the two sister isoform types must be relatively balanced to maintain 

homeostasis within organs (Eremina et al. 2003). Otherwise, increased vasculature (higher 

expression of angiogenic VEGFA isoforms), as found in metastatic tissues, or decreased 

vasculature (higher expression of antiangiogenic VEGFA isoforms), as found in hypoxic 

situations, may result from dysregulation, all of which would be detrimental to the normal 

function of tissues (Bates et al. 2002; Konopatskaya et al. 2006; Rennel et al. 2008; Varey et 

al. 2008). More information regarding the splicing of VEGFA in humans, including novel 

splice variants not yet identified in rodents or with respect to SSC biology, has been recently 

reviewed but will not be included in here (Arcondeguy et al. 2013; Dehghanian et al. 2014).

How is VEGFA signaling mediated?

Both types of VEGFA family isoforms dimerize and signal through two tyrosine kinase 

receptors: FMS-like tyrosine kinase 1 (FLT1 or VEGFR1) and kinase insert domain receptor 

(KDR or VEGFR2; Ferrara and Henzel 1989). Whereas FLT1 appears to be important for 

cell migration amongst other processes and has a higher affinity for VEGFA than KDR 

(Kearney et al. 2004), FLT1 binding results in weak tyrosine phosphorylation that does not 

result in proliferation (Park et al. 1994; Waltenberger et al. 1994). Mice null for FLT1 die as 

early as E8.5–9 from vascular overgrowth suggesting that FLT1 acts as a sink to prevent too 

much VEGFA signal transduction through KDR, the receptor through which VEGFA elicits 

most of its biological activity (Ferrara et al. 2003; Fong et al. 1995; Roberts et al. 2004). 

Thus, FLT1 is thought to function as a dominant negative receptor to prevent too much 

signaling through KDR (Ferrara 2000).

Mice lacking KDR die between E8.5 and E9.5 from vascular defects (Shalaby et al. 1995). 

Although both angiogenic and antiangiogenic isoforms of VEGFA bind to KDR, they 

induce different conformational changes in the receptor. Additionally, antiangiogenic 

isoforms have been shown to result in different and less phosphorylation than angiogenic 

VEGFA (Cebe-Suarez et al. 2006; Kawamura et al. 2008; Woolard et al. 2004; Fig. 4).

VEGFA isoforms also bind to a class of membrane-bound co-receptors, the neuropilins. 

These membrane-bound co-receptors are normally known for their role in vasculogenesis 

and neuronal branching, since they also bind to semaphorins and plexins (Comeau et al. 
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1998; He and Tessier-Lavigne 1997). However, neuropilin-1 (NRP1) augments VEGFA 

signal transduction when it dimerizes and binds VEGFA to present the ligand to the KDR to 

stabilize the complex further at the plasma membrane (Cebe-Suarez et al. 2008; Soker et al. 

1998; Yamada et al. 2001; Fig. 4). Both deletion and overexpression of NRP1 result in 

vascular defects and embryonic death in mice (Kawasaki et al. 1999; Kitsukawa et al. 1995). 

Human VEGFA121 lacks a heparin-binding site and, although it does bind NRP1, may not 

be able to be presented to KDR by NRP1, like other angiogenic isoforms (Pan et al. 2007). 

Heparin binding is thought to enhance the affinity of NRP1 for VEGFA angiogenic isoforms 

(Appleton et al. 2007). However, perhaps the most interesting aspect of NRP1 is its ability 

to bind only to angiogenic isoforms of VEGFA; this is thought to be because of its affinity 

for the 8a exon coding sequence (Cebe-Suarez et al. 2008; Harper and Bates 2008). Indeed, 

antiangiogenic isoforms of VEGFA lack any apparent NRP1-binding site (Cebe-Suarez et 

al. 2008). Thus, specific binding to NRP1 only occurs with VEGFA angiogenic isoforms; 

this is thought to enhance the signal transduction of these angiogenic isoforms and to 

amplify their effects on cells (Fig. 4).

How might VEGFA be more than an angiogenic factor within the testis?

Loss of even one allele of Vegfa in mice led to embryonic lethality between E11 and E12 

(Ferrara et al. 1996). Expression of only Vegfa164 resulted in normal mice, whereas the 

selective expression of either Vegfa188 or Vegfa120 caused either venous or arterial defects 

and dwarfism, presumably because of their molecular size and VEGFA164 functioning 

intermediately (Stalmans et al. 2002). VEGFA was initially investigated in the testis with 

regard to regulating male-specific vascular development following sexual differentiation. 

Whole testis mRNA abundance of Vegfa188, Vegfa164 , and Vegfa120 was detected at 

embryonic day E13 in the rat. These three isoforms plus Vegfa205 were also expressed at 

E18 and P3 (Bott et al. 2006). Kdr was detected from E14 onward, whereas Flt1 was not 

detected until E18, further supporting the role of KDR as the major mediator of VEGFA 

signaling and in testis-specific vascular development in this case (Bott et al. 2006). In the 

same study, the treatment of cultured rat testes with a VEGFA tyrosine kinase signal 

transduction inhibitor (VEGFA-TKI) reduced vascular density by over 50 % and inhibited 

seminiferous cord formation (Bott et al. 2006). Treatment of E13 rat testis organ cultures 

with VEGFA120, VEGFA164, or antiVEGFAxxxb (an antibody that neutralizes all 

antiangiogenic isoforms) increased vascular density by 48, 60, and 76 %, respectively 

(Baltes-Breitwisch et al. 2010). In another study, E11 testes from mice in which expression 

of the lacZ operon was driven by the Kdr promoter were also treated with VEGFA-TKI, 

which reduced β-galactosidase activity by 99 % after 3 days in culture (Bott et al. 2010). 

Prior to culture, positive cells were located mainly in the mesonephros and appeared to 

migrate into the testis, and KDR was observed in gonocytes and Sertoli cells at P4 and 

increasingly in meiotic germ cells from P20-P60 (Bott et al. 2010).

Where can VEGFA and its receptors be found within the testis?

VEGFA and its receptors are expressed by Sertoli, Leydig, and germ cells in patterns that 

coincide with germ cell recruitment and development in both rats and mice (Bott et al. 2006, 

2010; Caires et al. 2012). Previously in the rat testis, a pan antibody for all VEGFA isoforms 

revealed expression primarily in Sertoli cells, around some germ cells, and in some 
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interstitial cells at E14, more highly in Sertoli cells surrounding germ cells at E16, and 

present in cords and more highly in germ than Sertoli cells at E19. By P0, VEGFA-positive 

staining was relegated to specific germ cells and then markedly increased within Sertoli cells 

by P5 in the rat testis (Bott et al. 2006). At similar time points, antiangiogenic VEGFA 

isoforms were expressed in specific germ cells and some interstitial cells but were largely 

absent from Sertoli cells (Baltes-Breitwisch et al. 2010).

VEGFA expression was examined around the time of SSC formation in mice. Positive 

staining for VEGFA angiogenic isoforms was detected mainly in Sertoli cells between P0 

and P5 and to a lesser degree in germ cells, but this switched between P5 and P8 in mouse 

testes (Caires et al. 2012). Antiangiogenic isoforms, however, were expressed by subsets of 

gonocytes, undifferentiated spermatogonia, and Sertoli cells from P3-P5 and were expressed 

by meiotic germ cells at P20 (Caires et al. 2012).

KDR was expressed in Sertoli and germ cells at E16 and E17 (Bott et al. 2010). By P0, P4, 

and P5, KDR was also detectable in the germ cell cytoplasm and in some Sertoli cells (Bott 

et al. 2006, 2010). A series of experiments utilizing Kdr-LacZ mice was used to investigate 

KDR as a marker of vascularization within the developing testis; however, in addition to β-

galactosidase-positive staining within the mesonephros and developing seminiferous cords, 

positive staining was clearly evident on germ cells at E17, P20, and P60 and on Leydig cells 

(Bott et al. 2010). These findings created a major turning point from which to begin 

investigations of VEGFA eliciting non-vascular effects.

A later study showed that KDR and FLT1 were expressed by gonocytes at P3, by 

spermatogonia at P5, by Sertoli cells, and consistently by Leydig cells (Caires et al. 2012). 

NRP1-positive staining was evident in gonocytes and Sertoli cells at P3, in undifferentiated 

spermatogonia at P5, and in spermatogonia from P6 to P20 (Caires et al. 2012). The same 

study investigated the activation of the receptors and co-receptor to determine whether their 

expression in these cell types at these time points meant that VEGFA was, indeed, a 

signaling molecule. Phosphorylation of FLT1 diminished after gonocyte migration to the 

basement membrane and was not detectable again until P20 in B spermatogonia, further 

implicating its role in cell migration and possibly survival (Caires et al. 2012). Both KDR 

and NRP1 were minimally activated, if at all, in Sertoli cells and gonocytes immediately 

after birth; however, activation coincided with gonocyte (P3-P8 for phospho-NRP1) and 

undifferentiated spermatogonia proliferation (P6–8 for phospho-KDR; Caires et al. 2012). 

Interestingly, activation of NRP1 in the same study was rarely detected at P14 and only in 

single undifferentiated spermatogonia, suggesting that NRP1 might play a distinct role in 

SSC maintenance. A tabular summary of the location of VEGFA ligands and receptors at 

various ages within the testis is included in this review (Table 1).

How do VEGFA isoforms potentially regulate SSC maintenance?

VEGFA has recently been implicated in the regulation of SSC fate. Treatment with either 

VEGFA164 or 165b has resulted in divergent effects on SSC maintenance. ROSA26 mice 

were treated daily from P3 to P5 with one of the two isoforms, and testes were collected at 

P8 for germ cell transplantation (Caires et al. 2012). The ROSA26 mice ubiquitously 

express the lacZ operon, and these donor germ cells are microinjected into the testes of 
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recipient mice (Brinster and Avarbock 1994; Brinster and Zimmermann 1994). X-gal 

staining turns cells that are positive for β-galactosidase activity blue. Analysis of recipient 

testes showed a robust population of seminiferous tubules with blue cells following 

microinjection in mice treated with angiogenic VEGFA164 compared with a reduction in 

colonization following injection of VEGFA165b (Caires et al. 2012). These data 

demonstrated that VEGFA165b reduced SSC number; thus, we hypothesized that 

angiogenic isoforms promoted SSC proliferation (Fig. 5).

How might angiogenic VEGFA isoforms promote SSC self-renewal?

Following the study in which perinatal mice were treated with the various VEGFA isoforms, 

and after transplantation analyses had demonstrated that antiangiogenic isoforms reduced 

the number of SSCs, our group investigated the effect of the in vivo deletion of VEGFA on 

SSCs. Use of the Cre-lox system, pDmrt1-Cre, eliminated all Vegfa isoforms from both 

Sertoli and germ cells, and since exon 3 of Vegfa was floxed, this resulted in the successful 

knockout of both angiogenic and antiangiogenic isoforms (Lu et al. 2013). At 6 months of 

age, males lacking Vegfa were less fertile than controls and had alterations in mRNA 

abundance and immunostaining of factors known to regulate SSC maintenance. Whereas 

whole testes had increased Ret, Sin3a, and Neurog3, they had fewer PLZF-positive 

spermatogonia per tubule in addition to a 50% reduction in epididymal sperm. Positive 

cytoplasmic staining for phosphoFOXO1 was more evident in germ cells of mice lacking 

VEGFA compared with controls (Lu et al. 2013). As previously shown, FOXO1 is 

inactivated in the cytoplasm by phosphorylation and translocates to the nucleus as an 

activated unphosphorylated protein to promote SSC self-renewal (Goertz et al. 2011).

Earlier studies have shown that VEGFA164 signaling interacts with that of GDNF, and that 

VEGFA can phosphorylate RET (Tufro et al. 2007); moreover, GDNF is up-regulated by the 

addition of human VEGFA165, and KDR and RET are co-immunoprecipitated. Whereas 

these findings are related to the kidney, VEGFA165 induces the phosphorylation of tyrosine 

1062 on the RET receptor, a phosphorylation site considered necessary for SSC self-renewal 

(Jain et al. 2004; Jijiwa et al. 2008) suggesting a possible link with VEGFA-GDNF-RET 

and SSCs. VEGFA transduces through multiple signaling pathways such as PI3K/AKT 

(Fujio and Walsh 1999) and MAPK (Takahashi et al. 2001) to promote cell migration, 

proliferation, and survival. The binding of both GDNF and FGF2 to their receptors initiates 

similar signal transduction (Baloh et al. 2000). GDNF and FGF2 have recently been 

demonstrated to promote SSC self-renewal at different rates, through different mechanisms, 

and can somewhat atone for one another as a result (Takashima et al. 2015). Perhaps Sertoli-

cell-secreted angiogenic isoforms of VEGFA work similarly with these other growth factors 

(Fig. 6).

Recently, reactive oxygen species (ROS) have been shown to be effectors of SSC self-

renewal (Morimoto et al. 2013). ROS and VEGFA are both up-regulated in hypoxic 

environments (Altavilla et al. 2012). In some tissue environments, the expression of VEGFA 

and its receptors has been increased by ROS (Fay et al. 2006; Kosmidou et al. 2001; Maraldi 

et al. 2010; Wang et al. 2011; Xia et al. 2007). Furthermore, VEGFA signaling through 

KDR is mediated, in part, by NADPH-induced oxidases (NOX), and NOX3 has just recently 
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been shown to be specifically involved in SSC self-renewal (Morimoto et al. 2015; Ushio-

Fukai 2007). Finally, VEGFA signaling has been shown to be specifically mediated through 

NOX3 and NOX4 following enhancement by insulin, an inductor of angiogenic VEGFA 

splicing (Carnesecchi et al. 2006; Li et al. 2010; Meng et al. 2012). These findings represent 

possible links between VEGFA, ROS, and SSC self-renewal and thus provide further insight 

into the way that VEGFA modulates SSC fate.

How do antiangiogenic VEGFA isoforms reduce the number of SSCs?

We previously hypothesized that antiangiogenic isoforms of VEGFA reduce SSC number by 

promoting differentiation, by causing cell death, or perhaps even by inhibiting SSC 

formation. That being said, mammalian spermatogenesis is a highly productive process in 

that 256 spermatids can be generated from a single spermatogonium. However, the number 

actually produced is strikingly low, since 75 % of all spermatozoa are estimated to be lost to 

cell death (Print and Loveland 2000). In the rat, approximately half of all germ cells die at 

parturition (Roosen-Runge and Leik 1968), and apoptosis of male germ cells has been 

detected even while these cells are mitotically arrested (Coucouvanis et al. 1993). 

Autophagy has also been recently demonstrated in SSCs following the addition of a 

plasticizer in vitro (Liu et al. 2015). Treatment with angiogenic VEGFA164 has been 

demonstrated to promote germ cell survival, whereas inhibition of VEGFA signal 

transduction results in germ cell loss in cultured bovine testis explants (Caires et al. 2009). 

As a result, we hypothesize that antiangiogenic isoforms of VEGFA cause apoptosis in male 

germ cells.

Various studies have demonstrated that the pro-survival factor B cell leukemia/lymphoma 2 

(BCL2) and proapoptotic factor BCL2-associated X protein (BAX) lie downstream of 

VEGFA signaling (Caires et al. 2009; Lu et al. 2013; Roberts et al. 2010; Street and 

Lenehan 2009; Suzuki et al. 2011). In our laboratory, 2– to 3-month-old Kdr-LacZ mice 

were injected with 1 µg recombinant antiangiogenic VEGFA165b. Significantly more 

TUNEL-positive apoptotic germ cells (spermatogonia) per seminiferous tubule were seen 

24-h after VEGFA165b injection compared with controls suggesting that antiangiogenic 

VEGFA165b causes the apoptosis of male germ cells (Fig. 7).

How does the balance of VEGFA isoform types maintain SSC homeostasis?

VEGFA family isoforms may regulate the balance between a healthy SSC pool and 

progenitors that are more committed to differentiation. GFRA1-positive cells decrease as 

they transition from As to Aal (Nakagawa et al. 2010) suggesting the clonal cells lose 

stemness. Another study has demonstrated that the population of Aal cells that occur in 

chains of 8 or 16 contains very few to no cells that are GFRA1-positive, whereas all are 

ZBTB16 (PLZF)-positive (Grasso et al. 2012). Since RET is the receptor that 

heterodimerizes with GFRA1 to which GDNF binds, this might explain the opposite results 

observed with Ret mRNA and PLZF-positive staining following the loss of VEGFA 

isoforms. Perhaps the divergent VEGFA isoforms regulate the number of SSCs (angiogenic) 

to progenitor cells (antiangiogenic), similarly to the previously mentioned study in which 

FGF2 induces less self-renewal and favors cells that seem more likely to be progenitors as 

compared with GDNF (Takashima et al. 2015).
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As mentioned earlier, NRP1 expression and activation appears to coincide with the 

gonocyte-to-SSC activation and are detectable in limited P20 spermatogonia (Caires et al. 

2012). These data have led to the idea that NRP1 is a novel marker of SSCs. Since NRP1 

has long been known to enhance the signaling of angiogenic VEGFA isoforms (Soker et al. 

1998; Yamada et al. 2001), we suspect that NRP1 also contributes to the self-renewal of 

SSCs. NRP1 has been recently demonstrated to be important for the trafficking of KDR 

between endosomes (Lanahan et al. 2010, 2013) and the recycling of KDR to the plasma 

membrane in arteriogenesis (Ballmer-Hofer et al. 2011). If NRP1 is, indeed, relegated to the 

SSCs, its ability both to stabilize VEGFA-KDR binding and to recycle KDR suggests that it 

is a marker of SSC self-renewal. Perhaps NRP1 is the switch that shifts angiogenic to 

antiangiogenic activity and thus favors either self-renewal or death/differentiation of SSCs.

Concluding remarks

Aside from its canonical roles, VEGFA has also been demonstrated to play roles in 

reproductive organ development and fertility and, recently, in the maintenance of SSCs. 

Multiple studies have investigated the role of VEGFA in testis development, namely in the 

recruitment and formation of male-specific vascularization. Detection of the expression of 

KDR, the major receptor for all VEGFA isoforms, on male germ cells has revolutionized 

what was previously known, namely that VEGFA must have avascular effects in the testis. 

Further studies have subsequently demonstrated that the loss of VEGFA reduces fertility in 

male mice, and that divergent VEGFA isoforms even appear to regulate SSC maintenance in 

vivo. The induction of NRP1 expression in rodent spermatogonia also suggests that it plays 

an important role in angiogenic VEGFA signaling and SSC maintenance. Since treatment 

with antiangiogenic VEGFA165b results in less colonization of SSCs in recipient male 

mice, presumably because of SSC loss, we hypothesize that angiogenic isoforms of VEGFA 

and NRP1 promote SSC self-renewal, whereas antiangiogenic isoforms reduce SSC number 

by either promoting premature differentiation or death of SSCs. Some links occur between 

VEGFA164 and GDNF signaling and with ROS, and VEGFA165b appears to induce male 

germ cell apoptosis. Although the exact mechanisms are currently unknown, the divergent 

VEGFA isoforms differentially regulate SSC fate. Thus, rodent models involving treatment 

with or elimination of VEGFA or its receptors followed by transplantation experiments 

should provide valuable information as to the way that they influence SSC maintenance, and 

whether they are viable candidates for the improvement of declining male fertility.
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Fig. 1. 
Model of spermatogonial stem cell (SSC) homeostasis. SSCs are considered a subpopulation 

of the undifferentiated A spermatogonia and may divide into other SSCs, divide into 

progenitor cells more committed to differentiation, or undergo cell death. The various stages 

of A undifferentiated spermatogonia, even when chained, are also thought to separate and 

resume self-renewal capabilities to maintain a viable SSC pool (As [Asingle] type A 

spermatogonia, Apr [Apaired] type A spermatogonia, Aal [Aaligned] type A spermatogonia)
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Fig. 2. 
Spermatogonial stem cell (SSC) niche comprised of Sertoli cells with contributions from 

blood vessels, peritubular myoid cells, and Leydig cells. Various factors that contribute 

either to self-renewal or to differentiation are depicted in the cells from which they are 

produced. The large inset SSC (right) shows the pro-renewal or pro-differentiation factors 

that are expressed by the germ cells
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Fig. 3. 
Depiction of rodent VEGFA isoforms. Angiogenic isoforms include VEGFA205, 188, 164, 

and 120, whereas VEGFA189b, 165b, and 121b are antiangiogenic. Various growth factors 

activate serine-arginine protein kinase 1 (SRPK1), which phosphorylates serine/arginine-rich 

splicing factor 1 (SRSF1) to target the proximal splice site (PSS) of the Vegfa gene and 

generate angiogenic VEGFA isoforms. Known, biologically active, rodent, angiogenic 

VEGFA isoforms are 205, 188, 164, and 120. Inhibition of SRPK1 by specific inhibitors 

such as SRPIN340 favors distal splice site (DSS) selection and the generation of 

antiangiogenic isoforms. Antiangiogenic isoforms contain an 8b exon that is substituted for 

an 8a exon in angiogenic VEGFA isoforms. VEGFA206189b, 165b, and 121b are the most 

well-represented rodent antiangiogenic isoforms in the literature. Exons 6 and 7 encode the 

heparin-binding sites, whereas the neuropilin-1 (NRP1)-binding site is encoded by 

translation of the 8a exon; this is the reason that it cannot bind antiangiogenic VEGFA 

isoforms
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Fig. 4. 
VEGFA signals through two tyrosine kinase receptors. Signaling of angiogenic isoforms of 

VEGFA is augmented by a membrane-bound co-receptor, NRP1, which either stabilizes 

ligand-receptor binding or presents the ligand to the kinase insert domain receptor (a, KDR, 

left). NRP1 also associates with VEGFA homodimers that bind to FMS-like tyrosine kinase 

1 (a, FLT1, right). Antiangiogenic isoforms of VEGFA, however, are unable to bind to 

NRP1 but still bind either KDR (b, left) or FLT1 (b, right)
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Fig. 5. 
Model of SSC homeostasis with VEGFA isoforms and NRP1 added. We propose that 

angiogenic isoforms such as VEGFA164 and NRP1 promote the renewal of SSCs or 

undifferentiated spermatogonia, whereas antiangiogenic isoforms such as VEGFA165b 

reduce SSC number through cell death or by promoting differentiation prematurely
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Fig. 6. 
SSC niche with VEGFA isoforms added. We presume that angiogenic isoforms of VEGFA 

promote self-renewal of SSCs, whereas antiangiogenic isoforms of VEGFA promote their 

differentiation (or death), with these isoforms being predominantly secreted by the Sertoli 

cell. Furthermore, KDR and NRP1 are located on the germ cells themselves
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Fig. 7. 
VEGFA165b increases TUNEL-positive staining in male germ cells. Micrographs are 

representative 100× images of testes from a phosphate-buffered saline (PBS, control)-treated 

mouse (a) and a VEGFA165b (1 µg)-treated mouse (b). Apoptotic spermatogonia fluoresced 

green (white arrows). The number of TUNEL-positive germ cells per tubule was counted for 

each treatment (c). Data were considered significant when P<0.05 according to Dunnett’s 

test in JMP statistical discovery software from SAS
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