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Abstract

This paper presents a new method for obtaining network properties from incomplete data sets. 

Problems associated with missing data represent well-known stumbling blocks in Social Network 

Analysis. The method of “estimating connectivity from spanning tree completions” (ECSTC) is 

specifically designed to address situations where only spanning tree(s) of a network are known, 

such as those obtained through respondent driven sampling (RDS). Using repeated random 

completions derived from degree information, this method forgoes the usual step of trying to 

obtain final edge or vertex rosters, and instead aims to estimate network-centric properties of 

vertices probabilistically from the spanning trees themselves. In this paper, we discuss the problem 

of missing data and describe the protocols of our completion method, and finally the results of an 

experiment where ECSTC was used to estimate graph dependent vertex properties from spanning 

trees sampled from a graph whose characteristics were known ahead of time. The results show that 

ECSTC methods hold more promise for obtaining network-centric properties of individuals from a 

limited set of data than researchers may have previously assumed. Such an approach represents a 

break with past strategies of working with missing data which have mainly sought means to 

complete the graph, rather than ECSTC's approach, which is to estimate network properties 

themselves without deciding on the final edge set.
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1. Introduction

Respondent-Driven Sampling (RDS) has become a popular technique for providing 

statistically meaningful data on hard to reach populations by using peer-referral methods. 
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Data obtained using RDS that can be subjected to mathematical modeling, which can in turn 

provide the sorts of confidence intervals and measurable design effects expected of social 

science research [1]-[4]. The popularity of RDS stems in part from its efficacy in addressing 

many of the current data collection challenges facing social network researchers working 

with marginal populations, including that RDS is relatively inexpensive, does not depend on 

complete in-group rosters, and does not require collecting identifiers of interviewees. 

Importantly, the RDS method is predicated on the existence of a social network among the 

study population. Initial “seeds” from the study population are given recruiting coupons to 

distribute to members of their personal network, links they deem eligible for participation in 

the study. Qualified recipients who volunteer for the study are paid for an interview and in 

turn given (usually 3) recruiting coupons of their own. In addition, to the interview fee, 

respondents are paid a recruiting incentive for their referrals who eventually qualify for and 

participate in the study. Where individual network degree exceeds the number of recruiting 

coupons given to each respondent, a measure of randomness among an individual's network 

links is assumed, and over numerous iterations, this randomness can produce an equilibrium 

sample among the target population. Ordinarily, RDS recruitment requires 6 or more 

“waves” of recruitment to achieve sample equilibrium and confidence intervals on a par with 

those normally expected from random sampling, though often this requires a sample size 

roughly twice that of typical sampling methods. The virtue of this strategy is the ability of 

RDS to access to populations normally beyond the reach of ordinary random sampling 

methods (such as random digit dialing), and to do so anonymously, and quickly.

Yet given the prominent role that social networks play in the RDS methodology, the 

recruitment/sampling strategy produces very little social network information. This is for 

three reasons: 1) all interview participants are given the same number of coupons, usually 

far fewer than their degree, meaning that referral turnout gives little indication of individual 

network neighborhood, 2) the random-walk method necessary for achieving 

representativeness intentionally disregards questions of the range of network degrees, 

questions of directionality, and edge strength variation, and 3) because individuals are 

prevented from appearing as referrals once they have already been interviewed, RDS 

produces spanning trees that lack cycles.

Despite all this, RDS methods do provide some network data for populations among which 

normal social network research methods remain problematic or prohibitively expensive-

networks of drug users, sex workers, marginal youth, and other hard to reach populations 

where name generators are either not useful or not welcome, and increasingly subject to 

restriction on the basis of human subjects protection. The network connections that appear in 

the RDS edge set are the result of peer referral yet can be collected anonymously (via 

coupon number), and thus normally meet IRB guidelines. Unfortunately, limited methods 

now exist for imputing structural information in settings where there is missing social 

network data, as is the case from RDS surveys.

As Huisman [11] has recently pointed out, missing data and sampling problems are acute in 

social network analysis, as the absence of a small number of edges or vertices can seriously 

distort research results (though see), while the extent of the missing data is often unknown. 

Together with a long list of others [5]-[11] [37] [44] considerable attention has been paid to 
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the manifold factors that limit the reliability of incomplete network data-factors such as 

network boundary specifications, inherently incomplete data collection methods, imposed 

limits on vertex degree in data collection, and various forms of response error (including 

especially non-response). Butts [44] has recently discussed issues of data collection 

reliability, following a series of articles by Bernard and Killworth and colleagues [12]-[16] 

(see also [17]). Ethical issues around name generators in sensitive contexts and the rising 

costs of complete network surveys only make matters more worse [18] [19]. The only 

example we know of that addresses RDS data type spanning trees specifically is by Handock 

and Gile [20] [21], who consider the network over the set of actors to be the realization of a 

stochastic process and present a framework with which to model the process parameters 

while compensating for network sampling design and missing data patterns.

Here we propose a second method for dealing with the missing data inherent in RDS 

spanning trees. Rather than attempting to replace missing data, or quantify the effects of 

missing data, we begin by considering the network to be a fixed structure about which we 

wish to make inferences based on partial observation. Specifically, we evaluate the 

constraints implied by very limited information about the marginals of the adjacency matrix 

and a small subset of its entries, and assess the extent to which these constraints can be used 

to re-construct the relative values of network-centric vertex measures. In the following 

paper, we describe a set of experiments undertaken to ascertain the extent to which network 

level statistics can be generated from the limited sorts of data normally produced by RDS 

samples. The method of “estimating connectivity from spanning tree completions” (ECSTC, 

pronounced ek-stuh-see) proposed here seeks to recover network-centric measures for 

individuals within RDS samples, given only very limited information about links within the 

ambient network in which the survey is conducted. The method does not seek to construct 

concrete networks that most plausibly impute missing network links from the limited input 

data. Rather, if ECSTC can estimate network-centric vertex measures in spite of the missing 

links peculiar to data generated through RDS, then combining ECSTC with RDS might 

potentially provide a way around the high cost of conventional social network survey 

methods.

2. ECSTC

The method of “estimating connectivity from spanning tree completions” (ECSTC) begins 

with the edge set determined in the course of referrals made during the RDS process, 

together with individual network degree information determined in each subject survey. The 

residual difference between these two quantities represents the number of undiscovered 

edges at each vertex. The ECSTC method randomly adds these missing edges to the RDS 

tree until each vertex has gained the requisite degree1. Stated equivalently, ECSTC takes as 

its input very limited information: a small set of entries within a network's adjacency matrix, 

together with the matrix's marginals. It then samples from the space of all adjacency 

matrices that are consistent with the partial information provided. In assigning missing edges 

1As described in more detail below, no loops or parallel edges were allowed during the random completion process, meaning that, 
potentially, the completion could get stuck, resulting in one or several vertices with residual, unrealized edges necessary to complete 
their degree, but no available targets for those edges. In practice, however, such occasions were extremely rare, as predicted by Bayati, 
Kim, and Saberi [42] [43], and were addressed by re-initiating the completion process.
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to form complete networks, the intention is not to assert a final edge set. Rather, ECSTC 

seeks only to estimate network-centric vertex measures—foregoing the attempt to deduce 

the network's structure in any final manner. It does this by producing large numbers of 

random graph completions consistent with what is known about vertex degrees. Each 

randomly completed network is then analyzed to determine network variable(s) at each 

vertex; here we consider the betweenness centrality, Burt's measure of aggregate constraint, 

and effective size of each vertex. The completion process is then repeated on the same RDS 

tree, and the vertex properties once again measured for each of the completions. The values 

obtained from multiple independent completions are used to obtain a mean value for each 

variable (for each vertex) and the standard deviation is calculated to estimate variability 

across different completions. The ECSTC method is described in greater detail in Section 4.

Our strategy for evaluating the ECSTC method makes use of computational experiments on 

known, albeit idealized, topologies drawn from a class of theoretically plausible Barabasi-

Albert (BA) networks2. For purposes of this trial, we use multiple instances of randomly 

generated BA graphs of 100 and 500 vertices. Unlike most tests of techniques aimed at 

addressing the problem of missing network data, we do not begin by removing a random 

subset of vertices or edges (or both). Rather, we begin by simulating an RDS sample the 

known graph, by which a list of vertices and a fraction of their connecting edges are 

discovered. We take an idealized view of the RDS method, by assuming that coupon referral 

tracks real network ties of equivalent edge strength, that subjects distribute coupons 

randomly among their network neighbors, recursively, until the referral chains all reach 

vertices with no undiscovered neighbors3.

To begin the RDS simulation, one “seed” vertex is chosen randomly from among the 

vertices, to serve as the starting point of the simulated RDS. We assume that at each 

progressive step in the RDS simulation, accurate information is obtained from the surveyed 

subject (vertex) regarding its network size and actual neighbors. Each surveyed vertex is 

then “given” three coupons4.

2While Barabasi-Albert (BA) graphs represent an idealized model, they represent viable topology for many of the social networks for 
which RDS methods are normally applied. A recently completed metastudy of 15 STD/HIV related network studies by Rothenberg 
and Muth found that fat tailed, right-skewed degree distributions with log-linear decay coefficients around 2 might be considered the 
“basic underlying pattern” for risk networks as such [22] (pp. 110-111). While actual risk networks such as those analyzed by 
Rothenberg and Muth may or may not be formed by “preferential attachment” (in the sense of Barabasi-Albert), the overall 
distribution of edges across a network of these sizes, as produced by BA algorithms, would seem an apt model on which to test RDS 
completion techniques for real world risk networks of similar scale.
3Some have found limits in the ability of the RDS method to meet these assumptions, based, they suggest, on such factors as the tight 
locational clustering of the population, the relatively low level of the incentives offered [23] (pp. i12-3); (See also [33] and [24] for 
similar conclusions) or attempts to game the remuneration system ([25]; though see [26] [27], and the other contributors to the same 
issue; see [28] for further discussion).
4Speaking specifically of RDS, Platt, Wall, and Rhodes point out:
Adjusting the RDS sample to obtain population estimates depends on the ability to recruit a random population within a subject's 
social networks and a positive probability of recruiting everyone in that network. The possibility that the network is highly dependent 
on the incentive raises the question whether the latter condition obtains. This is particularly relevant when the definition of the 
population of study is fluid or artificially constructed by the research as with IDUs and sex workers. It should also be noted that the 
collection of information describing network characteristics which allows RDS analysis to produce population estimates requires the 
respondent to recall detailed information on the composition of their network, including its size and each member's relationship with 
the recruiter. This process carries a large potential for error [30] (pp. i50-1).
For this reason, the authors discounted the correction and estimation features of RDS, limiting much of what is normally reported by 
others as the main advantage of the methodology. Importantly, Heckathorn notes that independent analyses of the accuracy of reported 
information on network size has shown RDS gathered data to be “strongly associated” [29] (p. 163), citing [31] and [32]; see also 
[34], noting that many of these issues are what Johnston calls “implementation challenges” [33].
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We chose three coupons because this is the current standard practice in most RDS studies, 

though the proposed method is impervious to this parameter setting. This node “distributes” 

the three coupons to up to three of its as-yet undiscovered neighbors, which it chooses 

uniformly at random. This process continues to exhaustion, which is to say until we reach a 

state where no further steps to unsampled nodes are possible. In practice, we find that a 

relatively high proportion, though not necessarily all of the vertices are encountered in this 

way. In addition, terminal nodes in the referral tree tend to be low degree nodes, though 

occasionally terminal nodes may have higher degree if all their neighbors have already been 

sampled at previous stages of the RDS simulation. The ECSTC method is then used to 

generate multiple independent completions of the RDS tree, as described previously. The 

network-centric vertex measures of betweenness centrality, Burt's constraint, and effective 

size, and computed for each vertex within each completion, and the mean of these values 

serves as the ECSTC-derived estimate of the per-vertex measures. ECSTC-derived estimates 

are then compared with the true values of the network-centric measures, where the latter is 

readily computed using the ambient graphs on which the RDS simulation itself was 

conducted. Plots of the estimated versus actual measures of each vertex (for each variable) 

are made, and serve as the basis of conclusions concerning the extent to which the relative 

magnitudes of ECSTC-derived estimates reflect the relative magnitudes of the true values of 

the measures.

The preceding process is repeated for different RDS trees, in order to determine the 

sensitivity of our conclusions to the random choices involved in any particular RDS tree. 

The entire process is then repeated for different graphs in order to determine the sensitivity 

of the conclusions to the choice of particular BA network.

3. Network-Centric Vertex Measures

For purposes of this experiment, three common network measures were chosen to test the 

efficacy of the ECSTC method: effective size of a vertex, betweenness centrality, and Burt's 

constraint coefficient. We chose Burt's constraint and effective size as they represent related 

but quite different “neighborhood” measures for social network analysis. Betweenness 

centrality was chosen to assess the method's performance on measures affected gu global 

network geometry (rather than just the neighborhood of the measured vertex). We note, 

however, that any other measure defined for a (combinatorial) graph could be substituted in 

place of these three (e.g. triad census or other more complex topological functions). Since 

each round of the ECSTC process produces a “completed” network, all that is needed is to 

compute the measure of interest for the each of the completions produced in successive 

ECSTC rounds; the mean of these computed values then serves as an estimate of the true 

measure.

3.1. Effective Size (ES)

The first function examined in the experiment is the effective size of a vertex. Like Burt's 

constraint coeffiecient (discussed below), this is a measure of local or neighborhood 

topology intended to make clear the importance of a vertex to the connectivity of its 

neighbors (and is thus a measure of mediation or influence). Effective size is simply the 

degree of a vertex minus the average of the degrees of its k = 1 neighbors with respect to one 
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another. Being largely dependent on degree information, and averaging across k = 1 

neighbors, this function was thought beforehand as likely to be the most amenable to 

ECSTC methods. In the experiment, effective size ES(v) is calculated as:

(1)

where Sv is the sum of all edge values s incident on vertex v and su,w is the 0/1 value of an 

edge between any two vertices u and w, where u ≠ v ≠ w.

3.2. Betweenness Centrality (BC)

Betweenness centrality is defined by Wasserman and Faust [35] as the sum of the 

likelihoods of a vertex to lie along any of all geodesic paths in a given graph, and has been 

expanded upon to provide both internal and comparative measures of mediation and 

brokerage [36]. Betweenness centrality was found by Costenbader and Valente [37] to be 

among the most systematically poor performers in coping with missing data in actual 

networks, including symmetrized versions of the same networks. In their experiment, 

betweenness centrality showed a high correlation between error and sampling level, such 

that as levels of missing data went up, errors in the betweenness centrality of a particular 

vertex went up proportionally. This is perhaps not surprising given the dependence of the 

measure on whole graph characteristics [38]. In the current experiment, the betweenness 

centrality CB of a given vertex v is defined as:

(2)

where σst is the number of geodesic paths from s to t, and σst(v) is the number of geodesic 

paths from s to tthrough vertex v.

3.3. Constraint (CON)

Burt's constraint is a measure of the extent to which a vertex is linked to alters who are in 

turn linked to one another [39]. It is defined as the sum of all dyadic constraints of a vertex, 

where the dyadic constraint for any edge from ego to alter is defined as the square of the 

sum of the proportional strength of that the edge (from ego to alter) and the product of the 

proportional strengths of the two edges that connect ego to alter via some third vertex, and 

where the proportional strength of a tie is the value of that arc divided by the sum of the 

value of all arcs incident with the same vertex. As explained by Burt, this measure is 

intended to weigh both the importance of a particular edge given the connectivity of vertex, 

and the number of structural holes incident with that edge. In our case, where edge strengths 

were assumed to be equal, the proportional strength of an edge is simple the inverse of the 

degree of the vertex. In the experiment, the constraint CON(u) of a particular vertex u is 

defined as:
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(3)

where j ≠ q ≠ i, and pij is the proportional strength of the tie between i and j, while piq, pqj 

are the proportional strength of the ties between q and i, j respectively. Burt's constraint was 

chosen as a test of the ECSTC method to determine the extent to which complex 

neighborhood structures could be accurately recovered, given the sparseness of 

neighborhood level inputs in the observed data. Because the absence of ties (as well as their 

presence) plays a significant role in the calculation of this measure, it was supposed that 

constraint would remain among measures that are most sensitive to missing edges, and thus 

an appropriate test of the method to cope with more detailed micro-level network topologies 

than are discovered by measures of effective size. In relative terms, this measure stands 

opposite betweenness centrality in its dependence on entirely local determinants, but 

remains quite different from effective size in that it depends as much on the accurate 

placement of missing edges as well as those present.

4. Mathematical Model

Denote by  a generative model for constructive sampling of finite graphs, 

parameterized by θ1, θ2,···,θk. Although our approach is more widely applicable, in this 

paper we focus solely on the Barabasi-Albert (BA) model  with parameters: 

n the number of vertices, m the number of edges that each new vertex requires during 

preferential attachment, and a0 the non-negative offset added to the degree of every vertex 

during the computation of attachment probabilities. We consider  to be the 

induced distribution over the space of n-vertex unlabeled undirected graphs5.

Let G = (VG, EG) be the underlying social network, randomly chosen from . 

Denote by  the function which specifies the degree of each vertex in G. Let 

 be the vertex measure of interest, e.g. fix μG to be Effective Size (ES), 

Betweenness Centrality (BC), or Constraint (CON), as measured relative to G.

The next two subsections present the ECSTC procedure precisely, using which the function 

μG may be estimated from just dG; we also present evaluation strategies for assess the 

quality of the generated estimates.

4.1. Estimation Process

To begin, we note that uniformly sampling spanning trees of a general graph G is, in 

general, not an easy computational task [40]; most approaches to the problem require 

sampling from random walks covering G [41]. To circumvent this, we consider the 

following process that samples a maximal bounded degree subtrees T = (VT , ET) from G.

5We remark that sampling graphs from the BA distribution requires specifying an ordering of the vertices, and the sampled graph 
inherits implicit vertex labels from this ordering. In addition, the event of attachment is inherently “directed” in the sense that the new 
vertex is distinguishable in its role from the vertices to which it is attaching. In what follows, we appeal to the forgetful functor from 
the category of vertex-labeled directed graphs to the category of undirected unlabeled graphs.
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1) Pick a seed vertex s, uniformly at random from VG; initialize T = ({s},∅).

2) Now starting at s, recursively perform breadth-first search by expanding each 

frontier vertex to include edges leading to at most Δ of its yet-undiscovered 

neighbors.

The above process implicitly defines a distribution T(G, Δ) on a set of (Δ + 1) degree-

bounded subtrees of G. We note that the bounded-degree constraint in the constructive 

definition of T (G, Δ) ensures a balance between “deep trees” that would be generated from 

a pure depth-first search, and the “fat trees” that would be generated from an (unbounded 

degree) pure breadth-first search. Certainly T(G, Δ) is not, in general, a uniform distribution 

over the spanning trees of G, since it may assign a non-zero probability to trees that do not 

span all of G's vertices, and it may assign zero probability to some actual spanning trees of 

G. However, T(G, Δ) has the advantage that it is effectively computable, and more 

importantly, when G is a social network, one can sample from T(G, Δ) using well-

established distributed protocols like respondent-driven sampling (RDS), which effectively 

mimic the aforementioned sampling procedure. Accordingly, we refer to T(G, Δ) as the 

Space of Δ-bounded RDS trees in G.

Let T = (VT, ET) be a tree sampled from the distribution T(G, Δ) and define  to 

be the function assigning to each vertex its degree in T. We shall define a distribution C(T, 

dG) over what are, loosely speaking, the set of imputations of T in view of G's known degree 

sequence dG. More specifically, C(T, dG) will be a distribution over a family of undirected 

unlabeled graphs; each graph in the family of undirected unlabeled graphs; each graph C in 

the family enjoys these three properties:

1) The number of vertices in C is |VT|.

2) Degrees of vertices in C agree with dG.

3) The graph C contains T as a subgraph.

C(T, dG) in defined implicitly by the following constructive procedure which samples from 

the distribution:

C1. Initialize C = (VC, EC) by taking. Initialize  by setting δC(v) = dT(v) for 

all v ∈ VC. In the next step (C2), the vertex set VC will remain unchanged, the edge set 

EC will be repeatedly augmented, and the map δC will be correspondingly updated.

C2. Repeat Steps (a)-(c) until ∀u ∈ VC, dG(u) = δC(u):

(a) Define a probability distribution over the vertices v in VT, by taking

(4)

(b) Choose vertices v1,v2 from VT via P.

(c) If v1 ≠ v2 and (v1,v2) is not in EC, then: Add the edge (v1,v2) to EC; increment 

the values of δC(v1) and δC(v2)6.
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C3. Output C.

The output of the above process implicitly defines a distribution C(T, dG) on a set of all 

graphs having dG and containing T is a subgraph. We refer to this distribution as the Space 

of completions of tree T relative to the degree sequence dG.

Steps C2 (a)-(c) above are a sort of “preferential completion”, since the algorithm chooses 

vertices v1 and v2 in a way that is linearly biased based on the number of edges they are 

missing. Note that constructing C from T does not require knowledge of the edge structure 

of G, but rather only the degrees of G's vertices.

Repeating the aforementioned processes we obtain T(p) = {T1,T2,···,Tp}, a size-p collection 

of Δ-bounded RDS trees Ti = (VTi, ETi) in G, drawn independently with replacement from 

T(G, Δ). For each tree Ti, we obtain , a set of k completions of Ti 

(relative to dG), drawn independently with replacement from C(Ti, dG). We denote the set of 

vertices discovered in the course of this, as . Relative to a particular T(p), let 

 be the (indices of) trees in T(p) wherein v appeared, i.e. i ∈ S (v) ⇔ v 

∈ VTi

Network-centric vertex measure estimates. Given a specific completion C (in which a 

vertex v appears), the vertex measure μG (v) can be estimated by computing it over the 

structure of C (in place of the structure of G this provides an estimate . Given 

that we have kp completions, the vertex measure μG can be estimated by computing its mean 

value (over the k completions of each of the |S(v)| trees which contain v), denoting this 

estimate as:

(5)

4.2. Evaluation Strategies

Let T(p) be the p trees sampled from T(G, Δ), and  be k completions of Ti sampled 

from C (Ti, dG). We evaluate the extent to which μG is well-approximated by μμT
(p) using 

two distinct measures of estimate quality:

1) The correlation r is taken to be the Pearson coefficient of the point set

in which each point maps the true vertex measures μG(u) to the ECSTC-based 

estimate μμT
(p) (u).

6Note that the conditions in Step (c) ensure that no loops or parallel edges are formed during the completion process. The completion 
process (a)-(c) could potentially get stuck, resulting in one or more vertices with residual, unrealized edges necessary to complete their 
degree but no available targets for those edges. Such occasions were very rare, as predicted by Bayati, Kim, and Saberi [42] [43], and 
were resolved by replacement—that is, by reinitiating the sampling procedure to obtain a different completion.
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2) The misclassification ε is the percentage (between 0 and 100) of pairs of 

vertices (u, v) for which μG(u) < μG(v) but μμT
(p) (u) ≥ μμT

(p) (v). Because vertex 

measures frequently play a part in assessing the relative rank of individuals in a 

social network (with respect to the particular measure), the misclassification rate 

captures the probability that incorrect conclusions about relative rank are 

reached when the estimate μμT
(p) is used in place of the true measure μG.

5. Experiments

In this section, we seek to experimentally determine the effects of increasing the number of 

RDS trees p and the number of completions per tree k, on the quality of generated estimates 

(in terms of r and ε defined above). The general paradigm for such experiments starts by 

choosing a network measure(s) and family  of networks on which the ECSTC method of 

estimating the measure(s) is to be evaluated Here we consider Barabasi-Albert networks of 

size 100, so ; later in the paper we consider networks of size 

500 to test the scalability of the technique. The network measures we investigate are ES, 

BC, and CON. Fix p (the number of trees), and k (the completions per tree) which ECSTC 

will use in the computation of its estimates.

The following constitutes a single experimental trial:

• Draw a random graph G from .

• Choose RDS trees T1,···Tp from T(G, Δ = 3).

• For each Ti, select k completions from C(Ti, dG).

• Use the kp completions to compute measure estimate μμT
(p) (v) for each vertex v.

• Compute estimate quality measures r (correlation) and ε (misclassification).

To illustrate, fix p = 1 as the number of trees and k = 10 as the number of completions. 

Figure 1 shows a 100 vertex Barabasi-Albert (BA) graph G sampled from . 

Figure 2 shows three graphs, one for each of the network measures considered. Each vertex 

v is plotted as a bar that relates the actual measure to the estimated measure (y-coordinate). 

The bar corresponding to vertex v has x-coordinate μG (v); it central y coordinate is at μμT
(p), 

and the length of the vertical error bar is the standard deviation of the set 

 of estimates generated by each of the 10 completions. The 

value of r is given for each plot in the upper right hand corner, and a best fit line is drawn 

through the centers of the error bars. Figure 3 shows analogous results for 10 completions of 

a single BA network with 500 vertices. Together, Figure 2 and Figure 3 show that for all 

three network measures, the ECSTC method is able to produce a high correlation with the 

actual values using only completions of a single spanning tree samples.

To counter the possibility that these results might by due to chance (either in the choice of 

graph, or the choice of tree, or the choice of completions), we evaluated the robustness of 

the results by conducting t = 25 trials, and computing the mean (r̄) and standard deviation 

(std r) of the 25 values of correlation obtained, and analogously, the mean ( ) and standard 

deviation (std ε) of the 25 misclassification values. Such a sensitivity analysis was 
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considered for different settings of k (between 1-50 completions), and p (between 1 -50 

trees). The results concerning r̄ are presented in Table 1, while results related to  are the 

subject of Table 2. The tables indicate the close fit of the estimated scores to the actual 

scores for graphs over 25 distinct trials. These patterns in these tables are described next 

section; the conclusions drawn there are also valid for the corresponding tables (not shown) 

derived from experiments on networks of size 500.

Experiment Results

Correlation as a function of number of completions

For a fixed number of trees, the mean correlation across all vertices improves. The high 

values support the idea that the ECSTC method is able to successfully recover significant 

data across a range of network measures, with increased numbers of completions improving 

the fit of the estimated values to the actual ones. For several network measures, at high 

numbers of completions, correlation approaches 1. This holds true across a range of 

variables, with strong correlations between actual and estimated values apparent for 

betweenness centrality, effective size, and Burt's constraint. These observations are 

mitigated in those instances where high numbers of trees were included. There, the 

correlation values (for 50 trees, for example) were already so high that the use of multiple 

completions added only very marginal gains. The standard deviation of correlation values 

across 25 independent trials shows a similar trend. Where the number of trees is held steady 

(and low), increasing numbers of completions produces a lower standard deviation across 

trials, meaning that high numbers of completions tend to mitigate sensitivity to initial 

starting conditions, and the vaguaries of the starting point of the sampling tree.

Correlation, as a function of multiple trees

Where the number of completions is held steady (and low), the effect of producing multiple 

trees has a similar effect to producing multiple completions, improving the fit between 

estimated and actual. Here too, where high numbers of completions are included, the fit is 

already so tight that there is only a marginal improvement provided by raising the number of 

trees. The standard deviation of correlation values across 25 independent trials shows a 

similar trend. Where the number of trees is held steady (and low), increasing numbers of 

completions produces a lower standard deviation across trials, meaning that high numbers of 

completions tend to mitigate sensitivity to initial starting conditions.

Misclassification, as a function of number of completions

As with correlation, increasing the numbers of completions shows an improvement in the fit 

between estimated and actual values, with high numbers of completions resulting in a lower 

percentage of misclassified vertex pairs. This holds true across effective size, Burt's 

constraint, though not for betweeness centrality. Here, a high number of completions did not 

result in a steady decrease in the number of misclassified pairs. Across 25 trials, the standard 

deviation of misclassification decreased as the number of completions increased. This held 

true across all three network measures. We note here, though, that where high number of 

trees were available, the improvement provided by high numbers of completions was 

negligible, as the the standard deviation across trials was already approaching 0.
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Misclassification, as a function of multiple trees

Here the observation that pertained to correlation is reversed. The inclusion of multiple trees 

did not significantly improve (i.e. lower) the percentage of misclassifications, and in the 

case of betweenness centrality, the percentage of misclassifications actually increased with 

the inclusion of more sampling trees of the same ambient graph.

These observations, overall, suggest that multiple completions carry much the same results 

as multiple spanning tree samples of the same network, and at times produce better results. 

They also have the effect of minimizing sensitivity to initial starting conditions, as examined 

across 25 distinct trials. Beyond this, for these (idealized) conditions, the ECSTC method 

proved capable of recovering significant amounts of network data, in close correlation with 

the values that obtain in the original network.

6. Discussion and Future Work

As above, the purpose of this experiment was to test the potential and begin to assess the 

validity of the ECSTC method for obtaining network properties from fairly sparse data sets, 

especially the sorts of spanning tree data sets normally produced by Respondent-Driven 

Sampling methodologies. The high conformity of the estimated values to the known values 

surprised the authors. These results are encouraging, showing that the method is capable 

under the circumstances described here of estimating accurately the values of a known but 

only partly sampled graph, with relatively small levels of variation in that estimate or 

dependence on initial conditions.

A major concern for the authors was the sensitivity of the method to any single random 

walk. Given the relationship between this method and RDS research protocols—where 

ordinarily only a single random walk sample is taken—we worried that stochastic factors 

inherent in the walk itself (randomness that plays a large role in RDS's ability to reach 

sampling equilibrium in a population) would bias the results of the completions. Again this 

appears, at first attempt, not to be the case. The high concurrence of results over multiple 

sampling walks of the same networks, and the generally low standard deviation of the 

variation of those results across 25 distinct trials, means that we can have some confidence 

that the ECSTC method is not overly sensitive to peculiarities of any particular sampling 

walk.

Not surprisingly, the method was not equally successful across all measures, nor equally 

successful among those it was able to estimate closely. It worked best (closest fit and 

smallest individual error) for effective size. The authors were very surprised at the ability of 

the method to recover Burt's constraint measure, with a very high Pearson's r score, and low 

mean standard deviation. We expected the technique to fare worse on this measure. Despite 

past results showing that betweenness centrality to be among the least resiliant measure in 

the face of missing data, these scores were actually quite good as well, indicating that the 

mean values of these distributions (of estimates) were, in general, quite close to the actual 

values. These results were consistent over the course of 25 trials.
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There remains much work to be done, as discussed below. But if the results shown here for 

the Barabasi-Albert distribution are consistent across other topologies and sampling 

scenarios, then the ECSTC method may prove a valuable extension of the Respondent-

Driven Sampling method, allowing researchers to recover at least some broad topological 

data from the sampling trees produced by RDS. This would address two problems that social 

network researchers commonly face: the cost of large surveys where all participants must be 

asked about all others, and the problem of anonymity and informed consent. RDS trees are 

samples that do not attempt to ask respondents about others in the sample, other than the 

sorts of degree and ego-network questions necessary for tracking their own sampling. 

Likewise, the coupon referral method normally used in RDS allows for anonymous tracking 

of links, not necessitating the use of names or rosters.

Several important limits to our results must be discussed, however. Because the spanning 

tree samples stop when they reach a vertex with no additional undiscovered edges, this 

means that low degree nodes of degree one are likely to be known quite accurately for a 

higher proportion of their edge set (obviously), and that low degree nodes will have a lower 

proportion of their edges appear as “missing” in the sample. The result is that we have much 

higher levels of accuracy from the initial spanning tree for low degree vertices. In a BA 

graph, these make up the majority of the network, such that we begin the completion 

protocol with much of the periphery of the network fairly well known. This means that 

ECSTC method does most of its work, in the current instance of a BA graph, among the 

more highly connected vertices. This may be why betweenness centrality estimation 

remained accurate despite the fact that, in general, less than 50% of the edges are discovered 

in the sampling walks.

An issue for our results is that we assumed that we were able to record accurate degree 

information at each step of the walk, even though we did not discover the full set of edges to 

which that degree corresponded. A legitimate question is, to what extent such a measure is 

normally accurate in network interviews [44] [45]? This question goes beyond the current 

discussion but will be taken up directly in a subsequent paper that relates the ESCTC 

method to the RDS methodology as it is used among actual social networks and where 

corrections for degree misestimation are dealt with in more detail. Likewise, this experiment 

dealt only with symmetrized edges, and an assumption of uniform edge type and edge 

strength. This leaves aside a host of important features of RDS samples, and social networks 

in general. It also assumes many things that we know not to be true about RDS trees, 

including the fact that people often do not chose randomly among their personal network 

[46], and at times choose people outside their network for reasons of convenience or mutual 

economic benefit (as referrals and interviews are paid). These considerations would, 

obviously, compromise the significance of the method described here.
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Figure 1. 
A 100 vertex BA graph.
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Figure 2. 
ECSTC on a 100 node network.

Khan et al. Page 18

Soc Netw. Author manuscript; available in PMC 2015 March 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
ECSTC on a 500 node network.
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Table 1

Correlation (mean and standard deviation) over 25 trials.

Measure: BC

r̄ 1 comps 10 comps 30 comps 50 comps

1 trees 0.954 0.977 0.979 0.979

10 trees 0.979 0.981 0.981 0.982

30 trees 0.981 0.982 0.982 0.982

50 trees 0.981 0.982 0.982 0.982

std r 1 comps 10 comps 30 comps 50 comps

1 trees 0.009 0.002 0.002 0.001

10 trees 0.002 0.000 0.000 0.000

30 trees 0.001 0.000 0.000 0.000

50 trees 0.001 0.000 0.000 0.000

Measure: ES

r̄ 1 comps 10 comps 30 comps 50 comps

1 trees 0.995 0.997 0.997 0.997

10 trees 0.997 0.998 0.998 0.998

30 trees 0.997 0.998 0.998 0.998

50 trees 0.998 0.998 0.998 0.998

std r 1 comps 10 comps 30 comps 50 comps

1 trees 0.001 0.000 0.000 0.000

10 trees 0.000 0.000 0.000 0.000

30 trees 0.000 0.000 0.000 0.000

50 trees 0.000 0.000 0.000 0.000

Measure: CON

r̄ 1 comps 10 comps 30 comps 50 comps

1 trees 0.937 0.963 0.965 0.965

10 trees 0.963 0.965 0.966 0.966

30 trees 0.964 0.966 0.966 0.966

50 trees 0.965 0.966 0.966 0.966

std r 1 comps 10 comps 30 comps 50 comps

1 trees 0.012 0.002 0.001 0.001

10 trees 0.003 0.000 0.000 0.000

30 trees 0.001 0.000 0.000 0.000

50 trees 0.001 0.000 0.000 0.000
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Table 2

Misclassification (mean and standard deviation) over 25 trials.

Measure: BC

r
‒ 1 comps 10 comps 30 comps 50 comps

1 trees 11.404 9.596 9.762 9.895

10 trees 9.814 11.088 11.389 11.561

30 trees 10.667 11.596 11.812 11.784

50 trees 10.869 11.735 11.895 11.868

std ε 1 comps 10 comps 30 comps 50 comps

1 trees 1.035 0.641 0.589 0.592

10 trees 0.476 0.414 0.281 0.264

30 trees 0.439 0.271 0.176 0.167

50 trees 0.462 0.233 0.161 0.174

Measure: ES

r
‒ 1 comps 10 comps 30 comps 50 comps

1 trees 8.447 7.872 7.842 7.843

10 trees 7.862 7.838 7.838 7.838

30 trees 7.839 7.838 7.838 7.838

50 trees 7.838 7.838 7.838 7.838

std ε 1 comps 10 comps 30 comps 50 comps

1 trees 0.460 0.070 0.034 0.036

10 trees 0.051 0.000 0.000 0.000

30 trees 0.003 0.000 0.000 0.000

50 trees 0.000 0.000 0.000 0.000

Measure: CON

r
‒ 1 comps 10 comps 30 comps 50 comps

1 trees 13.836 11.617 11.521 11.584

10 trees 11.652 11.593 11.579 11.578

30 trees 11.550 11.578 11.575 11.575

50 trees 11.598 11.575 11.575 11.575

std ε 1 comps 10 comps 30 comps 50 comps

1 trees 1.085 0.303 0.190 0.126

10 trees 0.358 0.020 0.009 0.008

30 trees 0.112 0.006 0.000 0.000

50 trees 0.043 0.000 0.000 0.000
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