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On the Estimation of Three Parameters Lognormal Distribution 
 Based  on Fuzzy Life Time Data

(Anggaran Taburan Lognormal Tiga Parameter  Berdasarkan  Data Masa Hayat yang Kabur)
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ABSTRACT

Countless statistical tools are available to extract information from data. Life time modeling is considered as one of 
the most prominent fields of statistics, which is evident from the developments made in this field in the last few decades. 
Almost every statistic for life time analysis is based on precise life time observations, however, life time is not a precise 
measurement but more or less fuzzy. Therefore, in addition to classical statistical tools, fuzzy number approaches to 
describe life time data are more suitable. In order to incorporate fuzziness of the observations, fuzzy estimators for the 
three parameter lognormal distribution were suggested. The proposed estimators cover stochastic variation as well as 
fuzziness of the observations.
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ABSTRAK

Terdapat banyak perkakasan statistik tersedia untuk mengekstrak maklumat daripada data. Pemodelan masa hayat 
dianggap sebagai salah satu bidang statistik yang paling menonjol. Ini jelas daripada pembangunan bidang ini sejak 
beberapa dekad yang lalu. Hampir setiap statistik untuk analisis masa hayat adalah berasaskan pemerhatian masa hayat 
yang tepat, walau bagaimanapun, masa hayat bukanlah suatu pengukuran yang tepat tetapi lebih atau kurang kabur. 
Oleh itu, sebagai tambahan kepada perkakas statistik klasik, pendekatan nombor kabur untuk menggambarkan data 
masa hayat adalah lebih sesuai. Dalam usaha untuk menggabungkan kekaburan daripada pemerhatian, penganggaran 
kabur untuk taburan tiga parameter lognormal telah dicadangkan. Penganggaran yang dicadangkan meliputi kelainan 
stokastik serta kekaburan daripada pemerhatian.

Kata kunci: Data tidak tepat; fungsi pencirian; masa hayat; nombor kabur

INTRODUCTION

Statistical decisions are based on data. Data are usually 
presented in the form of precise numbers or vectors or 
results of functions. In many situations, the observation 
cannot be recorded as precise number because of 
continuous nature or some irregular nature, e.g. wave 
nature of the water level (Wu 2004). 
	 About the precise measurements (Barbato et al. 2013) 
mentioned that in the modern technology measurements 
the word ‘exact’ or ‘equal’ needs to be banned, because 
the characteristic exact is not possible to attain in reality. 
According to Viertl (2009), all the measurements obtained 
from continuous real variables cannot be precise numbers 
but are more or less imprecise. One should keep in 
mind that imprecision of single observation is different 
from stochastic variability and measurement errors, this 
imprecision of the measurement is called fuzziness. 
	 In order to integrate fuzziness in decision making 
the idea of fuzzy sets was first presented by Zadeh 
in 1965. Most classical statistical tools are based on 
precise observations without considering fuzziness of 
the observations. 

	 Life time is also of continuous nature, therefore, the 
measurement obtained on life time cannot be a precise 
number but rather fuzzy. Therefore, the analysis techniques 
related to life time data are required to be generalized in 
such a way that fuzziness of the observations is integrated 
in the estimation process.

ELEMENTS OF FUZZY SET THEORY

In classical set theory to represent whether an element t is in 
a subset A of a universal set M, a two valued characteristic 
function called indicator function is used as mentioned 
in (1):

	 	 (1)
 

	 Fuzzy set theory is the generalization of classical set 
theory, therefore, the indicator function mentioned in (1) 
is generalized to the so-called membership function μA* of 
a fuzzy subset A* of M, i.e. (2):
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	 	 (2)

 

where the core of a fuzzy subset A* is the set of all points  
t in M such that μA*(t) = 1.
	 The membership function maps the elements from the 
universal set M to the interval (Szeliga 2004).

FUZZY NUMBERS

According to Viertl (2011), a so-called fuzzy number t* is a 
special fuzzy subset of  it is determined by a real function 
of one real variable, the so-called characterizing function 
denoted by ξ(·), obeying the following three conditions:

ξ:  → [0, 1].

The characterizing function ξ(·) has bounded support, 
i.e. supp[ξ(·)]: = {t ∈ : ξ(t) > 0} ⊆ [a, b].; and

The set Cδ(t
*) : = [t ∈ : ξ(t) ≥ δ] is called δ-cut. 

For a fuzzy number it is a finite union of non-empty 
compact intervals, i.e. Cδ(t

*) =  ≠ Ø ∀ δ 
∈ [0,1] where  kδ represents the number of compact 
intervals in the δ-cut at level δ.

	 A so-called fuzzy interval is a special form of a fuzzy 
number, for this all δ-cuts are non-empty closed bounded 
intervals.

LEMMA 

For a fuzzy number t* having characterizing function ξ(·) 
the following lemma holds true:

	 ξ(t) = max{δ·ICδ(t*)(t) : δ ∈ [0,1]} ∀  t ∈ .

For proof compare Viertl (2011).

Remark For a nested family of finite unions of compact 
intervals, i.e. (Aδ; δ ∈ [0.1]) obeying it is important to 
note that not all families of nested finite unions of compact 
intervals are the -cuts of a fuzzy number. But the following 
construction lemma holds:

CONSTRUCTION LEMMA 

Let  be a nested family of non-empty 
subset of . Then the characterizing function of the 
generated fuzzy number is defined by

	 ξ(t) = sup{δ·ICδ(t*)(t) : δ ∈ [0,1]}

	 ∀ t ∈ .

For details see Viertl and Hareter (2006).

EXTENSION PRINCIPLE

Let M and N be any spaces and G be an arbitrary function G 
: M → N, then the extension principle is the generalization 
of the function G for a fuzzy argument value a* in the set M. 
	 Let a fuzzy element a* having membership function μ: 
M → [0,1], then the fuzzy value y* which is denoted by y* 
= G(a*) is the fuzzy element in space N whose membership 
function ϑ(.) is defined by:

	

	 ∀y ∈ N.

See Klir and Yuan (1995).

FUZZY VECTORS

A so-called fuzzy vector  is a fuzzy subset of n which is 
determined by a real function of n real variables t1, t2, …, 
tn called vector-characterizing function, and is denoted by 
ζ(., …, .), obeying the following three conditions:

ζ:  n →  [0, 1]; 

The support of ξ(., …, .) is a bounded set; and

For all δ ∈ [0, 1] the so-called δ-cut Cδ( ) = {  ∈ n: 
ζ( ) ≥ δ} is non-empty, bounded, and a finite union 
of simply connected and closed sets.

	 If all δ-cuts of a n-dimensional sets, then the 
corresponding n-dimensional fuzzy vector is called 
-dimensional fuzzy interval.

THEOREM 

For any continuous function f : n →, and fuzzy 
n-dimensional fuzzy interval  the following holds true:

	  

For proof see Viertl (2011).

LIFE TIME DATA ANALYSIS

If a random variable T denotes life time, it will have an 
observation space MT  ⊆ 

[0, ∞). In case of random sample 
t1, t2, …, tn from T, each element of the sample is an 
element of the observation space, and the sample (t1, t2, 
…, tn) is an element of the Cartesian product of n copies 
of MT, i.e. MT X MT X… X MT called the sample space, 
and is denoted by .
	 But in case of fuzzy sample ( ) each element 
of the sample, i.e.  i = 1(1)n is a fuzzy element of the 
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observation space MT, but the sample is not a fuzzy element 
of the sample space .
	 We need to attain a fuzzy element of the sample space, 
and this can be done by use of triangular norms, usually 
called t-norms. 
	 For the vector-characterizing function ζ(., …, .) of the 
combined fuzzy sample , the minimum t-norm, is applied, 
i.e. 

Cδ[ξ(., …, .)] = min[ξ1(t1),  ξ2(t2), …, ξn(tn)] 

∀(t1, t2, …, tn) ∈ n

and the δ-cuts of the combined fuzzy sample  are obtained 
as the Cartesian product of the δ-cuts, i.e. Cδ[ξ(., …, .)]  = 

 Cδ[ξi(.)] ∀ δ ∈ (0, 1] (Viertl 2011).
	 Numerical data handling requires statistical techniques 
to provide a framework to summarize and to draw inference 
from the raw data.
	 Statistical tools related to life time data analysis started 
in the 20th century and comprehensively developed in the 
last few decades. Life time can be simply defined as ‘the 
waiting time till a specified event occurs’. The event of 
interest may be death, failure, divorce and change of place. 
The main aim of these analyses was to obtain mean life 
time, to predict survival probabilities and compare survival 
curves (Deshpande & Purohit 2005).
	 The Lognormal distribution is considered in renown 
distributions to model life time data especially for highly 
positive skewed data. 
	 Consider the event of interest is death/failure, then T 
is a non-negative random variable denoting the waiting 
time until the failure/death of a unit. For guaranty time γ, 
ln(T – γ)$ follows a normal distribution with mean μ and 
variance σ2, and has lognormal distribution with parameters 
(γ, μ, σ2) represented by its density,

	 },

where γ < t < ∞, σ2 > 0, –∞ < μ < ∞.
	 The corresponding maximum likelihood estimators 
of the parameters are,

	 		  (3)

	 	 (4)

	 	 (5)

by solving (3)-(5) iteratively to get an estimate of γ.

	 An estimator can also be obtained by putting (3) and 
(4) in (5), resulting in 

	 (6)
	

By solving (6) one can get .
For proof see Cohen and Whitten (1980).

	 Dealing with fuzzy life time data some work has been 
done like, fuzzy Bayesian estimation on lifetime data (Wu 
2004), Bayesian reliability analysis for fuzzy lifetime data 
(Huang et al. 2006), reliability estimation based on fuzzy 
lifetime data (Viertl 2009) and reliability estimation in 
Rayleigh distribution based on fuzzy lifetime data (Pak et 
al. 2013), but still in most of the publications fuzziness is 
ignored. 
	 In this study generalized parameter estimators for 
the three parameter lognormal distributions are proposed 
which are based on fuzzy life time observations. 

GENERALIZED ESTIMATORS FOR THE THREE PARAMETER 
LOGNORMAL DISTRIBUTION

A so-called trapezoidal fuzzy number is denoted by t* = 
[m, s, l, r] and their characterizing function is defined by 
the following expression,

	

	 A characterizing function of a trapezoidal fuzzy 
number is depicted in Figure 1.

FIGURE 1. Characterizing function of trapezoidal fuzzy number

	 Let ( ) be fuzzy life time observations 
with characterizing functions ξ1(t1), ξ2(t2), …, ξn(tn), 
respectively.
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	 The corresponding δ-cuts of the fuzzy life times are 
denoted by Cδ ( ) = [ i,δ, i,δ] ∀δ ∈ [0,1] where i,δ and 
i,δ represent lower and upper ends of the δ-cuts of , i = 
1(1)n.
	 A sample of fuzzy life time observations with 
characterizing functions is depicted in Figure 2.

FIGURE 2. Characterizing functions of fuzzy
 life time observations

	 The generalized (fuzzy) estimators based on fuzzy life 
time observations are denoted by *, , and .
	 The corresponding δ-cuts of the fuzzy estimators are 
denoted by:

	

and 

	

	 For the characterizing functions of the fuzzy estimator 
* a generating family of intervals is obtained through the 

following proposed equations:

	

		

	 	 (7)

	

		  	 (8)

	 Solving the two equations for 1,δ and 2,δ, then 
lower and upper ends of the family of intervals for the 
fuzzy estimator *

 are defined by  and 

	

	 From this generating family of intervals, the 
characterizing function is obtained by the mentioned 
Construction lemma. For the fuzzy life time observations 
data from Figure 2 the characterizing function is depicted 
in Figure 3.

FIGURE 3. Characterizing function of the fuzzy estimator

	 For the fuzzy estimator  using the theorem given 
earlier, the generating family of intervals is obtained 
through the following equations:

		

	  ∀ δ ∈ [0,1].	

(9)

	 From this generating family of intervals the 
characterizing function is obtained by the mentioned 
Construction lemma. For the example fuzzy life time 
observations data from Figure 2 the characterizing function 
is depicted in Figure 4.

FIGURE 4. Characterizing function of the fuzzy estimator
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	 For the characterizing functions of the fuzzy estimator 
the generating family of intervals is obtained through the 
following equations:

			 
	 	 (10)

	

	 	
(11)

	 From this generating family of intervals the 
characterizing function is obtained by the mentioned 
Construction lemma. For the example fuzzy life time 
observations data from Figure 2 the characterizing function 
is depicted in Figure 5.
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FIGURE 5. Characterizing function of the fuzzy estimator

CONCLUSION

In many situations, life time data distributions are 
highly positive skewed. In such situations the lognormal 
distribution is considered to be the best fit. The estimation 
techniques to estimate parameters of the lognormal 
distribution are usually based on precise life time 
observations, while in reality life times are not a precise 
measurement but fuzzy. 
	 Therefore, for appropriate estimations in addition to 
classical tools fuzzy number methods are more suitable.
In this study fuzzy estimators are proposed to assimilate 
fuzziness of life time observations in estimation. The 
results obtained are more suitable to model life time data 
in real situations. 


