Journal of Quality Measurement and Analysis Jurnal Pengukuran Kualiti dan Analisis JQMA 12(1-2) 2016, 89-95

SOME RESULTS FOR THE CLASS OF ANALYTIC FUNCTIONS INVOLVING SALAGEAN DIFFERENTIAL OPERATOR

(Beberapa Sifat untuk Kelas Fungsi Analisis Melibatkan Pengoperasi Pembeza Salagean)

ALAWIAH IBRAHIM¹, MASLINA DARUS¹, SEVER S. DRAGOMIR² & A. F-. JOSEPH OLUBUNMI³

ABSTRACT

Let $T_n^{\alpha}(\beta)$ denote the class of function $f(z) = z + \sum_{k=2}^{\infty} a_k z^k$, analytic and univalent in the open unit disk $U = \{z \in C : |z| < 1\}$, which are defined involving the Salagean differential operator $D^n, n \in \mathbb{N} \cup \{0\}$, such that $\text{Re}(D^n f(z)^{\alpha}/z^{\alpha}) \ge \beta$, $z \in U, \alpha > 0, 0 \le \beta < 1$. In this paper, some properties such as a representation theorem and coefficient estimates for the class $T_n^{\alpha}(\beta)$ are obtained.

Keywords: Salagean differential operator; coefficient estimate; representation theorem

ABSTRAK

Andaikan $T_n^{\alpha}(\beta)$ kelas fungsi $f(z) = z + \sum_{k=2}^{\infty} a_k z^k$, analisis dan univalen pada cakera unit $U = \{z \in C : |z| < 1\}$, yang tertakrif melibatkan pengoperasi pembeza Salagean $D^n, n \in N \cup \{0\}$ sedemikian hingga $\operatorname{Ny}(D^n f(z)^{\alpha}/z^{\alpha}) \geq \beta, z \in U, \alpha > 0, 0 \leq \beta < 1$. Dalam makalah ini, beberapa sifat fungsi f di dalam kelas $T_n^{\alpha}(\beta)$ seperti teorem perwakilan dan anggaran pekali diperoleh.

Kata kunci: Pengoperasi pembeza Salagean, anggaran pekali, teorem perwakilan

1. Introduction

Let A denote the class of functions of the form

$$f(z) = z + \sum_{k=2}^{\infty} a_k z^k , \qquad (1)$$

which are analytic in the open unit disk $U = \{z \in \mathbb{C} : |z| < 1\}$, \mathbb{C} is a complex number. We denote the subclass of A consisting of analytic and univalent functions in U by S. Let P be the class of analytic function p(z) of the form

$$p(z) = 1 + \sum_{k=2}^{\infty} p_k z^k, \ z \in U$$
 (2)

such that p(0) = 1 and Re(p(z)) > 0.

The following classes of functions are well known and have been studied repeatedly by many authors such as Salagean (1983), Opoola (1994), Abdulhalim (2003) and others.

$$S_{0} = \left\{ f \in A : \operatorname{Re}\left(\frac{f(z)}{z}\right) > 0, \ z \in U \right\},$$

$$B(\beta) = \left\{ f \in A : \operatorname{Re}\left(\frac{f(z)}{z}\right) > \beta, \ 0 \le \beta < 1, \ z \in U \right\},$$

$$\delta(\beta) = \left\{ f \in A : \operatorname{Re}\left(f'(z)\right) > \beta, \ 0 \le \beta < 1, \ z \in U \right\}.$$

$$(3)$$

In 1993, Salagean introduced the following operator which is known as the Salagean differential operator.

Definition 1.1. For a function $f \in A$, the Salagean differential operator $D^n: A \to A$, $n \in \mathbb{N}_0 = \{0,1,2,...\}$ is defined by

$$D^{n} f(z) = D[D^{n-1} f(z)] = z[D^{n-1} f(z)]',$$
(4)

where

$$D^{0} f(z) = f(z)$$
 and $D^{1} f(z) = Df(z) = zf'(z)$.

The operator D^n has been employed by various authors to define several subclasses of A, see Kanas (1989, Obradovic (1992), Opoola (1994), Babalola and Opoola (2006). For instance, Opoola (1994) introduced the subclass $T_n^{\alpha}(\beta)$, $\alpha > 0, 0 \le \beta < 1, n \in \mathbb{N}_0$ of analytic functions which are defined involving Salagean differential operator as follows:

$$T_n^{\alpha}(\beta) = \left\{ f \in A : \operatorname{Re}\left(\frac{D^n f(z)^{\alpha}}{z^{\alpha}}\right) > \beta \right\}, \tag{5}$$

for $z \in U$, $\alpha > 0$, $0 \le \beta < 1$. The class $T_n^{\alpha}(\beta)$ is the generalization of the classes of functions as mentioned in (3), where $T_n^{\alpha}(0) := B_n(\alpha)$ is the class of Bazilevic functions (Abdulhalim 2003). Some properties of this class of functions were also established by Opoola, namely

- (i) T_n^{α} is a subclass of univalent functions,
- (ii) $T_{n+1}^{\alpha} \subset T_n^{\alpha}(\beta)$,
- (iii) If $f \in T_n^{\alpha}(\beta)$, then the integral operator $F_c = \frac{\alpha + c}{z^{\alpha}} \int_0^c t^{\alpha 1} f(z)^{\alpha} dt$, $c \ge 0$, is also in $T_n^{\alpha}(\beta)$.

In this paper, we obtain further properties of functions in the class $T_n^{\alpha}(\beta)$.

2. Preliminaries

We observed that for $f \in A$ and of the form (1), and applying the operator (4) then we have

$$D^{n} f(z) = z + \sum_{k=2}^{\infty} k^{n} a_{k} z^{k}$$
 (6)

for $z \in U$, $n \in \mathbb{N}_0 = \{0,1,2,...\}$. Also, suppose that $\alpha > 0$, then by using binomial expansion, from (1) we can write

$$f(z)^{\alpha} = z^{\alpha} + \sum_{k=2}^{\infty} A_k(\alpha) z^{\alpha+k-1}, \qquad (7)$$

where the coefficients $A_k(\alpha)$, $k \in \{2,3,4,...\}$ with $A_k(1) = a_k$, depend on the coefficients a_k of f(z) and the parameter $\alpha > 0$. Now, if we apply the operator (4) for the function (7), then we obtain

$$D^{n} f(z)^{\alpha} = \alpha^{n} z^{\alpha} + \sum_{k=2}^{\infty} (\alpha + k - 1)^{n} A_{k}(\alpha) z^{\alpha + k - 1}$$
(8)

for $z \in U$, $\alpha > 0$, $n \in \mathbb{N}_0$.

In order to prove our results, we shall need the following lemmas.

Lemma 2.1. (Hayami *et al.* 2007) A function $p(z) \in P$ given by (2) satisfies the condition Ny(p(z)) > 0, $z \in U$ if and only if

$$p(z) \neq \frac{\psi - 1}{\psi + 1}, \ z \in U, \ \psi \in \mathbb{C}, \ |\psi| = 1.$$
 (9)

Lemma 2.2. (Alfors 1966) Let f(z) be an analytic function in the unit disk U with f(0) = 0 and |f(z)| < 1. Then, $|f'(0)| \le 1$ and $|f(z)| \le |z|$ in U. Strict inequality holds in both estimates unless f(z) is a rotation of the disk $|f(z)| = e^{i\theta}z$. If |f(z)| = |z| for some $z \ne 0$, then |f(z)| = cz, with a constant c of absolute value 1.

3. Main Results

In this section, we establish some properties of functions in the class $T_n^{\alpha}(\beta)$. First, we prove a sufficient condition for functions belong to this class.

Theorem 3.1. A function $f \in A$ is in the class $T_n^{\alpha}(\beta)$, $\alpha > 0, 0 \le \beta < 1, n \in \mathbb{N}_0$ if and only if

$$1 + \sum_{k=2}^{\infty} Q_k z^{k-1} \neq 0,$$

where

$$Q_k = \frac{(\psi + 1)}{2(1 - \beta)} \left(\frac{\alpha + k - 1}{\alpha}\right)^n A_k(\alpha) \tag{10}$$

for some $\alpha > 0, 0 \le \beta < 1, n \in \mathbb{N}_0$ with $\psi \in \mathbb{C}$, $|\psi| = 1$.

Proof. From (5), is suggests that there exists a function $p(z) \in P$ such that

$$\frac{D^n f(z)^{\alpha}}{z^{\alpha}} = \alpha^n [\beta + (1 - \beta) p(z)]$$

for $z \in U$, $\alpha > 0, 0 \le \beta < 1, n \in \mathbb{N}_0$. Upon setting

$$p(z) = \left(\frac{D^n f(z)^{\alpha}}{\alpha^n z^{\alpha}} - \beta\right) \left(\frac{1}{1 - \beta}\right),\,$$

then from Lemma 2.1, we get

$$\left(\frac{D^n f(z)^{\alpha}}{\alpha^n z^{\alpha}} - \beta\right) \left(\frac{1}{1 - \beta}\right) \neq \frac{\psi - 1}{\psi + 1}$$

for $z \in U$, $\alpha > 0, 0 \le \beta < 1, n \in \mathbb{N}_0$ with $\psi \in \mathbb{C}$, $|\psi| = 1$. It is equivalent to

$$(\psi + 1)D^{n} f(z)^{\alpha} - [\beta(\psi + 1) + (1 - \beta)(\psi - 1]\alpha^{n} z^{\alpha} \neq 0.$$
 (11)

Substituting (8) into (11) yields that

$$2(1-\beta)\alpha^{n}z^{\alpha} + \sum_{k=2}^{\infty} (\psi + 1)(\alpha + k - 1)^{n} A_{k}(\alpha)z^{\alpha + k - 1} \neq 0$$
(12)

Now, dividing both sides of (12) by $2(1-\beta)\alpha^n z^\alpha \neq 0$, we obtain

$$1 + \sum_{k=2}^{\infty} \frac{(\psi + 1)}{2(1 - \beta)} \left(\frac{\alpha + k - 1}{\alpha}\right)^n A_k(\alpha) z^{\alpha + k - 1} \neq 0$$

for any $\psi \in \mathbb{C}$ such that $|\psi| = 1, z \in U, \alpha > 0, 0 \le \beta < 1, n \in \mathbb{N}_0$.

Remark 3.2. For the case of $\beta = 0$ in (10), the result has been proved by Singh *et al.* (2009).

The following property of functions in the class $T_n^{\alpha}(\beta)$ is also established.

Theorem 3.3. Let $f \in A$ belong to the class $T_n^{\alpha}(\beta)$, $\alpha > 0, 0 \le \beta < 1, n \in \mathbb{N}_0$. Then, there exists an analytic function $\phi(z)$ with $|\phi(z)| \le 1$, $z \in U$ such that

$$\frac{D^{n} f(z)^{\alpha}}{\alpha^{n} z^{\alpha}} = 2\beta - 1 + \frac{2(1-\beta)}{1 - z\phi(z)},$$
(12)

for $z \in U$, $\alpha > 0, 0 \le \beta < 1, n \in \mathbb{N}_0$.

Proof. Let us define the functions A(z) and B(z) as follows:

$$A(z) = \frac{D^n f(z)^{\alpha}}{\alpha^n z^{\alpha}} - \beta \tag{13}$$

and

$$B(z) = z \left(\frac{A(z) - (-\beta)}{A(z) + (1 - \beta)} \right) \tag{14}$$

for $z \in U$, $\alpha > 0.0 \le \beta < 1, n \in \mathbb{N}_0$. Substituting the equation (13) into (14), we get

$$B(z) = z \left(\frac{D^n f(z)^{\alpha}}{\alpha^n z^{\alpha}} - 1 \right) \left(\frac{1}{\frac{D^n f(z)^{\alpha}}{\alpha^n z^{\alpha}} - (2\beta - 1)} \right)$$

for any $z \in U$. B(z) is an analytic function for $z \in U$. Also, since f(0) = 0 and f'(0) = 1, we have that B(0) = 0 and |B(z)| < 1 for $z \in U$. Hence, by Schwarz's Lemma (Lemma 2.2), |B(z)| < |z|, $z \in U$ which gives that

$$\left(\frac{D^n f(z)^{\alpha}}{\alpha^n z^{\alpha}} - 1\right) \left(\frac{1}{\frac{D^n f(z)^{\alpha}}{\alpha^n z^{\alpha}} - (2\beta - 1)}\right) < |z|$$

or equivalently

$$\left(\frac{D^n f(z)^{\alpha}}{\alpha^n z^{\alpha}} - 1\right) \left(\frac{1}{\frac{D^n f(z)^{\alpha}}{\alpha^n z^{\alpha}} - (2\beta - 1)}\right) = z\phi(z),$$

where $\phi(z)$ is analytic and $|\phi(z)| \le 1$ for $z \in U$. Therefore,

$$\frac{D^n f(z)^{\alpha}}{\alpha^n z^{\alpha}} - 1 = z\phi(z) \frac{D^n f(z)^{\alpha}}{\alpha^n z^{\alpha}} - (2\beta - 1)z\phi(z). \tag{15}$$

Solving for $D^n f(z)^{\alpha}/\alpha^n z^{\alpha}$ from (15), then we get

$$\frac{D^n f(z)^{\alpha}}{\alpha^n z^{\alpha}} = \frac{1 - (2\beta - 1)z\phi(z)}{1 - z\phi(z)} = (2\beta - 1) + \frac{2(1 - \beta)}{1 - z\phi(z)}.$$

Thus, we obtain the desired result (12)

The following result is called the integral representation theorem for functions in the class $T_n^{\alpha}(\beta)$, which provides further property of functions in this class.

Theorem 3.4. Let $f \in A$ belong to the class $T_n^{\alpha}(\beta)$, $\alpha > 0, 0 \le \beta < 1, n \in \mathbb{N}_0$. Then, there exists an analytic function $\phi(z)$ with $|\phi(z)| \le 1$, $z \in U$ such that

$$\frac{D^n f(z)^{\alpha}}{\alpha^n z^{\alpha}} = \frac{1}{\alpha^n z^{\alpha}} \exp \int_0^z \left(\frac{\alpha}{t} - C(t)\right) dt, \tag{16}$$

for $\alpha > 0, 0 \le \beta < 1, n \in \mathbb{N}_0$, where

$$C(t) = \frac{2(\beta - 1)[z\phi'(t) + \phi(t)]}{1 - 2\beta t\phi(t) + (2\beta - 1)t^2\phi^2(t)}.$$
(17)

Proof: Let $f(z) \in T_n^{\alpha}(\beta)$. Then, from Theorem 3.3 we have

$$\frac{D^n f(z)^{\alpha}}{\alpha^n z^{\alpha}} = 2\beta - 1 + \frac{2(1-\beta)}{1 - z\phi(z)} = \frac{1 - (2\beta - 1)z\phi(z)}{1 - z\phi(z)}.$$
 (18)

Taking the logarithmic differentiation, we get from (18)

$$\frac{\left[D^{n} f(z)^{\alpha}\right]^{2}}{D^{n} f(z)^{\alpha}} = \frac{\alpha}{z} - \frac{2(1-\beta)\left[z\phi'(z) + \phi(z)\right]}{1-2\beta z\phi(z) + (2\beta-1)z^{2}\phi^{2}(z)}.$$
(19)

Now, integrating both sides of (19) along the line segment from 0 to z, we obtain

$$\ln \left[D^n f(z)^{\alpha} \right] = \int_0^z \left(\frac{\alpha}{z} - \frac{2(1-\beta) \left[t \phi'(t) + \phi(t) \right]}{1 - 2\beta t \phi(t) + (2\beta - 1)t^2 \phi^2(t)} \right) dt.$$

This gives us that

$$\frac{D^n f(z)^{\alpha}}{\alpha^n z^{\alpha}} = \frac{1}{\alpha^n z^{\alpha}} \exp \int_0^z \left(\frac{\alpha}{t} - C(t) \right) dt$$

for $z \in U$, $\alpha > 0$, $0 \le \beta < 1$, $n \in \mathbb{N}_0$, where

$$C(t) = \frac{2(1-\beta)[t\phi'(t) + \phi(t)]}{1 - 2\beta t\phi(t) + (2\beta - 1)t^2\phi^2(t)}$$

for an analytic function $\phi(z)$ with $|\phi(z)| \le 1$, $z \in U$. Thus, the proof of Theorem 3.4 is completed. \Box

Acknowledgements

This work was supported by the research grant (GGPM-2016-008) from the Universiti Kebangsaan Malaysia.

References

Salagean G. S. 1983. Subclass of Univalent Functions. Lecture Note in Math. Springer-Verlag: 362-372.

Abdulhalim S. 2003. Coefficients estimates for functions in $B_n(\alpha)$. IJMMS Hindawi Publishing Corp. **59**: 3761-3767.

Opoola T. O. 1994. On a new subclass of univalent functions. Mathematica Tome 36, 59(2): 195-200.

Kanas S. 1989. New subclasses of univalent functions. Folia Scientarium Univ. Tech. Resoviensis 60: 45-59.

Obradovic M. 1992. On certain differential operator and some classes of univalent functions. *Serija Mathematica* 6: 107-112.

Babalola K. O. & Opoola T. O. 2006. Integrated integral transform of Catatheodory functions and their applications to analytic and univalent functions. *Tamkang J. Math.* 37(4): 355-366.

Hayami T., Owa S. and Srivastava H. M. 2007. Coefficient inequalities for certain classes of analytic and univalent functions. *J. Ineq. In Pure and Appl. Math.* 8(4): 1-21.

Ahlfors L. V. 1966. *Complex Analysis*. 2nd Ed. New York: McGraw Hill Book Comp.

Singh S., Gupta S. & Singh S. 2009. A general coefficient inequality. General Maths. 17(3):99-104.

¹School of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor MALAYSIA

E-mail: alaibra@ukm.edu.my*, maslina@ukm.edu.my

²School of Engineering and Science Victoria University Melbourne AUSTRALIA E-mail: Sever.Dragomir@vu.edu.au

³Department of Mathematics University of Ilorin Ilorin NIGERIA Email: famelov@unilorin.edu.ng

^{*}Corresponding author