SOME RESULTS FOR THE CLASS OF ANALYTIC FUNCTIONS

 INVOLVING SALAGEAN DIFFERENTIAL OPERATOR(Beberapa Sifat untuk Kelas Fungsi Analisis Melibatkan Pengoperasi Pembeza Salagean)

ALAWIAH IBRAHIM ${ }^{1}$, MASLINA DARUS ${ }^{1}$, SEVER S. DRAGOMIR ${ }^{2}$ \& A. F-. JOSEPH OLUBUNMI ${ }^{3}$

Abstract

Let $T_{n}^{\alpha}(\beta)$ denote the class of function $f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k}$, analytic and univalent in the open unit disk $U=\{z \in C:|z|<1\}$, which are defined involving the Salagean differential operator $D^{n}, n \in N \cup\{0\}$, such that $\operatorname{Re}\left(D^{n} f(z)^{\alpha} / z^{\alpha}\right) \geq \beta, z \in U, \alpha>0,0 \leq \beta<1$. In this paper, some properties such as a representation theorem and coefficient estimates for the class $T_{n}^{\alpha}(\beta)$ are obtained.

Keywords: Salagean differential operator; coefficient estimate; representation theorem

ABSTRAK

Andaikan $T_{n}^{\alpha}(\beta)$ kelas fungsi $f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k}$, analisis dan univalen pada cakera unit $U=\{z \in C:|z|<1\}$, yang tertakrif melibatkan pengoperasi pembeza Salagean $D^{n}, n \in N \cup$ $\{0\}$ sedemikian hingga $\operatorname{Ny}\left(D^{n} f(z)^{\alpha} / z^{\alpha}\right) \geq \beta, z \in U, \alpha>0,0 \leq \beta<1$. Dalam makalah ini, beberapa sifat fungsi f di dalam kelas $T_{n}^{\alpha}(\beta)$ seperti teorem perwakilan dan anggaran pekali diperoleh.

Kata kunci: Pengoperasi pembeza Salagean, anggaran pekali, teorem perwakilan

1. Introduction

Let A denote the class of functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k} \tag{1}
\end{equation*}
$$

which are analytic in the open unit disk $U=\{z \in \mathrm{C}:|z|<1\}, \mathrm{C}$ is a complex number. We denote the subclass of A consisting of analytic and univalent functions in U by S. Let P be the class of analytic function $p(z)$ of the form

$$
\begin{equation*}
p(z)=1+\sum_{k=2}^{\infty} p_{k} z^{k}, z \in U \tag{2}
\end{equation*}
$$

such that $p(0)=1$ and $\operatorname{Re}(p(z))>0$.
The following classes of functions are well known and have been studied repeatedly by many authors such as Salagean (1983), Opoola (1994), Abdulhalim (2003) and others.

$$
\begin{align*}
& S_{0}=\left\{f \in A: \operatorname{Re}\left(\frac{f(z)}{z}\right)>0, z \in U\right\}, \\
& B(\beta)=\left\{f \in A: \operatorname{Re}\left(\frac{f(z)}{z}\right)>\beta, 0 \leq \beta<1, z \in U\right\}, \tag{3}\\
& \delta(\beta)=\left\{f \in A: \operatorname{Re}\left(f^{\prime}(z)\right)>\beta, 0 \leq \beta<1, z \in U\right\} .
\end{align*}
$$

In 1993, Salagean introduced the following operator which is known as the Salagean differential operator.

Definition 1.1. For a function $f \in A$, the Salagean differential operator $D^{n}: A \rightarrow A$, $n \in \mathrm{~N}_{0}=\{0,1,2, \ldots\}$ is defined by

$$
\begin{equation*}
D^{n} f(z)=D\left[D^{n-1} f(z)\right]=z\left[D^{n-1} f(z)\right]^{\prime}, \tag{4}
\end{equation*}
$$

where

$$
D^{0} f(z)=f(z) \text { and } D^{1} f(z)=D f(z)=z f^{\prime}(z) .
$$

The operator D^{n} has been employed by various authors to define several subclasses of A, see Kanas (1989, Obradovic (1992), Opoola (1994), Babalola and Opoola (2006). For instance, Opoola (1994) introduced the subclass $T_{n}^{\alpha}(\beta), \alpha>0,0 \leq \beta<1, n \in \mathrm{~N}_{0}$ of analytic functions which are defined involving Salagean differential operator as follows:

$$
\begin{equation*}
T_{n}^{\alpha}(\beta)=\left\{f \in A: \operatorname{Re}\left(\frac{D^{n} f(z)^{\alpha}}{z^{\alpha}}\right)>\beta\right\}, \tag{5}
\end{equation*}
$$

for $z \in U, \alpha>0,0 \leq \beta<1$. The class $T_{n}^{\alpha}(\beta)$ is the generalization of the classes of functions as mentioned in (3), where $T_{n}^{\alpha}(0):=B_{n}(\alpha)$ is the class of Bazilevic functions (Abdulhalim 2003). Some properties of this class of functions were also established by Opoola, namely
(i) T_{n}^{α} is a subclass of univalent functions,
(ii) $T_{n+1}^{\alpha} \subset T_{n}^{\alpha}(\beta)$,
(iii) If $f \in T_{n}^{\alpha}(\beta)$, then the integral operator $F_{c}=\frac{\alpha+c}{z^{\alpha}} \int_{0}^{c} t^{\alpha-1} f(z)^{\alpha} d t, c \geq 0$, is also in $T_{n}^{\alpha}(\beta)$.
In this paper, we obtain further properties of functions in the class $T_{n}^{\alpha}(\beta)$.

2. Preliminaries

We observed that for $f \in A$ and of the form (1), and applying the operator (4) then we have

$$
\begin{equation*}
D^{n} f(z)=z+\sum_{k=2}^{\infty} k^{n} a_{k} z^{k} \tag{6}
\end{equation*}
$$

for $z \in U, n \in \mathrm{~N}_{0}=\{0,1,2, \ldots\}$. Also, suppose that $\alpha>0$, then by using binomial expansion, from (1) we can write

$$
\begin{equation*}
f(z)^{\alpha}=z^{\alpha}+\sum_{k=2}^{\infty} A_{k}(\alpha) z^{\alpha+k-1}, \tag{7}
\end{equation*}
$$

where the coefficients $A_{k}(\alpha), k \in\{2,3,4, \ldots\}$ with $A_{k}(1)=a_{k}$, depend on the coefficients a_{k} of $f(z)$ and the parameter $\alpha>0$. Now, if we apply the operator (4) for the function (7), then we obtain

$$
\begin{equation*}
D^{n} f(z)^{\alpha}=\alpha^{n} z^{\alpha}+\sum_{k=2}^{\infty}(\alpha+k-1)^{n} A_{k}(\alpha) z^{\alpha+k-1} \tag{8}
\end{equation*}
$$

for $z \in U, \alpha>0, n \in \mathrm{~N}_{0}$.
In order to prove our results, we shall need the following lemmas.
Lemma 2.1. (Hayami et al. 2007) A function $p(z) \in P$ given by (2) satisfies the condition $N y(p(z))>0, z \in U$ if and only if

$$
\begin{equation*}
p(z) \neq \frac{\psi-1}{\psi+1}, z \in U, \psi \in \mathrm{C},|\psi|=1 . \tag{9}
\end{equation*}
$$

Lemma 2.2. (Alfors 1966) Let $f(z)$ be an analytic function in the unit disk U with $f(0)=0$ and $|f(z)|<1$. Then, $\left|f^{\prime}(0)\right| \leq 1$ and $|f(z)| \leq|z|$ in U. Strict inequality holds in both estimates unless $f(z)$ is a rotation of the disk $f(z)=e^{i \theta} z$. If $|f(z)|=|z|$ for some $z \neq 0$, then $f(z)=c z$, with a constant c of absolute value 1 .

3. Main Results

In this section, we establish some properties of functions in the class $T_{n}^{\alpha}(\beta)$. First, we prove a sufficient condition for functions belong to this class.

Theorem 3.1. A function $f \in A$ is in the class $T_{n}^{\alpha}(\beta), \alpha>0,0 \leq \beta<1, n \in \mathrm{~N}_{0}$ if and only if

$$
1+\sum_{k=2}^{\infty} Q_{k} z^{k-1} \neq 0,
$$

where

$$
\begin{equation*}
Q_{k}=\frac{(\psi+1)}{2(1-\beta)}\left(\frac{\alpha+k-1}{\alpha}\right)^{n} A_{k}(\alpha) \tag{10}
\end{equation*}
$$

for some $\alpha>0,0 \leq \beta<1, n \in \mathrm{~N}_{0}$ with $\psi \in \mathrm{C},|\psi|=1$.
Proof. From (5), is suggests that there exists a function $p(z) \in P$ such that

$$
\frac{D^{n} f(z)^{\alpha}}{z^{\alpha}}=\alpha^{n}[\beta+(1-\beta) p(z)]
$$

for $z \in U, \alpha>0,0 \leq \beta<1, n \in \mathrm{~N}_{0}$. Upon setting

$$
p(z)=\left(\frac{D^{n} f(z)^{\alpha}}{\alpha^{n} z^{\alpha}}-\beta\right)\left(\frac{1}{1-\beta}\right)
$$

then from Lemma 2.1, we get

$$
\left(\frac{D^{n} f(z)^{\alpha}}{\alpha^{n} z^{\alpha}}-\beta\right)\left(\frac{1}{1-\beta}\right) \neq \frac{\psi-1}{\psi+1}
$$

for $z \in U, \alpha>0,0 \leq \beta<1, n \in \mathrm{~N}_{0}$ with $\psi \in \mathrm{C},|\psi|=1$. It is equivalent to

$$
\begin{equation*}
(\psi+1) D^{n} f(z)^{\alpha}-\left[\beta(\psi+1)+(1-\beta)(\psi-1] \alpha^{n} z^{\alpha} \neq 0\right. \tag{11}
\end{equation*}
$$

Substituting (8) into (11) yields that

$$
\begin{equation*}
2(1-\beta) \alpha^{n} z^{\alpha}+\sum_{k=2}^{\infty}(\psi+1)(\alpha+k-1)^{n} A_{k}(\alpha) z^{\alpha+k-1} \neq 0 \tag{12}
\end{equation*}
$$

Now, dividing both sides of (12) by $2(1-\beta) \alpha^{n} z^{\alpha} \neq 0$, we obtain

$$
1+\sum_{k=2}^{\infty} \frac{(\psi+1)}{2(1-\beta)}\left(\frac{\alpha+k-1}{\alpha}\right)^{n} A_{k}(\alpha) z^{\alpha+k-1} \neq 0
$$

for any $\psi \in \mathrm{C}$ such that $|\psi|=1, z \in U, \alpha>0,0 \leq \beta<1, n \in \mathrm{~N}_{0}$.
Remark 3.2. For the case of $\beta=0$ in (10), the result has been proved by Singh et al. (2009).

The following property of functions in the class $T_{n}^{\alpha}(\beta)$ is also established.

Theorem 3.3. Let $f \in A$ belong to the class $T_{n}^{\alpha}(\beta), \alpha>0,0 \leq \beta<1, n \in \mathrm{~N}_{0}$. Then, there exists an analytic function $\phi(z)$ with $|\phi(z)| \leq 1, z \in U$ such that

$$
\begin{equation*}
\frac{D^{n} f(z)^{\alpha}}{\alpha^{n} z^{\alpha}}=2 \beta-1+\frac{2(1-\beta)}{1-z \phi(z)} \tag{12}
\end{equation*}
$$

for $z \in U, \alpha>0,0 \leq \beta<1, n \in \mathrm{~N}_{0}$.
Proof. Let us define the functions $A(z)$ and $B(z)$ as follows:

$$
\begin{equation*}
A(z)=\frac{D^{n} f(z)^{\alpha}}{\alpha^{n} z^{\alpha}}-\beta \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
B(z)=z\left(\frac{A(z)-(-\beta)}{A(z)+(1-\beta)}\right) \tag{14}
\end{equation*}
$$

for $z \in U, \alpha>0,0 \leq \beta<1, n \in \mathrm{~N}_{0}$. Substituting the equation (13) into (14), we get

$$
B(z)=z\left(\frac{D^{n} f(z)^{\alpha}}{\alpha^{n} z^{\alpha}}-1\right)\left(\frac{1}{\frac{D^{n} f(z)^{\alpha}}{\alpha^{n} z^{\alpha}}-(2 \beta-1)}\right)
$$

for any $z \in U . B(z)$ is an analytic function for $z \in U$. Also, since $f(0)=0$ and $f^{\prime}(0)=1$, we have that $B(0)=0$ and $|B(z)|<1$ for $z \in U$. Hence, by Schwarz's Lemma (Lemma 2.2), $|B(z)|<|z|, z \in U$ which gives that

$$
\left(\frac{D^{n} f(z)^{\alpha}}{\alpha^{n} z^{\alpha}}-1\right)\left(\frac{1}{\frac{D^{n} f(z)^{\alpha}}{\alpha^{n} z^{\alpha}}-(2 \beta-1)}\right)<|z|
$$

or equivalently

$$
\left(\frac{D^{n} f(z)^{\alpha}}{\alpha^{n} z^{\alpha}}-1\right)\left(\frac{1}{\frac{D^{n} f(z)^{\alpha}}{\alpha^{n} z^{\alpha}}-(2 \beta-1)}\right)=z \phi(z)
$$

where $\phi(z)$ is analytic and $|\phi(z)| \leq 1$ for $z \in U$. Therefore,

$$
\begin{equation*}
\frac{D^{n} f(z)^{\alpha}}{\alpha^{n} z^{\alpha}}-1=z \phi(z) \frac{D^{n} f(z)^{\alpha}}{\alpha^{n} z^{\alpha}}-(2 \beta-1) z \phi(z) \tag{15}
\end{equation*}
$$

Solving for $D^{n} f(z)^{\alpha} / \alpha^{n} z^{\alpha}$ from (15), then we get

$$
\frac{D^{n} f(z)^{\alpha}}{\alpha^{n} z^{\alpha}}=\frac{1-(2 \beta-1) z \phi(z)}{1-z \phi(z)}=(2 \beta-1)+\frac{2(1-\beta)}{1-z \phi(z)}
$$

Thus, we obtain the desired result (12).
The following result is called the integral representation theorem for functions in the class $T_{n}^{\alpha}(\beta)$, which provides further property of functions in this class.

Theorem 3.4. Let $f \in A$ belong to the class $T_{n}^{\alpha}(\beta), \alpha>0,0 \leq \beta<1, n \in \mathrm{~N}_{0}$. Then, there exists an analytic function $\phi(z)$ with $|\phi(z)| \leq 1, z \in U$ such that

$$
\begin{equation*}
\frac{D^{n} f(z)^{\alpha}}{\alpha^{n} z^{\alpha}}=\frac{1}{\alpha^{n} z^{\alpha}} \exp \int_{0}^{z}\left(\frac{\alpha}{t}-C(t)\right) d t \tag{16}
\end{equation*}
$$

for $\alpha>0,0 \leq \beta<1, n \in \mathrm{~N}_{0}$, where

$$
\begin{equation*}
C(t)=\frac{2(\beta-1)\left[z \phi^{\prime}(t)+\phi(t)\right]}{1-2 \beta t \phi(t)+(2 \beta-1) t^{2} \phi^{2}(t)} \tag{17}
\end{equation*}
$$

Proof: Let $f(z) \in T_{n}^{\alpha}(\beta)$. Then, from Theorem 3.3 we have

$$
\begin{equation*}
\frac{D^{n} f(z)^{\alpha}}{\alpha^{n} z^{\alpha}}=2 \beta-1+\frac{2(1-\beta)}{1-z \phi(z)}=\frac{1-(2 \beta-1) z \phi(z)}{1-z \phi(z)} . \tag{18}
\end{equation*}
$$

Taking the logarithmic differentiation, we get from (18)

$$
\begin{equation*}
\frac{\left[D^{n} f(z)^{\alpha}\right]}{D^{n} f(z)^{\alpha}}=\frac{\alpha}{z}-\frac{2(1-\beta)\left[z \phi^{\prime}(z)+\phi(z)\right]}{1-2 \beta z \phi(z)+(2 \beta-1) z^{2} \phi^{2}(z)} . \tag{19}
\end{equation*}
$$

Now, integrating both sides of (19) along the line segment from 0 to z, we obtain

$$
\ln \left[D^{n} f(z)^{\alpha}\right]=\int_{0}^{z}\left(\frac{\alpha}{z}-\frac{2(1-\beta)\left[t \phi^{\prime}(t)+\phi(t)\right]}{1-2 \beta t \phi(t)+(2 \beta-1) t^{2} \phi^{2}(t)}\right) d t
$$

This gives us that

$$
\frac{D^{n} f(z)^{\alpha}}{\alpha^{n} z^{\alpha}}=\frac{1}{\alpha^{n} z^{\alpha}} \exp \int_{0}^{z}\left(\frac{\alpha}{t}-C(t)\right) d t
$$

for $z \in U, \alpha>0,0 \leq \beta<1, n \in \mathrm{~N}_{0}$, where

$$
C(t)=\frac{2(1-\beta)\left[t \phi^{\prime}(t)+\phi(t)\right]}{1-2 \beta t \phi(t)+(2 \beta-1) t^{2} \phi^{2}(t)}
$$

for an analytic function $\phi(z)$ with $|\phi(z)| \leq 1, z \in U$. Thus, the proof of Theorem 3.4 is completed.

Acknowledgements

This work was supported by the research grant (GGPM-2016-008) from the Universiti Kebangsaan Malaysia.

References

Salagean G. S. 1983. Subclass of Univalent Functions. Lecture Note in Math. Springer-Verlag: 362-372.
Abdulhalim S. 2003. Coefficients estimates for functions in $B_{n}(\alpha)$. IJMMS Hindawi Publishing Corp. 59: 37613767.

Opoola T. O. 1994. On a new subclass of univalent functions. Mathematica Tome 36, 59(2): 195-200.
Kanas S. 1989. New subclasses of univalent functions. Folia Scientarium Univ. Tech. Resoviensis 60: 45-59.
Obradovic M. 1992. On certain differential operator and some classes of univalent functions. Serija Mathematica 6: 107-112.
Babalola K. O. \& Opoola T. O. 2006. Integrated integral transform of Catatheodory functions and their applications to analytic and univalent functions. Tamkang J. Math. 37(4): 355-366.
Hayami T., Owa S. and Srivastava H. M. 2007. Coefficient inequalities for certain classes of analytic and univalent functions. J. Ineq. In Pure and Appl. Math. 8(4): 1-21.
Ahlfors L. V. 1966. Complex Analysis. $2^{\text {nd }}$ Ed. New York: McGraw Hill Book Comp.
Singh S., Gupta S. \& Singh S. 2009. A general coefficient inequality. General Maths. 17(3):99-104.
${ }^{1}$ School of Mathematical Sciences,
Faculty of Science and Technology,
Universiti Kebangsaan Malaysia,
43600 Bangi, Selangor
MALAYSIA
E-mail: alaibra@ukm.edu.my*,maslina@ukm.edu.my

Some results for the class of analytic functions involving Salagean differential operator

${ }^{2}$ School of Engineering and Science
Victoria University
Melbourne
AUSTRALIA
E-mail: Sever.Dragomir@vu.edu.au
${ }^{3}$ Department of Mathematics
University of Ilorin
Ilorin
NIGERIA
Email: famelov@unilorin.edu.ng

[^0]
[^0]: *Corresponding author

