Vassar College
Digital Window @ Vassar

Faculty Research and Reports

12-1989

Specification and estimation of a generalized corner
solution model: An Amemiya-Tobin approach

Edward R. Morey
University of Colorado

Donald Waldman
University of Colorado

Djeto Assane
University of Nevada

W.Douglass Shaw
Vassar College

Follow this and additional works at: https://digitalwindow.vassar.edu/faculty research reports

Citation Information

Morey, Edward R.; Waldman, Donald; Assane, Djeto; and Shaw, W. Douglass, "Specification and estimation of a generalized corner
solution model: An Amemiya-Tobin approach” (1989). Faculty Research and Reports. 12.
https://digitalwindow.vassar.edu/faculty _research_reports/12

This Working Paper is brought to you for free and open access by Digital Window @ Vassar. It has been accepted for inclusion in Faculty Research and

Reports by an authorized administrator of Digital Window @ Vassar. For more information, please contact library _thesis@vassar.edu.


https://digitalwindow.vassar.edu?utm_source=digitalwindow.vassar.edu%2Ffaculty_research_reports%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalwindow.vassar.edu/faculty_research_reports?utm_source=digitalwindow.vassar.edu%2Ffaculty_research_reports%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalwindow.vassar.edu/faculty_research_reports?utm_source=digitalwindow.vassar.edu%2Ffaculty_research_reports%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalwindow.vassar.edu/faculty_research_reports/12?utm_source=digitalwindow.vassar.edu%2Ffaculty_research_reports%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library_thesis@vassar.edu

SPECIFICATION AND ESTIMATION OF A
GENERALIZED CORNER SOLUTION MODEL
OF DEMAND: AN ANEMIYA-TOBIN APPROACH

Edward R. Morey*, Donald Waldman*,
Djeto Assane**, and W. Douglass Shaw***

Working Paper INo. 4

December, 1989

* Department of Economics, University of Colorado
** Department of Economics, University of Nevada
**% Department of Economics, Vassar College

Vassar College Economics Working Paper # 4



Vassar College Economics Working Paper # 4


Introduction

In this paper we specify a stochastic behavioral model of consumer
allocation that admits the possibility that a subset of commodities will not
be consumed. Our motivation is the widespread and increasing availability of
large microdata sets with information on detailed expenditure categories. In

such data sets, it is frequently the case that one or more commodities are not

consumed. The proposed model leads to a system of desired and observed share
“equations that are both consistent with economic theory and 2stimable.

The idea of estimating a complete system of demand or share equations has
fascinated economists for decades, and in fact has led to the introduction of
many well-known innovative econometric techniques. Since, until recently, the
typical application involved aggregate data, shares to the several aggregates
could always be found on the unit interval and attention was focused on such
estimation problems (unique to economics) such as the constraining and testing
of regression parameters according to various adding up restrictions.

However, in recent years several developments have broadened the range of
econometric issues to be dealt with. One is the aforementioned availability
of micro data sets with detailed expenditure categories. In addition, econom-
ists have become interested in applying the consumer demand framework'tom
nontraditional situations such as time allocation, and budget allocation over
discrete commodity bundles.1 As a result of these developments, observed
budget shares are now frequently zero, and even equal to one in some appli-

cations. This situation presents no new theoretical problems from a determin-

istic perspective, as the Kuhn-Tucker conditions easily allow for these

general corner solutions. But a new problem in estimation arises as the usual

1See, for econometric examples, Dubin and McFadden 1984, Hausman and Wise
1984.



stochastic assumptions regarding regression errors are no longer appropriate,
much the same as in many discrete choice models.

Considering this stochastic problem at a fundamental level, Tobin (1958)
formulated a model where a single good may or may not be purchased, and if

purchased may be purchased in variable amounts. This was extended to a system

of goods by Amemiya (1974), and to a system of observed shares constrained
between zero and one that satisfies a budget constraint bvagles and Woodland
(1983, hereafter "WW"). However, these methods are all based upon normally
distributed errors added to share or demand equations. In particular, WW
assume that desired shares are normally distributed. To make the observed
shares compatible with the stochastic model, shares outside the unit simplex
are truncated to zero.2 The assumption that desired shares are normally
‘distributed is problematic. A normally distributed random variable is un-
bounded, while shares are, of course, bounded to the unit‘int_erval.B’4

In this paper we attempt to improve upon the Amemiya-Tobin approach of WW

by assuming a probability distribution for the desired and observed shares

21n the same paper, WW also attack the problem of zero shares with a
second approach, by assuming a utility function with random parameter variation
that leads to an estimable form of the Kuhn-Tucker conditions. Lee and Pitt
(1986, 1987) also adopt a Kuhn-Tucker approach. They develop what amounts to
the dual approach to the Kuhn-Tucker method of WW and point out the advantages
of the use of indirect utility functions in this context, for example, the
ability to decompose the effect of price changes into a direct effect and a
"regime switching" effect.

3Note that normally distributed demand is equally problematic. Demand 1is
also bounded, it cannot be negative and total expenditures must exhaust the
budget. '

4Results from Woodland (1979) provide some justification for continuing to
assume that shares are normally distributed if all the observed shares in the
data set are strictly in the interior of the unit simplex. However, Woodland
(1979) does not consider situations where many zero shares are observed, and
his results cannot be used to justify normality assumptions in these
situations.



that, unlike the normal, is consistent not only with observed shares but also
with economic theory. We propose the use of the Dirichlet distribution, first
suggested in an earlier paper by Woodland (1979), for the probability distri-
bution of desired shares. However, the individual cannot always consume their
desired consumption bundle. The individual might d%sire to purchase a com-
modity in a quantity that is smaller than the minimum quantity that is avail-
able 'in the market place. In such cases, we assume the share is truncated to
zero and the budget reallocated. With these assumptions, both desired and
observed shares lie on the unit simplex.

In the next section, this two-stage allocation model is presented. At the
first stage, it is gssumed that consumers allocate their budget to the various
commodities without regard to the minimum consumption constraints imposed by
the marketplace. 1In the second stage, any desired shares that are "too small”
are truncated to zero and the released funds are reallocated. This two-stage
procedure can be consistent with overall utility maximization if the process of
optimization is costly. Econometric implementation is discussed in section
III, and the model is then applied to a data set containing information on the

budget shares allocated to various recreational sites.

I. A Generalized-Corner Solution Model of Consumer Behavior
Consumers consider a vector of J commodities, x = [xj], j =1,2,...,J3;
where xj is the quantity of commodity j demanded by individual 1.5 Individual

preferences are represented by the direct random utility function

The individual specific subscript is omitted in this section for
reasons of notional simplicity. Commodities can be viewed as either market
goods and services, or as activities that are produced and consumed by the
individual.



(1) U=U(x, c, a, €),

where

c = [cm], m=1,2,...,M; is a vector of measurable characteristics of the
< individual.

a = [akj]’ k=1,2,...,K; is a vector of charag?gristics the individual

associates with commodity j, and where these K magnitudes are observed by
both the individual and the investigator; and B
€ = [ej], represents those characteristics known to the individual but not

observed by the investigator. Therefore, each ej is deterministic from

the individual's perspective but a random variable from our perspective.

A two-stage optimization procedure is assumed. At the first stage, the
individual determines his desired consumption bundle by maximizing U(x,c,a,e€)
subject to the constraint that Y = p'x, where Y is the budget allocatién to the
J commodities and p = [pj], where pj is the price of commodity j.

The desired bundle is assumed to contain a strictly positive amount of
each commodity. This assumption is only weakly restrictive; it siﬁply means
that the individual would like to consume at least an infinitesimal amount of
each commodity. We, for example, may desire to purchase, at prevailing prices,
an hour of a Pavarotti opera, a frame of bowling, and a sip of 1961 Chateau
Lafite-Rothschild, but for every commodity there is a limit to how little can
be purchased. This will sometimes cause desired and actual consumption to

diverge.

6 If the commodity is an activity, p. is the cost of producing one unit
of the activity. J :



The desired consumption bundle can be represented by either a system of
desired demand equations or by a system of desired share equations. Let x;

represent the desired demand for commodity j where
* *
(2) xj = xj(p, Y, ¢, a, €) j=1,2,...,J.
* . : . 7
Let sj represent the desired share for commodity j where
e * *
(3) sj = Sj(pp Yr c, a, €) j = 112:

Both x? and s; are deterministic from the individual’s perspective but random
variables from our perspective. Denote the expectation of x? as ﬁj' and the
expectation of s? as §.. The expected desired bundle (ﬁj, j=1,2,...,J) is the
solution to {max u(x, c, a) s.t. Y = p'x; where
u(x, ¢, a) = U(x, ¢, a, 0)).

For our purposes, the desired bundle, and its expectation, afe most
conveniently represented in share form because the share representation makes
the stochastic properties of the desired bundle transparent. The desired

* *
shares must have the following properties: 0 < sj <1 Vj and = sj = 1.

7 . . .
Note that these desired shares can represent either proportion shares
or expenditure shares; i.e.,

s? = x}/[z xf] j=1,2,...,J. if they are proportion shares
or
s§ = p x*/[E p2x£ j=1,2,...,J. if they are expenditure shares

The choice is arbitrary for our analysis. When commodities are defined as
goods it is common to work with expenditure shares. When commodities are
defined as activities it is common to work with either proportion or
expenditure shares.




In practice, the individual cannot always consume their desired con-
sumption bundle. The individual might desire to consume a commodity in a
quantity that is smaller than the minimum quantity available in the market
place. At the second-stage, the individual is assumed to take account of
these minimum consumption constraints by truncating\té zero those desired
shares that fall below some specified amount and proportionally expanding the
remaining shares until they sum to one. The result is that the individual’s

observed shares are

. *
s. =0 if sj =< sm(j); and
(4)

L PP if <F s .
s, = sj/( spl 1 Sj Sm(J)

. * 3
where S = (j: sj > sm(J)}.

These sm(j) functions can be made as simple or as complicated as appropriate.
For example, one might assume that sm(j) = smej. Such an assumption would be
appropriate if the individual decides it is too costly to determine the minimum
amount that can be consumed of each commodity so simply adopts a rule of thumb
that says any commodity whose desired share is less than some amount will not
be consumed. Alternatively, it might be assumed that each commodity has ité
own s, sm(j), where sm(j) is the share that would allow the:individual to
purchase one standard unit of the commodity j. For example,yéne Cannbt.pur—
chase less than a full game of bowling and tickets are not sold for fractions
of operas.

Summarizing, this two-step choice algorithm suggests a decision process

of the following sort. The individual first decides what he‘wéuld likg to
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consume ignoring the fact that for mahy goods it is impossible to consume them
in less than some minimum amount. The individual has learned that by ignoring
these minimum consumption constraints he can greatly reduce the complexity of
his choice problem and still obtain a good first approximation to the solution
to the more complex problem. Then, depending on th?“complexity of his sh rule
(which has also been determined by experience;, he either chooses to not
consume all the commodities whose desired shares are below some common critical
magnitude, or he decides, on a commodity by commodity basis, to consume none of
a commodity if his desired share for that commodity is not sufficient to
purchase a standard unit of that commodity.

Visualizing the decision process, the individual’s choice set at the
first-stage of the decision process can be represented, in share form, as a
right-angled (J — 1) dimensional polyhedron that is of unit length in each of
the (J — 1) dimensions; i.e., it is the (J — 1) unit simplex.. The shares for
the first J — 1 commodities are the coordinates on the J — 1 orthogonal axes
while the share of the Jth commodity is the residual. If, for example, there
are four commodities, the individual’'s vector of desired shares can be repre-
sented as a point in the interior of the outer tetrahedron in Figure 1. The
inper,tetrahedron in Figure 1 lies s, units inside of the outer tetrahedron in
éach~of the (J — 1) dimensions. The individual will truncate to zero at least

some of his (J — 1) desired shares if his vector of (J — 1) desired shares lies

8Alternatively, one might assume that the individual accounts for the
minimum consumption constraints from the very beginning. Such an assumption
implies that the individual determines his consumptions bundle in one step as
the solution to a deterministic integer programming problem which will be
stochastic from our perspective. This alternative assumption, while possibly
appealing to the optimization purist, is not necessarily more appropriate and
is definitely more difficult to model and estimate than the two-stage decision
process outlined in the text.



in a part of the outer tetrahedron that is not contained in the inner tetra-
hedron. For example, if point A represents the individual’s desired shafes,
the individual will not truncate and observed shares equal desired shares.

However, if the individual's desired shares are represented by any point on

line segment C'C, s, < so (that is, the desired share of the fourth commodity

is less than the minimum consumable amount), the individual does not consume
the fourth commodity and expands his budget shares of the first three commodi-
ties in proportion to their desired levels. This amounts to projecting the ray
OC’ to the surface of the outer tetrahedron, at point C. There, the sum of the

first three observed shares is one.

II. Stochastic Assumptions and the Likelihood

To derive maximum likelihood (ML) estimates of the parameters of the
utility function (equation 1) from information on shares of commodities con-
sumed (and not consumed) by individuals, stochastic assumptions must be made.
The traditional approach is to assume that the observed shares are multivariate
normally distributed with constant covariance matrix and means depending upon
prices and individual characteristics. But the normal distribution is an
untenable assumption for these random variables because the observed shares
are, by definition, bounded between zero and one, and must sum to one. For
micro data sets, there will also be numerous observed shares of zero. Persua-
sive arguments to this effect are made by Woodland (1979, pps.'361-363), who
then assumes the observed shares follow the Dirichlet distribution. While the
Dirichlet specification for the observed shares is an improvement over the
normal,’since valués are constrained Between zero and one, it ig not consistent

with observed shares of zero. This can be a significant liability because in
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most micro applications few people consume positive quantities of all commodi-
ties.

Rather than assuming the observed shares follow the Dirichlet distri-
bution, in this paper it is assumed that the J — 1 desired shares follow the

"Dirichlet distribution:

%.-1
J

* ﬁJ_l J-1
s, L s
J) j=1

(5) £(s],....s; 1) = K(1-1%

1 *
j=1 j

where k = r(ggi %) / ;% T(})) and T(+) is the gamma function.

This assumption, in conjunction with the behavioral rule that mapsvdesired
éhares‘into observed shares, admits observed shares of zero.

This approach is in the tradition of WW who assume that the desired shares
are multivariate normally distributed and then map desired shares outside the
unit simplex onto the boundary of that simplex. However, desired shares cannot
be’multivariate normally distributed for the same reasons that observed shares
cannot bevmultivariate normally distributed.

As a result of the Sh behavioral rule that maps desired shares into
bbséerd shares, the likelihood function necessarily involves the evaluation of
some line and surface integrals of the Dirichlet function, in addition to
evaluation of the more usual probability density functions; To understand the
précéss éf forming the 1ikelihood, the case of J=3 shares is examined.
Restricting the discussion to this case makes it possible to émploy a graph in
both desired and observed share space, similar to the graph of Section I. The
extension to higher dimensions is conceptually, at least, straightfofﬁard.

Consider Figure 2. The shares of commodities 1 and 2 are graphed along
the horizontal and‘vertical axes, respectively. The line connecting (1,0) and

* *
(0,1), has equation s1 + S, = 1. The inner triangle lies So units inside of
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the outer triangle. The horizontal line segment of the inner triangle has the

*

*
equation Sy = Sp» the equation for its vertical line segment is S1 = Sy and

*
the equation for its hypotenuse is s

*
1 + s, =1 - S The desired shares for

2

. commodities one and two can be represented by a point inside the outer tri-

angle. The desired share for the third commodity is computed as the residual,

* 1 * *
sy =1-5 -s,.
Suppose the individual's desired shares for goods one and two are both
‘ * *
greater than S and they place him below and to the left of the line s; +s, =

1 - S Point A represents just such a person. Then his desired share for
the third commodity is also greater than S’ and all three observed shares
will be positive and equal to the desired shares. The contribution to the

likelihood from this interior solution is then simply the value of the bivari-

ate Dirichlet density function evaluated at the point (sl,sz):
(ﬁl-l) (ﬁz-l) (ﬁ3-1)
(6) f(sl, 52) =k sy s, (1—51-52)

This is simply the height of the density function above the point (51’82)'
Suppose, to take the other extreme case, the desired shares of ¢commodities
one and two are both less than S In Figure 2, the point representing this

person would be somewhere in the rectangular region bounded by the axes and the

. * *
equations s, = s , s

1 m’ Sp = S, at a point such as C. Therefore, according to our

behavioral rule, his entire budget would be spent on the third commodity. The

probability of observing S; = 8, = 0 and Sy = 1 is then the jdint ﬁfobability
* * e ‘ SR
that sl <s and Sy, < s, glven by
| . N “mo(*m (R-1) (R,-D) Ry D)
(7) | P(OSSlssm; OSSZSsm) =k s, S,y (1-sl-32) V dslds2

0 70
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In terms of Figure 2, this is the area under the Dirichlet density above the
square formed by the axes and the lines si = s and s; = sy The corner
sqlutions for s = 1 and s, = 1 follow analogously.

Now suppose that the individual demands enough of both the first and
second commodity (with the demand for each greater FEan sm) so that the third
cqmmodity's sharg falls below S His desired demands would place him at a
point‘such as D*bin the figure, since at D* the sum of s: aﬁa s; is greater
than 1 - Sp- But what would observed shares be for these desired shares?
According to the proportional expansion rule of section II, the individual
does hot éonsume commodity three and divides his desired expeﬁditures on
~commodity three between commodities one and two in the same ratio as his
desired shares for commodities one and two. Therefore his observed shgres
- would lie on a ray from the origin through point D* at the intersection of the
line si + S; = 1, at point D", where all his income is exhausted. Butjnotice
that, by the same line of reasoning, any point representing desired shares on
the line segment D’'D" would b¢ similarly mapped onto the point D".
| The increment to the likelihood function for any individual whose observed
shares lie at point D" is the line integral along OR under f(si,s;) and between

D' and D". This line integral takes the general form:

B 2 2
* dax dy
(}8) f(D ) = Jf[x(t), y(t)] /[dt] + [dt] dt
. R 2 ’

The coordinates x(t) and y(t) are parametrically defined as

s, S,

2]
1]

2 Y(t) =

?
=N




The quantity j&g%]2+ [QZ] is the length of D'D" which for our problem

simplifies to:

2 2 S,12 :
L /[%] - |3 - /“[Eg] -/ sttt

1

iven that %X _ 1 apg & _ 22
given that ac 1 and it = .

S
S

-

To find the limit of integration defined over the region R; we observe from

Figure 2 that the boundary line can be represented by x+y = 1 — Sh with

s s
y = ;g X, ;Z being the slope of line D’'D" along OR. Solving simultaneously,
1 1

the two equations give the limit of integration expressed in share form as:

[s,(1-8 ),s.]. f(D*) can now be written as:
1 m 1

sl s

t,—gt] S dt

10y £ =J £fe.
sl(l-sm) 1

Given that shares are Dirichlet distributed, (10) is explicitly written as:

. [ (8-1) (s, R s (37D
(11) £(D) = kt [—s——t] [1-t- ——c] sdt
s;(1-s) 1 1
Factoring out some constant terms, we have
. s, 2P 5 (R, +%,-2) s, %37
(12) f(D ) = ks[————] . t l-t- —¢t dt
1 s, (1-s ) 1
1 m
Simplifying the integrand:
(%,4%,-2) s, 1(%,-1)  (R,+k,-2) s, +s (%,-1)
(13) e 102 [1-t~;—2t] R [1—[ L Z]c] 3
- Sl S1

12
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(x1+x2-2)[ ](X3—1)
=t 1 — ct

-Sl + s, 1
where ¢ = ———— = — gince from D’ to D", s, + s, = 1.

s s 1 2
1 1
Thus, (12)vsimplifies to:
. sy 27D 1 G+, D
(14) f(D) = kS[——] t [1—ct dt
s
. 1 (1-sm)s1

The integral in equation 14 is a

function of the variable t and is very

close to a beta function. Further transformations necessary to put equation

14 in a form suitable for computation
The likelihood for a sample of n

probability expressions for the three

are discussed in the Appendix.
individuals is the product of the

types of individuals, equations (6), (7)

and (14), and it is maximized with respect to choice of ﬁi.

ITI. An Application: Demand for Site-

For purposes of illustration, the

Specific Recreational Activities

model is used to expléin how indivi-

duals allocate their time among site-specific recreational activities.

Recreational demand data indicates that different individuals consume different

subsets of the available sites (commodities). Interior points (individuals who

visit all of the sites) are rare; "corners" (individuals who visit a single

site) and "boundaries" (individuals who visit two or more but not all of the

sites) predominate. However, no one,

to our knowledge, has estimated a model
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that takes this aspect of the data into account.9 All the estimated recrea-
tibnal demand models either assume interior solutions or constrainvthe indi-
vidual to a corner.

The observation that recreators do not, in general, consume all of the

commodities is not unique to recreational data; i.e., most individuals do not

consume some of every alternative. Often, this is even true when the alterna-
tives are broadly defined.10 Therefore, the model should be well suited to
estimating individual demand functions even when the number of alternatives is
small.

The model is used to explain how anglers in upstate New York allocate
their time among three popular fishing sites (Lake George, Great Sacandaga
Lake and Lake Saratoga). A data set was constructed by Morey and Shaw (1989)
from data collected by the State of New York. The data set contéins 459
individuals who visited at least one of these sites. Only 1;5% of this sample
Qiéited all three sites; 7.5% percent visited only sites 1 and 2; 3% visited

only sites 1 and 3; 4% visited only sites 2 and 3; 30% only visited site 1; 33%

only visited site 2; and 21% only went to site 3. There is information for
each individual on the number of days spent at each site, fish catch, income,

ability level (novice, intermediate and advanced), species preference and the

location of residence.

R . . s es - i . ’
The cost of a trip to site j by individual i, p., includes travel costs,

1

equipment costs and the opportunity cost of the individual’s time both in

Bocksteal, Hanemann and Strand (1984) in their excellent survey on
recreational demand modelling discuss, at length, the fact that most
recreators only visit a subset of the available sites. They suggest a Kuhn-
Tucker approach in the tradition of WW but they do not estlmate the model.

10 ~Everyone consumes food clothlng and shelter, but once the data are
disaggregated, most individuals will not consume some of each subaggregate.

s
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travel and on-site. These were calculated by Morey and Shaw (1989). Cost
varies across sites, for a given individual, as a function of the site's
location. They vary across individuals, for a given site, as a function of
where the individual lives and the opportunity cost of their time. Average
catch rates by species and ability level were calculiped. The average catch
data indicates thgt species availability varies substantially across the three
sites, and that variations in average catch rates by abilityuievel-are‘substan-
tial and vary across sites.

Assume that the deterministic component of preferences for fishing at the

three sites can be represented by the CES utility function

. . . 3 . -
(15) u'= ut, a') = = neEl) )P i=1,2,...,459.
2 2
2=1
where 1>p8=0,
h(al) = [a. + a,a’]? and
2 T % T 18y
a; = the average catch rate at site £ for those of individual i's

ability level and for the species indicated as most preferred by

~individual i.
The CES form was chosen because it well known, tractable, and easily allows
for the incorporation of characteristics. For other applica;ions of the CES
to recreational demand modelling see Morey (1981 and 1984).
Given this CES form, the proportion of fishing days we expect individual i
desires to spend at site j {s

= §(pi pl, a
j t ] ? .

6y & ,a) = —= j=1,2,3.

L
4
|
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where L = {1,2,3) and -0 = -1/(1 — B) is the constant Hicks-Allen elasticity
of substitution.11 Since these share equations are homogeneous of degree zero

in the a parameters, a, was set to 1 without loss of generality. This leaves

0
two parameters to estimate, oy and 0. To complete Q@g model, assume that
Sh = .1; i.e., assume experience has taught the individual it is, in general,
not feasible to visit a site if he desires to allocate less Ehan 10% of his
trips to that site.

The likelihood function for these expected desired shares was maximized

12 . ) » s
for the sample. The estimated parameter values (and asymptotic t statistics)

A

are a; = .112 (203.5) and ; =l.461 (-286.7). Likelihood ratio statistics
indicate that: (1), the model with prices only (a1 = 0) explains the alloca-
tions across sites significantly better than a model that assumes each indi-
vidual randomly allocate their time across the sites; and (2), the model with
both prices and catch rates explains the allocation across sites significantly
better than the model with only prices.

The influence of these parameter estimates can be considered on three

levels: (1) each individual’s expected desired shares; (2) the probability that

an individual will visit only a certain subset of sites; and (3) expected

1Correspondlngly, the number of flshlng days we expect individual i
desires to spend at site j is

. : . 2ok Y
ﬁ, = }A((pl,., pl, a]:’ al) = i - i e j = 1,2,3.
J J J s J . Ip,h(al)
i 2]
250 b
12

The optlmlzatlon package was GQOPT and a David-Fletcher-Powell
algorithm was utilized: : L1
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shares conditional on the individual choosing a particular group of the sites.
All of these estimated measures will vary across sites and individuals as:a
function of catch rates, species preference, residential location, site
location and the opportunity cost of the individual’s time.

Examining first the expected desired shares, the estimated Allen elasti-
city of substitution, -.461, indicates that a one percent increase in the
price ratio for any two of the sites will lead to a .46 percgnt decrease in the
;atio of the individual's expected desired demands for those two sites.
However, this inelastic response in terms of expected desired demands could
résult in a significant change in observed demands if the change causes a
desired share to move above or below S

A one percent increase in the price of site j will lead to a
[.461*(1 ~§;)] percent decrease in individual i's expected desired share for
site j, and a .461*§; increase in the individual’s expected desired share for
"site m, m # j. Examining the elasticities with respect to average catch rates,
a one percent increase in the average catch rate at site j for the individual's
most preferred species will lead to a [.103*%(1 - §;)/(1 + .112*a§)]:perCent
increase in the individual'’s exbected desired share for site j. All of these
price~and catch elasticities will vary across individua1s, for a given site, as
a function of the individual'’s ability level, species preference, value of time
and residential location. For a given individual, they will vary across sites
as function of the site’s 1pcation and species availability.

Turning now to observéﬁ, rather than desired, behavior, the model will
not predict which group ofisites each ‘individual will choose to wvisit, but can

predict, for each indiViduﬁi, the probability that the individual will choose a
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particular group of the sites. For example, the estimated probability that

individual i will visit all three sites is

(17) Pr(s1 > Sn S > Snt S1 + s, <1l- sm)
1-23m 1-sm—slA
= f(sl,sz) dszds1 , S
s s -
m m

and the estimated probability that individual i will visit sites 1 and 2 only

Py

is
(18) Pr(s1 > S0 S > Spr S1 + 52‘> 1 - sm)
1-sm 1-51 . 1-25m l-sm-slA
= f(sl’SZ) dszds1 - ‘ f(sl’SZ) dSstl
s s s s
m m m m

A

where f(sl'SZ) is given by equation (6) with the ML estimates of ﬁi. As with
the expected desired shares, the estimated probability that an individual will
choose to consume a particular group will vary across individuals as a function
of their ability level, species preference, value of time and location of
residence.

- It is also of interest to consider the expected shares conditional upon
V;he,chqice of a particular group of sites. As noted above, one cannot predict
.thﬁhkgfoup~of sites the individual will visit, but one can estimate the
expected shares conditional on each possible outcome. For example, one can
e#timate the expected shares for sites 1 and 2 assuming that the individual
visits only these two sites.

~Notationally, define c?;[l,Z], j=1,2,3 as individual i's expepte@_share
for.site j conditional on h}m choosing to visit only sites 1 and 2. Obviously,
c§§[l,2] = 0 and c§i[1f2= 1: The expected shares conditional on the individual

choosing to visit all three sites are equivalent to the unconditional expected
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desired shares; i.e., ¢§.[1,2,3] = §;, V j. However, they differ if the

.

individual is assumed to visit only two of the sites. In these cases, the
expected conditional shares are still calculated using equation (16) but with
the set of included sites, L, appropriately restricted. For example, if the
individual is assumed to visit only sites 1 and 3, the expected conditional
shares, c§;[1,3], are calculated using equation (16) but with L = {1,3}." Note
that in this case, the shares generated by equation (16) are expected condi-
tional shares rather than expected desired shares because conditioning on the
choice set incorporates the truncation from desired to observed shares

One can use these expected conditional shares to predict ‘how individuals
inAdifferent consumption groups will respond to small changes in the ‘costs and
catch rates. For example, for those individuals who are currentlylvisiting
only sites 1 and 3, a one percent increase in the price of site j, j=1,2,3 will
lead to a .461*c§; increase in the individual’s expected conditional share for
site m, m = 1,2,3, m~j. However, a change in the price of site 2 will have no
"effect on the expected conditional shares for sites 1 and 3. 'WHile‘uSeful, the
elasticities of the conditional shareé must be interpreted with care because
thekindividual is not constrained to stay in a particular group when catch
rates and prices change. Therefore, a small change in either could cause a

discrete jump from one group of sites to another.

IV. Conclusions and Areasfpf Future Research

This paper has analyzgd a behavioral model that explicitly deals with
corner solutions in demandgénalysis. The modellis general enough to accommodate
situations where one o% mo£e commodities is not consumed, and where only one of

a set of commodities is consumed. Stochastic assumptions consistent with the
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economic model were made and the likelihood function was derived. Parameters
of a utility function were estimated from a recreation choice data set.

The key feature in the proposed behavioral model is that utility maximiza-
tion is a two-step procedure. In the first step individuals maximize a func-
tion disregarding any constraints on the minimum amounts of commodities that
can be consumed,ﬂand then in the second step eliminate from their budget those
desired shares that are too small, and reallocate funds to the remaining com-
modities. This can be an optimal procedure in situations where optimization is
costly.

The simplest form of the minimum quantity of a commodity constraint was
employed in this paper, that of an absolute minimum, the same for each commod-
ity. Other rules are possible, and should be investigated especially in situ-
ations where one has some prior reason to believe a particular mechanism is at
work in the data. The mechanics of the likelihood need to be generalized to
cases with more than three goods, and some rules of thumb developed for when
considerations such as those of this paper are worth the additional computation
time and expense. That is, it would be helpful if some guidelines were avail-
able, established perhaps by Monte Carlo methods, to determined for which kinds
of data sets (considering especially the proportion of limit observations),
these techniques will be necessary. These are topics of future research.

This research should be valuable to those interested in estimating demand
systems from disaggregated data sets where a significant proportion of the
observations involve consumption of some, but not all, of the available commo-
dities. This is the case withxmany microeconomic data sets. The benefit of
resulting parameter estimates is that they will have come from a plausible

economic model with consistent stochastic assumptions..




21

References

Abramowitz, M. and Stegun, I.A., eds. 1964: Handbook of Mathematical Functions
with Formulas, Graphs, and Mathematical Tables. U.S. Department of
Commerce, National Bureau of Standards Applied Mathematics Series, 55.

Amemiya, T. 1974: "Multivariate Regression and Simultaneous Equatibn Models
When the Dependent Variables are Truncated Normal," Econometrica 42,
999-1012. -

Bocksteal, N.E., Hanemann W.M. and Strand I.E. 1984: Measuring the Benefits of
Water Quality Improvements Using Recreational Demand Models, Vol. TI.
Report for Office of Policy Analysis, U.S. Environmental Protection
Agency, Washington, D.C.

Dubin, J.A. and McFadden, D.L. 1984: "An Econometric Analysis of Residential
Electric Appliance Holding and Consumption," Econometrica 52, No. 2, 345-
362.

Hanneman, W.M. 1984: “"Discrete Continuous Models and Consumer Demand," Econo-
metrica 52, 541-561.

Lee, L.F. and Pitt, M.M. 1986: "Microeconometric Demand Systems with Binding
Non-Negativity Constraints: The Dual Approach," Econometrica 54,
1237-1242.

Lee, L.F. and Pitt, M.M. 1987: "Microeconometric Models of Rationing, Imperfect
Markets, and Nonnegativity Constraints," Journal of Econometrics 36,
89-110. )

Morey, E.R. 1981: "The Demand for Site-Specific Recreational Activities: A

Characteristics Approach," Journal of Environmental Economics and Manage-
ment 8, 345-371. o

Morey, E.R. 1984: "The Choice of Ski Areas: Estimation of a Generalized CES
‘Preference Ordering with Characteristics," The Review of Economics and
Statistics 56, No. 4.

Morey, E.R. and Shaw, W.D. 1989: "An Economic Model to Assess the Impact of
Acid Rain: A Characteristics Approach to Estimating the Demand for and
Benefits from Recreational Fishing," in Advances in Applied Microecono-
mics: Vol 5., (eds., Link and Smith).

Tobin, J. 1958: "Estimation of Relationships for?Limited Dependent Variables,"
Econometrica 26, 24-36; : ‘ '

Wales, T.J. and Woodland A.D. 1983: "Estimation of Consumer Demand System with
Binding Non-Negativity Constraints," Journal of Econometrics 21, 263-285.

Woodland A.D. 1979: "Stochastic Specification and the Estimation of Share
Equations," Journal of Econometricsvlo,'361-3&3. ,

*




APPENDIX

Let

wW=c¢ct =>¢t= bl and dt = QH.
, c c

22

Recall that c = 1/51, then the limits of integration in equation (14) become

w

(A.1) (l-sm)s1 =t=s => (l-sm)s1 < 2 < s => Zi?sm) <w<1
The integral of (14) is written: "
s a 1
’ 1 (x 2 -2) (x3-1) (x1 2-2)
(A.2) ; (1—-—ct) dt = [c] (l-w
' (l-sm)s1 (1-s ) ’

A

A A 1 A A
(x1+x2-1) (x1+x2-2) (X3-
w (1-w)
1l-s

1
m
Thus:
N ) (Xp-1) (& #R,-1) 1 (R +8,-2) (3-1)
(A.3) f(D) = kS[——] s w [l—w]
s 1 ,
1 (1-s)
m
Simplifying the constant terms
(%,-1) A .4 :
s Sy 2 S(x1+x2-1) L i (X 17D (x 1)‘/ def.
s; 1 2 sl 1 B 12
Thus (A.3) becomes
1 o
(x1+x2-2) (x3-l)
(A.4) £(D*) = k ‘ w (1-w) dw
12 1-s
m-

A final transformation of variables is performed. Let

u=1-w=>w % l-u => dw = -du %:

A

(x

)

dw

dw

3'1){23
c
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Then 1-s < w<1l=>0<uc<s
m m
Thus,

n (1l-u) u du
0

s (R.4%.-2) (%.-1)
(A.5) £(D7) = = Ky, I 172 3

Equation (A.5) can be viewed as an incomplete beta function, i.e., the cumula-

tive distribution of the beta function. The incomplete beta form of (A.5) is

1 sm (ﬁ3-1) (x 2 -2)
(A.6) I (R, , %, +%,-1) = —a—a—= I u (1-u) du
Sh 3'71 72 B(x3,x1+x2—1) ’
By symmetry
Ig RuR4R,-1) =1 - 1) (Ry#Ry-1,%y)
m m

Following Abramowitz and Stegun (1964, 26.5.16) IS is written in
m

recurrence form as:

: F(ﬁ 2+x3 1) §3 (§1+§2-1)
(A.7) I (%,,% +x -1) = —= s (1-s )
So 3’ I‘(x3+l)1‘(x1 2 -1) m
+ Is (x 1+x2-l)
m
Thus, by symmetry
: o ’ . P(x 2 3 -1) (x1+x2 1)-
(A.8) 1 - Il_sm(x1+x2-l,x3) = 1- F(x 1)F(x D (1l-s )
(R3-1) s e
© sy - Il—s (x1+x2,x3)
m
Equation (A.6) can be rewritten as:
Sm (§(3_1) (Xl 2) A A A A A
(A.9) I u (1l-uw) du = B(x3,x1 2 -1) [Is (x3,xl+x2-l)]

0 . : : m

or by symmetry - E B =



s. (x3-1) (x1+x2-2)
(A.10) I u (1-u) du = B(x3 1+x2—1)[1-11_S (§3, 1+x2-1)]
0 m
T(%, 4R +R,-1) (k4% 1)
A A LA 1t 2 3 172
= B(x3,x1+x2-1) [ 1- F(§ )F(x ) (1-s ) .
. -
3 2
°m (x1 2:%3) }

Finally,

(R +% +‘:-1) LR, AR +R.-1)
a1 £ -k, { 1 2 [ 1 23

r(i3)r(x +X , D - r(ﬁl+ﬁ2)r(§3)

A

(R,+%,-1) %
1 2 3 A A A
- (l-sm) sm — Il_sm(xl+x2,x3) } }

I‘(x1 +x -1)
= kyy 1B(Ry. % 4%,-1) P(x1+x2)F(x3)

b4
1 72 -3 A A A
- (l-sm) sy~ Il_sm(x1+x2,x3) ] }

Steps ‘to derive the likelihood functions of the other two boundary solutions

* % *
f(B ) and f(Hx) are similar to the above procedure used to find £(D ).

2

4
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