
Research Archive

Citation for published version:
M. Lloyd-Kelly, F. Gobet, and Peter C. R. Lane, “A Question of
Balance The Benefits of Pattern-Recognition when Solving
Problems in a Complex Domain”, LNCS Transactions on
Computational Collective Intelligence, Vol. XX, 2015.

DOI:
10.1007/978-3-319-27543-7

Document Version:
This is the Accepted Manuscript version.
The version in the University of Hertfordshire Research Archive
may differ from the final published version. Users should
always cite the published version of record.

Copyright and Reuse:
© 2015 Springer International Publishing.
This Manuscript version is distributed under the terms of the
Creative Commons Attribution licence
(http://creativecommons.org/licenses/by/4.0/), which permits
unrestricted re-use, distribution, and reproduction in any
medium, provided the original work is properly cited.

Enquiries
If you believe this document infringes copyright, please contact the
Research & Scholarly Communications Team at rsc@herts.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Hertfordshire Research Archive

https://core.ac.uk/display/84305539?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.springer.com/gb/book/9783319275420
mailto:rsc@herts.ac.uk

A Question of Balance

The Benefits of Pattern-Recognition when Solving
Problems in a Complex Domain

Martyn Lloyd-Kelly1, Fernand Gobet1, and Peter C. R. Lane2

1 Psychological Sciences, University of Liverpool, L69 3BX, UK
{M.Lloyd-Kelly, Fernand.Gobet}@liverpool.ac.uk

2 School of Computer Science, University of Hertfordshire, AL10 9AB, UK
peter.lane@bcs.org.uk

Abstract. The dual-process theory of human cognition proposes the ex-
istence of two systems for decision-making: a slower, deliberative, problem-
solving system and a quicker, reactive, pattern-recognition system. We
alter the balance of these systems in a number of computational simula-
tions using three types of agent equipped with a novel, hybrid, human-
like cognitive architecture. These agents are situated in the stochastic,
multi-agent Tileworld domain, whose complexity can be precisely con-
trolled and widely varied. We explore how agent performance is affected
by different balances of problem-solving and pattern-recognition, and
conduct a sensitivity analysis upon key pattern-recognition system vari-
ables. Results indicate that pattern-recognition improves agent perfor-
mance by as much as 36.5% and, if a balance is struck with particu-
lar pattern-recognition components to promote pattern-recognition use,
performance can be further improved by up to 3.6%. This research is of
interest for studies of expert behaviour in particular, and AI in general.

1 Introduction

The notion of a dual-process cognitive system proposes that, given a prob-
lem, humans are equipped with two systems to make a decision about
what to do. The formal logic-like problem-solving system is slow and
deliberative, whereas the quicker pattern-recognition system uses fuzzier
judgements of pattern similarity to propose solutions [40].
The pattern-recognition system has been proposed to be capable of creat-
ing, retrieving and using productions (a prescribed action for a particular
environment state) to achieve the agent’s relevant goal(s) [13, 40]. Psy-
chological validity of this system is buttressed by human experimental
evidence [15, 46] and implementations in computational cognitive archi-
tectures designed to emulate and explain human cognition [43].
Tension between use of problem-solving and pattern-recognition to solve
problems has been identified by many [20, 47], resulting in the proposal
that domain experts are, in some cases, inflexible problem-solvers, since
they are so entrenched in established paradigms [39, 41]. This has been
proven to be true, but only to a certain degree of expertise; once an

Fernand
Highlight
2 spaces?

2

above-average level of knowledge has been acquired about a domain,
the so-called Einstellung Effect (a hallmark of expert inflexibility where
satisfactory solutions block better ones) is removed [6].
A quantitative, scientific analysis of the potential effects on agent perfor-
mance by weighting the usage of these systems and configuring their con-
stituent components differently in particular complexities of a stochas-
tic environment is lacking, to our knowledge, in the literature. So, in
this paper, we provide such an analysis by investigating what balance
of problem-solving and pattern-recognition is most effective when these
systems are encapsulated in agents that are equipped with a human-like
computational architecture of cognition. These agents are then situated
in an environment whose complexity can vary considerably and where
precise compile-time prescriptions of optimal actions using techniques
such as Markov Decision Processes are implausible.
We compare three ways of making decisions: pure problem solving, “pure”
pattern-recognition, and an equal mixture of the two decision-making
systems. Our results are especially interesting for those who intend to
design robust, self-learning systems that must achieve high levels of per-
formance using information that is learned, whilst being engaged in reac-
tive, sequential decision-making tasks. Our results are also of interest to
those who wish to understand how pattern-recognition can improve per-
formance in complex domains and how environment complexity affects
the learning rates and performance of autonomous agents in general.
Section 2 discusses the simulation environment in detail and justifies its
applicability. Section 3 presents a relevant overview of human cognition,
and discusses the computational cognitive architecture in detail. Sec-
tion 4 covers the implementation details of the agents implemented and
Sect. 5 outlines the simulations run to gather data to answer the research
questions posed. Section 6 delineates the results obtained and how they
have emerged. The paper concludes with Sect. 7, containing the salient
points raised by the simulation results, their implications for the current
state of the art, and some future research directions.

2 Simulation Environment

The Tileworld environment [33] is a two-dimensional grid of homogen-
eously-sized squares that contains (along with multiple agents) a number
of tiles and holes that exist for a finite period of time (see Fig. 1). An
agent can move by up to one square per action, and its main goal is to
push tiles into holes, earning the agent a reward and causing the tile and
hole in question to disappear. An agent’s actions and goal achievement
are episodic and delayed, since several actions may need to be performed
in succession before a hole is filled, and only one tile can be pushed at
any time by an agent. Explicit obstacles have not been included in this
version of Tileworld, since tiles, holes and agents act as natural obstacles,
given that a square can only be occupied by one object at a time.
Environmental complexity can be controlled by altering parameter values
to manipulate intrinsic and extrinsic complexity. Intrinsic complexity is
complexity that the environment has direct control over whereas extrin-
sic complexity is complexity that the environment has no direct control

Fernand
Cross-Out
e

3

Fig. 1. Tileworld environment: agents are denoted by red and green turtle shapes, tiles
by yellow squares and holes by blue circles.

over. In our simulations, intrinsic complexity is controlled by parame-
ters that define when new tiles and holes can be created, the probability
of a new tile or hole being created, and how long these artefacts exist
for before being removed. Extrinsic complexity is controlled solely by
altering the number of agents present in the environment: introducing
more agents increases the environment state space by virtue of extra
agents but also by increasing the chance of environment resources being
interacted with. This potentially produces more environment states and
increases environment complexity.

In a simplified version of Tileworld where only holes and one agent (no
opponents) may exist, optimal policy calculations for a computer with
reasonable resources using a Markov Decision Process (MDP) becomes
intractable when the total number of squares in the Tileworld equals 16
or 25 (a 4×4 or 5×5 grid) [37]. In comparison, the Tileworld implemented
in this paper is much more complex: tiles, holes, and opponents can exist
simultaneously in mixed quantities and the environment comprises 1225
(35× 35) squares in total (however, an agent can only “see” 25 squares
in total at a time; see Sect. 4).

Taking the complexity of the entire environment into account at once,
an environment with 2 to 8 agents yields ≈ 10589 to ≈ 10600 possible
states (these numbers cover the range of agents used, see Sect. 5). From
the perspective of a single agent, complexity ranges from ≈ 1012 states
(2 agents) to ≈ 1014 states (8 agents).

Consequently, we assert that the complexity of this environment, along
with the ability to exert fine-grained control over this complexity, pro-
vides a suitable test-bed to address the research questions posed.

4

3 Cognitive Architecture

In studying human cognition, much scrutiny has been focused upon ex-
plaining expert behaviour in complex domains; chess, in particular, has
benefited from such effort. Research has identified that the difference
in performance between chess masters and amateurs hinges upon the
breadth and quality of knowledge possessed by masters [11].

The total amount of information in chess has been calculated to contain
143.09 bits of information or, 1043 positions (2143.09) [23]. However, some
of these positions are redundant or implausible; rectified calculations give
a total space of 50 bits of information or, 1015 positions [11]. A promis-
ing psychological theory that accounts for the ability of chess masters to
learn and retain such large3 amounts of information, given known lim-
itations on human cognition, is chunking theory [31]. Chunking theory
suggests that information in memory is stored as aggregated environ-
mental information or chunks; their existence and application in chess
has been established through rigorous testing (see [8, 11] for good exam-
ples). Indeed, computational cognitive models that implement chunking
theory have closely mimicked human behaviour in domains other than
chess too (see Sect. 3.1 for details).

With regard to decision-making, chess masters demonstrate pattern-
recognition frequently: key features of certain board configurations are
recognised extremely quickly [10] and typical, good moves are used when
better, relatively uncommon moves exist [6, 35]. This indicates that when
an adequate knowledge base exists for a domain, pattern-recognition is
the preferred modus operandi for human decision-making (examples in
other domains are given in [6]). However, given that there may exist
many possible solutions for a particular situation, how exactly is a deci-
sion regarding what to do reached?

One proposal is that pattern-recognition is underpinned by the exis-
tence and use of productions stored in memory. We define productions
as being if-else conditions where the if component is visual information
and the then component is an action that should be performed. Produc-
tions can be assigned utility ratings by a process akin to reinforcement
learning [44], whose presence in human cognition has been extensively
validated [12, 21]. These ratings enable production selection to be ratio-
nal: better productions should be selected more frequently than worse
ones [32]. When applied to domains like Tileworld, where an agent’s ac-
tions and goal achievement are episodic, rating production utility entails
using discounted rewards: productions performed closer to the time a re-
ward for goal achievement is received are assigned, or have their utility
ratings incremented by, an amount that reflects a greater share of the re-
ward received than productions performed further in the past, according
to a discount factor β, (0 < β < 1) [19]. Human production selection is
also non-deterministic; worse productions may be selected given better
alternatives [9, 34].

3 With respect to both the number of positions and the amount of information within
each position.

5

Consequently, we have used the Chunk Hierarchy and REtrieval STruc-
tures (CHREST) architecture that implements chunking theory compu-
tationally [16, 11] as the core of our cognitive architecture. Additionally,
we have implemented a pattern-recognition and problem-solving system.
The pattern-recognition system is considered a part of CHREST since it
depends upon particular CHREST components and handles CHREST-
compatible information. The problem-solving system is domain-specific
and does not directly interact with any part of CHREST.

To enable correct operation of the pattern-recognition system, the Profit
Sharing with Discount Rate (PSDR) reinforcement learning theory [4]
and the Roulette selection algorithm [5] have also been used. The CLAR-
ION cognitive architecture [42, 43] adopts a similar combination of ele-
ments but usually combines a backpropagation network, Q-learning the-
ory [45] and a Boltzmann distribution selection algorithm. However, such
a combination is not capable of handling stochastic environments so is
unsuitable for our purposes; Q-learning in particular fails to converge in
domains similar to and smaller than the version of Tileworld used in this
paper [4]. PSDR also requires that an agent have access to an episodic
memory data structure that tracks what actions have been performed by
the agent in response to particular environmental stimuli.

Due consideration must be afforded to how the problem-solving and
pattern-recognition systems exert control over decision-making given that
we are interested in examining how a human-like system of cognition
performs in the stochastic domain described. The research discussed pro-
poses that problem-solving and pattern-recognition never operate simul-
taneously in human cognition. So, after observing the current state of the
environment, agents will first use pattern-recognition to generate a so-
lution. If no solution is output from the pattern-recognition system, the
problem-solving system is used instead. Implementing decision-making
in this way creates a modular dual-process decision-making system [26],
and extends CHREST’s existing functionality.

In this section, Sect. 3.1 discusses pertinent features of CHREST and
Sects. 3.2 and 3.3 outline the problem-solving and pattern-recognition
systems. Section 3.4 details the episodic memory structure and Sects.
3.5 and 3.6 discuss the PSDR and Roulette algorithms.

3.1 CHREST

CHREST is an example of a symbolic cognitive computational architec-
ture [36] and is capable of creating extensible knowledge-bases that en-
able human-like storage, organisation and retrieval of memory. CHREST
also provides functionality to create productions by generating directed
links between chunks and can store utility ratings for productions by
associating numeric values with these links. The validity of CHREST
as a theory of human-like cognition has been established in a variety of
domains, including board games [7, 11], implicit learning [26] and natu-
ral language acquisition [14, 22]. A version of CHREST similar to that
described in this section has also investigated how binding rationality
affects the performance and learning rates of Tileworld agents [29].

6

CHREST comprises two main components: short-term memory (STM)
and long-term memory (LTM). Unlike cognitive architectures such as
Soar [25] and ACT-R [2], CHREST does not encode information in LTM
as procedural, declarative or semantic. Rather, information is organised
according to its modality, of which CHREST defines three types: action,
visual and verbal (no verbal information is used in our simulations).4

Knowledge Representation. In the CHREST framework, units of
information called patterns are used to represent knowledge about the
environment and chunks refer to LTM knowledge. To create a chunk,
a single pattern or combination of patterns must be used to create or
modify a LTM node. When this occurs, the input pattern becomes, or is
added to, a node’s image. Therefore, a chunk is strictly defined as being
the content of a node’s image.

Since patterns represent knowledge about the environment, they are cre-
ated by an agent’s domain-specific input/output component (see Sect. 4.2
for implementation details of this component). In the simulations run,
the patterns used are instances of three-item tuples called item-on-square
patterns that contain an identifier string and two numbers (see captions
for Figs. 2 and 3 for examples).

For visual item-on-square patterns, the identifier string represents the
class of object seen. In these simulations, T encodes a tile, H encodes a
hole and A encodes another agent. An agent does not encode its own
location in a pattern (and consequently, the chunks it creates) since all
objects are encoded relative to its current location. The first and second
numbers represent how many squares to the north and east of the agent
the object is, respectively.5 For example, the visual pattern <[T 1 2]>,
states that there is a tile (T) located 1 square north (1) and 2 squares
east (2) of the agent’s current location.

For action item-on-square patterns, the identifier string represents an
action that an agent should perform (see Table 1 for the mappings be-
tween identifiers and actions). The first of the two numbers represents
the compass direction the agent should face when performing the action:
0 = north, 90 = east etc., and the second number denotes the number
of squares that should be moved by the agent when the action is per-
formed; equal to either 0 (for the remain-stationary and problem-solve
actions only) or 1 (see Sect. 2). For example, the action pattern <[PT 90

1]> states that an agent should face east (90) and perform the push-tile
action (PT), pushing a tile and moving itself 1 square (1) in this direc-
tion. There are a total of 18 actions that can be performed by an agent:
4 variations of 4 actions plus 2 actions with no variations.

Short and Long-Term Memory. STM consists of three fixed-
length, first-in-first-out lists, one for each modality supported in CHREST.
These lists store chunks that have been retrieved from LTM.

4 See [28] for a detailed comparison of ACT-R and CHREST’s LTM implementation.
5 South and west are represented by negative numbers.

7

Table 1. Mappings of identifiers for action item-on-square patterns, the action identi-
fied and variations thereof.

Identifier Action Variations

MR Move-randomly

North, east, south, west
MAT Move-around-tile
MTT Move-to-tile
PT Push-tile

RS Remain-stationary
N/A

PS Problem-solve

LTM is composed of a discrimination network that acts as a retrieval
device and a similarity function; it is analogous to the hidden layers of a
connectionist network, or the RETE network of Soar [25]. Nodes in LTM
are connected using test links; to learn or retrieve information from LTM,
a pattern, φ, is input to LTM and the discrimination network is traversed
by sorting φ from the general root node of LTM to the corresponding
modality root node and then along matching test links until a leaf node
is reached or no further test links match. If φ does not match the chunk
retrieved after traversal, θ, the network is modified using one of two
learning mechanisms: discrimination or familiarisation. Implementation
details of these mechanisms that are of interest to our simulations are
discussed in the following section.6

Discrimination, Familiarisation and Production Creation.
These mechanisms take a user-defined period of time; performing one
of blocks performance of another. Hence, the model of cognition imple-
mented is very human-like: learning is slow when an agent is first placed
in an environment but accelerates as interaction occurs.

Discrimination. Increases the number of chunks stored in LTM and
occurs when a pattern input to LTM, ρ (this may be a sub-pattern of
a larger pattern, φ), is either not present in LTM or is present in LTM
but the chunk retrieved, θ, does not contain ρ, and θ is “finished”: no
new patterns can be appended to it (indicated by a dollar, $ sign). In the
first case, a new node is created and connected to the relevant modality
root node (see Fig. 2(b)). In the second case, a new node is created and
connected to θ (see Fig. 2(c)). The connection created is a test-link that
contains ρ.

Familiarisation. Increases the size of a chunk and occurs when a chunk,
θ, is retrieved from LTM given a pattern, φ, as input and the following
conditions are all true:

– φ contains a sub-pattern, ρ, that exists as a chunk in LTM.
– ρ is not present in θ.
– Sub-patterns preceding ρ in θ and φ are the same.
– θ is not “finished”.

If the above conditions are all true, CHREST adds ρ to θ (see Fig. 3).

6 See [18, 26] for further details of these mechanisms.

8

(a) LTM before presentation of pattern. (b) LTM after first presentation of pat-
tern.

(c) LTM after second presentation of pattern.

Fig. 2. Discriminating visual item-on-square pattern <[T 3 0][T 0 1]$> that indi-
cates locations of two tiles relative to an agent’s location: first is 3 squares north,
second is 1 square east. Test links are indicated by grey rectangles.

Production Creation. Productions are created from information con-
tained in episodes (see Sect. 3.4) and implemented using hash map data
structures contained in visual LTM nodes; keys contain pointers to ac-
tion LTM nodes and values denote the production’s utility rating, as
defined in the introduction to Sect. 3 and illustrated in Fig. 4. Attempts
to create productions that already exist are ignored.
For a production to be created, the visual and action parts of the produc-
tion must be capable of being recognised, i.e. a chunk must be returned
when each part is input to LTM. Due to CHREST’s intention to simu-
late human cognition as closely as possible, it may be that, after passing
the visual part of a production, φ, as input to LTM, the recognised vi-
sual chunk, θ, does not match φ exactly. Instead, θ may only contain
some sub-patterns common to itself and φ. For example, if the visual
pattern <[T 1 0][H 2 0]$> is passed to LTM as input, <[T 1 0]> may
be retrieved if <[T 1 0][H 2 0]$> has not been fully familiarised. Thus,
over-generalisation of production selection may occur, a very human-like
cognition trait [24].
In these simulations, two broad types of production can exist in LTM
and are differentiated by the type of action node they terminate with.
The first production type terminates at an explicit action node, for ex-
ample: push-tile north, the second terminates at an action node that

9

(a) LTM before presentation of pattern.

(b) LTM after presentation of pattern.

Fig. 3. Familiarising visual item-on-square pattern <[T 3 0][T 0 1][H 0 2]$> that
indicates locations of two tiles and one hole relative to an agent’s location: first tile is
3 squares north, second is 1 square east and hole is 2 squares east.

prescribes use of the problem-solving system. Differences in how these
two production types are handled embody the three types of decision-
making mentioned in Sect. 1 and create the three agent types discussed
in Sect. 4.1.

Fig. 4. An example production with an utility rating of 0.9. The production reads as:
“If I can see a tile 3 squares north and a hole 1 square east then, I should move north
to the tile.”

10

3.2 Problem-Solving System

Actions generated by the problem-solving system are intended to achieve
the agent’s currently active goal; these are not explicitly represented in
any data structure available to the agent but are ostensibly activated
after analysing visual input from the environment. The result of this
analysis is used to run one of three hand-coded procedures: move ran-
domly, secure tile or push tile to hole. Note that we have conflated
the concepts of goal and environment state since these have a simple
one-to-one mapping in the environment modelled.
There are three sub-goals that need to be achieved to fulfil the agent’s
main goal of fill hole with tile. These are: find tile, secure tile

and find hole. The problem-solving system therefore follows the pro-
cedure outlined below. Active goals are highlighted using fixed-width

font, procedures run are highlighted in bold and actions generated are
highlighted in italics. Note that “adjacent” is defined as an object being
one square north, east, south or west of the object referred to.

1. Agent is surrounded, i.e. all adjacent squares are occupied by non-
movable tiles, holes or other agents: remain stationary generated.

2. Agent is not surrounded.
– Tiles and holes can be seen: determine closest hole to the agent,
H, and tile that is closest to H, T .
• T is adjacent to agent and can be pushed closer to H from

agent’s current position: fill hole with tile activated,
push tile to hole run, push tile generated.

• T is adjacent to agent but cannot be pushed closer to H
from agent’s current position: secure tile activated, se-
cure tile run, move around tile generated.

• T is not adjacent to agent: secure tile activated, secure
tile run, move to tile generated.

– Tiles can be seen but no holes: determine distance of agent from
closest tile, T .
• T is adjacent to agent: find hole activated, push tile to

hole run, push tile generated.
• T is not adjacent to agent: secure tile activated, secure

tile run, move to tile generated.
– No tiles can be seen: find tile activated, move randomly

run, move randomly generated.

Note that some procedures generate actions non-deterministically in some
circumstances; consider the environment states in Fig. 5. The active goal
of agent A in both states is secure tile, specifically, tile T1, so it runs
the secure tile procedure to generate an action to try and achieve this
goal. The optimal action in the case of Fig. 5(a) is for A to move north
around T1 so that it is able to push T1 to the east thus securing it.
However, this action is non-optimal if the environment state in Fig. 5(b)
is considered since A cannot push T1 east because T2 blocks T1 along
this heading. Consequently, the optimal action in one state may be the
non-optimal action in a similar state. So, in this case, the secure tile

procedure has a 0.5 probability of generating either a move around tile
north or a move around tile east action.

11

(a) State 1. (b) State 2.

Fig. 5. Environment state examples to justify non-determinism of action production
by problem-solving procedures.

3.3 Pattern-Recognition System

The pattern-recognition system’s operation is intended to be analogous
to habitual behaviour in human beings: behaviours become habitual
when they are frequently selected in response to particular goals being
activated [1]. The system therefore uses visual patterns and production
utility ratings as input to propose actions to perform. Other than the
fact that the pattern-recognition system is considered to be a part of
CHREST whereas the problem-solving system is not (see introduction
to Sect. 3), there are two crucial differences between this system and the
problem-solving system:

1. The pattern-recognition system cannot generate novel actions, it can
only select actions contained in existing productions.

2. The pattern-recognition system may have to choose an action from
many potential productions, depending upon how many productions
exist for the visual pattern input to LTM.

After inputting a visual pattern, φ, to the pattern-recognition system, an
attempt is made to recognise and retrieve productions from LTM, Ψ . If
no productions are retrieved, execution of the system halts and decision-
making control is passed to the problem-solving system. Otherwise, the
utility ratings of Ψ are used as input to the Roulette selection algorithm
(see Sect. 3.6) to select an action for execution.
If a production is selected by the pattern-recognition system, its action is
not passed as input to CHREST to be learned if the action is performed
successfully (see Sect. 4.3). This is because the action must have been
learned for CHREST to have created the production (see Sect. 3.1: Dis-
crimination, Familiarisation and Production Creation). Therefore, fur-
ther learning of the action is redundant.

3.4 Episodic Memory

The episodic memory structure used by agents is analogous to STM
and is therefore implemented as a fixed-length first-in-first-out list. An
episode contains four pieces of information: a visual pattern, υ, an action
pattern, α (executed by the agent in response to υ), the time α was
executed (required by PSDR, see Sect. 3.5) and whether α was produced
by the problem-solving or pattern-recognition system (enables type 3
agents to modify productions correctly, see Sect. 4.3).

12

3.5 Profit Sharing with Discount Rate

PSDR uses a credit assignment function (1) to calculate production util-
ity ratings, Pσ. For example: at time t, an agent executes an action in
response to the current visual environment state generating a episode,
Et. At time t + 1, the agent executes another action in response to the
current visual environment state, producing another episode, Et+1, and
continues this cycle until it receives a reward, R, at time T . At time
T , the agent’s episodic memory will contain the following episodes if
the number of episodes from Et to ET is less than, or equal to, the
maximum size of episodic memory: (Et, Et+1 . . . ET). With R = 1 and
discount rate β = 0.5, the production corresponding to episode ET re-
ceives 1 as credit, ET−1’s production receives 0.5, ET−2’s production’
receives 0.25 etc. The credit generated for a production is then added to
that production’s current utility rating.

Pσ = Pσ + (R · βT−t) (0 < β < 1) (1)

PSDR [4] was chosen as a reinforcement learning theory for three reasons:
first, it can be used in domains where mathematical modelling of the do-
main is intractable, a property of the version of Tileworld implemented
(see Sect. 2). Second, PSDR’s production utility rating mechanism is con-
gruent with that discussed earlier (see introduction to Sect. 3) since it
uses discounted rewards. Third, PSDR’s effectiveness in enabling agents
to learn and apply robust, effective productions autonomously in dy-
namic, multi-agent domains that are similar to the version of Tileworld
used in these simulations has been validated by others [3, 4].

3.6 Roulette Algorithm

The Roulette algorithm [5] uses production utility ratings to select an
action for execution given a number of candidate productions. Equation
(2), generates a value, ω, for a candidate production, P , from P ’s utility
rating, Pσ, divided by the sum of each candidate production’s utility rat-
ing, Pnσ to PNσ . Candidate productions are then organised in ascending
order according to their ω value and used to create a range of values; can-
didate productions with greater ω values occupy greater ranges. Finally,
a random number, 0 < R < 1, is generated and used to select a produc-
tion from the candidates. Therefore, the algorithm is non-deterministic
and abides by the principle of rationality defined in the introduction to
Sect. 3: candidate productions with greater utility ratings will be more
likely to be selected whereas it is less likely for candidate productions
with lower utility ratings to be selected.

ω = Pσ/

N∑
n=1

Pnσ (2)

4 Agent Implementation

Agents are equipped with the cognitive architecture described in Sect. 3
and a domain-specific input/output component. Agents are goal-driven,

13

non-communicative, non-cooperative, and have limited vision. The size
of an agent’s observable environment is controlled by a parameter that
takes a number as input to indicate how many squares north, east, south
and west the agent can “see”. We keep the value of this parameter con-
stant at 2 since agent performance should not be affected by differences
in “physical” capabilities. The size of visual patterns generated is depen-
dent on this parameter, so any visual pattern constructed can only con-
tain 24 item-on-square patterns at most.7 This is important since larger
values may result in the agent constantly discriminating and familiaris-
ing due to large input patterns and thus blocking production creation
(see Sect. 3.1). Setting the sight parameter to 2 is also the minimum
value that allows the agent to see “around” a tile so that its ability to
be pushed can be determined (important to enable valid solutions to be
provided by the problem-solving system).
Fig. 6 illustrates the cognitive architecture structures discussed in Sect. 3,
the agent-specific components discussed in this section and how informa-
tion flows between them. Note that the sequencing illustrated in Fig. 6
does not always apply due to the agent’s type and how the problem-
solving and pattern-recognition systems operate. These details, along
with the sequencing changes mentioned, are delineated in Sect. 4.1.
This section proceeds as follows: we discuss the implementation details of
the three agent types that embody the three different types of decision-
making outlined in Sect. 1 in Sect. 4.1. Operation of the agent-specific
input/output component is outlined in Sect. 4.2 and the execution cycle
for agents is provided in Sect. 4.3.

4.1 Agent Types

In Sect. 3.1: Discrimination, Familiarisation and Production Creation,
we delineated two types of productions that can be created by agents:
productions terminating with explicit actions, i.e. push-tile north, and
those terminating with the action that prescribes usage of the problem-
solving system. The three types of agents implemented in these simula-
tions are defined by the types of production they can create:

– Agent Type 1 (pure problem-solver): neither type of production are
created in LTM; agents of this type will always use problem-solving
to decide upon what action to perform next.

– Agent Type 2 (“pure” pattern-recogniser): only creates productions
that terminate with explicit action chunks.

– Agent Type 3 (problem-solver and pattern-recogniser): creates both
types of production.

Since agent type 1 does not use the pattern-recognition system at all,
sequences 3-6 and 11-13 do not occur in Fig. 6.
Agent type 2 uses problem-solving to generate actions initially but after
a production, P , has been constructed and rated, problem-solving will
no longer be used to generate an action when P ’s visual condition is

7 A square in Tileworld can only contain one item (see Sect. 2), one item-on-square
pattern encodes one item and the agent doesn’t encode its own location.

14

Fig. 6. Agent architecture and flow of information throughout (numbers denote se-
quence of information processing and are discussed in Sect. 4.1).

encountered (pattern-recognition is always used before problem-solving
by agents, see introduction to Sect. 3). Hence, agents of type 2 are not
“pure” pattern-recognisers (hence the quotes around “pure”) in the same
sense as agents of type 1 are pure problem-solvers since problem-solving
is still used to some degree.

Agent type 3 strikes more of a balance between problem-solving and
pattern-recognition system use than agent type 2. The problem-solving
system will be used more in initial decision-making (as it is for agent type
2) but, as LTM develops, it may be that productions generated result in
either an explicit action being performed or the problem-solving system
being used to generate a potentially novel and better action.

With regard to agent types 2 and 3 and Fig. 6, the sequencing illustrated
can be altered in the following ways depending on the outcome of the
pattern-recognition system:

– Agent types 2 and 3.

• If pattern-recognition does not propose an action, sequences 5
and 6 not not occur.

• If the pattern-recognition system proposes an action, sequences
7-9 do not occur (see Sect. 3.3 for an explanation of why 9 does
not occur).

– Agent type 3.

• If the pattern-recognition system proposes an action that pre-
scribes usage of the problem-solving system, sequence 9 does not
occur.

15

4.2 Input/Output Component

In the simulations, translation between domain-specific visual informa-
tion, agent-specific action information and CHREST is required: this is
provided by an agent’s input/output component.

Visual patterns are produced by translating domain-specific visual infor-
mation and output is sent to the agent’s memory system to be learned
and the pattern-recognition system, if applicable (see Sect. 4.1). The
unmodified domain-specific visual information may also be sent to the
problem-solving system, if applicable (again, see Sect. 4.1).

Actions produced by the problem-solving or pattern-recognition system
are also passed to this component. Agent-specific actions received from
the problem-solving system are converted into CHREST-compatible ac-
tion patterns whereas output from the pattern-recognition system is
converted from CHREST-compatible action chunks into agent-specific
actions (see Sects. 3.2 and 3.3 for details). In either case, the original
action information and its converted form are retained; the CHREST-
compatible action pattern is sent to CHREST’s memory system so it
can be learned whilst the agent-specific version is executed by the agent,
causing the agent to perform the action in the environment.

Episodes (see Sect. 3.4) are also encoded and decoded by an agent’s in-
put/output component. An example of an episode is as follows: [<[T 1

0][H 2 0]$> <[PT 0 1]$> 110 true]. This episode should be inter-
preted thus: an agent saw a tile 1 square to the north and a hole 2
squares to the north (<[T 1 0][H 2 0]$>) and used its problem-solving
system (true) to generate a push tile north action (<[PT 0 1]$>) that
was executed at time 110 (110). When decoding an episode, the visual
and action pattern are retrieved and sent to the agent’s memory system
to enable production creation or modification (see Sect. 4.3).

4.3 Execution Cycle

The agent execution cycle runs for each agent in turn after every time
increment in the Tileworld environment. The order of agent execution is
randomised so, at time t, agent 0 may execute first then agent 1 whereas
at time t+ 1, agent 1 may execute before agent 0.

Note that agents have a specific intention reconsideration strategy im-
plemented: when the current time, T , equals the time that an action, α,
is to be performed, t, the agent generates a new visual pattern, χ, and
compares this to the visual pattern, φ, used to generate α. If φ 6= χ, the
agent does not perform α and instead generates and loads a new action
for execution based upon the information in χ.

The execution cycle proceeds as follows. Note that some steps in the
execution cycle require additional explanation to justify their inclusion,
these explanations follow the execution cycle delineation. Each agent
begins by checking to see if there is an action loaded for execution:

1. No action loaded for execution.

(a) Generate visual pattern, φ.
(b) Pass φ as input to LTM and attempt to learn.

16

(c) Use φ to generate a new action pattern, α, using problem-solving
or pattern-recognition system, depending upon agent type.

(d) Load α for execution, pass α as input to LTM and attempt to
learn. Set time for execution of α to t and exit execution cycle.

2. Action α is loaded for execution, check to see if current time, T ,
equals t.
(a) T = t: generate new visual pattern, χ, and compare this to φ.

i. φ = χ: attempt to perform α.
A. Agent successfully performs α. Check agent type.

– Agent type 1: exit execution cycle.
– Agent type 2/3:

If α is not a move-randomly action, create new episode
in episodic memory and attempt to create a production
in LTM between φ and α.
If α achieves agent’s primary goal, apply PSDR to pro-
ductions representing episodes in episodic memory and
clear episodic memory.

B. Agent unsuccessfully performs α: exit execution cycle.
ii. φ 6= χ: unload α for execution and exit execution cycle.

(b) T 6= t: exit execution cycle.

The refusal to create a new episode and production using φ and α when
α is a move-randomly action is due to two reasons. First, if such produc-
tions were created, agents would be biased in their random movement
so, if the agent selects productions like this in future, the movement per-
formed is not truly random. Second, given the stochastic nature of Tile-
world, biasing random movement could artificially influence an agent’s
performance. For example, it may be that tiles and holes are generated,
by chance, to the west of an agent more frequently. If this agent’s ran-
dom movement were biased to the east, it would encounter resources less
frequently, reducing its ability to score and impinging its performance.
To justify why agents create/modify productions after an action is suc-
cessfully performed rather than before, we appeal to the definition of
rationality provided in the introduction to Sect. 3: less useful produc-
tions should be more strongly suppressed than more useful ones. Actions
are only ever not performed because the decision-making system has
failed to take into account some environmental resource that stops the
action being performed successfully (trying to push a tile along a heading
when there is another tile in the way). Therefore, productions that are
completely useless are never created.
On this note, it is worthwhile to explain under what circumstances an
agent may fail to perform an action since it appears that the intention
reconsideration strategy implemented should prevent such an event. Es-
sentially, this can only occur for agents that use pattern-recognition. For
example, an agent may attempt to perform a push-tile action on tile T1
after using pattern-recognition. However, due to over-generalisation of
production selection (see Sect. 3.1: Discrimination, Familiarisation and
Production Creation), it may be that the agent fails to consider a tile
present in the visual input that blocks T1 from being pushed in the
direction suggested. Thus, when the agent attempts to push T1, T1 is
blocked and the action fails.

17

When creating/modifying production utility ratings after an action is
performed, special consideration must be afforded to type 3 agents. Since
these agents can create/modify productions whose actions propose us-
ing an explicit action or the problem-solving system, they must make a
choice given that production creation/modification occurs in CHREST
and CHREST is not able to create/modify two productions simultane-
ously. So, if an episode indicates that its action was generated using
problem-solving, type 3 agents create or select the type of production to
create/modify randomly. This is implemented by the agent generating a
random float R, (0 <= R < 1). If R < 0.5 a/the production prescribing
use of the problem-solving system given the visual part of the episode
is created/modified. Otherwise, a/the production prescribing use of the
explicit action performed given the visual part of the episode is created/
modified.

5 Simulation Details

Two sets of simulations were run. The first explores what balance of
problem-solving and pattern-recognition system use maximises agent
performance given different environmental complexities and how differing
environment complexities affect pattern-recognition and problem-solving
use. The second comprises a sensitivity analysis of episodic memory size
and discount rate for agent types 2 and 3 and allows us to ascertain
if significantly altering these values affects the dependent variables out-
lined for the first set of simulations. Hence, this section is split in two:
Sect. 5.1 details the first set of simulations, Sect. 5.2 outlines the second.

5.1 Decision-Making System Use, Environment
Complexity and Performance Details

For this set of simulations, 27 conditions were simulated and run. Con-
ditions are representative of various degrees of intrinsic/extrinsic envi-
ronmental complexity and agent types (see Sect. 4.1). Each condition
was repeated 10 times to harvest a data set large enough to provide a
robust analysis. For each repeat, average frequencies of problem-solving
and pattern-recognition system use were recorded along with the average
score for all agents (to determine performance). The overall values for
these dependent variables over each condition were then calculated by
averaging the averages obtained for the repeats.

Our null hypotheses state that:

– Using problem-solving instead of pattern-recognition and vice-versa
does not have any significant effect on the performance of agents.

– Altering extrinsic and intrinsic environment complexity does not
have any significant effect upon problem-solving or pattern-recog-
nition use.

– Altering extrinsic and intrinsic environment complexity does not
have any significant effect upon the performance of agents.

18

Intrinsic environment complexity is controlled by the values of the hole
appearance probability, tile appearance probability, hole lifespan and tile
lifespan parameters. Greater tile/hole appearance probability values and
smaller tile/hole lifespan values equate to greater complexity; more tiles/
holes appear but for shorter periods of time resulting in a greater number
of novel environment states occurring. One may expect the values for the
tile/hole appearance interval parameters to also be varied. However, the
intrinsic complexity of the environment can be significantly modified
by varying the values of the parameters mentioned. Values for the tile/
hole appearance probability parameters were derived by simply taking
the median probability, 0.5, as the moderate complexity value and then
taking the lowest/highest values possible without guaranteeing tile/hole
appearance since this would significantly skew the results. The tile/hole
appearance probability and tile/hole lifespan parameter value mappings
for each level of environment complexity are provided below:

– Environment complexity: low
• Tile/hole appearance probability: 0.1
• Tile/hole lifespan: 80 seconds

– Environment complexity: moderate
• Tile/hole appearance probability: 0.5
• Tile/hole lifespan: 40 seconds

– Environment complexity: high
• Tile/hole appearance probability: 0.9
• Tile/hole lifespan: 20 seconds

Extrinsic environmental complexity is determined by the number of ag-
ents in the environment (see Sect. 2 for justification). We set this variable
to either 2, 4 or 8.
All other variable values are kept constant (see Table 2). There are three
major groups of conditions differentiated by the degree of intrinsic envi-
ronment complexity used. These major groups then consist of a further
three sub-groups of conditions differentiated by the degree of extrinsic
environmental complexity. Finally, each sub-group consists of three sub-
sub-groups differentiated by agent type (see Sect. 4.1). Note that the
agent types used in a condition are homogeneous.

5.2 Sensitivity Analysis

In this set of simulations, 270 conditions were simulated and run and each
condition was repeated 10 times to harvest a data set large enough to
provide a robust analysis. The dependent variables recorded and methods
used to calculate their values remain unchanged from the simulations
detailed in Sect. 5.1.
Our null hypotheses states that there is no significant effect upon agent
performance or pattern-recognition/problem-solving system use when
episodic memory size or discount rates are altered.
Note that in this set of simulations, we have conflated extrinsic and
intrinsic environment complexity into a generic environment complexity
to make the analysis simpler. The tile/hole appearance probability and
tile/hole lifespan parameter value mappings for each level of environment
complexity are provided below:

19

Table 2. Mappings of independent variable names to owner (agent, CHREST, envi-
ronment), value used and justification for value used.

Independent
Variable

Owner Value Justification

Problem-solving
time

Agent 1 sec

Equals value of the tile/hole
birth interval parameters so
planned actions may be recon-
sidered due to the appearance of
a new tile or hole.

Sight radius Agent 2 See Sect. 4.

Add link time CHREST 10 sec Taken from [38].

Discount rate CHREST 0.1 to 0.9

Kept constant at median value
(0.5) for simulations detailed in
5.1 and 6.1, varied in simula-
tions detailed in 5.2 and 6.2.

Discrimination
time

CHREST 10 sec Taken from [38].

Episodic memory
size

CHREST 6 to 14

Kept constant at median value
(10) for simulations detailed in
5.1 and 6.1, varied in simula-
tions detailed in 5.2 and 6.2.

Familiarisation
time

CHREST 2 sec Taken from [38].

Pattern-
recognition
time

CHREST 0.2 sec Taken from [17].

Hole appearance
interval

Env. 1 sec

Equals value of the problem-
solving time parameter so
planned actions may be recon-
sidered due to the appearance
of a new tile or hole.

Play time Env. 28800 sec
Allows pattern-recognition sys-
tems to learn enough informa-
tion to be useful.

Reward value Env. 1

Equal to the single point re-
ceived for an agent achieving its
main goal of pushing a tile into
a hole.

Tile appearance
interval

Env. 1 sec

Equals value of the problem-
solving time parameter so
planned actions may be recon-
sidered due to the appearance
of a new tile or hole.

Time increment Env. 0.1 sec
CHREST operations measured
in milliseconds: this is the small-
est major time unit possible.

20

– Environment complexity: low
• Tile/hole birth probability: 0.1
• Tile/hole lifespan: 80 seconds
• Number of agents: 2

– Environment complexity: moderate
• Tile/hole birth probability: 0.5
• Tile/hole lifespan: 40 seconds
• Number of agents: 4

– Environment complexity: high
• Tile/hole birth probability: 0.9
• Tile/hole lifespan: 20 seconds
• Number of agents: 8

We take the values used for the discount rate and episodic memory size in
the simulations detailed in Sect. 5.1 as median values for these variables
in this set of simulations. Discount rate is then incremented in steps of
0.1 from 0.1 to 0.9 and episodic memory size is incremented in steps of 2
from 6 to 14 for each agent type in each of the environment complexities
defined. All other variable values are kept constant (see Table 2).
There are three major groups of conditions differentiated by the degree
of environment complexity used. These major groups then consist of a
further two groups of conditions differentiated by agent type (agent type
in each condition is homogeneous). Each of these agent type groups then
consists of five groups determined by size of episodic memory. Finally,
each of these episodic memory size groups is divided into nine groups
distinguished by the discount rate used. Thus, all combinations of envi-
ronment complexity, agent type, episodic memory size and discount rates
outlined for this set of simulations are tested.

6 Results and Discussion

This section is split into two, with Sect. 6.1 discussing results from the
simulations described in Sect. 5.1 and Sect. 6.2 discussing results from
the simulations described in Sect. 5.2.

6.1 Decision-Making System Use, Performance and
Environment Complexity Results

Results in this section were analysed using a 3×3×3 analysis of variance
(ANOVA), with environment (intrinsic) complexity, number of agents
(extrinsic complexity) and agent type as between-subject variables.8 As
mentioned in Sect. 5.1, we have collected data for three dependent vari-
ables: average score, average frequency of problem-solving system use
and average frequency of pattern-recognition system use. This section
is in two parts: the first covers how the between-subject variables affect
decision-making system use, and the second looks at how the between-
subject variables affect agent performance.

8 Due to an error in the simulation code used in a previous version of this paper [27],
the results reported in this section consistently differ from those reported in the
corresponding section of [27] by a factor of 10. The results reported in this section
use a rectified version of the simulation code and are correct.

21

Fig. 7. Average frequency of
problem-solving and pattern-
recognition system use by agents
as a function of agent type and
each intrinsic/extrinsic complexity
setting outlined in Sect. 5.1.

Fig. 8. Average performance of
agents for each intrinsic complex-
ity setting outlined in Sect. 5.1
when 2 agents are present in Tile-
world.

Fig. 9. Average performance of
agents for each intrinsic complex-
ity setting outlined in Sect. 5.1
when 4 agents are present in Tile-
world.

Fig. 10. Average performance of
agents for each intrinsic complex-
ity setting outlined in Sect. 5.1
when 8 agents are present in Tile-
world.

22

Decision-Making System Use. The average total amounts of prob-
lem-solving and pattern-recognition system use are shown in Fig. 7. The
stacked segments in the figure indicate the proportion of the total taken
up by each of the two kinds of decisions: in all cases (for agents of type 2
and 3), the amount of pattern-recognition was significantly smaller than
the amount of problem solving.
The results indicated a main effect of intrinsic complexity, F (2, 243) =
295.2, extrinsic complexity, F (2, 243) = 24.0, and agent type, F (2, 243) =
1, 511.7 with all p < 0.001. As expected, type 1 agents never used pattern-
recognition whilst type 2 agents used pattern recognition more frequently
than agents of type 3. By increasing extrinsic complexity, agents of type 2
and 3 decreased their use of pattern-recognition; in contrast, increasing
intrinsic complexity had the reverse effect. The following interactions
were also statistically significant for agent types 2 and 3: intrinsic com-
plexity and agent type F (4, 243) = 113.6, p < 0.001, extrinsic complexity
and agent type: F (4, 243) = 15.0, p < 0.001.
Average frequency of problem-solving use yielded results that were the
mirror-image of those obtained for average frequency of pattern-recog-
nition use. This is expected since, if an agent does not use pattern-
recognition then it will use problem-solving. There was a main effect of
agent type, F (2, 243) = 1, 512.1, p < 0.001, with type 1 agents using
problem-solving most frequently on average and type 2 agents least (as
expected). A main effect of intrinsic complexity, F (2, 243) = 295.2, p <
0.001, reflects that average frequency of problem-solving use tended to
decrease with increasing intrinsic complexity. Finally, the main effect
of extrinsic complexity was significant, F (2, 243) = 24.0, p < 0.001,
reflecting a small increase in problem-solving use as extrinsic complexity
increased.

Performance. Figures 8, 9 and 10 show average scores achieved by
each agent type for each degree of environment complexity organised
by number of agents. The three main effects were statistically signif-
icant: intrinsic complexity, F (2, 243) = 2, 437.7, extrinsic complexity,
F (2, 243) = 16.6, and agent type, F (2, 243) = 70.8 with all p < 0.001.
Irrespective of environment complexity, the average score achieved by
agents of type 2 was either approximately equal to, or greater than, the
average score of type 3 agents. Type 1 agents consistently achieved the
lowest average scores. Neglecting average scores achieved when intrinsic
environment complexity is low (since there is not much difference be-
tween the agent types), agents of type 2 offered a performance increase
of up to 36.5% when compared to agents of type 1 (see Table 3).
By increasing extrinsic complexity, average scores were decreased for each
agent type whilst increasing intrinsic complexity caused average scores
to increase for each agent type. The only exception to this trend was the
average score obtained by type 1 agents when there were 4 or 8 players in
the environment and intrinsic complexity was increased from moderate
to high. In these conditions, the average score for type 1 agents either
remained equal or decreased. This complex pattern of results is reflected
by a statistically significant interaction between environment complexity
and agent type, F (4, 243) = 15.3 with p < 0.001.

23

Table 3. Percentage difference between average scores achieved by agent types 1 and
3 in the moderate and highly complex environment conditions outlined in Sect. 5.1.

Complexity Agent Type

Intrinsic Extrinsic 1 3 % Increase

Moderate Low 381.5 485.0 27.13

Moderate Moderate 384.3 451.3 17.43

Moderate High 384.8 421.3 9.49

High Low 427.5 513.5 20.12

High Moderate 387.5 529.0 36.52

High High 375.6 479.4 27.64

Discussion.

Decision-Making System Use. We will first consider the effects of in-
creasing extrinsic and intrinsic complexity on decision-making system
use. By increasing extrinsic complexity, competition for environmental
resources increases. Thus, there are fewer interactions between agents
and environmental resources, so fewer productions are created (produc-
tions are only ever created when an action is performed successfully, see
Sect. 4.3), pattern-recognition system use decreases (since the system
does not have the resources required to operate) and problem-solving sys-
tem use increases. By increasing intrinsic complexity, availability of envi-
ronmental resources increases. This results in agents interacting with en-
vironmental resources more frequently, in turn increasing the number of
productions created in LTM. Consequently, the opposite effect to increas-
ing extrinsic environmental complexity is observed: pattern-recognition
system use increases and problem-solving system use decreases.

Conversely, a priori reasoning would suggest that, when intrinsic en-
vironment complexity is increased, the state space of the environment
increases: this should result in agents discriminating/familiarising more
often, inhibiting the creation of productions (see Sect. 3.1: Discrimina-
tion, Familiarisation and Production Creation.). Consequently, pattern-
recognition use should decrease due to the unavailability of productions.
However, when intrinsic complexity is high, it is likely that an agent
will encounter similar environment states frequently due to an over-
abundance of environmental resources. This, coupled with the fact that
the observable space of the environment is relatively small for an agent
compared to the total size of the Tileworld environment (25 squares
against 1225), means that the number of completely familiarised visual
and action chunks in an agent’s LTM will increase, facilitating produc-
tion creation. Thus, it is more likely for an agent that can use pattern-
recognition to do so.

Explaining the effect of agent type on decision-making system use is
trivial: type 1 agents only use problem-solving, type 2 agents use their
pattern-recognition system more frequently than type 3 agents and type 3
agents use problem-solving more frequently than type 2 agents. For agent
types 2 and 3: when a production is created for a visual state, type 2

24

agents will never use their problem-solving system again when that visual
state is encountered whereas type 3 agents may do.

Performance. Since increasing extrinsic complexity elevates competi-
tion for resources (see previous section), this should result in perfor-
mance declining as extrinsic complexity increases; this is observed in
most of the data acquired (see Figs 8-10). Increasing intrinsic complex-
ity has the opposite effect since there are more resources available to an
agent to achieve their primary goal. Average scores are likely to increase
as intrinsic complexity increases. Again, this is observed in most of the
data acquired (see Figs 8-10).
To explain the effect of agent type on performance, we must consider the
length of time taken to execute an action using either decision-making
system against the regularity by which the environment’s state may
change. When an agent executes an action, it first checks to see if its
observable environment has changed since it started to deliberate on the
action that is to be performed (see Sect. 4.3). This intention reconsider-
ation strategy means that, in some cases, an agent will not perform an
action potentially resulting in the relevant environment resources expir-
ing before the agent can use them to achieve its current goal.
Since the interval of time for an agent generating an action using problem-
solving and the environment potentially creating new tiles and holes is
equal (1 second), an agent’s intention reconsideration is more likely to
be triggered when the problem-solving system is used and when extrinsic
and intrinsic environment complexity is increased. Therefore, in the space
of time where the environment remains static, agents that use pattern-
recognition can perform up to 5 actions. This enables agents that employ
pattern-recognition more to achieve their goals more quickly and score
more frequently. This explains why type 2 agents consistently perform
better compared to agents of type 1 and 3 who use pattern-recognition
less frequently.

Conclusions. All null hypotheses stated in Sect. 5.1 are refuted. Cru-
cially, the results reported in Figs. 7-10 indicate that increased use of the
pattern-recognition system by agents benefits performance since more
actions can be performed before the environment state changes due to
intrinsic environmental factors (extrinsic factors may still cause state
changes, however). This results in an agent’s intention reconsideration
strategy being triggered less frequently so the agent acts more frequently
to achieve its goals than it does deliberating about how to achieve them.
This supports the position that acting quickly and, potentially, sub-
optimally in complex, stochastic environments benefits performance more
than taking time to re-evaluate productions to potentially optimise them.
In this sense, the Einstellung Effect appears to be beneficial for agents in
the environment modelled. This conclusion is further bolstered by two,
seemingly anomalous, observations.
The first observation is illustrated in Fig. 9: performance for type 2
agents improves when intrinsic complexity is high and extrinsic com-
plexity increases from low to moderate. As explained in the Decision-
Making System Use and Performance discussions above, increasing ex-

Fernand
Cross-Out
e

25

trinsic complexity generally impairs performance whilst increasing intrin-
sic complexity improves performance. The simulation condition outlined
therefore appears to strike a balance between these interactions so that
the state-space is “just-right” to optimise pattern-recognition use:

– Agents are not overloaded with visual information causing excessive
discrimination/familiarisation and blocking production creation.

– Availability of environmental resources is such that the agent is not
blocked from moving/pushing tiles (due to too many resources) and
the agent does not spend most of its time looking for resources (due
to too few resources).

The same result is not observed for type 3 agents because use of their
pattern-recognition system can entail use of problem-solving.

The second observation concerns the performance of type 1 agents when
extrinsic complexity is moderate and high and intrinsic complexity in-
creases from moderate to high (see Figs. 9 and 10). In these conditions,
the performance of type 1 agents either plateaus or decreases since, as in-
trinsic complexity is increased, intention reconsideration will occur more
frequently (as already argued). Since these agents can only use problem-
solving, they will deliberate more frequently than they will act, resulting
in their performance being hampered.

6.2 Sensitivity Analysis

All results in this section were analysed using a 3 × 5 × 9 ANOVA,
with environment complexity, episodic memory size and discount rate
as between-subject variables, respectively. We focus on the following de-
pendent variables: average score, average frequency of problem-solving
system use and average frequency of pattern-recognition system use.
The section is split into three parts: the first presents results concerning
decision-making system use, the second presents results concerning per-
formance and the third discusses the results and offers explanations for
the observations noted.

Decision-Making System Use. Figures 11 to 14 display results
relevant to this section. Note that we do not display results pertain-
ing to the effects of discount rate on decision-making system use since
the effect of this variable was, at best, marginal, and, at worst, non-
significant. To calculate the results reported, an average of averages for
problem-solving/pattern-recognition system-use was calculated. For ex-
ample, average problem-solving system use reported for type 2 agents
with episodic memory size 6 in the low complexity condition was calcu-
lated as follows:

1. Calculate the average frequency of problem-solving system use achie-
ved by type 2 agents with episodic memory size 6 and discount rate
0.1 over the 10 repeats for the low environment complexity condition.
Repeat for each discount rate.

2. Average the average frequencies from step 1; report result.

26

Fig. 11. Effect of episodic memory
size upon the average frequency
of pattern-recognition system use
by type 2 agents for each environ-
ment complexity setting outlined
in Sect. 5.2.

Fig. 12. Effect of episodic memory
size upon the average frequency
of problem-solving system use by
type 2 agents for each environ-
ment complexity setting outlined
in Sect. 5.2.

Fig. 13. Effect of episodic memory
size upon the average frequency
of pattern-recognition system use
by type 3 agents for each environ-
ment complexity setting outlined
in Sect. 5.2.

Fig. 14. Effect of episodic memory
size upon the average frequency
of problem-solving system use by
type 3 agents for each environ-
ment complexity setting outlined
in Sect. 5.2.

27

Agent Type 2. For average frequency of pattern-recognition system use,
there was a main effect of environment complexity, F (2, 1215) = 2018.0,
p < 0.001 and episodic memory size, F (4, 1215) = 82.8, p < 0.001, but
no main effect of discount rate, F (8, 1215) = 0.5, p = ns. Only the
interaction between environment complexity and episodic memory size
was statistically significant, F (8, 1215) = 2.1, p < 0.05.
Average frequency of problem-solving system use results were a mirror-
image to those for pattern-recognition system use. There was a main
effect of environment complexity, F (2, 1215) = 2017.9, p < 0.001 and
episodic memory size, F (4, 1215) = 82.8, p < 0.001, but no main effect
of discount rate, F (8, 1215) = 0.5, p = ns. The only statistically signifi-
cant interaction was that between environment complexity and episodic
memory size, F (8, 1215) = 2.1, p < 0.05.

Agent Type 3. For average frequency of pattern-recognition system use,
there was a main effect of environment complexity, F (2, 1215) = 315.1,
p < 0.001 and episodic memory size, F (4, 1215) = 68.1, p < 0.001.
Unlike type 2 agents, the main effect of discount rate was marginally
significant, F (8, 1215) = 1.9, p = 0.054 as was the interaction between
environment complexity and discount rate F (16, 1215) = 1.6, p = 0.054;
no other interactions were present. While there was still less pattern-
recognition system use on average in the high complexity condition (like
type 2 agents), there was no significant difference in average frequency of
pattern-recognition system use between low and moderate environment
complexity conditions, F (1, 810) = 0.3, p = ns. This is an important
difference between agents of type 2 and 3.
Results for average frequency of problem-solving system use were, again,
a mirror image to those obtained for pattern-recognition system use.9

There was a main effect of complexity and episodic memory size, a
marginal effect of discount rate and an interaction between environment
complexity and discount rate. Again, there is no significant difference in
the average frequency of problem-solving system use between low and
moderate environment complexity conditions.

Performance. Figures 15 and 16 display results relevant to this sec-
tion. As with results concerning frequency of decision-making system
use, we do not show results regarding the effects of discount rate upon
performance since the effect of this variable was non-significant for both
agent types. Results for this section were calculated in the same fash-
ion as results for frequency of decision-making system use (see Sect. 6.2:
Decision-Making System Use).

Agent Type 2. There was a main effect of environment complexity,
F (2, 1215) = 29, 590.9, p < 0.001 and episodic memory size, F (4, 1215) =
11.8, p < 0.001, but no main effect of discount rate, F (8, 1215) = 0.521,
p = ns. There was also an interaction between environment complex-
ity and episodic memory size, F (8, 1215) = 671.6, p < 0.01. No other
interactions were statistically significant.

9 All F and p values for the effects discussed are equal to those outlined for average
frequency of pattern-recognition system use.

28

Fig. 15. Effect of episodic mem-
ory size upon the performance of
type 2 agents for each environ-
ment complexity setting outlined
in Sect. 5.2.

Fig. 16. Effect of episodic mem-
ory size upon the performance of
type 3 agents for each environ-
ment complexity setting outlined
in Sect. 5.2.

Agent Type 3. Like the performance of type 2 agents, there was a main
effect of environment complexity, F (2, 1215) = 36, 627.9, p < 0.001 and
no main effect of discount rate, F (8, 1215) = 1.4, p = ns. However,
the main effect of episodic memory size just failed to reach statistical
significance, F (4, 1215) = 2.1, p = 0.074. There was also an interaction
between complexity and episodic memory size, F (8, 1215) = 3.0, p <
0.005. No other interactions reached statistical significance.

Discussion.

Decision-Making System Use. In Sect. 6.1: Decision-Making System
Use, we noted that increasing intrinsic complexity increased pattern-
recognition system use, but increasing extrinsic complexity had the op-
posite effect. It therefore follows that extrinsic environment complexity
must have a more significant effect upon decision-making than intrinsic
environment complexity. This is because intrinsic environment complex-
ity increases along with extrinsic complexity in the complexity condi-
tions used in this sensitivity analysis. However, frequency of pattern-
recognition use decreases as complexity increases.
The observation that frequency of pattern-recognition system use signif-
icantly differed for type 2 agents, but not for type 3 agents, when envi-
ronment complexity was increased from low to moderate must be due to
type 3 agents reinforcing problem-solving productions more on average
than explicit action productions. To explain: in the low complexity con-
dition, environmental resource availability is low, so problem-solving is
used more frequently (as already explained in Sect. 6.1: Decision-Making
System Use). Then, as complexity is increased, pattern-recognition sys-
tem use is promoted (again, as explained in Sect. 6.1: Decision-Making
System Use). However, since type 3 agents can create productions result-
ing in use of their problem-solving system, if, by chance, they tend to

29

create these productions more than ones that prescribe explicit actions,
then increased use of the pattern-recognition system is cancelled out.

As expected, increasing episodic memory size increased average frequency
of pattern-recognition system use and decreased average frequency of
problem-solving system use, irrespective of agent type. Since increasing
episodic memory size enables an agent to store more episodes, this in-
creases the likelihood of the pattern-recognition system being employed
since a greater range of visual states will be encoded as productions.

The respective effects of environment complexity and episodic mem-
ory size for type 2 agents should be noted: as environment complexity
increased, average frequency of pattern-recognition system use slightly
decreased. In contrast, as episodic memory size increased, average fre-
quency of pattern-recognition system use slightly increased. Thus, en-
vironment complexity and episodic memory size appear to offset one
another. However, the F values obtained indicate that environment com-
plexity exerted a more significant effect upon decision-making system
frequency than episodic memory size.

Performance. Irrespective of agent type, the best performance was
found in the moderate complexity condition, with the worst performance
achieved in the low complexity condition. Again, this is most probably
because the balance of intrinsic and extrinsic environment complexity is
optimal for performance promotion in the moderate complexity condi-
tion used in this sensitivity analysis:

– The environment does not change so much that agents spend more
time deliberating about how to achieve goals than acting to achieve
them, or constantly discriminating/familiarising rather than creating
productions so pattern-recognition can be used.

– Intrinsic complexity is not so low that resources are scarce and pri-
mary goal achievement is impeded. Neither is it so high that re-
sources can not be moved due to a lack of empty squares.

– Extrinsic complexity is not so high that it is difficult to secure re-
sources required to achieve an agent’s goals.

Interestingly, this result differs from the performance of these agent
types in their equivalent complexity conditions in the results discussed
in Sect. 6.1 (see Figs. 8, 9 and 10). In the original simulations, the per-
formance of type 2 and 3 agents in the moderate complexity condition
(value 2 on the x-axis of Fig. 9) is worse than their performance in the
high complexity condition (value 3 on the x-axis of Fig. 10). Currently,
this discrepancy is unexplained, and will be looked at in future work.

Importantly, smaller episodic memory sizes seem to produce better per-
formance irrespective of environment complexity for type 2 agents (see
Fig. 15). While this trend also appears to hold for type 3 agents in Fig. 16,
its effect was not significant; type 3 agents use their pattern-recognition
systems less frequently, on average, than type 2 agents (discussed in
Sect. 6.1: Decision-Making System Use and reinforced by Fig. 13). By
reducing episodic memory size from the median value of 10 (the value
used for this variable in the first set of simulations), it is possible to tease
out a performance increase of up to 3.61% (see Table 4).

30

Table 4. Average scores and percentage increases thereof as episodic memory size is
decreased from original value specified in simulations run in Sect. 5.1 for type 2 agents
across all sensitivity analysis complexity conditions.

Environment
Complexity

Episodic
Memory Size

Avg. Score
(% Inc.)

Low
10 152.99
6 158.52 (3.61)

Mod.
10 409.15
6 414.30 (1.26)

High
10 267.70
6 270.77 (1.15)

By retaining fewer episodes, actions that contributed little to the achieve-
ment of the agent’s primary goal are ignored. This would result in agents
creating and reinforcing more useful productions resulting in optimised
goal achievement. For type 3 agents it may be the case that productions
which prescribe use of the problem-solving system are created and sub-
sequently reinforced more than productions prescribing explicit actions,
frequently resulting in protracted periods of deliberation. This would
cause either a decrease in performance or, at the least, performance to
plateau; the latter was observed for the performance of these agents in
low and moderate complexity conditions (see Fig. 16).
As noted in Sect. 6.2: Performance, an interaction between environment
complexity and episodic memory size produced a negative effect on per-
formance: as environment complexity increased, larger episodic memory
sizes impinged performance. Since smaller episodic memory sizes reduce
the chance of non-optimal productions being used (as argued in the pre-
vious paragraph) and more complex environments increase the likelihood
of an agent reconsidering its intentions and remaining inanimate, it fol-
lows that being more discriminating with regard to the utility of one’s
productions will enhance performance and vice-versa.
Interestingly, this performance impingement was less significant for type 3
agents than type 2 agents, but was less likely to occur due to chance with
type 3 agents. This result is most likely produced due to type 3 agents
spending more time deliberating than acting, reducing the total number
of productions generated. So, whilst type 2 and 3 agents may produce
productions whose utility ratings are equivalent, agents of type 3 produce
less of them in the same space of time and thus use fewer of them. This
accounts for the plateau in performance observed in the low and moder-
ate complexity conditions for type 3 agents too: agents spend less time
reconsidering their intentions due to reduced environment dynamism but
the amount of productions executed then attracts a premium. In such
circumstances, type 2 agents profit since they can execute more (poten-
tially non-optimal) productions than type 3 agents.

Conclusions. Around half of the null hypotheses stated in Sect. 5.2
are strongly refuted. Varying episodic memory size had a significant ef-
fect upon performance and average frequency of problem-solving and

31

pattern-recognition system use for agent types 2 and 3. Reducing episodic
memory size improves performance for both types of agent, although
not by any notable degree. In constrast, decision-making system use is
notably affected by varying episodic memory size: larger memories pro-
mote pattern-recognition system use whereas smaller memories promote
problem-solving system use. This is important since it was argued in
Sect. 6.1 that increased use of the pattern-recognition system benefits
performance more so than increasing use of the problem-solving system.
So, whilst reducing episodic memory size appears to improve perfor-
mance by creating more useful productions, it also reduces use of the
pattern-recognition system in general; a balance must be struck.
Environment complexity also affected performance and decision-making
system use significantly: for both agent types, moderate environment
complexity produced the best performance whilst low complexity pro-
duced the worst performance. With regard to decision-making system
use, the effect of environment complexity was significant on both per-
formance and decision-making system use for type 2 agents whereas for
type 3 agents, the effect was only consistently significant for performance.
The effect of environment complexity on performance is different than
that observed in the original simulations and it is our intention to inves-
tigate this further in future work.
Altering discount rates did not produce any significant effects upon per-
formance or pattern-recognition system use apart from a marginally sig-
nificant effect that is observed upon average frequency of problem-solving
and pattern-recognition system use for type 3 agents. The reason for this
is unclear but given that the effect is hardly significant, an explanation
seems unwarranted.

7 Conclusions and Future Work

In this paper we have described and implemented a novel, modular dual-
process [26] architecture for self-learning, computational agents. The ar-
chitecture consists of a problem-solving and pattern-recognition decision-
making system, created using a combination of the CHREST architec-
ture, the PSDR algorithm and the Roulette selection mechanism. The
system implemented different balances of problem-solving and pattern-
recognition use: pure problem-solving, “pure” pattern-recognition and
a mixture of both. These balances of the two systems were embod-
ied as three types of agent situated in the Tileworld environment. We
used these agents to ascertain how different balances of problem-solving
and pattern-recognition system affected performance in this environment
given different degrees of intrinsic and extrinsic environmental complex-
ity. We also explored how environment complexity affects agent perfor-
mance and decision-making before conducting a sensitivity analysis to
ascertain if the dependent variables studied in the first set of simulations
were significantly altered when salient variables governing the mechanism
of the pattern-recognition system were varied.
Use of pattern-recognition was beneficial to agent performance, espe-
cially when intrinsic and extrinsic environment complexity was increased,

32

whereas use of problem-solving was less beneficial, due to the required
time to solve problems. As overall environmental complexity increased,
we found that agents using pure problem-solving (that is, the complete
absence of pattern-recognition) are further disadvantaged whereas agents
that were more likely to use pattern-recognition performed best. Our re-
sults therefore demonstrate that an agent which can use both problem-
solving and pattern-recognition is at an advantage in the complex, dy-
namic environment modelled and even more so when pattern-recognition
is favoured. Essentially, the results indicate that agent performance is
maximised by generating (potentially sub-optimal) productions quickly
and executing many of them, at least in the environment modelled here.
This is an interesting finding given that the Einstellung effect [30] is
likely to be manifest in the agents that perform best.
The sensitivity analysis performed corroborated these findings, but also
revealed the variables which maximise the performance of agents capa-
ble of pattern-recognition given different complexities of the environment
modelled. We discovered that, whilst episodic memory size affected agent
performance significantly (albeit minimally), discount rate did not. In-
deed, episodic memory size appears to exert an influence on the balance
of agent performance and promotion of pattern-recognition use. Smaller
episodic memory sizes enhanced agent performance but made it less likely
for the agent to actually use pattern-recognition. This is because smaller
episodic memory sizes provide the agent with fewer reinforced produc-
tions, resulting in problem-solving being used instead.
In future work, we would like to ascertain why the effect of environment
complexity differs with respect to performance between the two sets of
simulations run: is this due to chance or a more exact reason? We also
intend to determine if these conclusions still hold when the same simu-
lations are run for longer periods of time, and when heterogeneous agent
types compete. Finally, we will consider if these conclusions generalise
to other domains and when the amount of information capable of be-
ing reasoned with by agents is increased, by expanding the size of their
observable environment.

References

1. Aarts, H., Dijksterhuis, A.: Habit as knowledge structures: Auto-
maticity in goal-directed behavior. Journal of Personality and Social
Psychology 78(1), 53–63 (2000)

2. Anderson, J.R., Bothell, D., Byrne, M.D., Douglass, S., Lebière, C.,
Qin, Y.L.: An integrated theory of the mind. Psychological Review
111(4), 1036–1060 (2004)

3. Arai, S., Sycara, K.: Effective learning approach for planning and
scheduling in multi-agent domain. In: Meyer, J.A., Berthoz, A., Flo-
reano, D., Roitblat, H., Wilson, S.W. (eds.) From Animals to Ani-
mats 6: Proceedings of the Sixth International Conference on Simu-
lation of Adaptive Behavior. pp. 507–516. MIT Press (2000)

4. Arai, S., Sycara, K.P., Payne, T.R.: Experience-based reinforcement
learning to acquire effective behavior in a multi-agent domain. In:

33

Proceedings of the 6th Pacific Rim International Conference on Ar-
tificial Intelligence. pp. 125–135 (2000)

5. Baker, J.E.: Reducing bias and inefficiency in the selection algorithm.
In: Grefenstette, J.J. (ed.) Proceedings of the Second International
Conference on Genetic Algorithms on Genetic Algorithms and Their
Application. L. Erlbaum Associates Inc. (1987)

6. Bilalić, M., McLeod, P., Gobet, F.: Inflexibility of experts - reality or
myth? Quantifying the Einstellung effect in chess masters. Cognitive
Psychology 56(2), 73–102 (2008)

7. Bossomaier, T., Traish, J., Gobet, F., Lane, P.C.R.: Neuro-cognitive
model of move location in the game of Go. In: Proceedings of the
2012 International Joint Conference on Neural Networks (2012)

8. Chase, W.G., Simon, H.A.: Perception in chess. Cognitive Psychol-
ogy 4, 55–81 (1973)

9. Dayan, P., Daw, N.D.: Decision theory, reinforcement learning, and
the brain. Cognitive, Affective and Behavioral Neuroscience 8(4),
429–453 (2008)

10. de Groot, A.D.: Thought and Choice in Chess (First edition in 1946).
Mouton, The Hague (1978)

11. de Groot, A.D., Gobet, F.: Perception and Memory in Chess: Heuris-
tics of the Professional Eye. Van Gorcum, Assen (1996)

12. Erev, I., Roth, A.E.: Predicting how people play games: Reinforce-
ment learning in experimental games with unique, mixed strat-
egy equilibria. The American Economic Review 88(4), pp. 848–881
(1998)

13. Evans, J.S.B.T.: Dual-processing accounts of reasoning, judgment
and social cognition. Annual Review of Psychology 59, 255–278
(2008)

14. Freudenthal, D., Pine, J.M., Gobet, F.: Simulating the referential
properties of Dutch, German and English root infinitives in MO-
SAIC. Language Learning and Development 15, 1–29 (2009)

15. Gillan, C.M., Papmeyer, M., Morein-Zamir, S., Sahakian, B.J.,
Fineberg, N.A., Robbins, T.W., de Wit, S.: Disruption in the bal-
ance between goal-directed behavior and habit learning in obsessive-
compulsive disorder. American Journal of Psychiatry (2011)

16. Gobet, F.: Les mémoires d’un joueur d’échecs. Editions Universi-
taires, Fribourg, Switzerland (1993)

17. Gobet, F.: A pattern-recognition theory of search in expert problem
solving. Thinking and Reasoning 3, 291–313 (1997)

18. Gobet, F., Lane, P.C.R., Croker, S.J., Cheng, P.C.H., Jones, G.,
Oliver, I., Pine, J.M.: Chunking mechanisms in human learning.
Trends in Cognitive Sciences 5, 236–243 (2001)

19. Grefenstette, J.J.: Credit assignment in rule discovery systems based
on genetic algorithms. Machine Learning 3, 225–245 (1988)

20. Hesketh, B.: Dilemmas in training for transfer and retention. Applied
Psychology 46(4), 317–339 (1997)

21. Holroyd, C.B., Coles, M.G.: The neural basis of human error process-
ing: Reinforcement learning, dopamine, and the error-related nega-
tivity. Psychological Review 109(4), 679–709 (2002)

34

22. Jones, G.A., Gobet, F., Pine, J.M.: Linking working memory and
long-term memory: A computational model of the learning of new
words. Developmental Science 10, 853–873 (2007)

23. Jongman, R.W.: Het Oog Van De Meester. Assen: Van Gorcum
(1968)

24. Kheirbek, M.A., Klemenhagen, K.C., Sahay, A., Hen, R.: Neurogen-
esis and generalization: a new approach to stratify and treat anxiety
disorders. Nature Neuroscience 15(12) (2012)

25. Laird, J.E.: The Soar Cognitive Architecture. MIT Press (2012)
26. Lane, P.C.R., Gobet, F.: CHREST models of implicit learning and

board game interpetation. In: Bach, J., Goertzel, B., Ikle, M. (eds.)
Proceedings of the Fifth Conference on Artificial General Intelli-
gence. vol. LNAI 7716, pp. 148–157. Springer-Verlag, Berlin, Heidel-
berg (2012)

27. Lloyd-Kelly, M., Gobet, F., Lane, P.C.R.: The art of balance:
Problem-solving vs. pattern-recognition. In: Proceedings of the In-
ternational Conference on Agents and Artificial Intelligence. pp. 131–
142 (2015)

28. Lloyd-Kelly, M., Gobet, F., Lane, P.C.R.: Piece of mind: Long-term
memory structure in ACT-R and CHREST. In: Noelle, D.C., Dale,
R., Warlaumont, A.S., Yoshimi, J., Matlock, T., Jennings, C.D.,
Maglio, P.P. (eds.) Proceedings of the 37th Annual Meeting of the
Cognitive Science Society. pp. 1422–1427. Cognitive Science Society
(2015)

29. Lloyd-Kelly, M., Lane, P.C.R., Gobet, F.: The effects of bounding ra-
tionality on the performance and learning of CHREST agents in tile-
world. In: Research and Development in Intelligent Systems XXXI,
pp. 149–162. Springer International Publishing (2014)

30. Luchins, A.S.: Mechanization in problem solving: The effect of ein-
stellung. Psychological Monographs 54(6), i–95 (1942)

31. Miller, G.A.: The magical number seven, plus or minus two: Some
limits on our capacity for processing information. Psychological Re-
view 63, 81–97 (1956)

32. Miyazaki, K., Yamamura, M., Kobayashi, S.: On the rationality of
profit sharing in reinforcement learning. In: 3rd International Confer-
ence on Fuzzy Logic, Neural Nets and Soft Computing. pp. 285–288.
Korean Institute of Intelligent Systems (1994)

33. Pollack, M., Ringuette, M.: Introducing the Tileworld: Experimen-
tally evaluating agent architectures. In: Eighth National Conference
on Artificial Intelligence. pp. 183–189. AAAI Press (1990)

34. Raza, M., Sastry, V.: Variability in behavior of command agents
with human-like decision making strategies. In: Tenth International
Conference on Computer Modelling and Simulation. pp. 562–567
(2008)

35. Saariluoma, P.: Error in chess: The apperception-restructuring view.
Psychological Research 54, 17–26 (1992)

36. Samsonovich, A.: Toward a unified catalog of implemented cognitive
architectures. In: Proceedings of the 2010 Conference on Biologically
Inspired Cognitive Architectures. pp. 195–244. IOS Press, Amster-
dam, The Netherlands (2010)

Fernand
Cross-Out
E

35

37. Simari, G.I., Parsons, S.D.: On approximating the best decision for
an autonomous agent. In: Sixth Workshop on Game Theoretic and
Decision Theoretic Agents. pp. 91–100. Third Conference on Au-
tonomous Agents and Multi-agent Systems (2004)

38. Simon, H.A.: The sciences of the artificial. MIT Press, Cambridge,
MA (1969)

39. Simonton, D.K.: Origins of genius: Darwinian perspectives on cre-
ativity. Oxford University Press, New York (1999)

40. Sloman, S.: The empirical case for two systems of reasoning. Psy-
chological Bulletin 119, 3–22 (1996)

41. Sternberg, R.J.: The road to excellence: The acquisition of expert
performance in the arts and sciences, sports, and games, chap. Costs
of expertise, pp. 347–354. Hillsdale, NJ: Lawrence Erlbaum Asso-
ciates (1996)

42. Sun, R., Merrill, E., Peterson, T.: From implicit skills to explicit
knowledge: A bottom-up model of skill learning. Cognitive Science
25, 203–244 (2001)

43. Sun, R., Slusarz, P., Terry, C.: The interaction of the explicit and
the implicit in skill learning: A dual-process approach. Psychological
Review 112(1), 159–192 (2005)

44. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction.
MIT Press (1998)

45. Watkins, C.J.C.H., Dayan, P.: Technical note: Q-learning. Machine
Learning 8, 279–292 (1992)

46. de Wit, S., Dickinson, A.: Associative theories of goal-directed be-
haviour: a case for animalhuman translational models. Psychological
Research 73(4), 463–476 (2009)

47. Zeitz, C.M.: Expertise in context: Human and machine, chap. Some
concrete advantages of abstraction: How experts’ representations fa-
cilitate reasoning, pp. 43–65. Cambridge, MA: The MIT Press (1997)

	UHRA full text deposit cover AAM
	balance_final

