
University of Ljubljana

Faculty of Computer and Information Science

Marko Prelevikj

Generalization analysis of semantic

segmentation with deep filter banks

BACHELOR’S THESIS

UNDERGRADUATE UNIVERSITY STUDY PROGRAMME

COMPUTER AND INFORMATION SCIENCE

Mentor: assoc. prof. dr. Matej Kristan

Co-mentor: prof. dr. Václav Hlaváč

Ljubljana, 2017

Copyright. All the results of this Bachelor’s thesis are an intellectual

property of the author and the Faculty of Computer and Information Sci-

ence, University of Ljubljana. To publish or use any results from this thesis

it is required to obtain a written consent from the author, the Faculty of

Computer and Information Science and the mentors.

The text is formatted with a LATEXtext editor.

Faculty of Computer and Information Science issues the following thesis:

Generalization analysis of semantic segmentation with deep filter banks

Subject of the thesis:

Mobile robotic systems capable of autonomous navigation in non-structured

environments have made significant advancements in the last decade. Safe

navigation highly depends on environment perception capabilities. Percep-

tion is often based on segmentation approaches that classify image regions

into pre-learned semantic classes. Several semantic segmentation algorithms

report remarkable results, but these are obtained on specific data-sets that

do not necessarily reflect scenes observed on a mobile robot. This raises a

question of knowledge transfer, i.e., to what extent is an algorithm learned

on a specific dataset applicable to a new domain. Address this problem in

your thesis. Select a segmentation algorithm appropriate for mobile robot

application and analyze knowledge transfer capabilities from one data-set to

another. Support your analysis quantitatively as well as qualitatively.

I am very grateful to my mentors assoc. prof. dr. Matej Kristan and

prof. dr. Václav Hlaváč for their patient guidance and constructive feedback

I received while working on my Bachelor’s thesis.

I am thankful to my dear colleagues Rado and Karla for the all their

support, helpful assistance and time they invested during my stay in Prague.

I feel very honoured I got to be a part of such an amazing team.

I express my deepest gratitude to my family and dearest friends for their

patience and support throughout my studies.

Contents

Abstract

Povzetek

Razširjeni povzetek

1 Introduction 1

1.1 Related work . 2

1.2 Thesis layout . 4

2 Texture recognition 5

2.1 Digital Images . 5

2.2 Texture . 6

2.3 Image Features . 7

2.4 Feature descriptors . 8

2.5 Feature vectors . 10

2.6 Classification . 10

3 Artificial Neural Networks 13

3.1 General overview . 13

3.2 Back-propagation . 21

3.3 Learning process of an ANN 22

3.4 Types of ANNs and their application 25

3.5 Convolutional Neural Networks (CNNs) 27

4 Our approach 33

4.1 Transfer of Knowledge . 33

4.2 Semantic segmentation . 34

4.3 Our contribution . 38

5 Experimental analysis 41

5.1 Dataset description . 41

5.2 List of experiments . 46

5.3 Dataset accuracy . 47

5.4 Pre-segmentation threshold 51

5.5 Transfer of knowledge . 55

5.6 Dominance of the background class 61

5.7 Combined knowledge . 65

6 Conclusion 69

6.1 Future work . 70

Appendices 73

A Pre-segmentation threshold statistics 75

B Reduced set statistics 79

C Combined datasets 85

Bibliography 88

List of acronyms used

Acronym Definition

ANN Artificial Neural Network

CNN Convolutional Neural Network

RNN Recurrent Neural Network

RBF Radial Basis Function Networks

SGD Stochastic Gradient Descent

SVM Support Vector Machine

TOK Transfer of Knowledge

DFB Deep Filter Banks

UCM Ultrametric Contour Map

CA Classification Accuracy

TPR True-positive rate

FPR False-positive rate

P Precision

Abstract

Title: Generalization analysis of semantic segmentation with deep filter

banks

Author: Marko Prelevikj

Mobile robotic systems capable of autonomous navigation in non-structured

environments depend on their vision module in order to safely navigate

through the environment. The vision module provides perception of the

surrounding area and it is often required to identify particular objects of in-

terest, which is done by classifying image segments into pre-learned semantic

classes. There are many methods which provide remarkable semantic seg-

mentation results, but unfortunately only on specific datasets, which are not

necessarily correlated to the scenes observed by a mobile robot. To verify the

dataset’s capability of transferring knowledge to a new domain we explore

how well it generalises its classes. We examine the transfer of knowledge

on a specific semantic segmentation method, which we adjust to best fit our

needs.

Keywords: semantic segmentation, transfer of knowledge, convolutional

neural networks, texture recognition.

Povzetek

Naslov: Analiza generalizacije semantične segmentacije z globokimi zbirkami

filtrov

Avtor: Marko Prelevikj

Mobilni robotski sistemi, ki so sposobni avtonomne navigacije v nestrukturi-

ranih okoljih, so odvisni od njihovih modulih vida, da bi lahko bili sposobni

se navigirati čez okolje. Moduli vida priskrbijo percepcijo okolice, in pogosto

morajo identificirati določene predmete, ki nas zanimajo. Identifikacija nas-

tane tako da določene segmente slik klasificira v enem izmed vnaprej naučenih

razredov. Na področju računalnǐskega vida obstaja veliko postopkov se-

mantične segmentacije, ki poročajo izjemne rezultate. Vendar so ti postopki

naučeni samo na določenih podatkovnih zbirkah, ki niso nujno medsebojno

odvisni z različnimi prizorǐsči, ki jih mobilni robot opazi. Da bi preverili

sposobnost podatkovne zbirke prenesti svoje znanje na novi domeni bomo

preiskovali kvaliteto generalizacije njenih razredov. Preverili bomo prenos

znanja specifičnega postopka semantične segmentacije, ki smo ga prilagodili

našim potrebam.

Ključne besede: semantična segmentacija, konvolucijske nevronske mreže,

zaznavanje tekstur, prenos znanja.

Razširjeni povzetek

Mobilni robotski sistemi, ki so sposobni avtonomne navigacije v nestrukturi-

ranih okoljih, so odvisni od njihovih modulov vida, da se lahko gibljejo v

okolju. V našem primeru je to robot reševalec. Njegova naloga je narisati

zemljevid okolice, kjer se je zgodila nesreča, kot so požar, potres, poplava,

in označiti vse grožnje, ki se lahko zgodijo. Identifikacija se izvaja preko

segmentacije, t.j., vsak piksel se klasificira v enega od v naprej določenih

kategorij.

Noben pristop ni idealen, ker metode strojnega učenja niso idealne, saj

vedno obstaja šum. Naša ideja je imeti dva različna modela, iz katerih bomo

združili znanje in iterativno izbolǰsevali oba. En model bo skrbel za detekcijo

objektov v sliki, drug za zaznavanje tekstur. Združevanje obeh informacij bo

potekalo tako, da bo en model podal informacijo o objektu, npr. kje se

nahaja, drug pa bo povedal, iz kakšnega materiala je narejen. Tako bomo

združili obe informaciji in preverili, kakšen je njun skupni rezultat.

Na področju računalnǐskega vida obstaja veliko postopkov semantične

segmentacije, ki beležijo izjemne rezultate. V tej diplomski nalogi izhodǐsče

predstavlja [10] metoda, ki se uporablja le za razvrščanje segmentov že seg-

mentiranih slik. Metoda ima tri glavne korake:

I izločitev slikovnih značilk segmentov s pomočjo CNN

II kodiranje značilk v enem vektorju

III razvrščanje tekstur s pomočjo SVM-ja

Metoda se izvaja na segmentih učne množice, pri katerih je izhod natančen

po pikslih. Testiranje se izvaja na že segmentirani vhodni sliki in je popol-

noma enako učenju, le da so podatki različni. Segmentacija vhodnih slik v

primeru testiranja je narejena z uporabo metode [36].

V našem primeru smo uporabili izhod (napoved), ki bi čim bolj natančno

podal razrede posamezne regije. Želeli smo ”prefiltrirati” vse regije, ki ne

pripadajo nobenemu znanemu razredu, zato smo izbolǰsali metodo [10]] na

zelo enostaven način. Dodali smo še razred ozadje. V Sliki 1, je ilustracija

naše izbolǰsave.

Na splošno so postopki uporabljeni samo na določenih podatkovnih zbirkah,

ki niso nujno medsebojno odvisne od različnih prizorǐsč, ki jih mobilni robot

opazi. Da bi preverili sposobnost podatkovne zbirke, kako prenaša svoje

znanje na novo domeno, smo preiskovali kvaliteto generalizacije njenih razre-

dov. Naredili smo 5 različnih eksperimentov, da bi ugotovili, ali posamezne

podatkovne zbirke generalizirajo svoje razrede. Eksperimente smo izvajali

na 2 podatkovnih zbirkah: MSRC [48] in VOC 2007 [16]. Ti dve zbirki smo

izbrali zato, ker imata dovolj veliko podatkov, s katerimi smo naredili naše

raziskave, ter imata dovolj veliko razredov, ki se prekrivajo med obema.

Prvi eksperiment preverja, kakšna je točnost izbolǰsane metode. Ta eksper-

iment je zelo pomemben, ker nam poda referenčno točko za primerjavo os-

talih rezultatov z originalnimi. Ugotovili smo, da ko na MSRC zbirki upora-

bimo našo izbolǰsano metodo, dobimo klasifikacijsko točnost CA = 92, 89%in

zelo visoko mero napačno pozitivnih primerov v razredu ozadja (FPR =

27, 27%). Enak eksperiment smo izvedli tudi na VOC 2007 zbirki, kjer smo

dobili klasifikacijsko točnost CA = 89, 29% in FPR = 19, 27%. Predstavl-

jeni podatki so ustrezna referenčna točka, le da je mera napačno pozitivnih

primerov visoka. Ta problem smo poskusili rešiti v drugem eksperimentu.

Drugi eksperiment je preverjal, kakšen je vpliv praga za generiranje seg-

mentiranih slik. Različen prag generira različno stopnjo razgradnje ene vhodne

slike. Če je prag vǐsji, potem dobimo precej majhno število segmentov, ki so

veliki. Če uporabimo majhen prag, potem pa dobimo veliko majhnih segmen-

tov, kar je prav tako računsko zelo zahtevno; še posebej to, kako bi od vseh

Originalna Slika Pravilen izhod

Originalna metoda Z ozadjem

CA = 78.70% CA = 92.46%

Figure 1: Ilustracija naše izbolǰsave. Modra barva predstavlja relevantni razred,

v našem primeru kravo. V originalni metodi poleg relevantnega razreda obstajajo

tudi drugi razredi in razred krava je razširjen zunaj točnega območja. Nimamo

načinov, s katerimi bi izračunali, kakšna napaka je bila narejena zunaj označenega

območja. V naši izbolǰsani metod je napoved očitna in vsebuje samo relevantne

razrede, kravo in ozadje. Vidna je tudi izbolǰsava klasifikacijske točnosti.

izločili značilke, zgradili vektor in razvrstili. Vpliv na kakovost metode smo

preverili na naslednji množici pragov t = {0, 15; 0, 30; 0, 45; 0, 65; 0, 85}. Na

podlagi pridobljenih rezultatov smo ugotovili, da je najbolǰsi prag t = 0, 30.

Tretji eksperiment preverja točnost prenesenega znanja z ene zbirke na

drugo. Imamo dva različna primera: (I)) ko prenašamo znanje iz MSRC

zbirke na VOC 2007 zbirko, (II)ko prenašamo znanje iz VOC 2007 zbirke na

MSRC zbirko. V (I) primeru opažamo zelo majhno mero pravilno pozitivnih

primerov na vseh razredih, razen razreda ozadja TPRI = 35, 25%, in zelo vi-

soko mero napačno pozitivnih primerov v razredu ozadje FPRbg
I = 53, 47%.

Klasifikacijska točnost v tem primeru je CA = 83, 11%, kar je slabše od

referenčne točke. V (II) primeru sta mera pravilno pozitivnih primerov in

klasifikacijska točnost malo vǐsja glede I primera TPRII = 37, 39%;CA =

86, 85%, in mera napačno pozitivnih razredov ozadje je precej nižja FPRbg
II =

45, 14%. Pričakovano je bilo, da smo dobili slabše rezultate zaradi morebitnih

faktorjev, kot so: podobnost na podlagi prisotnih barv v sliki, svetlost, POV

objekti na slikah različnih zbirk, podobnost objektov posameznih razredov in

definicije ekvivalentnih razredov. V obeh primerih razred ozadje dominira v

meri napačno pozitivnih primerov, kar je vidno na Sliki 2. Poudarjena vrstica

na desni strani matrik predstavlja razred ozadje. Na podlagi rezultatov smo

ugotovili da je bolje prenašati znanje v II primeru kot je v I.

Četrti eksperiment preverja, kakšen je vpliv velikosti učne množice razreda

ozadje. Meritev vpliva je bila narejena v zmanǰsani podatkovni zbirki. Zmanǰsali

smo jo tako, da smo odstranili vse slike, ki ne vsebujejo pomembnih ano-

tacij.Zmanǰsani zbirki sta približno 50% manǰsi od originalne velikosti. V

obeh primerih smo dobili slabše rezultate mere klasifikacijske točnosti CA =

82, 89%;CA = 83, 00%. Mera napačno pozitivnega razreda ozadje se je

zmanǰsala, mera povprečnih napačno pozitivnih primerov vseh razredov pa

se je zvǐsala. To pomeni, da so se napačno pozitivni primeri razpršili čez

vse ostale razrede, kar je slabo, saj ni mogoče napovedati, v katerem razredu

naj bo naslednja napaka. Na podlagi rezultatov smo potrdili, da je prenos

znanja iz I primera bolǰsi kot prenos iz primera II. S tem smo potrdili, da

se bo mera napačno pozitivnega razreda ozadja res zmanǰsala, čeprav se to

v našem primeru ne splača več.

Peti eksperiment združuje obe zbirki in preverja, ali je kombinacija zbirk

bolǰsa kot prenos znanja. Združitev je bila narejena posebej za učni in testni

množici, potem pa smo uporabili enako pripravo kot v prvem eksperimentu.

Tokrat smo dobili klasifikacijsko točnost na testni množici kar je slabše tudi

od prenosa znanja v obeh primerih. V tem eksperimentu so napačno poz-

itivni primeri še bolj razpršeni po ostalih razredih. Slabši rezultati so bili

pričakovani, ker ni bilo dovolj primerov v posameznih razredih, z ozirom na

to, da je definicija razredov razširjena z definicijami iz obeh podatkovnih

zbirk. Ne glede na to pa razred ozadje ni več dominanten, kot je bil pri

prenosu znanja v tretjem eksperimentu, na račun slabših splošnih rezulta-

tov.

V splošnem so rezultati vseh eksperimentov dovolj dobri, da bi lahko

nadaljevali z obširno analizo prenosa znanj z našo izbolǰsano metodo. V

nadaljevanju bi lahko delali več na hitrosti naše metode in preverjanju de-

lovanja na večjih podatkovnih zbirkah, ki imajo več učnih primerov, kar

pomeni, da bolǰse generalizirajo svoje razrede.

CA = 83.11% CA = 86.85%

Figure 2: Matrike pravilnih in napačnih razvrstitev iz drugega eksperimenta.

Leva matrika predstavlja I primer, desna matrika II primer.

Chapter 1

Introduction

At present time, building of robots for various use cases, such as [33, 37, 6], is

very common. This is a fairly complex process, due to the fact that the robot

is consisted of various modules, such as a navigation, sensing, manipulation,

and a module that lets all the modules communicate between each other and

thus make it intelligent.

These modules, at present time, are not entirely universal, i.e., they need

to be adjusted for the purpose of the robot. And since we are designing

robots to do various tasks, such as simple navigational robot, agricultural

robot, space exploring robot, there are various levels of accuracy for specific

tasks and it makes sense that they should be customized. The motivation for

this thesis is a rescue robot, whose task is to navigate through an area which

has been exposed to some kind of a disaster, for example an earthquake, fire,

or post-flood ruins and create a map of the area. It must map where are all

the victims of the disaster, and all the potential threats such as a parts of

the building which are likely to collapse, fire which has not been put off yet,

dangerous gases which are most likely going to light up, etc.

One of the modules which is a part of the system is the vision perception

module, which is taking raw camera footage as input, process it, and make

some conclusions based on the output. This system is in fact performing

semantic segmentation of the raw images, it breaks the image into regions

1

2 Marko Prelevikj

and understands what each regions’ meaning is, is it an animal, or is it a

building, or maybe a vehicle.

This thesis uses the approach introduced in [10] as a starting point. We

explore the method, whose main problem is solving the texture representation

problem, and how to make it as compact as possible for classification. We

extend the approach by introducing a background class (Chapter 4). Our

aim is to check whether it is possible to use this method as a part of an

iterative learning process which includes both object and texture recognition

methods. The learning process is consisted of finding an object in the image

and classifying it in an object category. The categorized item’s texture is also

classified. Both pieces of information are then used to check the likelihood of

them being a pair and further improve the learning. For example, if there is a

wooden table on the image and the detected object is a table then we would

expect the texture to be a material of which the table is probably made of

(wood, metal, plastic, etc.).

The design of the vision module of our rescue robot required a lot of

training data which was not available to us, and we didn’t have time to label

the data at our disposal. Due to this fact, our goal is to check whether it

is possible to use this method to train a model which is going to generalise

well enough its classes in order to classify the textures and objects with as

little error as possible. We also analyse in depth the results obtained from

the experiments.

1.1 Related work

Texture representation has been around for a long time, and [10] was cer-

tainly not the first attempt to find an optimal solution. Since the textures

consist of an extremely large diversity of visual patterns, the idea is to extract

information from the textures locally and uniformly from the entire image.

There are the classical approaches to texture representation, which con-

sist of a deterministic, hand-crafted1 algorithm for extracting local features

Bachelor’s Thesis 3

such as [47, 5, 12, 3, 35].

Lately, the focus has been set on features extracted from the convolu-

tional layers of the Convolutional Neural Networks, as it has been presented

in 2012 by Krizhevsky et al. [24] that significantly outperforms the hand-

crafted algorithms. This motivated numerous research groups to build simi-

lar models, specialized in various domains, such as [20], which transfers the

domain of [24], which is trained explicitly for [13], to [16]. While doing so,

they are reusing the pre-learned weights on the ImageNet dataset [13], and

adapting them for the domain of [16]. Their approach is consisted of remap-

ping class labels between the source and target domains, i.e., adjusting the

neural network architecture and retraining it for the target domain. Another

related approach is [31], which is introducing a framework for building ANNs

and reusing already trained network parameters. This framework allows the

community to break the neural networks into Lego pieces and customize them

at will.

What is common for the previously listed approaches is that they are

solely based on neural network customization. They are extracting image

features from the convolutional layer, and use the upper layers of the net-

works, i.e. the fully-connected layers, as classifiers. On the other hand, some

of research groups discovered that extracting features from the image and use

feature encoders used for building SVM models, such as in [10], is improving

the model’s performance. This core concept is the basis of our work.

1The term hand-crafted is used to describe algorithms which are following a strictly

defined flow.

4 Marko Prelevikj

1.2 Thesis layout

Chapter 1 states what motivated us to focus on the problem of semantic

image segmentation. And introduces into the main challenges that we en-

countered.

In Chapter 2 we discuss all the prerequisite methods that are used for

successful semantic image segmentation. It includes the basics such as defi-

nition of a digital image and a texture. It also defines what image features

are, how they are extracted and encoded together. Finally, we explain what

is classification and how we apply it in this case.

Chapter 3 contains a review of Artificial Neural Networks. We explain

the basics of the ANNs, what is their background, how they are built, ex-

plains the learning process and what types of ANNs there are, along with

their application. This chapter also further explains how the Convolutional

Neural Networks work, as they are one of the basic building blocks of the

methods used.

In Chapter 4 we explain what transfer of knowledge is, what semantic

segmentation is, and how [10] works, along with its main components for

pre-segmentation of the images.

In Chapter 5 are laid out the experiments which were done on the MSRC [48]

and PASCAL VOC 2007 [16] data-sets, the results along with their analysis.

Chapter 6 summarises this thesis by pointing out the main issues it re-

gards, which experiments were done and the conclusions from the analysis of

the experiments. It also motivates the future work of the thesis.

Chapter 2

Texture recognition

Computer vision is a field of computer science which addresses automatic

processing of images and videos. It is composed of acquiring, processing

and analysing digital images and videos. This thesis is exploring a method

for analysing of images. Its task is to recognize textures in images and its

purpose is to provide semantic information about the structure of the images.

This chapter is devoted to describing components of the method for texture

recognition in a bottom-up fashion, describing what digital images are at the

beginning and explaining how to discriminate between different textures.

2.1 Digital Images

The visual representation of something, e.g. a natural scenery, is called an

image. Such images can be represented in a computer-friendly form, i.e. a

form that a computer can understand, a binary representation. These images

are called digital images. There are two types of representations of the images

in the digital world, depending on whether they have a fixed resolution, raster

images or not, i.e. vector images. We set our focus on raster images, as they

have properties which are most suited for the particular problem that this

thesis is reviewing (Section 2.1.1). Another reason why we should consider

using only raster images is the fact that vector images can easily be rasterized.

5

6 Marko Prelevikj

2.1.1 Raster images

Raster images are a type of digital images with a fixed resolution. The main

characteristic of this representation is that it is consisted of a finite set of

elements, called pixels. Each pixel has its own value which represents its

intensity. The intensity describes how bright the particular pixel is when the

image is shown on, for example, a monitor or another medium.

Pixels are organised in rectangular matrices. There are rows and columns

of pixel values and at any given time one can check the value of any partic-

ular pixel. In other words, pointing to a specific patch of an image will yield

a subset of pixel values of the image.

To represent coloured images in raster graphics there are a variety of

models, which all have a common idea of representing the colours via multi-

ple layers of pixel values. Each layer consisting pixel values for a particular

colour channel. For example in the RGB (Red-Green-Blue) colour model each

layer contains values for red, green and blue colour respectively. Each pixel

has three intensities: red, green, blue. When all three pieces of information

are combined together, with a mathematical formula, they output the final

colour of the pixel.

Matrix representation of the images is actually a set of pixel values. Matri-

ces are suitable if we would like to further group them based on the similarity

of their value, distinguish between contrasting values and where they are lo-

cated at (neighbourhood). This allows us to build clusters, or super-pixels,

which can further have some semantic meaning. In contrast, vector represen-

tation does not allow us to this particular thing, since in this representation

the all the values are generated from curves, which are not necessarily as

simple as in a set of numbers.

2.2 Texture

A variety of definitions for textures exist and because of this D. Forsyth,

in his book [18], wrote: “Texture is a phenomenon that is widespread, easy

Bachelor’s Thesis 7

to recognise, and hard to define”. In our case the most relevant definition

is that a texture is a subset of pixels which are repeatedly recurring in a

neighbourhood. The repeating pattern is called a texton. The texton is

most frequently a small object which is constantly repeating throughout an

image patch, for example a close-up image of a leaf represents the object of

the image, but when the object of the image is a tree, a leaf is merely a

repetitive pattern that is recurring throughout the foliage of the tree.

There need not be strictly one texton, there can be multiple textons,

or multiple textons which are generating other textons using a stochastic

function f [10].

Very often a material is characterized by its texture, which has a repeating

pattern that makes the object distinguishable from all of its surroundings.

The application of textures is correlated to the materials. Many times the

goal is to robustly detect different textures in order to determine what kind of

objects are there in the image, what they are made of, what is the relationship

between the objects on the image etc.

The correlation between textures and materials cannot be relied upon

always. There are objects of the same category but made out of different

materials. For example a table can be made of wood, and it can also be

made out of plastic or various metals and metal alloys. In the end all of

those objects are tables, just made out of different materials.

Often it is required to compare distinct patches of images which contain

possibly unassociated textures. To do so we need to represent each texture’s

properties which can be presented formally with various feature descriptors.

2.3 Image Features

To outline the characteristics of image patches we use local image features.

Each feature has to be distinguishable in the image regardless of viewpoint

or illumination, has to be robust to occlusion - must be local and must have

a discriminative neighbourhood [47].

8 Marko Prelevikj

There are various applications of image features, such as matching in-

stances in multiple views, epipolar geometry or homography, photo tourism,

panoramic mosaic, query by image etc. In the scope of this thesis we are

bounded by the application of describing the textures of image objects and

discriminating between different texture classes.

Image features, essentially, are extracted from regions of the image that

contain image-specific characteristics such as edges or corners of texton fea-

tures. We are interested in these regions in the task we are dealing with, and

that is why we are computing the features on them, in this case we want to

discriminate between different texture classes.

2.4 Feature descriptors

A feature descriptor is a vector which is obtained by an algorithm in order to

describe the image region which is of interest for further computation. These

image regions represent a variety of materials, i.e. objects, and are located

throughout the image. The feature descriptor encodes the image patch to

make it distinguishable from the rest of the image features. In ideal cases, the

algorithm is invariant to image transformations, such as translation, scaling,

rotation, outputting an almost identical vector under various such transfor-

mations. Depending on the technique used to obtain the feature descriptors,

they can be either hand-crafted or learned.

2.4.1 Hand-crafted descriptors

Hand-crafted descriptors are obtained by using a deterministic algorithm

to describe the image features. Such descriptors use various techniques to

achieve robustness to misalignment, illumination, blur, compression, as well

as it has to be efficient - ability to be computed on-line i.e. in real time

and use as little memory as possible [47]. Examples of such descriptors are

Scale Invariant Feature Transformation (SIFT) [5], Histogram of Gradients

(HoG) [12], Speeded Up Robust Features (SURF) [3], Local Binary Patterns

Bachelor’s Thesis 9

(LBP) [35]. In order to be able to compare how the hand-crafted and learned

features are formed, we briefly explain SIFT in the following section.

2.4.1.1 Scale Invariant Feature Transformation (SIFT)

SIFT [5] is a very popular and commercially widespread feature descriptor

since it is more robust then most of the rest descriptors which makes it very

efficient. SIFT features are formed by computing a 16× 16 window around

the given point of interest (key point). At each value of the window the im-

age gradient is calculated at the appropriate level of the Gaussian pyramid

at which the point was detected and smoothed over a few neighbours. The

window is divided in 4 × 4 quadrants, and for each of them a histogram of

oriented gradients with 8 neighbours is formed. The final output of the de-

scriptor is a a horizontal stack of each histogram, yielding a 128 dimensional

vector.

2.4.2 Learned features

Learned features are extracted using a machine learning method, such as

convolutional neural networks (CNNs) which are used in our work. According

to [24] they outperform hand-crafted features. Each layer in a CNN can be

interpreted as a function φK(x), x is an input image. The output at the K-th

layer is then a composition (φ1(x)◦φ2(x1)◦· · ·◦φK(xK−1), where x1, . . . , xK−1

are outputs of each layer) of all the layer functions and is a descriptor field

xK ∈ RWk×Hk×Dk of the input image. Where Wk and Hk are width and

height of the field and Dk is the number of feature channels [10].

In [10] the last convolutional layer is used to obtain the learned feature.

This approach is used in this thesis, as [10] have proven that it is state-of-

the-art while researching the field.

10 Marko Prelevikj

2.5 Feature vectors

Feature vectors are a compact way of encoding image features. Each value

of the feature vector has its own meaning, and looked at the whole vector it

represents a numerical representation of the object that is being encoded, in

computer vision, many features are combined (encoded) together in a single

vector, yielding the equivalent of all the image features, in whichever form

they may be.

The method discussed in this thesis uses Fisher vectors for encoding the

image features extracted from CNNs. In Section 2.5.1 they are briefly de-

scribed.

2.5.1 Fisher Vectors (FV)

Fisher Vectors serve as an image representation. In the method discussed

in this work they are obtained with pooling local image features from the

provided CNN. They are a special, approximate and improved case of the

general Fisher Kernel framework [46]. The derivation of the Fisher Vectors

is available in [46].

Fisher Kernels [34] are a mixture of generative and discriminative ap-

proaches in classification. All the mathematical details for Fisher Kernels

are available in [34].

2.6 Classification

One of machine learning’s core problems is classification. It is the problem

of categorizing items into their correct category, for example categorizing an

image of a cat into the category of cats. This is being done with a supervised

technique, i.e., the methods for classification are divided into two basic steps:

training and testing.

Training is the step when the method learns about the given data. There

are two key pieces of data that is provided: input of the method and the

Bachelor’s Thesis 11

correct output. The data should be evenly distributed for each category, so

that the method is not biased towards a subset of the categories. Once the

method has learned all of the training data it is ready for the testing stage.

The testing step is used to expose the method to new, previously unseen,

data. This step provides insight about how well the method is discriminating

between different categories. For example, if we provide the method, dur-

ing testing, a picture of a breed of cat which is not present in the training

samples; based on the output of the method we can conclude whether it is

generalising the category of a cat well (it outputs that it is a cat), or that it is

not generalising well and it can be further improved by either providing more

training data or tweaking the parameters or changing the method altogether.

There are many such methods, varying in their complexity. Such meth-

ods are: logistic regression, Naive Bayes classifier, Support Vector Machines

(SVMs), K-Nearest Neighbours, Decision Trees, etc.

2.6.1 Support Vector Machines (SVM)

One of the most wide-spread tools for solving supervised learning tasks are

SVMs. They are used for building models for solving both classification and

regression tasks. SVMs take feature vectors as input and try to represent

them in a feature space. The goal is to find a hyperplane that separates the

data and minimizing the classification error.

For example, if we have 2-dimensional features, such as presented in Fig-

ure 2.1, the data is linearly separated, i.e. there exists a line (hyperplane)

which can clearly divide the 2 classes present in the data-set. Similarly, when

the features of a higher dimension we try to do the same thing, find a hyper-

plane that divides both classes.

Since SVM represents the training examples in a feature space and tries to

fit a hyperplane which is separating them best, it is a deterministic approach

to solving the classification problem. There are techniques of retrieving prob-

abilities, such as [49], based on the distance from the decision boundary.

To achieve efficiency in higher dimensional spaces, SVM takes advantage

12 Marko Prelevikj

of a technique called kernel trick [45] which allows it to achieve flexibility and

expands it to non-linear spaces, leading to non-linear decision boundaries.

More details about SVM and the mathematical approach can be found

in [11, 45, 4].

Figure 2.1: A simple example of a linearly separable data-set. There is an

infinite number of lines between both of the classes. The SVM method chooses

the one which has the maximal distance to the nearest training samples. This is

the case of optimal classification and it makes sense because when the data-points

are separable they do not mix, and it can clearly seen on this visualisation.

Chapter 3

Artificial Neural Networks

Artificial Neural Networks (ANN) are one of the pillars of this thesis. The

goal of this chapter is to introduce the Convolutional Neural Networks (CNNs)

and we will achieve that with a short introduction into general artificial neu-

ral networks: what they are, what they are consisted of, basic concepts and

algorithms that are used generally and what are the most common types of

artificial neural networks used and for what purpose they are used.

3.1 General overview

Inspiration for the neural networks are biological neurons, whose structure is

described in Figure 3.1. The first idea was to model how the biological neuron

works, but it turned out that this structure can also be applied in machine

learning to detect patterns and it achieves really good results. This is where

the paths of biological neurons and mathematical models of neurons diverge.

Modern implementations of neural networks do not have much in common

with the real models of neural networks, and there are only speculations that

there are similarities between them.

In Figure 3.2 is presented the computational model of a neuron. A single

neuron is interpreted as a linear classifier. It has the capacity to like or dislike

some regions of the linear space.

13

14 Marko Prelevikj

3.1.1 Activation functions

Activation functions are used to model a neuron’s firing rate1. Essentially,

they get the dot product between the inputs and weights as input (a scalar),

perform a sequence of mathematical operations on it and pass the output

further up the network. Here is a list of commonly used activation functions:

Sigmoid activation function is the historically most used activation

function. Its equation is σ(x) = 1
1+e−x , where x denotes the input of the

neuron, visually presented in Figure 3.3. It is sensitive to really big inputs

(it outputs ≈ 1) and really small inputs (it outputs ≈ 0), and it is why it

is very easy to interpret it: if the output is ≈ 0 the neuron does not fire.

This means the neuron does is not responsive to that part of the space, and

vice versa if the output is ≈ 1 the neuron fires, i.e., the neuron is responsive

to that part of the space. Even though it is very simple to understand the

output, in practice with deep neural networks the sigmoid function is not

preferred because it causes problems further on in the computation of neural

network because it saturates the gradient eventually ’killing’ it; this happens

when the output is near both maximal and minimal value because the gra-

dient is ≈ 0, which means that when doing back-propagation (3.2) whatever

value is being passed down through the saturated neurons will be eradicated

leading to a stop of the learning capabilities of the network. Another reason

why it is not preferred is because the output is not zero centred. This influ-

ences the learning process. When all the values of the neuron are positive

then the gradient is also either positive or negative, which may lead to an

undesirable update of the weights. These problems do not occur in ’shallow’

1Output in biological neurons is dependent on the strength of the signal in the input.

When the signal is above the predetermined threshold we say that the neuron has fired.

These outputs are distributed though time, but since we are not interested in the particular

timings when they occurred, the frequency of spikes along the axon is the unit we measure.

Bachelor’s Thesis 15

networks, that is why, historically, the sigmoid function was so popular.

Tanh activation function is shown in Figure 3.4. It has a similar shape

as the sigmoid function, but unlike it, tanh outputs real values in the range

of [−1, 1], so it removes sigmoid’s issue of the values not being zero-centred.

Nevertheless, it still has the problem of saturating the gradient. In practice,

tanh is always preferred to sigmoid.

Rectified Linear Unit (ReLU) activation function is shown in Figure 3.5

and its equation to compute is f(x) = max(0, x). ReLU sets all the negative

values to 0 and leaves the positive values as they are. ReLU is linear, so it

is not saturating the gradient on one side, but there still is a problem when

the values are negative, as the gradient is equal to 0, and deactivating a

certain part of the network. Nevertheless, [24] showed that it accelerates the

learning, and in their case by a factor of ×6. It is very easy to compute: it

is required to threshold a matrix at 0.

3.1.2 Architecture

Neural networks are represented as acyclic graphs where sets of neurons are

connected between each other. Each set of neurons denotes one layer of the

neural network and they usually do not have connections among themselves.

Each layer is connected only to the neighbouring layers. Layers that have

all possible connections between pairs of neurons are called fully-connected

layers and are very common in practice, but they are not the only kind of

connections. The graphs are acyclic so that the input will not cycle forever

in the network. Each neuron at one layer has the same activation function.

Illustrations of neural networks are shown in Figure 3.6.

Layers can have different number of neurons and different number of

connections to the neighbouring ones. The number of layers and neurons per

layer define the network’s capacity. The more layers and the more neurons per

layer, the greater the capacity of the neural network. The capacity denotes

16 Marko Prelevikj

the amount of representable functions in the network and the amount of

precision of each functions’ representation, the more capacity it has, the

more expressive the network is. Drawbacks of having greater capacity is

exponential growth of the training time, and it can easily overfit the data.

This produces a network which can never be used for testing purposes because

if the test cases are not similar to the training data, it will perform poorly.

The network has an input layer, which is not taken into account for

the final number of layers. The final layer is called the output layer. The

layers which are between the input and output layer are called hidden, since

outputs from individual layers are rarely used and we often are not explicitly

interested in which state they are in.

Neural networks are organized in layers in order to achieve efficiency in

calculation of the network values. The layers also allow usage of vector-matrix

operations with which multiple values can be calculated at once.

3.1.3 Forward pass

The forward pass is done by passing the input through the network and

getting an output. To get the output, the input is propagated through the

network, gradually being transformed by each layer through the dot product

with the weights of the connections and its activation function up to the net-

work’s output. The output can be a single scalar value or a vector of values,

depending on the output layer layout.

A simple neural network is presented in Figure 3.6. An example compu-

tation of a forward pass: suppose that there is no bias, the weights of the first

layer are stored in matrix W1 with size 5 × 3, where each row presents the

weights of a single neuron. The input for the activation function y1 = σ(z)

of the hidden layer is calculated as z = W1x. The same process is repeated

for the second layer, except W2 is of dimensions 2× 5 and the final output is

a 2-dimensional vector. An example application of this kind of a network is

a logical function such as AND, OR, XOR, NAND.

Bachelor’s Thesis 17

Figure 3.1: Biological model of a neuron [21]. A neuron’s cell body is made

up of: nucleus, dendrites, axons. Impulses are carried into the nucleus via the

dendrites where they are accumulated and as soon as there is enough charge, it

is transmitted through the axon out of the neuron. Neurons are connected via

synapses to the other neurons’ dendrites.

18 Marko Prelevikj

Figure 3.2: Mathematical model of a neuron [21].The mathematical model is

consisted of the same core elements as the biological model. Except that it’s a

deterministic model and all steps are predetermined. Output signals are carried

out of the neuron by the axon (x0), and they interact with the dendrites of other

neurons multiplicatively (x0w0), weighted by the synapse strength (w0). There

can be multiple input dendrites into a neuron, so all of the reactions are summed

up, which is the dot product (w · x = wTx) between the weights of the synapses

(w) and the input signal from the axon (x). If the sum is above a given threshold

we say that the neuron fires by sending a spike along the axon (output). Synapse

weights are determining how much influence does one input have. The weights

can be learned through a technique called back-propagation (see Section 3.2) and

it allows the neural networks to be adaptive to their input/output in the learning

phase. The calculated sum is an input to an activation function (described in

Section 3.1.1).

Figure 3.3: Visualisation of the sigmoid activation function.

Bachelor’s Thesis 19

Figure 3.4: Visualisation of the tanh(x) activation function.

Figure 3.5: Visualisation of the ReLU activation function.

20 Marko Prelevikj

Figure 3.6: Example of neural network architecture [44]. In this example the

network has 2 layers, 1 hidden layer and an output layer. The layers are fully-

connected, i.e. there are connections between all the neurons at each layer.

Bachelor’s Thesis 21

3.2 Back-propagation

An essential part of a neural network’s learning is the back-propagation (or

simply backprop) algorithm, which allows the information of the cost2 to flow

backwards through the network. Its purpose is to compute the gradient of

the cost function and propagate the error which was made by the forward

pass [29]. It is very important to stress out that backprop is not the learn-

ing algorithm the network is using, but merely a method of calculating the

derivatives in the network which is exploiting the chain rule of derivatives.

Neural network’s output is interpreted as a composition of functions:

f1(x0) ◦ f2(x1) ◦ · · · ◦ fN(xN−1), N being the number of layers in the neural

network. Functions f1(x0), . . . , fN(xN−1) are the activation functions of each

layer in the network. With this being said, calculating the derivatives of

every single neuron is a fairly trivial task. Recursively walking back through

the layers down to the input layer of the network and applying the chain rule.

A neural network can also be interpreted as a big computational graph [30].

Each edge has its own weight, which is influencing the value being propagated

through it. Each vertex has an activation function, which is non-linearly

changing the input value. A computational graph is very convenient because

it allows granulating very complex computations into smaller ones, which are

very easy to compute.

Computational graphs can also be applied to calculating derivatives: cal-

culating the derivative of a very complex expression is very hard, but if you

divide it in tiny pieces it is manageable. This is where the advantages of the

chain rule are applied.

An example computation is shown in Figure 3.7.

2The cost is calculated by a cost function (E). It represents the degree of fit to the

data [27]. The learning process wants to achieve as little cost as possible and achieve

good results which will not result in overfitting the data.

22 Marko Prelevikj

+

?

x 6

-5

y -2

-5

z -5

4

q 4

-5
f -20

1

Figure 3.7: An example of how the back-propagation algorithm works. The

values above the lines are the values calculated after the operation is done, and

the red values underneath it is the gradient at that point. So, the multiplication (or

division) is just rotating the values, and the addition (or subtraction) is distributing

the value of the gradient. While the max operation, is routing the gradient to the

maximum value, ignoring the rest of the inputs.

3.3 Learning process of an ANN

Once the gradient in a graph node has been calculated, there are various

strategies on how to update the parameters to achieve the fastest convergence

of the network with minimum amount of error. Such optimization methods

are [21]:

3.3.1 Stochastic Gradient Descent (SGD) [28]

• Vanilla update is simply subtracting the linear combination of the learn-

ing rate hyperparameter3 and the calculated gradient from the weights.

Equation (3.1) demonstrates how it is calculated.

wt+1 ← wt − α∇f(wt) (3.1)

3Hyperparameters are metrics used by the machine learning algorithm which are set

before the methods are started, and they are usually static, i.e. do not change at run-time.

Bachelor’s Thesis 23

• Momentum update is influenced by physics. For example, if the ob-

jective is to reach the end of a canyon-like (steep walls on the side,

and a shallow ravine that leads to the objective point, the optimum)

structure, SGD is most likely to approach the ravine very fast and then

cycle across the steep sides, as it gains the biggest values there rather

than across the ravine. This effect can even force the SGD to converge

in a local optimum, which leads to suboptimal solutions in the long

term. By adding the momentum we prevent this effect. It pushes the

objective across the ravine faster:

vt+1 ← µvt − α∇f(wt) (3.2)

wt+1 ← wt + vt+1 (3.3)

Where v is initialized at 0 and µ ∈ (0, 1] is another hyperparameter

of the network, momentum, which controls how much influence has

the momentum. Its typical value is 0.9, but it is often set at 0.5 at

the beginning and then annealed to 0.9 later on. The purpose of the

momentum update is for the parameter vector to build up velocity in

the direction that has consistent gradient [21].

• Nesterov’s Accelerated Gradient (NAG) [41], unlike the normal momen-

tum update, calculates the gradient of the function one step ahead in

time, i.e. for the actual step that is going to be made with the update.

This clever trick allows faster convergence of the learning process at

no extra cost. The altered equations for the Nesterov’s Accelerated

Gradient:

vt+1 ← µvt − α∇f(wt + µvt) (3.4)

wt+1 ← wt + vt+1 (3.5)

24 Marko Prelevikj

3.3.2 Second order optimization methods

If working with small amount of data, then it would make sense to take

advantage of second order optimization methods, which rely on Newton’s

optimization method. The core idea is to iterate:

x← x− [Hf(x)]−1∇f(x) (3.6)

where Hf(x) is a Hessian matrix [citation needed] with second-order partial

derivatives of function f , while ∇f(x) is the same gradient term from SGD.

It allows a more efficient update of the weights, since the Hessian matrix

carries information about the local curvature of the loss function. It also re-

moves the need of any additional hyperparameters, which is very convenient.

Unfortunately it is very impractical because building the Hessian matrix and

especially inverting it is almost impossible in practise. The dimensions of the

matrix can easily go above 1000000× 1000000 which is very difficult to store

in RAM memory [21]. There are alternative approaches which are estimating

the inverse of the Hessian matrix, such as L-BFGS [26].

3.3.3 Per-parameter adaptive learning rate methods

These methods are different from the rest of the described ones because they

express the gradient per parameter, as opposed from the previous methods

which all apply the same gradient to all the parameters. A list of most widely

spread methods:

• Adagrad [14] is an adaptive learning rate method, it is characterized

by Equations (3.7) and (3.8),

C ← C +∇f(x) (3.7)

x← x− α ∇f(x)√
C + ε

, ε ≈ 10−6 (3.8)

where C is a vector of the same size as ∇f(x), initialized at 0. Down-

sides of Adagrad in its usage in deep learning is that a monotonic

Bachelor’s Thesis 25

learning rate(α) usually proves too aggressive and causes the learning

to stop too soon.

• RMSprop [42] is an upgrade of Adagrad update which is only controlling

how aggressive the monotonous learning rate is. The equations are:

C ← υC + (1− υ)∇f(x)2 (3.9)

x← x− α ∇f(x)√
C + ε

, ε ≈ 10−6 (3.10)

In the equations above, υ ∈ {0.9, 0.99, 0.999} (typically) is a hyperpa-

rameter. In this case, C is leaky, it forgets previous values over time,

thus yields adaptive parameters, but unlike Adagrad it doesn’t make

them monotonically smaller.

• Adam [22] tries to combine both momentum and RMSprop, the sim-

plified equations are:

m← β1m+ (1− β1)∇f(x) (3.11)

v ← β2v + (1− β2)∇f(x)2 (3.12)

x← x− α m√
v + ε

(3.13)

in this case recommended values of the hyperparameters β1 = 0.9,

β2 = 0.99 and ε = 10−8. At the time of writing the thesis, this is the

recommended method for optimizing the parameter updates. Further

details are available in [22].

3.4 Types of ANNs and their application

There are a lot of different types of ANNs, differing in their architecture,

activation functions and data that are trying to model. To get the idea of

what kind of ANNs exist, and what they are used for, we briefly describe

here some of the most used ones:

26 Marko Prelevikj

• Recurrent Neural Networks (RNNs) These networks are non-linear

dynamical systems that map sequences to sequences. Modelling se-

quences requires their architecture to be rather unconventional with

regards to what was previously stated, as there are connections between

neurons at the same layer. This property makes them very difficult to

train due to their non-linear iterative nature. Very little changes in an

iterative process can compound and result in very large effects many

iterations later. This is known as ”the butterfly effect” [40]. Meaning

that the derivatives of the loss function can be extremely large to the

activations of the hidden layers at earlier time, making the loss function

sensitive to very small changes, so it becomes discontinuous (vanishing

gradient problem).

• Radial Basis Function Networks (RBFs) are commonly consisted

of an input layer, hidden layer and an output layer. So they are not

deep networks and they are characterized by radial basis activation

function of their hidden layer. A radial basis functions are used for

approximation of other functions. Their form is showin in (3.14),

φ(x) = exp

(
− ‖ x− w ‖

2

σ2

)
(3.14)

where σ is the activation strength parameter [43]. RBFs are used in

regression problems, as they are particularly good at approximating

other, unknown functions. Such applications are in data forecasting,

market analysis, weather, load of electricity for a city [2].

• Convolutional Neural Networks (CNNs) are further discussed in

Section 3.5. They are mostly used in computer vision to perform object

detection and recognition, semantic segmentation.

Bachelor’s Thesis 27

3.5 Convolutional Neural Networks (CNNs)

Convolutional neural networks are specialized for dealing with data that can

be represented in a matrix form, such as images, that is why they are suit-

able for this thesis. They are a type of neural networks which use convolution

(further discussed in Section 3.5.1) instead of matrix multiplication in at least

one of their layers [19].

They are characterized by having 3D volumes of neurons. The neurons

in such a neural network are arranged into three dimensions: width, height,

depth4(illustrated in Figure 3.8). Each layer of the CNN transforms its 3D

volume input using an activation function which might have learnable pa-

rameters and/or hyperparameters to an output 3D volume [21]. The trans-

formations might cause the 3D volume to change its size.

A typical input is an image with dimensions W ×H ×D (width, height,

Figure 3.8: Visualisation of how the neurons are arranged in 3D volumes.

depth), with depth denoting the number of colour channels of the image.

For example CIFAR-105 images have dimensions 32× 32× 3, so they are 32

4not denoting the depth of the network
5CIFAR-10 is a dataset consisted 60000 images with dimensions 32 × 32 × 3 divided

into 10 classes. Each class has 5000 images, and 10000 images are into the testing set [23].

28 Marko Prelevikj

pixels wide, 32 pixels high and have 3 colour channels. Having a 3D volume

as input means that they are also outputting a 3D volume output, so in the

case of CIFAR-10 the output is in the format of 1× 1× 10. This means that

the network has reduced the images into a vector with 10 values, denoting

the classes of the data set.

3.5.1 The convolution operator

Convolution is a mathematical operation, defined by the Equation (3.15).

s(t) = (x ∗ w)(t) =

∫ t

−∞
x(a)w(t− a)da (3.15)

The operation is defined for any functions for which the integral is de-

fined [19]. In probability theory [32], convolution is applied to determine

the probability density distribution of sum of n mutually independent ran-

dom variables X1, . . . , Xn.

Let us consider a simple case with two rolling dices. Let the outcome

of the first dice be the random variable X and the Y of the second one.

Their distribution is f(x) and g(x) respectively, and since we are throwing

dices, they are both discrete probability distributions. If we want to deter-

mine what is the probability of getting a sum of both rolled dices equal to

6, we have to sum the probabilities of rolling all the possible variations, i.e.

calculating:

f(1)g(5) + f(2)g(4) + f(3)g(3) + f(4)g(2) + f(5)g(1) =
5

32
(3.16)

If we apply the rule of discrete convolution which takes the form of:

s(t) = (x ∗ w)(t) =
t∑

a=0

x(a)w(t− a) (3.17)

in this particular case, we get:

s(4) = (f ∗ g)(5) =
5∑

a=0

f(a)g(5− a) (3.18)

Bachelor’s Thesis 29

which is exactly what we previously wrote in 3.16.

Regarding convolutional neural networks, the discrete version of convolu-

tion (Equation 3.17) is being used, as the data is discrete into integer values

of each pixel of the images. Where we refer to x as the input (I) and w as

the kernel (K), while the output is being referred to as the feature map [19].

Since the input to the CNNs are images, the convolution needs to be

expressed with two dimensions, as:

s(t) = (I ∗K)(i, j) =
∑
m

∑
n

I(m,n)K(i−m, j − n) (3.19)

Convolution has the commutative property, expressed as:

s(t) = (K ∗ I)(i, j) =
∑
m

∑
n

I(i−m, j − n)K(m,n) (3.20)

It also has the associative, distributive properties, expressed in a similar

manner as the commutative property. What is important to point out is

the property of translation invariance of the convolution. Essentially, if the

function is translated by an arbitrary value, it doesn’t affect the final output

of the convolution. In computer vision this means that no matter where the

blob is in the image, if the current kernel can detect it (for example kernel

for detecting edges), it will be detected no matter where it is located in the

image.

3.5.2 Architecture of a CNN

CNN’s architecture is usually consisted of multiple layers of neurons and,

as discussed previously, each layer has its own activation function. Most

common types of layers used in a CNN are:

• Convolutional layer is the core building block of a convolutional neu-

ral network [21]. Its parameters are actually learnable filters that are

used for convolving the image, during the training, they learn to detect

features in the image, such as edges, blobs, colour patterns on the first

layer, and more complex features, such as honeycombs, in the deeper

30 Marko Prelevikj

convolutional layers. The filters are small spatially (they do not have

connections to all neurons from the previous layer). This characteris-

tic is controlled by the receptive field hyperparameter of the network.

Each filter covers the entire depth of the image (every colour channel),

and slides across the entire image. Following the assumption that if a

feature is useful to calculate for one position, it is also useful to have it

for another position as well. Thus sharing the parameters with other

neurons seems like a very nice idea. Sharing the parameters means that

each depth slice of the output volume of neurons has only one set of

parameters (illustrated in Figure 3.9).

To control the output volume of the layer, three parameters are used:

depth, stride and zero-padding. Depth denotes how many different fil-

ters we would like to have in the output. As mentioned before, each

depth slice is a filter. Stride controls how many pixels the filter is

moved while convolving, it is typically set to 1, but there are excep-

tions. Zero-padding controls the spatial size of the output, this is due

to the fact that convolution changes the size of the input on its output,

and adding zeros on the edges preserves the size of the output.

• Pooling layer is used for reducing the number of parameters in the

network, by reducing the spatial size of the representation. This helps

preventing the network from overfitting. Most common function used

for pooling is max, which only lets the maximum response in a provided

patch to continue through the network.

• Fully-Connected (FC) layer These layers have connection with ev-

ery neuron from the previous layer, as often described the simplest case

of artificial neural networks (see Section 3.1.2 for more details) .

The layers are usually ordered in a predetermined pattern. First, there is

a convolutional layer, then a layer with a simple ReLU activation function,

followed by a pooling layer. These three layers ought to be repeated a several

times, representing the feature extraction from the images. Then they are

Bachelor’s Thesis 31

followed by a fully-connected layer, which is the actual classifier, further

reducing the output to a probability distribution for each class, as previously

described in Section 3.1.2.

Figure 3.9: Visualisation of trained convolutional filters of the VGG-16 CNN [9].

These images represent a sample from the 512 learned filters of the fourth convo-

lutional layer.

32 Marko Prelevikj

Chapter 4

Our approach

The aim of our approach is to test whether it is possible to use transfer of

knowledge (TOK), discussed in Section 4.1, to transfer knowledge between

different dataset in the field of semantic image segmentation. For this pur-

pose, we used the deep filter banks [10] method as a starting point. During

the testing, anomalies occurred which influenced the overall performance of

the method, these are discussed in Section 4.3.

4.1 Transfer of Knowledge

In general, when a new approach is being developed the data used to prove

whether it works or not is hand-picked to present the best samples, in order

to prove the method worthy of further improvements. It is only when the

developed method is tested in the real world and with real data, which is

quite often inconsistent in regards to what we have previously worked with,

that we discover that what we saw in the laboratory is not what we get in

the real world [25].

The idea behind domain transfer is reusability of already gained knowl-

edge. For example, if there has been developed an intelligent system for

detection of score-changing events in a tennis singles match, and we would

like to adapt this system to work for a badminton doubles match [17]. We,

33

34 Marko Prelevikj

on the other hand deal with the lack of data in the similar manner as [38].

In our case, there is lack of labelled data. The solution is to check the

performance of two datasets which only have overlapping classes of objects

and what is the performance when the knowledge obtained through training

is simply transferred to the other dataset’s domain.

As it is described in [38], we did encounter similar problems, for exam-

ple same class of objects, but different viewpoint, or alternative types of the

same object. The analysis of the experiments and problems we encountered

are further discussed in Chapter 5.

4.2 Semantic segmentation

To try to solve semantic segmentation, we first need to know what segmen-

tation is. There are two perspectives of how we can approach this problem:

(1) the process of breaking the image into regions and structures, such as

circles, various polygons; or (2) grouping pixels into larger sets, and again,

making up various kinds of structures, called super-pixels.

Semantics add another layer of abstraction of the generated regions, i.e.

understanding. It is also referred to as image understanding, as it provides

us with additional information about the image, what kind of objects are

there in the image. This can be further used for detection of the interaction

between the objects on the image and generation of image captions. The

segmentation process generates the segments, and semantics add the mean-

ing of those segments in the image.

To explore semantic segmentation we refer to the work by Cimpoi et.

al [10]. To sum up this method, it uses CNNs to extract image features from

the images, encodes the features in one large feature vector and uses SVMs

to classify the output results. As for the testing phase it uses an additional

method for pre-segmentation of the input test images. The following sections

describe the methods in more details.

Bachelor’s Thesis 35

4.2.1 Image Segmentation Proposal

In order to add semantics to the image, we need to have some region pro-

posals, i.e., segments of the image which have a probability of containing

an object of interest. There are various techniques for breaking the image

into regions, such are [7, 15]. In the work done in this thesis, we used a

state-of-the-art method by Arbeláez et al. [36].

The method by Arbeláez et al. [36] considers as an input an image, for

which various type of local contour cues have been extracted, such as bright-

ness, colour and texture differences; sparse coding on patches; and structured

forest contours. The contour cues are then globalized independently with

their fast technique for eigenvector gradients, and then construct a UCM

based on the mean contour strength. This is done for each scale, and then

the gathered information is aligned, as to preserve the locality of the infor-

mation in the image, the location of each object. Then to choose from the

best boundaries of the objects, a binary boundary classification problem is

defined which combines all of the features in a single probability of bound-

ary estimation. The output of the method is a UCM (see Section 4.2.1.1).

Further details for this method can be found in the original paper [36].

4.2.1.1 Ultrametric Contour Map (UCM)

Ultrametric Contour Maps [1] are a rather useful tool for region proposal

generation. Let S = {S∗, S1, . . . , SL} be a set of segmentations of the image

which partition the domain from fine super-pixels (S∗) to a partition that

represents the whole domain (SL) and every new element is the union of all

the previous elements. The domain is presented in a hierarchy. Each level Si

has a real-valued index λi. Using the indices, the hierarchy can be presented

as a dendrogram. In terms of the UCMs, applying the threshold λi will yield

the segmentations from Si set. For example, if there is a car on the input

image, let the Si − th partition contain the wheels, the body of the car, and

the windows of the car separated, the next partition, on the Si+1 − th level,

will contain the entire car segmented as one piece. That means that the lower

36 Marko Prelevikj

the threshold is, the more segments are going to be generated.

4.2.2 Deep Filter Banks (DFB)

Deep Filter Banks [10] is based on texture recognition. One of their research

points, which is relevant to our work, is to test multiple types of image

features, techniques of pooling them together, and building a classifier for

discriminating them, as well as applying it to semantic segmentation. From

all of their findings, the most suitable for our work is the usage of CNN fea-

tures, encoded with Fisher Vectors and building a model with SVM.

The [10] method, by the standard principles of machine learning, is di-

vided in a training and testing stage. During the training stage, image fea-

tures are acquired from the images using the ground-truths provided for the

images (Section 4.2.2.1). Next, the features are encoded into a feature vec-

tor (Section 4.2.2.2). Finally, the feature vectors are fed into a classification

algorithm (SVM), to build a model, which is going to be used for classifying

the testing images (Section 4.2.2.3).

The testing stage is somewhat different than the training stage owing to

the fact that testing on the ground-truth data makes no sense. The [10]

method does not break the image down into regions, it is instead focused on

classifying them, thus we need the method described in Section 4.2.1, which

provides them, and they are regarded in the same manner as the ground

truth is in the training stage.

It is very likely that the pre-segmentation method generates much more

regions than there are in the ground-truth, so during the testing stage, each

of the regions is being classified, and as some neighbouring patches are dedi-

cated to the same class, they are merged together. Nevertheless, the regions

are divided by a 1 pixel border, as to be possible to distinguish between

different regions. These borders are not regarded while calculating the final

statistics and measuring the performance of the experiments.

Bachelor’s Thesis 37

4.2.2.1 Image features

The [10] method uses learned image features (as discussed in Section 2.3).

The features are extracted from the last convolutional layer of the provided

CNN (CNNs are further discussed in Section 3.5). In general, the DFB

method can work with any arbitrary CNN, such as are the popular models of

ImageNet [24], VGG-VD [39]. For our work, we used the VGG-M [8] model.

Learned features are gained from a non-deterministic algorithm, and thus

have the properties which every stochastic process has, i.e. they are unpre-

dictable. In our case the unpredictability is good because we might never

design features with properties which are extracted from a non-deterministic

algorithm. As much as the unpredictability is good, using it can backfire on

us. If the learning process is not modelled well, and the parameters are not

well tuned, it can be led in the wrong learning direction. In this case making

the overall result of the texture classification incorrect.

4.2.2.2 Feature encoding

Once extracted, the features are in a form which cannot be used properly

for the upcoming classification task. That is, a matrix consisted of all the

component of the raw features extracted from the CNN [10].

In order to convert them in the appropriate form, features for a particular

region are encoded into a feature vector (they are discussed in Section 2.5).

In order to preserve as much data as possible, so that the classification can

be performed most accurately, the features are encoded into a Fisher vector,

which preserves up to second-degree statistics for its input.

4.2.2.3 Texture classification

Information encoded into Fisher vectors is supplied to an SVM classifier,

which is excellent for this task due to the fact that it works really well with

high dimensional data, such are the Fisher vectors in this case, which can

have more than 65000 features (details provided in [10]).

38 Marko Prelevikj

Since we are trying to classify objects, i.e. textures, which can be a part

of more than two classes, as specified in the used datasets, the SVM classifier

is trained as one-vs-rest. Meaning that there are multiple SVM classifiers

trained, and the highest score of them all is the final class of the tested item

(image patch in this case).

4.3 Our contribution

As shown in [10], the DFB method set the state-of-the-art standard for

texture-descriptor accuracy. Nevertheless, its performance is measured on

the labelled parts of the ground-truth only. We are also interested in how

the method handles the areas which do not belong to any of the provided

classes.

To check the performance of the original approach [10] we did a pre-

liminary analysis. The classification of the ground-truth is performed with

remarkable accuracy and even provides better precision to the contours of

the object of interest than the provided ground-truth. However, since each

region has to be classified during testing, the regions from the ground-truth

which are unclassified, i.e. no object of interest is present, are forcefully

classified in some of the classes. The worst case for these regions is to be

classified as the target class (illustrated in Figure 4.1), affecting the overall

accuracy of the method.

In our case, we needed an output which will provide us the classes of

image regions belonging to known categories as accurately as possible. We

also needed an output that will ”filter out” all regions belonging to unknown

categories. As there is no way of knowing where are known and where are

unknown objects in any given image, introduction of a background class is

the best known solution. The background class is designed to group together

the regions which are not of interest, i.e., do not belong to any known class.

Provided image labels are not covering the entire image, therefore this solu-

tion allowed us to have a lot of training data for the background class.

Bachelor’s Thesis 39

In an ideal case a semantic segmentation method should output a predic-

tion which is an 100% overlap with the ground-truth, i.e. there would be no

error. In real life however, this is not possible yet due to the imperfection

of our machine learning methods and the noise which is always present. A

contrast of the performance between the original method and our improved

version with a background class introduced is illustrated in Figure 4.1. In

the output of the original method there are various classes (each with a dif-

ferent colour). In this case the only relevant class for us is the blue, which

represents the class cow. Whereas in the output of the improved version of

the method there are only two classes present, both of them relevant to us

(dark blue is the background and blue is cow).

With the introduction of the background class we achieve an output which

suppresses all clutter in the image. We further analyse the performance of

our improvement in Chapter 5.

40 Marko Prelevikj

Original image Ground-truth

Original method With background

CA = 78.70% CA = 92.46%

Figure 4.1: Illustration of our contribution. The blue colour presents the relevant

class, i.e. cow. In the original method there are some non-relevant classes present,

and the prediction of the cow class is expanded outside the ground-truth. We have

no way of measuring what is the exact error rate outside the labelled areas. In our

improved method, the prediction is clearer and contains only relevant classes, i.e.,

cow (blue colour) and background (dark blue colour). We also notice improvement

in the classification accuracy.

Chapter 5

Experimental analysis

This chapter is devoted to describing the datasets used in our approach

(Section 5.1) and the experiments that we performed. The experiments

and the analysis of the obtained result sets are discussed at length in Sec-

tions 5.3, 5.4, 5.5, 5.6 and 5.3 respectively. In addition, an argumentative

discussion of the results is provided, which explains what was expected and

how the results differ from the expectations, as well as why the deviations

occurred.

5.1 Dataset description

Image segmentation requires an enormous amount of data in order to get the

best results. In this case however, due to a very limited CPU/GPU power

and in need for simple enough, synthetic datasets, to verify the experimental

hypotheses (stated in Section 5.2), rather small datasets were used. This

also allowed us to simulate real-world scenarios, where not enough data is

available. The less training data is required and the more accurate results on

the testing set, the more reliable the method is going to be in a real-world

scenario. The experimental analysis was done on the following datasets:

41

42 Marko Prelevikj

5.1.1 Microsoft Research in Cambridge(MSRC) [48]

This dataset is consisted of 591 images, divided in 23 classes: aeroplane, bi-

cycle, bird, boat, car, cat, chair, cow, dog, horse, sheep, body, book, building,

face, flower, grass, mountain, road, sign, sky, tree, water. Along with the

images, weak pixel-wise ground truth annotations for each image are pro-

vided [48]. Example images from the dataset with their ground truth are

presented in Figure 5.1. The class objects in the dataset are in completely

general position, lighting conditions and viewpoints [48].

5.1.2 PASCAL VOC 2007 [16]

Pattern Analysis, Statistical Modelling and Computational Learning (PAS-

CAL) project organized a Visual Object Classes (VOC) challenge from 2005

to 2012. They provide a standardised dataset for object class recognition. In

this thesis, the dataset from 2007 was used.

It is consisted of 9963 images with 24640 annotated objects, belonging

to some of the 20 classes: aeroplane, bicycle, bird, boat, car, cat, chair, cow,

dog, horse, sheep, bottle, bus, dining table, motorbike, person, potted plant,

sofa, train, tv-monitor. Example images from the dataset with their ground

truth are presented in Figure 5.2.

Although there are more than 9000 images, only a small subset of them

(632) are pixel-wise annotated. The provided annotations describe pixel-

perfectly the objects in the scene. If the region is not annotated it is regarded

as background class.

5.1.3 Dataset intersection

The datasets described in Section 5.1 have 10 overlapping classes (relevant

for transfer of knowledge): aeroplane, bicycle, bird, boat, car, cat, chair,

cow, dog, horse. If we take into account only the provided classes, both of

the datasets are reduced in their size. After eliminating images which do not

contain the relevant classes the MSRC dataset has 343 images, and the VOC

Bachelor’s Thesis 43

2007 dataset has 420. Both of them still have corresponding train/validation

and test sets which are approximately 50% of the entire set. Throughout

the experiments we use the whole datasets, regardless of annotations being

present or not, unless it is stated otherwise.

44 Marko Prelevikj

Original image Ground-truth

Figure 5.1: Sample images from MSRC dataset [48]. The white colour in the

ground-truth images presents unlabelled area.

Bachelor’s Thesis 45

Original image Ground-truth

Figure 5.2: Sample images from VOC 2007 dataset [16]. The dark-blue colour

in the ground-truth images presents the background class.

46 Marko Prelevikj

5.2 List of experiments

The purpose of our experiments is to test whether it is possible to transfer

knowledge from one dataset to another. In this particular case, whether the

training sets generalize the learned classes well enough, so that the obtained

model can be used on an entirely different dataset or wild data with low error

rate.

There are five main stages of the experiment, which were testing different

hypotheses, all regarding the transfer of knowledge:

1. What is the overall accuracy of the method on the same dataset (de-

scribed in Section 5.3).

2. What is the impact of different thresholds of the pre-segmented images

(described in Section 5.4).

3. What is the accuracy of the method when the obtained knowledge is

transferred to another dataset (described in Section 5.5).

4. Is the overall accuracy of the transferred knowledge influenced by the

size of the background class of the sets (described in Section 5.6).

5. Is the accuracy of both datasets combined is better than when the

knowledge is transferred (described in Section 5.7).

For each result set, a collection of statistics are calculated in order to estimate

the successfulness of the experiment. The statistics are: true-positive rate

(TPR), false positive rate (FPR), recall (R), precision (P), F1-score (F),

and classification accuracy1 (CA), which is presented in a confusion matrix,

so it is easier to interpret the results.

1This represents the percent of accurately classified pixels in the image, regarding the

provided ground-truth of the image.

Bachelor’s Thesis 47

5.3 Dataset accuracy

It is very important to check the performance of our method on each dataset

in order to get a reference point for comparing the results of latter experi-

ments. Doing so will make it easier for us to conclude whether the transfer

of knowledge is contributing to the end results or not, and compare which

classes are generalising well in both datasets.

This experiment requires a simple set-up: the DFB [10] method, trained

on MSRC [48] and VOC 2007 [16] separately, performs prediction of pre-

segmented regions on each dataset respectively.

The results from testing the MSRC dataset are shown in Table 5.1, and

the results from testing the VOC 2007 dataset are shown in Table 5.2. Vi-

sualisation of the classification accuracy of both datasets using a confusion

matrix is shown in Figure 5.3.

From the results shown in Table 5.1 can be concluded that there is a

very low mean false-positive rate on every class (FPR = 1.53%), except the

background class (FPR = 27.27%), which is an exception. The mean true-

positive rate is not above 90% (TPR = 68.71%) for any of the classes except

background (TPR = 98.64%), which is again an exception, but taking into

account the mean precision, we can say that of all the classified segments, a

very high percentage of them (P = 93.07%, excluding the background class)

were correctly classified, while the background class has P = 94.34%.

The equivalent results for the VOC 2007 set are shown in Table 5.2. Much

like the results from Table 5.1, these results show that the true-positive rate is

above 90% only for the background class (TPR = 94.72%), but on average all

of the other classes have rather well true-positive rate (TPR = 73.45%). The

overall precision however is not as good as the one for the MSRC dataset, i.e.,

the mean precision of all the classes excluding the background is P = 74.16%,

and for the background class it is P = 94.54%. The false-positive rate is,

again, the highest for the background class (FPR = 19.27), however it is

significantly lower than the one for the MSRC dataset. The mean false-

positive rate for the rest of the classes is FPR = 1.57%, very similar to the

48 Marko Prelevikj

MSRC dataset.

The results in Table 5.1 and 5.2 show that the overall performance is at a

satisfactory level, with a fairly high precision rate (P = 93.07%, P = 74.16%

respectively), that confirms that the classifier works well. The false-positive

rate is on a very low level (FPR = 1.53%, FPR = 1.57% respectively) except

for the background class (FPR = 27.27%, FPR = 19.27 respectively). This

represents a fair reference point, but it has a high false-positive rate which

has to be reduced. We explore one such possibility with the experiment in

Section 5.4.

CA = 92.89% CA = 89.29%

Figure 5.3: Confusion matrix for the MSRC dataset (left) training set, and for

the VOC 2007 (right) training set.

Bachelor’s Thesis 49

Classes TPR FPR recall precision F

cow 0.6794 0.0032 0.6794 0.9934 0.8010

horse 0.6621 0.0023 0.6621 0.9856 0.7879

sheep 0.7612 0.0043 0.7612 0.9905 0.8578

aeroplane 0.6151 0.0134 0.6151 0.9101 0.7293

car 0.7075 0.0255 0.7075 0.9128 0.7864

bicycle 0.5847 0.0579 0.5847 0.7852 0.6577

bird 0.7245 0.0057 0.7245 0.9732 0.8159

chair 0.6523 0.0137 0.6523 0.9405 0.7451

cat 0.7628 0.0186 0.7628 0.9786 0.8490

dog 0.8063 0.0135 0.8063 0.9607 0.8718

boat 0.6026 0.0099 0.6026 0.8069 0.6629

background 0.9864 0.2727 0.9864 0.9434 0.9628

Table 5.1: Extended results from the MSRC dataset for the experiment in Sec-

tion 5.3.

50 Marko Prelevikj

Classes TPR FPR recall precision F

aeroplane 0.6970 0.0058 0.6970 0.8038 0.7155

bicycle 0.6237 0.0160 0.6237 0.4516 0.4638

bird 0.8358 0.0078 0.8358 0.8645 0.8311

boat 0.6623 0.0108 0.6623 0.7907 0.6678

car 0.7005 0.0180 0.7005 0.5573 0.5153

cat 0.8357 0.0163 0.8357 0.9056 0.8411

chair 0.8023 0.0335 0.8023 0.3845 0.4687

cow 0.7046 0.0138 0.7046 0.8939 0.7472

dog 0.7677 0.0157 0.7677 0.8549 0.7769

horse 0.7339 0.0164 0.7339 0.7571 0.7026

sheep 0.7155 0.0184 0.7155 0.8932 0.7584

background 0.9472 0.1927 0.9472 0.9454 0.9416

Table 5.2: Extended results from the VOC 2007 dataset for the experiment in

Section 5.3.

Bachelor’s Thesis 51

5.4 Pre-segmentation threshold

The method for class-prediction of segments from DFB [10] uses a pre-

segmentation method, which breaks the image into smaller regions in an

unsupervised manner. Due to dominance of the background class in the ex-

periment from Section 5.3, we would like to test whether the size of the

segments influences its dominance.

To test how much the classification relies on the size of the regions, the

test input images are pre-segmented with a number of different thresholds

t ∈ {0.15, 0.3, 0.45, 0.65, 0.85}. Our hypothesis is that we will achieve the

maximum performance of our method with region proposals which are the

most similar to the ground-truth because that is the data the classifier is

trained on. The set-up for this experiment is the same as described in Sec-

tion 5.3. This experiment is performed only on the VOC 2007 dataset [16].

The confusion matrices containing the CA results of this experiment are

shown in Figure 5.5. Extended tables with statistics for each threshold t

are provided in Appendix A. Samples illustrating input images with different

thresholds, their output predictions and per pixel errors are shown in Fig-

ure 5.6. Summary statistics are available in Table 5.4, showing us that as

the threshold is higher, the FPR and TPR also increase, while the precision

value decreases.

The results show us that the threshold parameter used for region gen-

eration, which controls the size and number of generated segments, is pro-

portional with both true-positive and false positive ratio of our the method.

This is due to the fact that the ground truth contains rather big segments,

and the more similar the size of the generated segments, the more accurate

are the obtained results (illustrated in Figure 5.6). The false positive ratio

is rising due to the fact that the segments are larger and if there is mis-

classification the error caused is much bigger. Another reason why there

is an increase of the FPR are imperfect ground-truths, since the generated

segmentation is often better than the provided ground-truth. Even though

there still is a dominating background class whatever the threshold, it can

52 Marko Prelevikj

be noticed that the column representing the false positives of the background

class (Figure 5.5), is less dense the lower the threshold is, which implies that

the smaller the regions, the more likely it is to misclassify them into a target

class other than background. Since the segments are smaller the false posi-

tive rate is lower and therefore the precision in the case of low thresholds is

higher. This is why we chose threshold t = 0.30 for our further experiments.

Threshold FPR TPR P

0.15 0.0110 0.6843 0.7584

0.30 0.0157 0.7345 0.7416

0.45 0.0218 0.7419 0.7416

0.60 0.0347 0.7425 0.7054

0.85 0.0742 0.7517 0.6621

Figure 5.4: Summary statistics per different thresholds, excluding the background

class for the experiment in Section 5.4.

Bachelor’s Thesis 53

t = 0.15, CA = 86.63% t = 0.30, CA = 88.11%

t = 0.45, CA = 88.44% t = 0.60, CA = 88.18%

t = 0.85, CA = 86.11%

Figure 5.5: Testing the VOC dataset [16] with different thresholds for the pre-

segmented images. Abbreviations: t stands for threshold, CA stands for classifi-

cation accuracy.

54 Marko Prelevikj

Input image Ground Truth

Threshold Pre-segmentation Prediction Error

0.15

0.30

0.45

0.65

0.85

Figure 5.6: Sample image from the VOC 2007 [16] with different thresholds

applied.

Bachelor’s Thesis 55

5.5 Transfer of knowledge

The final goal of our work is to check whether the knowledge obtained on

one dataset can be used for discriminating between the classes of another

dataset. Ultimately, we are going to use the obtained knowledge in the real

world, which is why we would like to be confident about the error rate being

on a tolerable level. Thus, it will not influence the end results drastically. In

this experiment we consider two cases:

Case I : the SVM classifier is trained on the features extracted from the MSRC [48]

dataset and tested on the pre-segmented images from the VOC 2007 [16]

dataset2.

Case II : the SVM classifier is trained on the features extracted from the VOC

2007 [16] dataset and tested on the pre-segmented images from the

MSRC [48] dataset. A mirror to Case I.

In Tables 5.3 and 5.4 are the detailed results obtained from this experiment.

In Figure 5.7 are presented the confusion matrices of the obtained classifi-

cation accuracy and how it is dispersed in both cases. We can clearly see

from the intensities shown in both of the confusion matrices that there is a

problem with a dominant class. We can conclude this by seeing the brightest

columns of the confusion matrices, which represent the background class.

In Case I, the mean false-positive rate is quite low, if we exclude the

background class, FPRI = 2.38%, whilst the mean true-positive rate is at an

alarmingly low rate, TPRI = 35.25%. The mean precision is also at a rather

low rate, PI = 66.62%, if we compare it with the previous experiments. The

background class is dominant, and is the main reason for the drop of the

performance, as it has a value of FPRbg
I = 53.47%, although there is a high

true-positive rate, TPRbg
I = 98.44% and precision of P bg

I = 92.2%. We try

to lower the background class FPR with the experiment in Section 5.5.

2The part of VOC 2007 which has annotations for the segmented areas is used, includ-

ing the images which have no annotations due to class overlapping.

56 Marko Prelevikj

In Case II, similar to Case I, the background class is also very dominant,

but the rest of the classes are also more manifested, forming a clearer di-

agonal in the confusion matrix3. If we compare the mean statistics without

the background class we get that both mean TPR and mean precision are

higher than in Case I, TPRII = 37.39%;PII = 93.46%, while the mean FPR

is lower, FPRII = 1.87%. The background class also has better results, as it

can be seen from the bottom rows of Tables 5.3 and 5.4.

It is crucial to note that the model for the class horse, from the MSRC

dataset is very poor and does not generalise at all, as it is stated in the

description of the dataset [48]. Therefore in Case I, not a single positive ex-

ample was classified in this class, consequently there are no available statistics

for this class, i.e. there are only NaN (Not-a-Number) results.

Poor performance is also noted with the class chair. This is due to dif-

ferent definitions of the class across datasets. In the MSRC dataset, the

class chair has a high percentage of benches, whereas in the VOC 2007 it is

explicitly stated in the description of the classes that benches do not belong

in the chair class. It should be noted that a chair’s or a bench’s legs were

mostly correctly predicted in both cases. Similarly, the aeroplane class is

rather different. In the MSRC dataset aeroplanes are mostly denoted by

small sport aeroplanes, whilst in the VOC 2007 dataset there are mostly big

commercial aeroplanes or fighter jets. For more illustrative examples please

see Figures 5.1 and 5.2.

Sample image of Case I is presented in Figure 5.8. The prediction in this

case is partly correct, due to the fact that a segment which represents the

dog’s body is misclassified into the background class. The error is caused by

the poor learning samples of the MSRC dataset. The rest of the prediction,

which is correctly classified, is more accurately defining the dogs’ contours.

In Figure 5.9 is a sample image of Case II. As opposed to Case I, in Case II

we encounter a problem of forced false positives because the ground-truth is

very weakly annotated. This causes a significant drop in the performance of

3The more dense the diagonal is the more accurate are the results.

Bachelor’s Thesis 57

our method and its best solution is reannotation of the entire dataset.

Based on the results, we conclude that the overall performance while

transferring the knowledge is poorer than the performance of the original

experiment (Section 5.3). This is expected due to various factors such as:

how similar are the images with respect to the colours, brightness, POV of

the object, how similar are the objects in images from different datasets,

i.e., how similar are their definitions and visual representations over different

datasets. The dominant background class implies that the false-positive rate

is higher, and most of the misclassified samples belong to it. A nice thing

about this faultiness is that we can use it to our advantage. Since there is a

high FRP of the background class, whenever there is an error we can assume

that it belongs to the background class. It is safe to make this assumption

because the annotations are not perfect, and are causing most of the errors4.

We can also conclude that transferring the knowledge from VOC 2007 to

MSRC (Case II) is better than the transfer of knowledge in Case I. This

conclusion is based on the fact that the precision for most of the classes is

on average greater than 90% (PII = 93.46%), and the classification accuracy

score is greater than the one in Case I (CAII = 86.85%). The mean false-

positive rate is also lower in the Case II, FPRII = 1.87%. This conclusion is

supported by the fact that we are interested in as much classification accu-

racy and precision as possible because we are mainly interested in correctly

classified regions of interest with high precision.

4An empirical observation.

58 Marko Prelevikj

Classes TPR FPR recall precision F

cow 0.4372 0.0170 0.4372 0.8609 0.4959

horse NaN NaN NaN NaN NaN

sheep 0.5249 0.0167 0.5249 0.9351 0.6210

aeroplane 0.2606 0.0059 0.2606 0.8923 0.3735

car 0.4120 0.0227 0.4120 0.7141 0.4671

bicycle 0.3068 0.0121 0.3068 0.4759 0.2985

bird 0.3506 0.0069 0.3506 0.8509 0.4263

chair 0.0967 0.0103 0.0967 0.3320 0.1456

cat 0.4681 0.0444 0.4681 0.8289 0.5224

dog 0.5634 0.0979 0.5634 0.8796 0.6284

boat 0.2909 0.0077 0.2909 0.6999 0.3258

background 0.9844 0.5347 0.9844 0.8924 0.9290

Table 5.3: Detailed statistics of Case I for the experiment in Section 5.6.

Classes TPR FPR recall precision F

aeroplane 0.3624 0.0075 0.3624 0.9418 0.5010

bicycle 0.2789 0.0204 0.2789 0.8034 0.3690

bird 0.3110 0.0117 0.3110 0.9936 0.4108

boat 0.3603 0.0144 0.3603 0.8822 0.4561

car 0.4544 0.0141 0.4544 0.8934 0.5104

cat 0.4139 0.0333 0.4139 0.9863 0.5449

chair 0.0910 0.0174 0.0910 0.8236 0.1585

cow 0.5106 0.0189 0.5106 0.9983 0.6380

dog 0.1796 0.0110 0.1796 0.9707 0.2715

horse 0.4676 0.0198 0.4676 0.9968 0.5861

sheep 0.6828 0.0367 0.6828 0.9905 0.7925

background 0.9821 0.4514 0.9821 0.9099 0.9381

Table 5.4: Detailed statistics of Case II for the experiment in Section 5.5.

Bachelor’s Thesis 59

CA = 83.11% CA = 86.85%

Figure 5.7: Confusion matrices for the experiment in Section 5.5. On the left is

Case I, and on the right is Case II.

Original image Ground-truth

Prediction Error rate

Figure 5.8: Sample image from Case I for the experiment in Section 5.5.

60 Marko Prelevikj

Original image Ground-truth

Prediction Error rate

Figure 5.9: Sample image from Case II for the experiment in Section 5.5.

Bachelor’s Thesis 61

5.6 Dominance of the background class

In all previous experiments it is very obvious that the background class is

dominating with a high false-positive rate. This is very likely due to the fact

that this class is over-saturated with a lot of learning examples for the SVM

classifier. In order to solve the over-saturation problem, images which do

not contain any annotations of the overlapping classes listed in Section 5.1.3

are removed. This caused both of the datasets to be reduced in the amount

of data they are consisted of, keeping only the images which contain rele-

vant annotations (exact numbers stated in Section 5.1.3). With the updated

datasets we simply repeat the same experiment, as described in Section 5.5,

and use the same annotation for Case I and Case II.

The confusion matrices of the classification accuracy from this experiment

are shown in Figure 5.10. In both cases, there is an increase of the mean

false-positive rate of all the classes excluding the background class, with re-

spect to the previous experiment described in Section 5.4, FPRI = 2.62%

and FPRII = 2.32%. The FPR of the background class is decreased in both

cases, FPRbg
I = 49.53%; FPRbg

II = 35.70%. The reduction of the background

class FPR can be seen in the confusion matrices in Figure 5.10. The columns

representing the background class are no longer as dense as in Figure 5.7 and

the values are dispersed throughout all other classes causing the mean FPR

to rise.

The mean true-positive rate is also increased, in Case I just slightly

TPRI = 38.77%, whilst in Case II is significantly increased for nearly 10%,

TPRII = 46.52%. The true-positive rate of the background class in both

cases has slightly dropped, TPRbg
I = 97.58%; TPRbg

II = 97.50%. While the

mean precision is PI = 66.62%, and is not changed at all, but PII = 91.38%

has slightly dropped. The background class precision is P bg
I = 90.19%;

P bg
II = 87.79%. In both cases it has slightly dropped. The decrease of pre-

cision rate is caused by the increase of the mean FPR rate. More detailed

statistics are available in Appendix B.

Sample images from this experiment are presented in Figures 5.11 and 5.12.

62 Marko Prelevikj

From the examples, we notice that most of the errors are caused by the im-

perfect annotations. In Case II there is also another class in the prediction,

which manifests the dispersion of the FPR, shown in Figure 5.10.

The described results confirm the hypothesis that reducing the datasets

will reduce the dominance of the background class. Unfortunately the re-

duction of the background class dominance cause the false-positive rate to

disperse through the rest of the classes and decrease the performance of

our method. The results also confirm the conclusion from Section 5.5, that

transferring knowledge from the VOC 2007 dataset to the MSRC dataset,

i.e. Case II, is better than Case I.

CA = 82.89% CA = 83.00%

Figure 5.10: Confusion matrix for the experiment in Section 5.6. On the left is

presented Case I, and on the right is presented Case II.

Bachelor’s Thesis 63

Original image Ground-truth

Prediction Error rate

Figure 5.11: Sample image from Case I for the experiment in Section 5.6.

64 Marko Prelevikj

Original image Ground-truth

Prediction Error rate

Figure 5.12: Sample image from Case II for the experiment in Section 5.6.

Bachelor’s Thesis 65

5.7 Combined knowledge

Finally, we would like to verify whether or not the performance is going to

rise if both datasets are combined. We hypothesise that the result should

improve, since the definition of the classes is expanded with examples from

both datasets. We combined the training sets of both reduced datasets,

trained a classifier based on the features extracted from the new training

set and tested on the pre-segmented inputs of combined test sets from both

datasets.

The obtained confusion matrices of the classification accuracy from this

experiment are presented in Figure 5.13. The training set confusion matrix

displays a very dense diagonal, yielding a high rate of classification accuracy

CAtrain = 88.26% and a very low mean false-positive rate FPRtrain = 1.88%.

The true-positive rate is TPRtrain = 80.12% and the precision is Ptrain =

76.23%. These satisfactory results are expected due to the fact that they

are obtained from the data the classifier was trained on. On the other hand

the test set confusion matrix also displays a rather dense diagonal, with

classification accuracy rate of CAtest = 81.60%. However, the mean false

positive rate FPRtest = 2.89% is slightly higher, and it can be seen how the

false-positive samples are scattered throughout the rest of the classes, not

only the background class, which was the case in our previous experiments.

This caused a drastic drop of FPR rate of the background class (FPRbg
test =

21.31%), which is illustrated in the confusion matrix with lower density of the

background class column. The true-positive rate of the testing set (TPRtest =

61.42%) is significantly improved in comparison to results obtained by the

transfer of knowledge (experiments in Sections 5.5 and 5.6), but also notably

lower than the original experiment in Section 5.3. The precision Ptest =

78.14%, is not as good as in Case II in experiments from Sections 5.5 and 5.6,

it has significantly dropped due to the mixture of classes from both datasets.

Both datasets are do not contain enough samples in order to be able to

generalise well the definitions from each dataset jointly. Detailed statistics

per class are provided in Appendix C.

66 Marko Prelevikj

Sample images are shown in Figure 5.14. Contrary to all of the previous

sample images, in this case we notice significant presence of classes other

than the ones present in the ground-truth. This is due to the dispersion of

the false-positive rate to the rest of the classes.

In this experiment we have significantly reduced the dominance of the

background class, causing the false positive samples to be scattered to the rest

of the classes. The diagonal of the confusion matrix is much more emphasised

than the rest of the experiments, but there are also a lot of misclassified

samples in other classes. This causes the confusion matrix to be corrupted

with a lot of impurity, thus it is better to have a high false-positive rate of

the background class. The reason why this is better is because the error

is more predictable. We could more confidently say that whenever an error

occurs it belongs to the background class. In our case, the most frequent error

is caused by the weak labels, i.e. the imperfect contours of the annotated

objects. Due to these reasons, our hypothesis is not confirmed.

CA = 88.26% CA = 81.60%

Figure 5.13: Confusion matrix of the classification accuracy for the experiment

in Section 5.7. On the left is a confusion matrix of the combined train sets, and

on the right is the confusion matrix of the combined test sets.

Bachelor’s Thesis 67

Original image Ground-truth

Prediction Error rate

Original image Ground-truth

Prediction Error rate

Figure 5.14: Sample images for the experiment in Section 5.7.

68 Marko Prelevikj

Chapter 6

Conclusion

The design of a rescue robot requires a reliable vision module. Our work

focuses on the semantic segmentation part of the vision module. We test a

method for semantic segmentation and incorporate transfer of knowledge to

it. The transfer of knowledge allows us to reuse knowledge obtained from

other datasets to our unlabelled dataset.

This thesis provides an extended analysis of how the method by Cimpoi et

al. [10] works, and further contributes to its semantic segmentation approach

with the introduction of a background class in order to improve its overall

accuracy. The [10] method is based on extracting image features using CNNs,

and encoding them into feature vectors, which are suitable for training a

classification method, in our case an SVM.

Our experiments focus on transfer of knowledge between MSRC [48] and

PASCAL VOC 2007 [16] datasets. First of all, we set a reference point with

measuring the dataset accuracy, by running the method on each dataset

separately. We also measure how do different thresholds of pre-segmented

images, i.e., how the size and number of region proposals influence the overall

performance. We found out that the region proposals with the most similar

sizes to the ground-truth segments yield the best results. Our main focus is

set on transfer of knowledge and by cross-testing the knowledge obtained from

the datasets we discovered that the performance is dropped. The drop is due

69

70 Marko Prelevikj

to conflictive class definitions across datasets. The statistics of the results

disclosed that the PASCAL VOC 2007 dataset has broader definitions and

the performance is better for transfer of knowledge. We noticed that our

contribution, the background class, causes a strong false-positive rate due

to its over-saturation of learning examples. This anomaly is both negative

and positive. We reduced the background class FPR by removing all images

which do not contain relevant annotations after the dataset intersection, but

this caused the mean FPR of all non-background classes to rise and reduce

the overall performance. Having a high background class FPR is positive

because the likelihood of getting an error from a non-background class is

very low, meaning that whenever an error occurs it is most probably of the

background class. Finally, we combined the datasets together and found out

that this removes the background class dominance, i.e. its high FPR, but

due to very broad definitions of the classes and the dispersion of the FPR

throughout the non-background classes, the performance is dropped.

Overall, given the size of the datasets and the limited computational

resources, the obtained results are at a satisfactory level and show that our

improved version of the [10] method works well on small sized datasets. Our

results motivate us to do extended analysis regarding this matter in the

future.

6.1 Future work

Our experiments were done on fairly small datasets, which are not repre-

sentable for real-world cases. In the future we would like to test whether or

not our experiments would scale up into big datasets. We hypothesise that

bigger datasets have more generalised definition of their classes, and due to

this fact we would like to test whether the performance is going to be dras-

tically changed if we transfer the obtained knowledge between datasets.

We would like our method to work in real-time on a rescue robot. This is

a highly demanding task because the robot is required to do each task very

Bachelor’s Thesis 71

fast: obtain data about from its environment (the disaster area), execute the

pre-segmentation of the obtained data, categorize each segment and provide

feedback. The robot’s purpose is exploring a disaster area and it is of utmost

importance to be as accurate and as fast as possible.

72 Marko Prelevikj

Appendices

73

Appendix A

Pre-segmentation threshold

statistics

This is an appendix to the experiment in Section 5.4. We provide the detailed

mean statistics for each class which is in the intersection of MSRC and VOC

2007 datasets. The statistics are consisted of true-positive rate (TPR), false-

positive rate (FPR), recall, precision and F measure.

75

76 Marko Prelevikj

Classes TPR FPR recall precision F

aeroplane 0.6280 0.0037 0.6280 0.8320 0.6775

bicycle 0.5209 0.0088 0.5209 0.4684 0.4221

bird 0.7438 0.0053 0.7438 0.8935 0.7840

boat 0.6310 0.0065 0.6310 0.8294 0.6723

car 0.6596 0.0136 0.6596 0.5595 0.4923

cat 0.7432 0.0124 0.7432 0.9197 0.7825

chair 0.7945 0.0271 0.7945 0.3914 0.4737

cow 0.6956 0.0091 0.6956 0.8723 0.7349

dog 0.7548 0.0123 0.7548 0.8759 0.7898

horse 0.6519 0.0082 0.6519 0.7986 0.6788

sheep 0.7035 0.0146 0.7035 0.9016 0.7532

other 0.9555 0.2036 0.9555 0.9355 0.9404

Table A.1: Results from VOC 2007, threshold = 0.15.

Classes TPR FPR recall precision F

aeroplane 0.6970 0.0058 0.6970 0.8038 0.7155

bicycle 0.6237 0.0160 0.6237 0.4516 0.4638

bird 0.8358 0.0078 0.8358 0.8645 0.8311

boat 0.6623 0.0108 0.6623 0.7907 0.6678

car 0.7005 0.0180 0.7005 0.5573 0.5153

cat 0.8357 0.0163 0.8357 0.9056 0.8411

chair 0.8023 0.0335 0.8023 0.3845 0.4687

cow 0.7046 0.0138 0.7046 0.8939 0.7472

dog 0.7677 0.0157 0.7677 0.8549 0.7769

horse 0.7339 0.0164 0.7339 0.7571 0.7026

sheep 0.7155 0.0184 0.7155 0.8932 0.7584

other 0.9472 0.1927 0.9472 0.9454 0.9416

Table A.2: Results from VOC 2007, threshold = 0.3.

Bachelor’s Thesis 77

Classes TPR FPR recall precision F

aeroplane 0.7300 0.0088 0.7300 0.7907 0.7294

bicycle 0.6394 0.0230 0.6394 0.4232 0.4442

bird 0.8290 0.0130 0.8290 0.8236 0.8025

boat 0.6934 0.0141 0.6934 0.7827 0.6845

car 0.7248 0.0230 0.7248 0.5602 0.5204

cat 0.8176 0.0263 0.8176 0.8971 0.8101

chair 0.7837 0.0397 0.7837 0.3637 0.4521

cow 0.7033 0.0197 0.7033 0.8672 0.7339

dog 0.7856 0.0197 0.7856 0.8380 0.7764

horse 0.7573 0.0238 0.7573 0.7300 0.7089

sheep 0.6974 0.0286 0.6974 0.8743 0.7353

other 0.9413 0.2111 0.9413 0.9462 0.9385

Table A.3: Results from VOC 2007, threshold = 0.45.

Classes TPR FPR recall precision F

aeroplane 0.7421 0.0160 0.7421 0.7418 0.7193

bicycle 0.7137 0.0413 0.7137 0.4382 0.4892

bird 0.7839 0.0241 0.7839 0.8439 0.7798

boat 0.7124 0.0174 0.7124 0.7871 0.7156

car 0.7071 0.0309 0.7071 0.5581 0.5069

cat 0.8758 0.0383 0.8758 0.8696 0.8450

chair 0.7320 0.0506 0.7320 0.3587 0.4119

cow 0.6694 0.0339 0.6694 0.8298 0.6851

dog 0.8199 0.0391 0.8199 0.7958 0.7678

horse 0.7146 0.0415 0.7146 0.7027 0.6565

sheep 0.6968 0.0482 0.6968 0.8339 0.7065

other 0.9367 0.2771 0.9367 0.9436 0.9343

Table A.4: Results from VOC 2007, threshold = 0.65.

78 Marko Prelevikj

Classes TPR FPR recall precision F

aeroplane 0.8237 0.0680 0.8237 0.6881 0.7138

bicycle 0.8012 0.1025 0.8012 0.3911 0.4808

bird 0.7931 0.0279 0.7931 0.8902 0.7973

boat 0.6762 0.0340 0.6762 0.7175 0.6604

car 0.6985 0.0558 0.6985 0.5791 0.5284

cat 0.8787 0.0874 0.8787 0.7544 0.7606

chair 0.6937 0.0720 0.6937 0.3990 0.4211

cow 0.7011 0.1134 0.7011 0.7009 0.6044

dog 0.8473 0.0746 0.8473 0.7798 0.7595

horse 0.6428 0.0666 0.6428 0.5948 0.5654

sheep 0.7128 0.1141 0.7128 0.7884 0.7022

other 0.9329 0.4477 0.9329 0.9275 0.9203

Table A.5: Results from VOC 2007, threshold = 0.85.

Appendix B

Reduced set statistics

This is an appendix to the experiment in Section 5.6. We provide the detailed

mean statistics for each class which is in the intersection of MSRC and VOC

2007 datasets. The statistics are consisted of true-positive rate (TPR), false-

positive rate (FPR), recall, precision and F measure.

79

80 Marko Prelevikj

Classes TPR FPR recall precision F

aeroplane 0.7184 0.0099 0.7184 0.8182 0.7271

bicycle 0.7242 0.0165 0.7242 0.3960 0.4588

bird 0.8014 0.0110 0.8014 0.8409 0.7849

boat 0.6897 0.0120 0.6897 0.7126 0.6172

car 0.7776 0.0205 0.7776 0.5663 0.5619

cat 0.8609 0.0609 0.8609 0.8797 0.8476

chair 0.7593 0.0505 0.7593 0.2751 0.3517

cow 0.6588 0.0245 0.6588 0.8045 0.6600

dog 0.7552 0.0222 0.7552 0.8428 0.7479

horse 0.8061 0.0205 0.8061 0.7210 0.7328

sheep 0.7405 0.0409 0.7405 0.7943 0.7326

other 0.9101 0.1449 0.9101 0.9641 0.9323

Table B.1: Reduced set statistics for VOC 2007 data-set.

Bachelor’s Thesis 81

Classes TPR FPR recall precision F

aeroplane 0.4404 0.0189 0.4404 0.8625 0.4953

bicycle NaN NaN NaN NaN NaN

bird 0.7255 0.0468 0.7255 0.9292 0.7818

boat 0.2812 0.0061 0.2812 0.8228 0.3808

car 0.3792 0.0253 0.3792 0.6228 0.4045

cat 0.2081 0.0142 0.2081 0.4400 0.2120

chair 0.2569 0.0074 0.2569 0.8668 0.3375

cow 0.1612 0.0144 0.1612 0.4950 0.2245

dog 0.5109 0.0467 0.5109 0.8648 0.5520

horse 0.5543 0.0731 0.5543 0.8127 0.5935

sheep 0.3593 0.0088 0.3593 0.6121 0.3678

other 0.9758 0.4953 0.9758 0.9019 0.9307

Table B.2: Reduced set statistics for transferring the knowledge from MSRC to

VOC 2007.

82 Marko Prelevikj

Classes TPR FPR recall precision F

cow 0.7218 0.0119 0.7218 0.9903 0.8294

horse 0.3044 0.0010 0.3044 0.9990 0.3800

sheep 0.7689 0.0044 0.7689 0.9919 0.8633

aeroplane 0.6025 0.0121 0.6025 0.9175 0.7192

car 0.7131 0.0245 0.7131 0.8960 0.7738

bicycle 0.5638 0.0756 0.5638 0.7803 0.6374

bird 0.6858 0.0055 0.6858 0.9625 0.7784

chair 0.6959 0.0110 0.6959 0.9622 0.7973

cat 0.7614 0.0204 0.7614 0.9673 0.8399

dog 0.7278 0.0160 0.7278 0.9514 0.7920

boat 0.5132 0.0098 0.5132 0.7804 0.5566

other 0.9788 0.2763 0.9788 0.9036 0.9372

Table B.3: Reduced set statistics from the MSRC data-set.

Bachelor’s Thesis 83

Classes TPR FPR recall precision F

cow 0.4657 0.0122 0.4657 0.9557 0.6001

horse 0.4804 0.0487 0.4804 0.7365 0.5509

sheep 0.3513 0.0075 0.3513 0.9936 0.4421

aeroplane 0.4289 0.0219 0.4289 0.8315 0.4840

car 0.6156 0.0139 0.6156 0.8994 0.6752

bicycle 0.6248 0.0405 0.6248 0.9876 0.7440

bird 0.1007 0.0196 0.1007 0.7919 0.1573

chair 0.5197 0.0163 0.5197 0.9967 0.6440

cat 0.2771 0.0132 0.2771 0.8853 0.3528

dog 0.5106 0.0226 0.5106 0.9969 0.6220

boat 0.7423 0.0386 0.7423 0.9768 0.8339

other 0.9750 0.3570 0.9750 0.8779 0.9191

Table B.4: Reduced set statistics of transferring the knowledge from VOC 2007

to MSRC.

84 Marko Prelevikj

Appendix C

Combined datasets

This is an appendix to the experiment in Section 5.7. We provide the detailed

mean statistics for each class which is in the intersection of MSRC and VOC

2007 datasets. The statistics are consisted of true-positive rate (TPR), false-

positive rate (FPR), recall, precision and F measure.

85

86 Marko Prelevikj

Classes TPR FPR recall precision F

aeroplane 0.7631 0.0107 0.7631 0.8224 0.7749

bicycle 0.7079 0.0274 0.7079 0.5581 0.5838

bird 0.8133 0.0104 0.8133 0.8812 0.8269

boat 0.7391 0.0118 0.7391 0.6801 0.6607

car 0.8674 0.0196 0.8674 0.6938 0.7181

cat 0.8448 0.0195 0.8448 0.9039 0.8601

chair 0.8419 0.0462 0.8419 0.4429 0.4976

cow 0.7598 0.0116 0.7598 0.9218 0.8086

dog 0.8444 0.0135 0.8444 0.8563 0.8338

horse 0.8442 0.0173 0.8442 0.6979 0.7480

sheep 0.7869 0.0192 0.7869 0.9268 0.8417

background 0.9236 0.1418 0.9236 0.9592 0.9381

Table C.1: Reduced and combined datasets results of the train set.

Classes TPR FPR recall precision F

aeroplane 0.5767 0.0116 0.5767 0.8739 0.6602

bicycle 0.6485 0.0361 0.6485 0.5968 0.5999

bird 0.6335 0.0115 0.6335 0.9353 0.7095

boat 0.4540 0.0114 0.4540 0.6823 0.4800

car 0.6969 0.0295 0.6969 0.6856 0.6146

cat 0.6930 0.0791 0.6930 0.8967 0.7305

chair 0.5918 0.0450 0.5918 0.4158 0.4119

cow 0.6142 0.0297 0.6142 0.9003 0.7136

dog 0.5657 0.0218 0.5657 0.8958 0.6294

horse 0.5701 0.0208 0.5701 0.8061 0.5883

sheep 0.7121 0.0211 0.7121 0.9068 0.7879

background 0.9205 0.2131 0.9205 0.9284 0.9186

Table C.2: Reduced and combined datasets results of the test set.

Bachelor’s Thesis 87

88 Marko Prelevikj

Bibliography

[1] Pablo Arbelaez. Boundary extraction in natural images using ultramet-

ric contour maps. In Proceedings of the 2006 Conference on Computer

Vision and Pattern Recognition Workshop, CVPRW ’06, pages 182–,

Washington, DC, USA, 2006. IEEE Computer Society.

[2] Yojna Arora, Abhishek Singhal, and Abhay Bansal. Article: A study of

applications of rbf network. International Journal of Computer Appli-

cations, 94(2):17–20, May 2014.

[3] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. Surf: Speeded up

robust features. In European conference on computer vision, pages 404–

417. Springer, 2006.

[4] Christopher M. Bishop. Pattern Recognition and Machine Learning (In-

formation Science and Statistics). Springer-Verlag New York, Inc., Se-

caucus, NJ, USA, 2006.

[5] Matthew Brown and David G Lowe. Automatic panoramic image stitch-

ing using invariant features. International journal of computer vision,

74(1):59–73, 2007.

[6] S. Calinon, F. Guenter, and A. Billard. On learning, representing, and

generalizing a task in a humanoid robot. IEEE Transactions on Systems,

Man, and Cybernetics, Part B (Cybernetics), 37(2):286–298, April 2007.

89

90 Marko Prelevikj

[7] João Carreira and Cristian Sminchisescu. Cpmc: Automatic object seg-

mentation using constrained parametric min-cuts. IEEE Trans. Pattern

Anal. Mach. Intell., 34(7):1312–1328, 2012.

[8] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman. Return of

the devil in the details: Delving deep into convolutional nets. In British

Machine Vision Conference, 2014. arXiv, 1405.3531.

[9] Francois Chollet. How convolutional neural networks see the world.

https://blog.keras.io/how-convolutional-neural-networks-

see-the-world.html, Jan 2016. Online; accessed Jan, 2017.

[10] Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, and Andrea

Vedaldi. Deep filter banks for texture recognition, description, and seg-

mentation. International Journal of Computer Vision, 118(1):65–94,

2016.

[11] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Mach.

Learn., 20(3):273–297, September 1995.

[12] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for

human detection. In Computer Vision and Pattern Recognition, 2005.

CVPR 2005. IEEE Computer Society Conference on, volume 1, pages

886–893. IEEE, 2005.

[13] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet:

A Large-Scale Hierarchical Image Database. In CVPR09, 2009.

[14] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient

methods for online learning and stochastic optimization. J. Mach. Learn.

Res., 12:2121–2159, July 2011.

[15] Ian Endres and Derek Hoiem. Category independent object proposals.

In Proceedings of the 11th European Conference on Computer Vision:

Part V, ECCV’10, pages 575–588, Berlin, Heidelberg, 2010. Springer-

Verlag.

https://blog.keras.io/how-convolutional-neural-networks-see-the-world.html
https://blog.keras.io/how-convolutional-neural-networks-see-the-world.html

Bachelor’s Thesis 91

[16] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisser-

man. The PASCAL Visual Object Classes Challenge 2007 (VOC2007)

Results. http://host.robots.ox.ac.uk/pascal/VOC/voc2007/. On-

line; accessed December, 2016.

[17] Nazli Farajidavar. Transductive transfer learning for computer vision.

PhD thesis, University of Surrey (United Kingdom), 2015.

[18] D.A. Forsyth and J. Ponce. Computer Vision: A Modern Approach.

Pearson Education, 2011.

[19] Yoshua Bengio Ian Goodfellow and Aaron Courville. Deep learning.

Book in preparation for MIT Press, 2016.

[20] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan

Long, Ross Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe:

Convolutional architecture for fast feature embedding. In Proceedings of

the 22Nd ACM International Conference on Multimedia, MM ’14, pages

675–678, New York, NY, USA, 2014. ACM.

[21] Andrej Karpathy. Cs231n convolutional neural networks for visual recog-

nition. http://cs231n.github.io/, February 2016. Online; accessed

December 2016.

[22] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic opti-

mization. arXiv preprint arXiv:1412.6980, 2014.

[23] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of fea-

tures from tiny images. Technical report, 2009. University of Toronto.

[24] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet

classification with deep convolutional neural networks. In F. Pereira,

C. J. C. Burges, L. Bottou, and K. Q. Weinberger, editors, Advances

in Neural Information Processing Systems 25, pages 1097–1105. Curran

Associates, Inc., 2012.

http://host.robots.ox.ac.uk/pascal/VOC/voc2007/
http://cs231n.github.io/

92 Marko Prelevikj

[25] B. Kulis, K. Saenko, and T. Darrell. What you saw is not what you

get: Domain adaptation using asymmetric kernel transforms. In CVPR

2011, pages 1785–1792, June 2011.

[26] Dong C. Liu and Jorge Nocedal. On the limited memory bfgs method

for large scale optimization. Mathematical Programming, 45(1):503–528,

1989.

[27] Yandong Liu. Loss function. http://www.cs.cmu.edu/~yandongl/

loss.html. Online; accessed Jan, 2017.

[28] Grgoire Montavon, Genevive Orr, and Klaus-Robert Mller. Neural Net-

works: Tricks of the Trade. Springer Publishing Company, Incorporated,

2nd edition, 2012.

[29] Michael A Nielsen. Neural networks and deep learning. http://

neuralnetworksanddeeplearning.com/chap2.html, 2015. Determina-

tion Press. Online; accessed December, 2016.

[30] Christopher Olah. Calculus on computational graphs: Backpropa-

gation. https://colah.github.io/posts/2015-08-Backprop/, Aug

2015. Online; accessed December, 2016.

[31] Maxime Oquab, Leon Bottou, Ivan Laptev, and Josef Sivic. Learn-

ing and transferring mid-level image representations using convolutional

neural networks. In Proceedings of the 2014 IEEE Conference on Com-

puter Vision and Pattern Recognition, CVPR ’14, pages 1717–1724,

Washington, DC, USA, 2014. IEEE Computer Society.

[32] P.B. Osgood. Lecture Notes for EE 261 the Fourier Transform and Its

Applications. CreateSpace Independent Publishing Platform, 2014.

[33] Liam Pedersen, David Kortenkamp, David Wettergreen, I Nourbakhsh,

and David Korsmeyer. A survey of space robotics. 2003.

http://www.cs.cmu.edu/~yandongl/loss.html
http://www.cs.cmu.edu/~yandongl/loss.html
http://neuralnetworksanddeeplearning.com/chap2.html
http://neuralnetworksanddeeplearning.com/chap2.html
https://colah.github.io/posts/2015-08-Backprop/

Bachelor’s Thesis 93

[34] F. Perronnin and C. Dance. Fisher kernels on visual vocabularies for

image categorization. In 2007 IEEE Conference on Computer Vision

and Pattern Recognition, pages 1–8, June 2007.

[35] Matti Pietikäinen, Abdenour Hadid, Guoying Zhao, and Timo Ahonen.

Local Binary Patterns for Still Images, pages 13–47. Springer London,

London, 2011.

[36] Jordi Pont-Tuset, Pablo Arbelaez, Jonathan T Barron, Ferran Marques,

and Jitendra Malik. Multiscale combinatorial grouping for image seg-

mentation and object proposal generation. IEEE transactions on pattern

analysis and machine intelligence, 39(1):128–140, 2017.

[37] Hemhanshu Pota, Ray Eaton, Jayantha Katupitiya, and SD Pathirana.

Agricultural robotics: A streamlined approach to realization of au-

tonomous farming. In Industrial and Information Systems, 2007. ICIIS

2007. International Conference on, pages 85–90. IEEE, 2007.

[38] Kate Saenko, Brian Kulis, Mario Fritz, and Trevor Darrell. Adapting Vi-

sual Category Models to New Domains, pages 213–226. Springer Berlin

Heidelberg, Berlin, Heidelberg, 2010.

[39] Karen Simonyan and Andrew Zisserman. Very deep convolutional net-

works for large-scale image recognition. arXiv preprint arXiv:1409.1556,

2014.

[40] Ilya Sutskever. Training recurrent neural networks. PhD thesis, Univer-

sity of Toronto, 2013.

[41] Ilya Sutskever, James Martens, George E Dahl, and Geoffrey E Hinton.

On the importance of initialization and momentum in deep learning.

ICML (3), 28:1139–1147.

[42] Tijmen Tieleman and G Hinton. Lecture 6.5-rmsprop, coursera: Neural

networks for machine learning. University of Toronto, Tech. Rep, 2012.

94 Marko Prelevikj

[43] Peter Tino, Lubica Benuskova, and Alessandro Sperduti. Artificial Neu-

ral Network Models, pages 455–471. Springer Berlin Heidelberg, Berlin,

Heidelberg, 2015.

[44] Patrick Triest. Would you survive the titanic? a guide to machine learn-

ing in python part 3. http://www.kdnuggets.com/2016/07/titanic-

machine-learning-guide-part-3.html, July 2016. Online; accessed

April, 2017.

[45] Vladimir Vapnik, Steven E Golowich, Alex Smola, et al. Support vector

method for function approximation, regression estimation, and signal

processing. Advances in neural information processing systems, pages

281–287, 1997.

[46] Andrea Vedaldi. Fisher vector fundamentals. http://www.vlfeat.org/

api/fisher-fundamentals.html. Online; accessed December, 2016.

[47] Andrea Vedaldi and Jiri Matas. Modern features: advances,

applications, and software. https://sites.google.com/site/

eccv12features/, October 2012. Online; accessed December, 2016.

[48] John M. Winn, Antonio Criminisi, and Thomas P. Minka. Object cate-

gorization by learned universal visual dictionary. In ICCV, pages 1800–

1807. IEEE Computer Society, 2005.

[49] Bianca Zadrozny and Charles Elkan. Transforming classifier scores into

accurate multiclass probability estimates. In Proceedings of the Eighth

ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, KDD ’02, pages 694–699, New York, NY, USA, 2002.

ACM.

http://www.kdnuggets.com/2016/07/titanic-machine-learning-guide-part-3.html
http://www.kdnuggets.com/2016/07/titanic-machine-learning-guide-part-3.html
http://www.vlfeat.org/api/fisher-fundamentals.html
http://www.vlfeat.org/api/fisher-fundamentals.html
https://sites.google.com/site/eccv12features/
https://sites.google.com/site/eccv12features/

	Abstract
	Povzetek
	Razširjeni povzetek
	Introduction
	Related work
	Thesis layout

	Texture recognition
	Digital Images
	Texture
	Image Features
	Feature descriptors
	Feature vectors
	Classification

	Artificial Neural Networks
	General overview
	Back-propagation
	Learning process of an ANN
	Types of ANNs and their application
	Convolutional Neural Networks (CNNs)

	Our approach
	Transfer of Knowledge
	Semantic segmentation
	Our contribution

	Experimental analysis
	Dataset description
	List of experiments
	Dataset accuracy
	Pre-segmentation threshold
	Transfer of knowledge
	Dominance of the background class
	Combined knowledge

	Conclusion
	Future work

	Appendices
	Pre-segmentation threshold statistics
	Reduced set statistics
	Combined datasets
	Bibliography

