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Abstract	

A	growing	literature	shows	that	body	posture	modulates	the	perception	of	touch,	as	

well	as	somatosensory	processing	more	widely.	In	this	study,	I	investigated	the	effects	

of	changes	in	the	internal	postural	configuration	of	the	hand	on	the	perceived	distance	

between	touches.	In	two	experiments	participants	positioned	their	hand	in	two	

postures,	with	the	fingers	splayed	(Apart	posture)	or	pressed	together	(Together	

posture).	In	Experiment	1,	participants	made	forced-choice	judgments	of	which	of	two	

tactile	distances	felt	bigger,	one	oriented	with	the	proximal-distal	hand	axis	(Along	

orientation)	and	one	oriented	with	the	medio-lateral	hand	axis	(Across	orientation).	In	

Experiment	2,	participants	made	verbal	estimates	of	the	absolute	distance	between	a	

single	pair	of	touches,	in	one	of	the	two	orientations.	Consistent	with	previous	results,	

there	was	a	clear	bias	to	perceive	distances	in	the	across	orientation	as	larger	than	

those	in	the	along	orientation.	Perceived	tactile	distance	was	also	modulated	by	posture,	

with	increased	judgments	in	both	orientations	when	the	fingers	were	splayed.	These	

results	show	that	changes	in	the	internal	posture	of	the	hand	modulate	the	perceived	

distance	between	touches	on	the	hand,	and	add	to	a	growing	literature	showing	

postural	modulation	of	touch.	
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	 Several	forms	of	somatosensory	perception	require	that	immediate	sensory	

signals	be	combined	with	higher-level	representations	of	the	body1.	Recent	research	

investigating	these	body	representations	has	revealed	that	they	feature	large	spatial	

distortions,	both	in	the	case	of	position	sense2–8	and	tactile	distance	perception9–19.	In	

both	of	these	domains	there	are	substantial	biases	for	distance	oriented	with	the	medio-

lateral	axis	of	the	limbs	to	be	overestimated	in	comparison	to	distances	oriented	in	the	

proximo-distal	axis20.	Other	studies	have	found	that	changes	to	the	internal	posture	of	

the	hand	(i.e.,	the	relative	position	of	the	parts	of	the	hand	with	respect	to	each	other)	

alter	the	organization	of	body	maps	in	somatosensory	cortex21–23.	I	recently	found	that	

changing	the	internal	posture	of	the	hand	leads	to	rapid	changes	in	the	size	of	

perceptual	maps	of	the	hand	underlying	position	sense24.	The	present	study	thus	

investigated	whether	changes	in	hand	posture	produce	similar	changes	in	perceived	

tactile	distance.	

	

Perceptual	distortions	of	tactile	distance	

	 In	his	classic	investigations	of	touch,	Weber25	observed	that	as	he	moved	the	two	

points	of	a	compass	across	his	skin	it	felt	as	if	the	points	became	farther	apart	as	they	

moved	from	a	region	of	relatively	low	sensitivity	(e.g.,	the	forearm)	to	a	region	of	

relatively	high	sensitivity	(e.g.,	the	hand).	This	effect,	commonly	known	as	Weber’s	

illusion,	has	been	replicated	in	many	subsequent	studies10,12,18,26,27,	which	have	found	a	

generally	systematic	relation	between	perceived	tactile	distance	and	tactile	spatial	

sensitivity,	as	if	the	familiar	distortions	of	the	somatosensory	homunculus28	are	

preserved	in	perception.	

	 Similar	perceptual	distortions	have	also	been	found	comparing	stimuli	in	

different	orientations	on	a	single	skin	surface.	In	general,	stimuli	oriented	across	the	
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medio-lateral	axis	of	the	arms	are	perceived	as	larger	than	stimuli	oriented	along	the	

proximo-distal	limb	axis9,13,15–18.	Similar	biases	have	also	been	found	on	the	legs9	and	

the	face29.	Longo	and	Haggard13	suggested	that	both	the	classic	Weber’s	illusion	and	the	

orientational	anisotropies	in	perceived	tactile	distance	could	result	from	the	geometry	

of	receptive	fields	(RFs)	of	neurons	in	somatosensory	cortex.	RFs	are	smaller	on	highly	

sensitive	skin	surfaces	than	on	less	sensitive	surfaces30,31	and	are	generally	oval-shaped	

on	the	limbs,	elongated	along	the	proximo-distal	limb	axis32,33.	

	 The	results	described	in	the	previous	two	paragraphs	show	that	perceived	tactile	

distance	is	shaped	by	the	low-level	organization	of	the	somatosensory	system.	Other	

results,	however,	show	that	it	is	also	modulated	by	higher-level	representations	of	the	

body.	For	example,	visual	magnification	of	the	forearm	leads	to	a	reduction	of	the	

baseline	magnitude	of	Weber’s	illusion	comparing	stimuli	on	the	forearm	and	hand10.	

Other	studies	have	shown	analogous	modulations	of	perceived	tactile	distance	by	

modulations	of	the	body	induced	by	proprioceptive	illusions11,	auditory	experience14,34,	

vision	of	the	body16,	categorical	segmentation	of	the	body	at	joints17,35,	and	tool	

use15,36,37.	Thus,	the	perception	of	tactile	distance	is	shaped	both	from	the	bottom-up	by	

the	basic	organization	of	the	somatosensory	system,	and	from	the	top-down	by	

multisensory	representations	of	body	size	and	shape.	

	

Postural	effects	on	touch	

Several	lines	of	research	have	shown	that	changes	in	body	posture	modulate	the	

processing	of	touch.	For	example,	in	the	classic	‘crossed	hands	deficit’,	the	ability	to	

discriminate	the	temporal	order	of	two	touches,	one	on	each	hand,	is	dramatically	

impaired	when	the	limbs	are	crossed38–42.	The	perceived	location	of	touch	appears	to	be	

coded	based	on	the	usual	location	of	the	limb,	rather	than	it’s	actual	location,	for	the	
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first	80-100	ms	following	touch43.	Similarly,	crossing	the	arms	over	the	body	midline	

reduces	the	perceived	intensity	of	body	tactile	and	painful	stimuli44.	In	contrast,	

crossing	individual	fingers	seems	not	to	lead	to	updating	of	posture,	even	with	delays	as	

long	as	700	ms45,	as	seen	in	the	classic	‘Aristotle	illusion’	in	which	an	object	placed	

between	crossed	fingertips	is	perceived	to	be	two	distinct	objects46.	In	another	study,	

interleaving	the	fingers	of	the	two	hands	impaired	judgments	of	which	hand	was	

touched,	but	not	of	the	identity	of	the	touched	finger47.	This	pattern	suggests	that	hand	

identity,	but	not	finger	identity,	is	coded	based	on	external	spatial	locations,	though	for	

a	different	view	see48.		Similarly,	Tamè	and	colleagues49	found	that	patterns	of	

interference	between	homologous	fingers	were	modulated	by	the	congruency	in	

posture	between	the	two	hands.	

Other	studies	have	found	that	limb	posture	modulates	tactile	impairments	

following	stroke.	For	example,	Medina	and	Rapp50	described	a	patient	who	experienced	

bilateral	sensations	on	both	the	right	and	left	hands	when	touch	was	applied	only	to	the	

left	hand,	a	condition	known	as	‘synchiria’.	The	strength	of	synchiria	was	systematically	

modulated	by	the	posture	of	the	limbs	in	space,	becoming	stronger	as	the	limbs	were	

moved	towards	the	contralesional	right	hemispace.	Similarly,	several	studies	of	tactile	

extinction,	in	which	patients	fail	to	perceive	touch	on	the	contralesional	hand	when	

presented	simultaneously	with	touch	on	the	ipsilesional	hand,	have	found	that	the	

strength	of	extinction	is	modulated	by	the	posture	of	the	limbs51–57.		

Neuroimaging	studies	have	revealed	that	changes	in	the	internal	postural	

configuration	of	the	hand	modulates	processing	in	somatosensory	cortex.	Hamada	and	

Suzuki21,22	used	magnetoencepholography	(MEG)	to	investigate	activations	to	electrical	

stimuli	applied	to	the	thumb	and	index	finger	when	the	hand	was	‘open’	(with	fingers	

spread	apart)	or	‘closed’	(with	the	fingers	close,	but	not	touching).	This	postural	change	
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modulated	both	the	pattern	of	interactions	between	the	two	fingers21	and	the	distance	

between	the	dipoles	for	the	two	digits	in	secondary	somatosensory	cortex22.	These	

results	suggest	that	changes	in	the	internal	posture	of	the	hand	produce	rapid	

modulations	of	low-level	somatotopic	maps.	Similarly,	Stavrinou	and	colleagues23	taped	

together	the	four	fingers	of	participants’	hands,	inducing	an	experimental	form	of	

‘syndactyly’,	analogous	to	surgical	interventions	performed	in	monkeys58.	Half	an	hour	

following	taping,	the	distance	between	MEG	dipoles	for	the	index	and	little	fingers	was	

reduced	relative	to	baseline,	suggesting	that	the	representations	of	the	fingers	had	

become	less	distinct.	

Two	recent	behavioural	studies	have	found	that	spreading	the	fingers	apart	

reduces	mislocalisations	between	the	fingers59,60,	consistent	with	the	above	results	

suggesting	that	an	open	hand	posture	makes	digit	representations	more	distinct.	

Similarly,	Tamè	and	colleagues60	also	found	that	spreading	the	fingers	led	to	an	increase	

in	the	number	of	unstimulated	fingers	in-between	two	stimulated	fingers,	a	classic	

measure	of	structural	body	representations61.	Most	directly	relevant	to	the	current	

study,	I	recently	found	that	implicit	perceptual	maps	underlying	position	sense	are	

modulated	by	hand	posture24.	Specifically,	when	the	fingers	were	splayed,	the	maps	

were	expanded	in	size	compared	to	when	the	fingers	were	pressed	together,	resulting	

in	an	increase	in	the	overestimation	of	hand	width	and	a	decrease	in	the	

underestimation	of	finger	length.	In	contrast,	no	modulation	of	map	size	was	apparent	

in	a	previous	study	comparing	two	conditions	which	differed	in	terms	of	the	rotation	of	

the	hand	relative	to	the	torso2.	Thus,	it	is	not	changes	in	posture	in	general	that	affected	

hand	representation,	but	specifically	changes	in	the	internal	posture	of	the	hand,	that	is	

in	the	posture	of	the	parts	of	the	hand	relative	to	each	other,	rather	than	to	the	larger	

spatial	structure	of	the	body.	
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The	present	study	

	 This	study	investigated	the	effects	of	internal	hand	posture	on	the	perception	of	

tactile	distance.	Given	the	results	described	above	showing	that	an	open	hand	posture	

makes	the	representations	of	the	fingers	more	distinct,	I	predicted	that	it	would	

similarly	lead	to	an	increase	in	perceived	tactile	distance	across	the	width	of	the	hand.	

Participants	placed	their	left	hands	into	two	postures,	with	the	fingers	either	pressed	

together	or	splayed	apart.	In	Experiment	1,	participants	made	two-alternative	forced-

choice	(2AFC)	about	which	of	two	tactile	distances	felt	larger,	one	oriented	with	the	

medio-lateral	hand	axis	and	the	other	with	the	proximo-distal	axis.	Perceptual	bias	in	

the	two	postures	was	assessed	by	identifying	the	ratio	between	the	two	stimuli	at	which	

they	were	subjectively	perceived	as	equal.	In	Experiment	2,	participants	made	verbal	

size	estimates	of	the	extent	of	single	tactile	distances.	

	

Experiment	1	–	Forced-Choice	Judgments	

Method	

Participants.	Eighteen	members	of	the	Birkbeck	community	(nine	women)	

between	17	and	41	years	of	age	(M:	30.7	years)	participated.	All	participants	but	one	

were	right-handed	as	assessed	by	the	Edinburgh	Inventory62	(M:	75.94).	All	participants	

gave	written	informed	consent	before	participating.	Procedures	were	approved	by	the	

Department	of	Psychological	Sciences	ethics	committee	at	Birkbeck,	University	of	

London,	and	were	in	accordance	with	the	principles	of	the	Declaration	of	Helsinki.	

	

	 Procedures.	The	stimuli	were	wooden	sticks	which	tapered	to	a	point	(~1mm)	

but	were	not	sharp,	similar	to	those	we	have	used	in	previous	studies13,16,19,29,63,64.	Pairs	
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of	sticks	were	mounted	in	foamboard,	separated	by	20,	30,	or	40	mm.	On	each	trial	the	

participant	was	touched	on	the	dorsum	of	the	left	hand	with	two	tactile	distances	in	

sequence,	one	oriented	with	the	mediolateral	hand	axis	and	the	other	oriented	with	the	

proximodistal	hand	axis.	Each	touch	was	applied	manually	by	the	experimenter	for	

approximately	one	second	with	an	inter-stimulus	interval	of	approximately	one	second.	

Manual	delivery	of	stimuli	has	the	drawback	that	the	duration,	inter-stimulus	interval,	

and	pressure	of	stimuli	are	not	exactly	matched	from	trial	to	trial.	Nevertheless,	such	

stimulation	was	preferred	given	that	it	produces	a	clear	and	firm	tactile	sensation,	

which	is	difficult	to	create	with	other	stimuli	such	as	solenoid	tappers.	Moreover,	

manual	delivery	makes	it	easy	to	jitter	the	exact	location	of	stimulation	from	trial-to-

trial	in	order	to	avoid	adaptation	or	sensitization	of	specific	areas	of	skin.	

	

Participants	made	unspeeded	verbal	2AFC	judgments	of	whether	the	first	or	the	

second	distance	felt	bigger.	Across	trials,	there	were	five	different	pairs	of	distances,	

varying	in	the	ratio	of	the	distances	in	the	across	and	along	orientations	(across/along):	

20/40	mm,	20/30	mm,	30/30	mm,	30/20	mm,	40/20	mm.	

	 Across	blocks,	the	internal	posture	of	the	participant’s	hand	was	manipulated,	as	

in	my	recent	study	measuring	proprioceptive	hand	maps24.	In	each	case,	the	participant	

sat	at	a	table	with	their	left	hand	resting	comfortably	on	the	table,	with	the	palm	facing	

down.	In	the	Together	posture,	the	participant	was	asked	to	place	the	fingers	of	their	

hand	together	(Figure	1,	left	panel).	In	the	Apart	posture,	the	participant	was	asked	to	

spread	the	fingers	apart	by	the	maximum	amount	that	would	be	comfortable	to	hold	

throughout	the	entire	block	(Figure	1,	right	panel).	

	 There	were	four	blocks	of	trials,	two	of	each	hand	posture.	The	order	of	the	

blocks	was	counterbalanced	in	an	ABBA	fashion,	with	the	first	block	being	
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counterbalanced	across	participants.	Each	block	consisted	of	40	trials,	consisting	of	

eight	repetitions	of	each	of	the	five	trials	types.	Within	these	eight	repetitions	the	order	

of	the	across	and	along	stimuli	were	counterbalanced.	The	40	trials	within	each	block	

were	presented	in	random	order.	Participants	were	allowed	to	take	a	short	break	

between	blocks,	and	were	blindfolded	throughout	the	experiment.	

	
Figure	1:	The	two	postures	used.	In	the	Apart	posture	(left	panel)	the	participant	was	asked	to	
hold	their	hand	with	the	fingers	spread	as	far	apart	as	would	be	comfortable	to	hold	throughout	
the	block.	In	the	Together	posture	(right	panel),	they	were	asked	to	hold	their	hand	with	the	
fingers	pressed	together.	

	

	 Analysis.	For	each	trial	type,	the	proportion	of	trials	in	which	the	‘across’	distance	

was	judged	as	larger	than	the	‘along’	distance	was	calculated.	These	proportions	were	

analyzed	as	a	function	of	the	ratio	of	the	size	of	the	across	and	along	distances,	plotted	

using	a	logarithmic	scale	to	produce	a	symmetric	distribution	around	a	ratio	of	1	(i.e.,	

the	ratio	at	which	the	two	distances	are	actually	the	same	size).	Cumulative	Gaussian	

functions	were	fit	to	the	data	from	each	participant	using	maximum-likelihood	

estimation	with	the	Palmedes	toolbox65	for	MATLAB	(Mathworks,	Natick,	MA).	
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	 The	criteria	for	exclusion	of	participants	was	if	the	psychometric	function	had	an	

R2	lower	than	0.5	in	either	condition,	as	in	other	recent	studies	from	our	lab	using	this	

paradigm29,63.	In	fact,	however,	good	fit	was	obtained	in	all	cases,	so	no	participants	

were	excluded.	

	 The	psychometric	functions	fit	to	the	data	are	characterized	by	two	parameters,	

the	mean	and	the	slope	(i.e.,	1/SD).	The	mean	of	the	Gaussian	indicates	where	it	crosses	

0.5	on	the	y-axis,	and	corresponds	to	the	point-of-subjective-equality	(PSE),	the	ratio	

between	the	across	and	along	distances	at	which	they	are	perceived	as	being	equally	far	

apart.	If	there	were	no	perceptual	bias,	PSEs	should	on	average	equal	1;	that	is,	the	

distances	should	be	perceived	as	the	same	size	when	they	actually	are	the	same	size.	If	

there	were	a	bias	to	perceive	along	distances	as	farther	apart	than	across	one,	then	PSEs	

should	on	average	be	larger	than	1	(i.e.,	the	across	distance	should	need	to	be	larger	

than	the	along	one	for	them	to	be	perceived	as	equal).	In	contrast,	if	there	were	a	bias	to	

perceive	across	distances	as	farther	apart	than	along	ones,	then	PSEs	should	on	average	

be	less	than	1	(i.e.,	the	along	distance	should	need	to	be	larger	than	the	across	one	for	

them	to	be	perceived	as	equal).	Studies	using	this	paradigm	have	consistently	found	

PSEs	to	be	less	than	1,	indicating	a	bias	to	perceive	across	distances	on	the	hand	dorsum	

as	farther	apart	than	along	ones13,16,17,29,36,63.	The	second	parameter,	the	slope	(the	

inverse	of	the	standard	deviation)	reflects	the	steepness	of	the	psychometric	function.	

Large	values	of	the	slope	indicate	precise	judgments.	

	 To	assess	anisotropy	in	each	posture,	one-sample	t-tests	were	used	to	compare	

mean	PSEs	to	a	ratio	of	1.	To	compare	anisotropy	in	the	two	postures,	a	paired	t-test	

was	used.	Because	the	PSE	is	defined	as	a	ratio	of	two	distances,	they	were	log-

transformed	before	t-tests	were	performed.	Slopes	in	the	two	postures	were	also	

compared	using	a	paired	t-test.	In	addition,	performance	in	the	two	postures	was	
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compared	using	a	5x2	repeated-measures	analysis	of	variance	(ANOVA),	including	ratio	

(0.5,	0.67,	1,	1.5,	2)	and	posture	(Together,	Apart)	as	factors.	Where	Mauchley’s	test	

indicated	a	violation	of	the	sphericity	assumption,	the	Greenhouse-Geisser	correction	

was	applied.	

	 As	measures	of	effect	size,	Cohen’s	d	is	provided	for	one-sample	t-tests,	dz	for	

paired	t-tests,	and	ηp2	for	F-tests.	

	

Results	and	Discussion	

	 The	results	of	Experiment	1	are	shown	in	Figure	2.	R2	values	indicated	good	fit	to	

the	data,	with	psychometric	functions	accounting	for	an	average	of	95.7%	(SD:	5.8%)	of	

the	between-condition	variance	in	the	Together	posture	and	96.8%	(SD:	3.0%)	in	the	

Apart	posture.	Clear	anisotropies	were	apparent	both	in	the	together	posture	(Mean	

PSE:	0.844),	t(17)	=	-3.60,	p	<	0.005,	Cohen’s	d	=	0.849,	and	in	the	apart	posture	(Mean	

PSE:	0.820),	t(17)	=	-4.17,	p	<	0.001,	Cohen’s	d	=	0.982.	Critically,	however,	the	

magnitude	of	anisotropy	did	not	differ	between	the	two	postures,	t(17)	=	1.17,	n.s.,	dz	=	

0.276.	There	was	a	strong	correlation	between	PSEs	in	the	two	postures,	r(16)	=	0.803,	

p	<	0.0001.	There	was	also	no	significant	difference	in	the	slopes	of	psychometric	

functions	between	the	two	postures,	t(17)	=	0.68,	n.s.,	dz	=	0.160.	

An	ANOVA	on	the	percentage	of	‘across’	responses	across	conditions	revealed	a	

significant	main	effect	of	the	ratio	between	the	across	and	along	stimuli,	F(2.22,	37.68)	=	

243.57,	p	<	0.0001,	ηp2	=	0.935,	but	no	main	effect	of	posture,	F(1,	17)	=	1.02,	n.s.,	ηp2	=	

0.057,	and	no	interaction	between	ratio	and	posture,	F(4,	68)	=	0.35,	n.s.,	ηp2	=0.020.	



Posture	and	Tactile	Distance	

	 12	

	
Figure	2:	Results	of	Experiment	1.	Data	from	the	Curves	fit	to	data	are	cumulative	Gaussian	
functions.	The	dashed	vertical	lines	indicate	PSEs	(i.e.,	where	each	curve	crosses	0.5).	Clear	
anisotropy	was	apparent	in	both	conditions	(i.e.,	PSEs	are	less	than	1),	with	distances	oriented	
across	the	hand	perceived	as	larger	than	those	oriented	along	the	hand.	However,	there	was	no	
difference	in	the	magnitude	of	anisotropy	in	the	two	postures.	Error	bars	are	one	standard	error.	

	

	 These	results	replicate	the	anisotropy	for	tactile	distance	perception	on	the	hand	

dorsum	which	has	been	reported	previously9,13,15–17,29,36,	with	distances	oriented	across	

the	width	of	the	hand	being	perceived	as	larger	than	distances	oriented	along	the	length	

of	the	hand.	The	magnitude	of	this	anisotropy,	however,	did	not	appear	to	be	modulated	

by	hand	posture.	These	results	thus	provide	no	evidence	that	hand	posture	modulates	

the	perception	of	tactile	distance.	A	limitation	of	this	experiment,	however,	is	that	

because	it	assessed	the	relative	perception	of	stimuli	in	the	two	orientations,	it	would	

not	be	able	to	identify	isotropic	changes	in	perceived	tactile	distance.	That	is,	if	posture	

produced	similar	changes	in	both	to	tactile	distances	in	both	the	across	and	along	

posture,	no	apparent	change	would	have	been	found	in	this	experiment.	In	the	case	of	
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proprioceptive	perceptual	maps,	spreading	the	fingers	apart	produced	increases	in	

perceived	distances	in	both	orientations24.	Thus,	I	ran	a	second	experiment	in	which	

participants	made	absolute	estimates	of	the	size	of	individual	tactile	distances	in	either	

the	across	or	along	orientations.	

	

Experiment	2	–	Absolute	Size	Judgments	

Method	

Participants.	Sixteen	members	of	the	Birkbeck	community	(nine	women)	

between	22	and	45	years	of	age	(M:	30.6	years)	participated.	All	gave	written	informed	

consent	before	participating.	Testing	started	on	one	additional	participant,	but	was	

stopped	midway	through	because	he	reported	feeling	only	a	single	touch	on	a	large	

majority	of	trials.	

	

Procedures.	Stimuli	were	identical	to	those	in	Experiment	1.	On	each	trial,	the	

participant	was	touched	on	the	dorsum	of	their	left	hand	by	a	single	tactile	distance,	

which	lasted	approximately	one	second.	Participants	made	unspeeded	verbal	

judgments	of	the	perceived	distance	between	the	two	touches	by	giving	a	number	in	cm.	

Participants	were	allowed	to	respond	using	inches	if	they	were	more	comfortable	doing	

so	(two	participants	responded	in	inches).	Participants	were	instructed	to	be	as	precise	

as	possible	in	their	judgments	and	to	consider	using	decimal	responses	(e.g.,	2.4	cm	

rather	than	just	2	cm).	They	were	allowed	to	give	a	response	of	0	cm	if	they	felt	only	one	

touch.	

As	in	Experiment	1,	there	were	four	blocks,	two	of	each	posture,	

counterbalanced	in	ABBA	fashion	with	the	first	posture	counterbalanced	across	

participants.	Each	blocks	consisted	of	48	trials,	including	eight	repetitions	of	each	
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combination	of	orientation	(across,	along)	and	stimulus	size	(20,	30,	40	mm),	in	random	

order.	There	were	thus	192	trials	in	total.	Participants	were	allowed	to	take	a	short	

break	between	blocks,	and	were	blindfolded	throughout	the	experiment.	

	

Analysis.	For	each	participant,	we	identified	outlier	trials	in	which	the	

participant’s	response	was	more	than	3	standard	deviations	from	their	average	

response	for	distances	of	that	size.	Overall,	0.39%	of	trials	were	excluded	as	outliers.	

	

Results	and	Discussion	

	 The	results	are	shown	in	Figure	3.	Perceived	distance	increased	monotonically	

with	actual	distance	in	all	conditions.	Linear	regressions	fit	to	individual	participant	

data	collapsed	across	postures	showed	excellent	linear	fit	accounting	for	98.3%	(SD:	

0.02%)	of	the	between	stimulus	variance	in	the	across	orientation	and	95.8%	(SD:	

0.06%)	in	the	along	orientation.	There	was	a	significant	main	effect	of	stimulus	size,	

F(1.04,	15.53)	=	22.47,	p	<	0.0005,	ηp2	=	0.600.	In	addition,	there	was	a	main	effect	of	

orientation,	F(1,	15)	=	31.82,	p	<	0.0001,	ηp2	=	0.0680,	with	distances	in	the	across	

orientation	judged	as	larger	than	those	in	the	along	orientation.	Most	importantly,	there	

was	a	significant	main	effect	of	posture,	F(1,	15)	=	10.72,	p	<	0.01,	ηp2	=	0.417,	with	

distances	judged	as	larger	with	the	hand	in	the	apart	posture	than	in	the	together	

posture.	Follow-up	t-tests	using	Holm-Bonferroni	correction	for	multiple	comparisons	

indicated	that	judged	distances	were	larger	in	the	apart	than	in	the	together	posture	for	

both	across	stimuli,	t(15)	=	2.35,	p	<	0.05,	dz	=	0.588,	and	for	along	stimuli,	t(15)	=	3.28,	

p	<	0.01,	dz	=	0.820.	

	 There	was	a	significant	interaction	of	stimulus	size	and	orientation,	F(2,	30)	=	

13.00,	p	<	0.0001,	ηp2	=	0.464,	with	the	difference	between	the	two	orientations	
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increasing	with	stimulus	size.	There	were,	however,	no	significant	interactions	

involving	posture	(all	p’s	>	0.45).	

	

Figure	3:	Results	from	Experiment	2,	showing	judged	distance	as	a	function	of	actual	distance	for	
each	condition.	As	in	Experiment	1,	across	distances	were	judged	as	larger	than	along	distances.	
Critically,	there	was	also	an	effect	of	posture.	Distances	in	both	orientations	were	judged	as	
larger	when	the	hand	was	in	the	Apart	posture	than	when	it	was	in	the	Together	posture.	

	

General	Discussion	

	 The	present	results	show	that	changes	in	the	internal	posture	of	the	hand	do	not	

alter	the	perception	of	the	relative	distance	between	pairs	of	touches	in	the	across	vs.	

along	orientation	(Experiment	1),	but	do	lead	to	absolute	increases	in	perceived	tactile	

distance	in	both	orientations	(Experiment	2).	This	modulation	by	changes	in	the	

internal	postural	configuration	of	the	hand	is	in	contrast	to	previous	results	showing	

that	rotation	of	the	entire	hand	does	appear	to	modulate	perceived	tactile	distance	13.	
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These	results	contribute	to	a	growing	literature	showing	that	body	posture	modulates	

the	perception	of	touch38–50,60,66–72.		

	 Independent	of	hand	posture,	there	was	a	clear	bias	to	overestimate	distances	

oriented	across	the	width	of	the	hand	compared	to	those	oriented	along	the	length	of	

the	hand.	This	was	apparent	both	for	forced-choice	judgments	(Experiment	1)	and	

absolute	size	estimates	of	individual	stimuli	(Experiment	2).	These	results	add	to	a	

growing	literature	showing	large	anisotropies	of	perceived	tactile	distance	on	the	

arms9,13,15–17,29,36,	as	well	as	on	the	leg9	and	face29.	This	pattern	mirrors	lower-level	

aspects	of	the	organization	of	the	somatosensory	system,	such	as	the	greater	tactile	

acuity	in	the	medio-lateral	limb	axis25,73	and	the	fact	that	RFs	of	somatosensory	neurons	

are	generally	oval-shaped	with	the	long	axis	aligned	with	the	proximo-distal	limb	

axis32,33.		

The	results	of	the	present	study	investigating	tactile	distance	perception	are	

similar	to	those	of	a	recent	study	showing	the	implicit	hand	maps	underlying	position	

sense24.	In	that	study,	I	found	that	splaying	the	fingers	led	to	an	increase	in	the	size	of	

perceptual	hand	maps	in	both	the	proximo-distal	axis	(indexed	by	the	distance	between	

the	knuckle	and	tip	of	each	finger)	and	the	medio-lateral	axis	(indexed	by	the	distance	

between	pairs	of	knuckles).	The	present	results	showing	clear	increases	in	perceived	

tactile	distance	in	both	orientations	with	fingers	splayed	is	clearly	consistent	with	that	

result.	Broadly	similar	distortions	are	found	for	both	position	sense2,4,74,75	and	tactile	

distance	perception9,13,15,16,	with	clear	overestimation	of	hand	width	relative	to	length	in	

both	cases.	Perceptual	distortions	in	both	position	sense	and	tactile	distance	perception	

parallel	these	characteristics	of	the	somatosensory	system,	but	are	smaller	in	

magnitude	than	would	be	expected	by,	for	example,	RF	size	alone10,20.	Thus,	similar	
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distortions	are	found	in	both	position	sense	and	tactile	distance	perception	and	they	are	

both	similarly	modulated	by	internal	hand	posture.		

What	changes	in	somatosensory	processing	lead	to	the	present	results?	Several	

studies	using	MEG	have	found	that	splaying	the	fingers	leads	to	an	increase	in	the	

distance	between	dipoles	for	touch	on	different	fingers21–23.	These	results	suggest	that	

an	open	posture,	such	as	the	apart	condition	in	the	present	study,	leads	to	an	increase	in	

the	distinctiveness	of	different	parts	of	the	hand.	Thus,	the	whole	hand	may	essentially	

be	represented	as	larger	when	the	fingers	are	splayed,	potentially	leading	to	the	

increase	in	perceived	tactile	distance	described	here.	When	the	fingers	are	pressed	

together,	the	hand	may	be	represented	more	as	a	single	functional	unit,	while	with	

fingers	splayed	it	may	be	conceived	as	a	collection	of	distinct	parts.	This	interpretation	

is	consistent	with	the	recent	finding	of	Tamè	and	colleagues60	that	splaying	the	fingers	

leads	to	an	increase	in	the	perceived	number	of	fingers	judged	as	‘in-between’	two	

stimulated	fingers.	Such	changes	with	hand	posture	may	relate	to	different	functional	

modes	of	hand	use,	such	as	the	classic	distinction	between	power	grips	in	which	the	

fingers	work	as	a	single	units	vs.	precision	grips	in	which	the	fingers	work	more	

independently76.	
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