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Abstract 

The majority of organic marine fish farms currently begin the production cycle with non-

organic juveniles from conventional hatcheries, permitted by the European Regulation on 

organic fish origin (EC 710/2009) until the end of 2016. Wild juvenile gilthead seabream 

(Sparus aurata) from coastal lagoons and hatcheries were experimentally reared under 

organic conditions, in order (1) to investigate differences in fillet lipid content and fatty 

acids composition, and (2) to propose a possible future source of juveniles destined for 

organic aquaculture. Wild juveniles were readily distinguishable by their fatty acid 

signature, showing significantly higher ratio levels of n-3 polyunsaturated fatty acids and 

n-3/n-6. Fillet lipid composition of organically fed wild S. aurata juveniles was preferable 

to that from domesticated juveniles. These results seem promising for organic 

aquaculture, where fish feed is more environmentally sustainable but is of lower   

nutritional quality. 
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Introduction 

Attention has been focused on organic aquaculture due to a number of factors. Diminishing supply of 

fish (FAO, 2014), wild fish food-safety issues (Håstein et al., 2006), environmental concerns raised 

by conventional aquaculture practices (Perdikaris et al., 2016), increased fish consumption (FAO, 

2014), forecasts on human population growth, and increasing market share of organic foods and 

acceptance of organic products by consumers.   The development of organic aquaculture could play 

a pivotal role towards ecological and biological sustainability, maintaining a healthy aquatic 

ecosystem, respecting animal welfare, and producing high-quality food for human consumption.   

Organic fish marketing has expanded considerably, especially in Europe in the last decade 

(Bergleiter et al., 2009). Nevertheless, this branch of aquaculture is still in its infancy and faces a 

number of problems such as (1) scarce supply of certified organic juveniles, (2) rising feed cost, (3) 

high cost and the lack of uniformity in certification process, (4) limited market demand and (5) 

difficulty perceived by farmers of complying with organic rules (EC 710/2009). Until 2009 there was 

a lack of universally accepted standards and accreditation criteria regarding organic aquaculture. 

Thus, organic aquaculture   remains a niche market; European countries produced 5,382 tons of 

organic fish (marine and freshwater fish, shellfish and crustaceans), accounting for just 0.3% of 

total European aquaculture production in 2014 (Eurostat, 2014). As organic aquaculture expands, 

more species are produced under certified programmes, and this growth is expected to increase in 

the future, reaching almost 1.2 million tons in 2030, equivalent to 0.6% of the total estimated 

aquaculture production (Lem, 2004). 

The production cycle in most organic marine fish farms begins with non-organic juveniles from 

conventional hatcheries, a practice permitted until the end of 2016. Therefore, in order to allow for 

an increase in organic fish production, adequate sources of organic juveniles should be provided and 

appropriate organic broodstock should be available.  

In order to promote sustainable aquaculture, fish meal and fish oil which are declining in 

availability and increasing in price, need to be replaced with alternative ingredients,  from vegetable 

sources (Teles et al., 2001) and others (Chatzifotis et al., 2016). While replacement of up to 75% of 

the fish meal by plant proteins in sea bream diets does not reduce growth or protein retention 

(Sitja-Bobadilla et al., 2005), vegetable source based diets reduce fish flesh quality by lowering n-3 

long chain PUFA content and the n-3/n-6 PUFA ratio (de Francesco et al., 2007), particularly in 

marine fish species. Some studies have reported that increasing levels of plant ingredients in diets 

for European sea bass (Gouveia and Davies, 2000) or gilthead sea bream (Pereira and Oliva-Teles, 

2002), do not affect whole body lipid content or flesh quality (Aoki et al., 1996). 

The aim of this study was to investigate nutritional attributes (i.e., lipid content and 

characterization) of gilthead seabream (Sparus aurata L) produced from wild and hatchery bred 

juveniles and reared under organic conditions in order to assess the effects of origin on the fatty 

acid profiles of fillets. This research focused on the lipid fraction of fillets, which represents the 

added value of seafood products and whose benefits to human health have been extensively 

documented (Calder and Yaqoob, 2009). 

 

Materials and methods  

Hatchery (n = 375) and wild (n = 75) gilthead seabream juveniles were stocked at NSAqua s.r.l. 

(Viterbo, Italy) in a closed re-circulating system of polypropylene rectangular tanks (50 L) for 10 

months under natural photoperiod conditions. Temperature and salinity were constant at 20-21°C 

and 31‰, respectively.  

Organic principles applied throughout the entire experiment. Conventional hatchery juveniles 

(initial mean weight 2.46±0.31 g) were obtained from Valle Ca’ Zuliani Soc. Agricola s.r.l. (Rovigo, 

Italy). Wild juveniles (initial mean weight < 1 g) were collected in the Caprolace coastal lagoon. This 

lagoon is part of the coastal Pontine lagoon system, within the Circeo National Park, located 100 km 

south of the city of Rome in Central Italy. It has been included in the Ramsar List of Wetlands of 

International Importance since 1978. The lagoon is 2.26 km2, with an average depth of 1.3 m. 

During the trial, a group of fish was fed organic complete extruded feed for marine species, while a 

control group was fed a conventional complete extruded aquafeed. (See Table 1 for composition of 

feedstuffs). Feeding rations were calibrated according to producer indications (Naturalleva s.r.l. and 

Veronesi s.r.l.). 
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Table 1. Proximate composition of commercial feedstuffs (g / 100g) 

 Organic aquafeed Conventional aquafeed 

 Ø 2.0 mm Ø 3.0 mm Ø 1.8-2.2 mm 

 
Fish Meal, pea1, wheat1, fish 
oil, vitamins and minerals  

Fish Meal, soybean panel, 
pea1, wheat1, fish oil, 
vitamins and minerals  

Fish Meal, fish oil, soybean 
meal, wheat meal, rapeseed 
meal, vitamins and minerals  

Moisture 7.7 6.7 9.0 

Crude protein  45.0 43.0 50.0 

Crude fat  13.0 15.0 21.0 

Crude fiber 1.8 2.9 1.0 

Nitrogen free extract  21.0 20.9 10.7 

Ash  11.5 11.5 8.3 

DP/DE (mg/kJ)2 24.2 22.8 20.03 

Vitamin C (poly-P) mg/kg 1000 175 400 

Vitamin A IU/kg 9500 7000 - 

Vitamin EIU/kg 3000 2000 300 

1Organic 
2digestible protein to digestible energy ratio 

 

Three variables potentially affecting fish nutritional quality were tested: 1) aquafeed typology 

(conventional vs. organic); 2) origin of juveniles (hatchery vs. wild caught); 3) rearing density (12 

kg/m3, as recommended by EC 710/2009, vs. 6 kg/m3 ). Each of these three variables were tested 

with 2 different cultural practices: 1) conventional or organic feed; 2) hatchery or wild juveniles; 3) 

high or low density. Due to a limited supply of wild juveniles not every combination of factors (low 

density) were applied to the wild juveniles. The control treatment consisted of hatchery juveniles fed 

with conventional aquafeed, and stocked at recommended density (12 kg/m3). The experiment was 

performed in a rearing system with eight tanks. An incomplete factorial design with three treatments 

and a control was planned, each condition having two replicates. Hatchery juveniles were available 

in large quantities, thus both recommended and halved density groups were tested.  Treatments   

are described in Table 2. In order to keep density constant, fish were removed when necessary 

during growth, and water volume was consequently adjusted.  

 
Table 2. Description of treatments and abbreviations 

 Feed (F) Origin (O) Density (D) 

FCOHDH Conventional Hatchery Higher 

FOOWDL Organic Wild Lower 

FOOHDH Organic Hatchery Higher  

FOOHDL Organic Hatchery Lower 

 

Fish were reared for 10 months, a period considered sufficient to obtain "organic juveniles" (EC 

710/2009). At the end of the experiment, surviving fish were removed from each tank using a fine 

net, euthanized with a lethal dose of neutralized MS 222 (pH 7), and filleted. Fillets were stored at -

80°C. 

Management and care of the animals was in compliance with the 86/609EEC European Union 

directive guidelines. Fish were collected according to good veterinary practice under farm conditions.  

Analysis of lipids and fatty acids. Total lipids were extracted from ~1 g of muscle tissue 

(previously freeze-dried) using chloroform/methanol solvent 2:1 (v/v) as described by Folch et al. 

(1957). Lipid extracts were methylated using methanolic KOH according to IUPAC procedure. Gas 

chromatographic analysis was performed on a GC 6890 N (Agilent, Inc., California, USA) instrument. 

A CP-Sil88 capillary column (Supelco, 2560; 100 m, 0.25 mm (i.d.), 0.25 lm film thickness) was 

used to analyse the methylated fatty acid content. Operating conditions were helium flow rate of 1 

ml/min, FID detector at 300°C, split–splitless injector at 250 °C and injection volume of 1 µl. The 
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temperature regime of the column was 4 min at 140°C with a subsequent increase to 220°C at 

4°C/min and then held at 220°C for 10 min. The individual fatty acid peaks were identified by 

comparison with the retention times of a known mixture of standard fatty acids (FAME mix37; PUA-1 

Marine Source; PUFA-3, Menhaden Oil, Supelco). Fatty acids were expressed as a percentage of the 

total methylated fatty acids (FAME). 

Statistical analysis. Analysis of variance (ANOVA) was performed to test differences in fillet lipid 

content among treatments and between replicates. 

Principal component analysis (PCA) was performed to investigate variations in fatty acid 

signatures among treatment groups and to identify the fatty acids mainly responsible for this 

variation. Data on fatty acid signatures (expressed as a percentage) were normalized using an 

arcsine square root transformation. Stepwise forward discriminant analysis was applied for cross-

validation (Lawson et al., 2001) and to test the efficiency of fatty acid data in identifying treatment 

groups. This approach begins with a preliminary model that includes the variables that best separate 

groups within the dataset. In forward selection, Wilk’s lambda criterion (Mardia et al., 2000) was 

used to select new variables to be included in the model. The process ends when no new variable is 

able to improve the fitness of the model (Miller, 1984). 

The variation in selected essential fatty acids among treatment groups and replicates was 

assessed using ANOVA tests. All statistics were performed using STATISTICA 7.0 (Statsoft). 

 

Results 

Mortality was negligible in all treatment groups. No significant differences were found in fillet dry 

matter among treatment groups and replicates (75.7 ± 1.2 %). Differences between the four 

treatments in fillet lipid content were highly significant (ANOVA, df = 3, F = 55.98, p<0.001), while 

differences between replicates were not (ANOVA, p>0.05) (Table 3). The lowest lipid content was 

found in the control group (FCOHDH, 2.1%) (conventionally fed, hatchery juveniles reared at 

recommended density, while the highest lipid content was found in organically fed, wild juveniles 

reared at halved density (FOOWDL,7.5%). Hatchery juveniles, organically fed and reared at both 

higher and lower density, (FOOHDH and FOOHDL), showed an average lipid content of 4.0% and 4.3%, 

respectively. 

Fatty acid signatures of all treatment groups are detailed in Table 3. Proportions of saturated 

fatty acids (SFAs) ranged from 23.7 to 26.7%, with the highest value found for the FOOHDH group 

and the lowest found for the FOOHDL group. Palmitic acid (16:0) was the most common saturated 

fatty acid identified in all treatments followed by 14:0 (myristic acid) and 18:0 (stearic acid).  

The proportions for monounsaturated fatty acids (MUFAs) ranged from 31.1% in the control 

group (FCOHDH) to 40.0% in the FOOHDH group. Of all MUFAs, 18:1(n-9) (oleic acid) was dominant in 

all groups, followed by 16:1(n-7) (palmitoleic acid) and 18:1(n-7) (vaccenic acid).  

The proportion of polyunsaturated fatty acids (PUFAs) was lower for groups with higher MUFA 

and/or SFA content. The highest levels of PUFAs were observed in the control group (FCOHDH). 

Among organically fed juveniles, wild juveniles (FOOWDL) showed the highest PUFAs contents, while 

the hatchery group reared at lower density showed the lowest.  

Most prominent among identified PUFAs was 18:2 (n-6) (linoleic acid), whereas n-3 and n-6 

PUFAs contents showed relatively little variation among treatments (Table 3). However, n-3/n-6 

ratios were significantly different among treatments (p < 0.001), with the control (FCOHDH) and 

FCOHDH showing higher n-3/n-6 ratios (1.3). In contrast, FOOHDH and FOOHDL treatments displayed 

the lowest ratios, 0.9 and 0.8 respectively. 

https://en.wikipedia.org/wiki/Vaccenic_acid
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Table 3. Lipid content and fatty acid composition (% on total FAME) of fillets of S. aurata 
juveniles reared under different conditions 

 HOrd HOhd HCrd WOhd 

 
N = 36 

mean ± SD 
N = 25 

mean ± SD 
N = 29 

mean ± SD 
N = 27 

mean ± SD 
 Lipid content       

(% lipid dry 
 mass) 

4.0 ± 1.1 a 4.3 ± 1.0 a 2.1 ± 1.0 b 7.5 ± 2.9 c 
C14:0 3.7 ± 0.3 4.1 ± 0.5 3.8 ± 0.6 3.5 ± 0.3 

C15:0 0.3 ± 0.1 0.4 ± 0.0 0.4 ± 0.0 0.3 ± 0.0 

C16:0 15.3 ± 0.9 17.4 ± 1.8 17.4 ± 0.8 16.2 ± 0.8 

C17:0 0.3 ± 0.0 0.3 ± 0.1 0.3 ± 0.0 0.3 ± 0.0 

C18:0 3.7 ± 0.3 4.1 ± 0.4 4.4 ± 0.4 4.0 ± 0.3 

C20:0 0.3 ± 0.0 0.3 ± 0.0 0.3 ± 0.0 0.2 ± 0.0 

C21:0 0.2 ± 0.0 0.2 ± 0.0 0.2 ± 0.0 0.2 ± 0.1 

Total SFA 23.7 ± 1.2 26.7 ± 2.8 26.8 ± 1.2 24.6 ± 1.3 

 HOrd HOhd HCrd WOhd 

C16:1(n-7) 4.7 ± 0.3 5.1 ± 0.5 4.2 ± 0.8 4.9 ± 0.2 

C18:1(t-11) 0.2 ± 0.0 0.2 ± 0.0 0.2 ± 0.0 0.2 ± 0.0 

C18:1(n-9) 29.1 ± 1.6 31.2 ± 2.5 23.6 ± 3.2 26.4 ± 1.3 

C18:1(n-7) 3.2 ± 0.1 3.5 ± 0.2 3.1 ± 0.2 3.2 ± 0.1 

 HOrd HOhd HCrd WOhd 

Total MUFA 37.2 ± 2.1 40.0 ± 3.1 31.1 ± 4.1 34.6 ± 1.5 

C16:2(n-4) 0.2 ± 0.0 0.2 ± 0.0 0.2 ± 0.0 0.3 ± 0.0 

C16:3(n-4) 0.3 ± 0.0 0.3 ± 0.1 0.2 ± 0.0 0.2 ± 0.0 

C18:2(n-6) 15.1 ± 1.3 13.3 ± 3 13.2 ± 0.8 14.2 ± 0.6 

C18:3(n-6) 0.4 ± 0.1 0.3 ± 0.1 0.2 ± 0.1 0.4 ± 0.1 

C18:3(n-3) 1.0 ± 0.1 1.0 ± 0.1 0.9 ± 0.1 0.8 ± 0.0 

C18:4(n-3) 6.4 ± 0.3 5.9 ± 0.6 5.1 ± 0.6 5.7 ± 0.7 

C20:2(n-6) 0.5 ± 0.1 0.4 ± 0.1 0.4 ± 0.0 0.5 ± 0.0 

C20:2(n-3) 0.2 ± 0.0 0.2 ± 0.1 0.2 ± 0.0 0.3 ± 0.0 

C20:3(n-6) 4.1 ± 0.3 4.3 ± 0.5 3.5 ± 0.6 3.2 ± 0.4 

C20:3(n-3) 0.4 ± 0.1 0.3 ± 0.1 0.9 ± 0.3 0.6 ± 0.1 

C20:4(n-3) 0.5 ± 0.1 0.4 ± 0.2 0.4 ± 0.0 0.7 ± 0.2 

C20:5(n-3) 2.4 ± 0.5 1.7 ± 0.7 3.6 ± 0.8 4.0 ± 0.3 

C22:4(n-6) 0.1 ± 0.0 0.1 ± 0.0 0.1 ± 0.0 0.1 ± 0.0 

C22:5(n-3) 1.2 ± 0.2 0.8 ± 0.4 1.5 ± 0.3 1.8 ± 0.1 

C22:6(n-3) 6.2 ± 1.5 4.2 ± 1.7 11.6 ± 3.7 8.0 ± 1.1 

 HOrd HOhd HCrd WOhd 

Total PUFA 39.0 ± 3.2 33.3 ± 5.7 42.1 ± 4.5 40.8 ± 2.2 

ω3/ω6 0.9 ± 0.1 a 0.8 ± 0.1 a 1.3 ± 0.2 b 1.3 ± 0.2 b 

Values are mean ± St.D. of the 26 fatty acids selected in the analysis. SFA: saturated fatty acids; MUFA: 

monounsaturated fatty acids; PUFA: polyunsaturated fatty acids. Table showed only principal fatty acids also 
selected in the analysis. 

 

Principal component analysis separated groups along PC1 and PC2, explaining 88.5% of total 

variance (Fig. 1).  PC1 accounted for 74.7% of the variance and was mainly made up by PUFAs 

(22:6(n-3), 24.0%; 20:5(n-3), 11.7%; 22:5(n-3), 7.3%) and oleic acid (18:1(n-9), 15.2%). PC2 

accounted for 13.8% of the variance and was mainly associated with 18:2(n-6) (17.7%) and 16:0 

(13.7%) (Fig. 1a). Even when partially overlapped due to the high level of heterogeneity, 

experimental groups gradually separated along PC1: the positive extreme of the axis was almost 

exclusively characterized by hatchery juveniles fed a conventional diet (control - FCOHDH) and  wild 

fish fed an organic diet (FOOWDL). Organically reared juveniles at the two different stocking densities 

widely overlapped along the negative portion of PC1 (Fig. 1b). 
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The stepwise forward discriminant model included 7 variables (FAs) (Wilks' Lambda = 0.009; 

F=21.31; p < 0,001; 94.8% of variance explained) and separated group treatments with 92.4% 

correct classification rate. Misclassification occurred where a partial overlap in fatty acid signatures 

existed between treatment groups (see also Fig. 2), i.e. FOOHDH and FOOHDL displayed a lower 

percentage of correct classification (70.4 and 94.6%, respectively) with a total of six and one fish 

assigned each in the other group. FCOHDH and FOOWDL displayed the best performance with 96.6 and 

100% correct classification, with only one out of 29 FOOHDH specimens incorrectly assigned in the 

FOOHDL group. 

A selection of four FAs (one SFA: oleic acid, 18:1(n-9) and three PUFAs: EPA, 20:5(n-3); DHA, 

22:6(n-3); DPA, 22:5(n-3)) were chosen to be examined in depth due to their role in explaining 

total  variance in PCA analysis (see loadings in Fig. 1a) and also for their importance in human 

health (Colman and Yaqoob 2009) (Fig. 2). The long chain n-3 essential PUFA (EPA, DHA and DPA) 

mean values found in organically fed wild juveniles (FOOWDL) and the hatchery group fed with 

conventional aquafeed (FCOHDH) were always higher than the organically reared hatchery groups 

(FOOHDH and FOOHDL). For EPA and DPA, wild fish reached the highest values, whilst for DHA, FCOHDH 

displayed the highest content. The increase of n-3 PUFAs (especially the most abundant DHA) in 

FOOWDL and FCOHDH fish fillets resulted therefore in a reduction of oleic acid, which is the main 

monoenoic fatty acid; it was found in significantly higher percentages in organically reared hatchery 

groups (31.2 and 29.1 % for FOOHDL and FOOHDH respectively), whilst values were lower in 

conventionally fed fish (23.6%, FCOHDH). Wild juveniles organically reared (FOOWDL) showed an 

intermediate percentage of 18:1(n-9) (26.4%) (Fig. 2b). 

 

Fig 1. Principal component analysis of 
fatty acid composition of the four 
treatment groups studied. Analysis is 
based on the fatty acid signatures of 

117 specimens, using the 26 fatty 
acids presented in Table 2. (a) 

Loading plots (principal and smaller 
scale enlargement) indicate fatty acids 
contributing to the distribution of 
sample data points in the score plot; 
(b) score plot indicating relationships 
between individual fish. 
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Discussion 

Organically raised fish have only recently been offered to consumers, and organic aquaculture 

especially for marine species is in its infancy. Thus, organic broodstock and juveniles are still lacking. 

Possible supply alternatives, not from juveniles reared in non-organic hatcheries (allowed in 

decreasing percentages until 2016), are needed to increase production. The use of non-organic 

juveniles in organic production should be discouraged, as it conflicts with the principles of organic 

aquaculture regarding husbandry practices, stocking densities, and animal health management (EC 

710/2009).  

The present study focused on characterization of fillet lipid content and composition of gilthead 

seabream grown from juveniles collected in the wild and reared under organic conditions. This could 

determine if these juveniles are a suitable source for future organic aquaculture enabling an increase 

beyond current organic aquaculture limits, and therefore be a seafood product with nutritional 

attributes comparable to high-quality conventionally produced fish. Organic fish is often poor in 

essential fatty acids (Glencross, 2009).   

The present study attempted to address the following questions: 1) Do wild, organically reared 

gilthead seabream juveniles, have a unique fatty acid signature compared with hatchery juveniles? 2) 

Are wild gilthead seabream juveniles grown under organic conditions richer in polyunsaturated fatty 

acids? The results of this study showed a higher total lipid content, and, in particular, higher PUFA 

percentage in wild juveniles fed organic aquafeed, compared to domesticated ones. As aquaculture 

continues to grow, there will be increased use of alternative lipid resources, in order to reduce 

Fig 2. Percentages of four selected fatty acids 
in the treatment groups. (a) eicosapentaenoic 
acid (EPA); (b) docosahexaenoic acid (DHA); 
(c) docosapentaenoic acid (DPA); (d) oleic 

acid. The box-and-whisker plots give the 

mean values (dot), the standard deviation 
(box) and the minimum and maximum value 
(whiskers). Different letters (a, b, c, d) denote 
significant differences among groups (ANOVA, 
p < 0.05). 
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dependence on marine-based lipid sources. It seems critical to investigate factors affecting PUFA 

levels in fish, given their role in fish welfare (i.e. immunity) and product nutritional quality (Kris-

Etherton et al., 2002).  

We considered the possibility of establishing organic gilthead seabream broodstocks in coastal 

lagoons to supply the demand for organic juveniles. The present study found higher lipid content in 

fillets of gilthead seabream fed an organic diet compared with those fed conventional aquafeed. The 

results regarding the effect of diets containing plant protein ingredients on fat content of white 

muscle and liver in farmed fish are conflicting. A decrease in muscle/liver total lipid content in 

gilthead seabream fed a diet based either on soybean or rapeseed protein concentrates was 

observed (Mente et al., 2012), while others observed no effects (Pereira and Oliva-Teles, 2002; 

Güroy et al., 2012) or even an augmentation of lipid content (De Francesco et al., 2007). These 

differences in effects of vegetable protein sources on fat content in farmed fish are still under 

investigation, and are probably related to different lipid metabolism and plant protein source. The 

highest lipid content in muscle tissue in this study was observed in wild gilthead seabream 

organically fed, and kept at low density (FOOWDL). This result is open to speculation, since, as far as 

we know, it is the first time that wild sea bream juveniles have been used in organic on-growing 

experiments in direct comparison with hatchery ones. A possible explanation could be related to 

more efficient food assimilation and storage by wild specimens used to survival behaviour in natural 

conditions characterized by lower and unstable food availability in brackish water environments such 

as the Caprolace coastal lagoon (Tancioni et al., 2003).  

Stocking density seemed to have a negligible effect on fat content, as no significant differences 

were found between hatchery fish at different stocking densities fed the same organic diet. A 

significant difference in lipid content between groups appeared to be unrelated to density and 

significantly related to diet and fish origin (Table 2). Stocking density has been found to be a 

growth-impairing factor, due to altered social interactions and deterioration of water quality which 

can affect both feed intake and conversion efficiency (Ellis et al., 2002). Several studies found that 

high densities (> 30 kg/m3) affect lipid metabolism and content (Di Marco et al., 2008). However, 

comparisons with the present results are not appropriate, as stocking densities were significantly 

lower (< 11 kg/m3) and the tissues examined varied (muscle instead of liver).  

This study demonstrated that the majority of gilthead sea bream of different origin (wild vs 

hatchery) and reared under different conditions (conventional vs organic diet) could be readily 

distinguished by their fatty acid signatures. In general the fatty acid composition in fish tissues 

reflects that of the diet (Glencross, 2009), but, as shown in this study, the origin of juveniles also 

seems to play an important role. Although other factors such as size, age, reproductive status, and 

season have been identified as possibly influencing fat content and composition of fish muscle (Saito 

et al., 1999), none of these factors have been considered in the interpretation of the results. 

Even though hatchery and wild fish were fed the same organic diet, the FOOWDL group showed 

significantly higher levels of all selected n-3 PUFAs (Fig. 2a-c). Like most marine fish species, 

gilthead seabream have limited ability to convert C18 PUFA to long chain n-3 PUFAs, thus requiring 

preformed essential FAs in the diet (Mourente and Tocher, 1993). Wild fish reared in this study 

seemed to assimilate and store n-3 sources available in the diet better than their hatchery 

counterparts. The domestication process may explain this result: wild fish did not experience 

selective processes typical of captivity (i.e. relaxation of natural selection), maintaining adaptive 

skills lost through acclimatization to hatchery controlled and stable conditions (Ollivier, 1981; Price, 

1988).    

Among organically reared treatment groups, a significantly higher n-3/n-6 ratio was found in the 

wild juvenile raised fish compared to their hatchery counterparts. It must be pointed out that the n-

3/n-6 ratio in wild caught juveniles was not significantly different from that observed in the control 

group fed conventional feed. PUFA levels and n-3/n-6 ratio are dependent on aquafeed quality, so 

that extreme variation has been highlighted in previous studies comparing wild and farmed fish 

(Grigorakis et al., 2002; Orban et al., 2002). Fillet lipid composition of wild S. aurata juveniles 

organically fed in this study was superior compared to domesticated juveniles, even though the 

aquafeed used was the same for both groups.  

Organic fish feed must be environmentally sustainable (EC 710/2009, art. 25k section c) but 

presents disadvantages in terms of nutritional value. In relation to the future of organic aquaculture 

our results are promising. Further studies are needed to investigate other aspects, such as effect of 

origin of juveniles on fish growth, the role of collection site of wild juveniles on fillet quality, and 

effects on future generations. Our results may encourage sustainable organic aquaculture and the 

sustainable management of transitional environments regarding organic fish production.   
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