
 

Cronfa -  Swansea University Open Access Repository

   

_____________________________________________________________

   
This is an author produced version of a paper published in :

Journal of Materials Processing Technology

                                                 

   
Cronfa URL for this paper:

http://cronfa.swan.ac.uk/Record/cronfa2017

_____________________________________________________________

 
Paper:

Clark, D., Bache, M. & Whittaker, M. (2008).  Shaped metal deposition of a nickel alloy for aero engine applications.

Journal of Materials Processing Technology, 203(1-3), 439-448.

http://dx.doi.org/10.1016/j.jmatprotec.2007.10.051

 

 

 

 

 

 

 

 

_____________________________________________________________
  
This article is brought to you by Swansea University. Any person downloading material is agreeing to abide by the

terms of the repository licence. Authors are personally responsible for adhering to publisher restrictions or conditions.

When uploading content they are required to comply with their publisher agreement and the SHERPA RoMEO

database to judge whether or not it is copyright safe to add this version of the paper to this repository. 

http://www.swansea.ac.uk/iss/researchsupport/cronfa-support/ 

http://cronfa.swan.ac.uk/Record/cronfa2017
http://dx.doi.org/10.1016/j.jmatprotec.2007.10.051
http://www.swansea.ac.uk/iss/researchsupport/cronfa-support/ 


 

Elsevier Editorial System(tm) for Journal of Materials Processing Technology 
 
 
Manuscript Draft 
 
 
Manuscript Number:  PROTEC-D-07-00596              
 
Title:  Shaped Metal Deposition of a Nickel Alloy for Aero Engine Applications                           
 
Article Type:  Research Paper 
 
Keywords:  Alloy 718; shaped metal deposition (SMD); microstructure; aerospace components 
 
Corresponding Author:  Dr Mark Whittaker, PhD 
 
Corresponding Author's Institution:  University of Wales Swansea 
 
First Author:  Daniel Clark 
 
Order of Authors:  Daniel Clark; Martin R Bache, PhD; Mark T Whittaker, PhD 
 
Abstract:  Manufacturing trials in support of shaped metal deposition (SMD) as a commercial process for the 
near net shape processing of aero-engine components are reported. Initially, relatively simple multi-pass 
linear weld deposition beads employing the nickel based polycrystalline superalloy Alloy 718 were 
characterized, to define the microstructural condition of the substrate and superimposed welds. 
Subsequently, a developmental combustion outer casing was fabricated via a hybrid-manufacturing route. 
This casing was formed from a forged ring with additive features, which included an internal, circumferential 
flange of Alloy 718, built up via an automated, high volumetric deposition rate MIG process. Under both 
circumstances, in the post deposition heat-treated condition (aged but not solution heat treated), the γ matrix 
contained laves micro-stringers, typically orientated parallel to the axis of epitaxy, with associated δ phase 
precipitation. On the micro scale, such micro-stringers were intimately associated with cracking or shrinkage 
porosity. Bi-axial stress fields imposed during the cooling of the large scale casing structure appear to 
influence the macroscopic organisation of these weld deposition defects. 



 
 

       PRIFYSGOL CYMRU ABERTAWE             UNIVERSITY OF WALES SWANSEA                       
                                 
                                      Yr Ysgol Beirianneg              School of Engineering 
                  Parc Singleton, Abertawe SA2 8PP            Singleton Park, Swansea SA2 8PP 
 
 
The Editor 
Materials Science and Engineering A 
 
30-3-07 
 
Dear Editor, 
           Please find attached the submission of a research paper entitled "Shaped Metal Deposition of a Nickel 
Alloy for Aero Engine Applications" by Daniel Clark of Rolls-Royce plc, Martin Bache and Mark Whittaker 
of University of Wales Swansea. The work is original and has not been submitted for publication elsewhere. 
If there are any problems please contact myself (Dr Mark Whittaker) as the corresponding author, 
m.t.whittaker@swansea.ac.uk.  
I look forward to hearing from you 
 
Regards 
 
Dr Mark Whittaker 
Materials Research Centre 
School of Engineering 
University of Wales Swansea 
SA2 8PP 
Tel: +44 1792 295573 
Fax: +44 1792 295693 
E-mail: m.t.whittaker@swansea.ac.uk 

Cover Letter:  this item must contain a statement that the submission is original, and is not being submitted for publication elsewhere.



 
 

Shaped Metal Deposition of a Nickel Alloy for Aero Engine Applications 

 

D. Clark#, M.R. Bache* and M.T. Whittaker*  

 

# Rolls-Royce plc, P.O. Box 31, Derby, UK, DE24 8BJ 

 

* Materials Research Centre, School of Engineering, University of Wales Swansea, UK, 

SA2 8PP 

 

Abstract 

 

Manufacturing trials in support of shaped metal deposition (SMD) as a commercial process 

for the near net shape processing of aero-engine components are reported. Initially, 

relatively simple multi-pass linear weld deposition beads employing the nickel based 

polycrystalline superalloy Alloy 718 were characterized, to define the microstructural 

condition of the substrate and superimposed welds. Subsequently, a developmental 

combustion outer casing was fabricated via a hybrid-manufacturing route. This casing was 

formed from a forged ring with additive features, which included an internal, 

circumferential flange of Alloy 718, built up via an automated, high volumetric deposition 

rate MIG process. Under both circumstances, in the post deposition heat-treated condition 

(aged but not solution heat treated), the γ matrix contained laves micro-stringers, typically 

orientated parallel to the axis of epitaxy, with associated δ phase precipitation. On the 

* Manuscript



micro scale, such micro-stringers were intimately associated with cracking or shrinkage 

porosity. Bi-axial stress fields imposed during the cooling of the large scale casing structure 

appear to influence the macroscopic organisation of these weld deposition defects. 
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Introduction 

 

Aero gas turbine casings are designed to contain the gas stream through the compressor and 

turbine sections of the engine core. This involves the fabrication of annular structures 

offering the minimum of clearance between the internal casing wall and the rotating turbo 

machinery in order to optimize aerodynamic flow and thereby ultimate thrust and fuel 

efficiency. These structures invariably incorporate complex features such as flanges, open 

ports and bosses, necessary for joining sections of casing together or supporting peripheral 

components or control equipment. Given their complexity, casting has traditionally offered 

a suitable method for their manufacture. However, casing structures must also provide good 

structural integrity in the event of mechanical failure of the engine, i.e. they play a major 

role in containment. High strength properties are therefore essential, particularly to 

optimize design performance under high strain rates or impact. Cases manufactured from 

castings can be acceptable, however, these carry a weight penalty due to their less 



consistent mechanical properties. Shaped metal deposition (SMD) has the inherent potential 

to outperform polycrystalline castings of the same chemistry in terms of mechanical 

properties, due to the more consistent solidification conditions made possible by a 

deposition process. The basic mechanical performance will be consistent for that seen in 

welds [1-7]. During normal service, load distribution is not even, therefore, hybrid forms, 

locally incorporating SMD properties [8] may be sufficient for features not subjected to 

primary pressure loading, subject to the agreement of the relevant engineering authorities. 

With an associated need for operation at elevated temperatures, forged nickel based super 

alloy casings are commonly employed with the annular form processed via methods such as 

ring rolling. Although the combination of mechanical working and specific heat treatment 

routines provides the optimum strength requirements, the forged component typically has 

to be manufactured substantially oversize to allow for final machining of the peripheral 

features. This can involve features which are difficult to forge such as boss pedestals or 

sharp changes in section. This induces added cost in terms of labour, tooling, reduced 

material yields and significant environmental implications [9].  

 

Considerable research has been performed over recent years to retain the consistent, 

mechanical integrity benefits of ring rolled casing products whilst at the same time 

incorporating a near net shape philosophy. To this end, laboratory trials have been 

performed to assess the potential of SMD as a suitable technique for adding complex 

features to simple, relatively low stressed, substrate geometries. SMD typically involves 

increasing the thickness of material via localized, additive melting and solidification. The 

superposition of weld deposition beads is one technique that has received interest, largely 



due to the fact that the method can employ standard welding equipment without the need 

for extensive new investment. Previous workers at Rolls-Royce including the present 

authors have investigated SMD using TIG deposition and lasers as deposition heat sources 

with various consumable forms. Other workers have also investigated variants of these [10] 

and also the use of an electron beam as a heat source for deposition [11].  While these 

deposition processes have individual characteristics and limitations, there are 

commonalities. In order to achieve a high volumetric build rate, there are considerations of 

pool size and process velocity when designing a process which can practically and 

economically produce material to an acceptable level. So as to consider the effectiveness of 

a robust mechanised system, using where possible standardised equipment, metal inert gas 

(MIG) deposition was selected for the present study. It was considered that MIG welding 

could offer an attractive, high deposition rate to make the SMD process economically 

viable. MIG offers high power densities at low cost, while the use of a synergic control 

relationship allows a practical form of process control at rapid processing rates. In common 

with SMD techniques utilising TIG, lasers and electron beams linked to wire feed systems, 

the use of a consumable electrode offers a standard consumable form, with a particular 

advantage for additive manufacture of more consistent feed angles. The MIG process can 

be pulsed, doubled-up as a tandem deposition using a single automation system and 

hybridized, using a laser to control weld pool fluidity and solidification dynamics (for 

example influencing wetting behaviour around the pool perimeter and marangoni flow). 

These considerations are particularly important when considering direct manufacture of 

large scale components. Wire based deposition offers further advantages in terms of 

material utilization relative to competing powder based techniques. In the first instance, 



however, detailed characterisation of MIG depositions was required to establish the 

controlling process parameters to ensure optimum weld structures. 

 

This detailed microstructural study builds on a previous project, which provided initial 

characterisation of Alloy 718 SMD structures in terms of alloy chemistry and a limited 

mechanical property assessment [12]. The current research employed a two stage 

investigation. Initial trials were performed to lay down straight line single stringer / 

multiple layer (SS/ML) weld deposition beads on a flat forged plate substrate of Alloy 718 

using a consumable Alloy 718 electrode. The welds and the substrate were subjected to 

detailed metallographic inspection to identify the resulting metallurgical phases and 

microstructural condition [13, 14]. Subsequent to these findings, supplementary 

manufacturing trials were completed to develop the automated deposition of more complex 

geometries such as multi stringer / multi layer cylinders. This culminated in the fabrication 

of a SMD developmental ring rolled combustor casing structure which incorporated a 

number of additive features including an internal SMD / MIG flange. The SMD flange, 

containing a double stringer / multi layer architecture, was then subjected to detailed 

microstructural inspection and compared to the original findings.  

 

Although the present paper deals with the specific example of casing structures, SMD 

processes offer potential towards the manufacture or repair of many aero-engine 

components. The implications of the current work for the wider application of SMD 

techniques will be discussed. 

 



 

Experimental Methods 

 

General Welding Parameters 

 

All the SMD structures were laid down using a computer controlled Synergic MIG power 

source under robotic guidance [15]. Aerospace grade material stocks for the Alloy 718 

consumable electrode and substrate were employed. Argon gas was used as a local 

shrouding media without any additional environmental shielding. Extensive trials had 

previously optimized the key control parameters to produce repeatable, single pass 

depositions: i.e. synergic relationship, process gas, voltage, travel speed, wire feed rate, 

torch angle and stick-out (the distance between the lowest point of the welding torch and 

the work piece). This was accomplished using design of experiment (DoE) multi-variable 

analysis [16] based on deposition profile and optical microscopy [17]. The criteria for weld 

optimisation had included fusion (wetting angle/undercutting), spatter, deviation from a 

straight line [18], bead height and width, substrate penetration and defect content (porosity 

or cracking [19]). The optimized parameters were derived as per a normal cladding process 

but with specific additional constraints. These constraints were imposed due to the different 

heat flux (due to varying substrate temperatures and topography) and microstructural 

requirements. Note that the microstructural requirements were based on criteria for the as-

deposited material, the interfacial fusion region and the parent (substrate). These criteria 

also covered the post-deposition heat-treated micro-structures. A comprehensive 



metallographic examination of representative deposition geometries in various locations 

and orientations was performed as a part of the validation trials.  

 

Metallographic Sectioning 

Metallographic specimens were mounted in conductive bakelite, polished using standard 

grinding techniques, and underwent a final chemical polish with an aqueous suspension of 

colloidal silica containing 20% H2O2 (Hydrogen Peroxide). Subsequently, specimens were 

etched with a solution of 10ml HNO3, 20ml HCl, 25ml distilled water and 10ml hydrogen 

peroxide (H2O2) for approximately 150 seconds. Microstructural analysis was performed on 

both a Jeol 6100 SEM and Phillips XL30CP SEM. Chemical analyses were performed 

using a Jeol-35C SEM fitted with an Oxford Instruments EDX X-ray dispersion facility. 

 

 

Deposition trials 

 

Straight Line Single Stringer / Multiple Layer depositions 

 

Multiple pass weld beads were laid down to increase the height of a straight line deposit. 

The control parameters for single pass weld deposits, as described in Table I, were fixed 

during each layer of deposition. This essentially fixed the amount of energy supplied during 

each deposition pass, therefore, a new parameter, delay time between depositions, required 

further optimisation. An understanding of the heat build up during successive deposition 

operations, related to substrate temperature, was important since adverse effects on 



solidification dynamics could occur [20-30]. Solidification rate affects the microstructural 

condition, wetting angle of the beads, bead cross sectional depth, fusion profile and residual 

stresses. Control of the pool geometry, whether essentially elliptical or teardrop [31, 32] 

and the rate of solidification (indicated by dendrite arm spacing measurement) primarily 

influenced segregation [33-35]. The degree of segregation and solidification dynamics 

controlled the distribution of carbon-rich and topographically close packed (TCP) phase 

distribution. Relatively fast freezing and cooling to a low temperature after the most recent 

weld deposition will discourage grain growth [36] in the underlying substrate or deposition 

beads and avoid secondary precipitation [37]. These are seen as beneficial effects 

particularly with reference to the eventual high temperature mechanical properties of the 

material. On the other hand, rapid cooling may encourage high residual stresses across the 

width of the weld [38, 39], promoting hot tearing during solidification [40] or post 

solidification cracking [41]. The control of heat flux is considered a key parameter, 

influencing internal stresses and component distortion and affecting the consistency of 

welding. 

 

The delay time between depositions was optimized for a given geometry in order to provide 

a maximum interpass deposition bead temperature of approximately 80oC (measured using 

thermocouples brought into contact with the solidified as-deposited surface).  The interpass 

cooling regime was a balance based on the build parameters requiring a consistent cooling 

rate for microstructure and side-wall profile against the induced stresses from the sharp 

temperature differential. High rate deposition can otherwise allow a significant build up in 

thermal mass, which can risk an adverse precipitation response. Clearly, the ability to 



perform this interpass interval when producing larger SMD structures would be highly 

dependent on the speed of positional control offered by the robotic welding/deposition 

facility. A schematic example of single string / multiple layer weld deposition geometry is 

illustrated in Figure 1.  

 

Straight Line Double Stringer / Single Layer Depositions 

 

In order to increase the overall width of any deposited structure, parallel, multiple stringer 

welds are often required. However, from the point of view of metallurgical control, it is 

preferable to fabricate such structures from repeatable “building blocks” of consistent 

geometry and associated microstructural detail. Therefore, during the present study, 

emphasis was placed on the validation of a specific “voxel” section [42]. Hence,  a voxel 

parameter set was developed, which produced a consistent, cross sectional profile and 

internal microstructure. This imposed strict bounds to the geometrical range of validation 

for the build element. Over and above the control parameters optimized previously for 

single stringer depositions, two new parameters required consideration for the formation of 

multiple stringers on a common plane, namely the distance between adjacent weld 

deposition beads (or overlap) and the time interval between consecutive passes. Referring 

to Figure 2, the average single weld deposition bead width (i.e. twice the weld pool radius) 

during the present trials was set to 12.8 mm. The optimum distance between parallel weld 

deposition beads, from the microstructural and defect viewpoint, was found to be 6 mm, 

providing an overlap of 6.8 mm. A schematic example of double stringer weld deposition 

bead geometry is illustrated in Figure 3. The delay time between adjacent welds was 



eventually set to 2 minutes. It should be appreciated that in practice there will be allowable 

tolerances placed on such variables. 

 

Straight Line Double Stringer / Multiple Layer Depositions 

 

The final plate trials on straight line depositions combined all of the previous experience to 

form double stringer / multiple layer weld deposition bead deposits. The optimized 

parameters for single weld deposition beads were employed throughout. The time delay 

between adjacent weld deposition beads was set to 2 minutes, with 10 minutes delay 

between each layer. An example of a double stringer / six layer deposit is illustrated by the 

orthogonal section (X-Z plane) in Figure 4. Evidence of the weld stacking is obvious on the 

peripheries of this early stage example, probably as a result of the variable geometric heat 

sink as the deposit grew in volume. Although such flank features were subsequently 

minimized through process optimization, they would typically require final machining to 

eliminate stress-raising features as sites of potential service cracking [43]. Weight is also a 

consideration for aerospace, so volumetric excess may be removed for this reason alone. 

 

In general, the resulting microstructure after heat treatment consisted of a γ matrix with γ” 

and laves “micro-stringers” (note this term is used throughout to describe the microscopic 

form of the internal laves structures and should not be confused with “stringers” typically 

used in the literature to describe macroscopic weld beads) [44-47]. When viewed in the X-

Z plane, these micro-stringers were essentially parallel to the axis of epitaxy, Figure 5a, but 

rafted in an interlocking structure in the X-Y plane, Figure 5b. Co-incident with the laves 



were fine scaled δ phase needles, Figure 6. Overlay intervals longer than the optimum 10 

minutes notably encouraged “fissures” in the vicinity of the overlap region, i.e. on the 

macroscopic scale vertically along the centre of the orthogonally sectioned welds. The 

approximate location, orientation and extent of these features are indicated in Figure 4. It 

was significant that these fissures never extended into the final uppermost layer, suggesting 

they were the result of re-heating of previous weld layers. All the fissures were intimately 

related to the dominant laves micro-stringers. However, whereas under some circumstances 

they appeared as angular crack like discontinuities, Figure 7, more often than not they took 

an elongated porous appearance, Figure 8. The temporal relationship between the laves and 

the fissures was confirmed through a series of subsequent heat treatment trials. Laves are 

considered to form during extensive time at relatively high temperature. By heat treating 

specimens containing pre-existing cracks no further formation of laves occurred along the 

flanks of the fissures, indicating that during welding, the laves must have pre-dated the 

cracks or pores. 

 

SMD Cylinders 

 

A series of experimental cylindrical structures were also produced spanning single stringer / 

single layer, double stringer / single layer, single stringer / multiple layer and finally double 

stringer / multiple layer morphologies. A schematic example of such structures is illustrated 

in Figure 9. An added complication of these structures is the localized overlap and 

associated reheating at the start–stop location of individual cylindrical deposition rings. In 

addition, minor differences in the relative speeds of deposition are experienced on the outer 



and inner walls of the circular weld bead. This radial variation manifested itself as a 

variation in rate of heat loss and visually as a change in surface finish. Despite these 

factors, the macroscopic finish and metallographic condition of these cylinders essentially 

replicated the straight welds. The exercise proved to be a useful step prior to the fabrication 

of more complex three dimensional structures including casing bosses and the internal 

compressor casing flange to be described in detail below. 

 

Developmental Combustor Outer Casing – SMD Internal Flange 

 

Technical trials to assess the suitability of SMD for additive component manufacture have 

included the fabrication of a developmental (i.e. intended for ground testing only) Alloy 

718 ring rolled combustion casing incorporating an internal, circumferential SMD flange. 

The flange was composed of a double stringer / multiple layer (DSML) series of 

overlaying, circumferential MIG weld deposition beads built up via automated, robotic 

control. The key parameters controlling deposition of the MIG (argon) SMD structure are 

presented in Table II. Sixteen layers were required to build the flange to the requisite 

height. Subsequent machining operations removed the surface material from the weld beads 

to produce a final casing flange to typical specification. The entire casing was then 

subjected to a post deposition heat treatment, a check for distortion, a two stage ageing 

treatment and finally machined to tolerance.  

 

It is emphasized at this point that a solution or homogenization heat treatment may be 

preferred to optimise the specific microstructure of the SMD material. In the hybrid route 



however, consideration must be given to the effects of this heat treatment on the substrate 

component, both metallurgically and in terms of machined geometries (i.e. distortion). 

Even if substrate microstructures were substantially unaffected, for example via a localised 

thermal treatment with precisely controlled zones for the steady state isotherms, residual 

stress re-distribution and distortion of the finished form could result.  

 

At this stage, chord segments from the SMD flange were extracted from the casing, Figure 

10, by machining through the thickness of the flange adjacent to the junction with the 

internal casing wall/pedestal via a conventional turning operation. These were then cropped 

to suitable size for mounting and metallurgical polishing. The original SMD lay-up, flange 

machining operation, extraction of the chords and their relationship to the casing / SMD 

geometry are all illustrated in the sequence of schematic illustrations in Figures 11 and 12. 

A single reference system was employed to describe the orientation of the specimens and 

their internal structure. The direction of SMD build up, equivalent to the radial axis of the 

combustion casing, was designated the Z axis; the hoop direction of the casing or flange the 

Y axis; and finally the longitudinal axis of the annulus casing the X axis. 

 

In general, the microstructure within the SMD flange, when viewed at high magnification, 

was identical to the welding trials previously described, i.e. a γ matrix containing γ” and 

laves micro-stringers orientated parallel to the direction of epitaxy plus associated δ phase 

needles [12]. However, extensive sinuous cracking was also noted during low 

magnification optical inspection, even prior to chord removal. This was best illustrated after 

polishing and etching the Y-Z plane and demonstrates that the cracking transects the 



multiple weld beads, Figure 13. The orientation of these macro scale cracks appears to be 

influenced by the post weld bi-axial stress field imposed during cooling. In the Y-Z plane, 

contraction in both the radial and hoop orientations would be constrained by the 

surrounding casing. The resultant principal tensile stresses appear to be orientated at 

approximately 45o to either axis, inducing the tortuous nature of the cracking.  

 

However, at higher magnifications the local control of crack path was clearly due to the 

weld microstructure, particularly regions of dense laves precipitation. In addition, 

alternative paths for the discontinuity were offered by shrinkage porosity within the flange, 

especially in the overlaying weld zones. Laves structures tended to form in regions of 

concentrated chemical segregation, therefore, future research should focus on minimizing 

such segregation effects during thermo-mechanical processes. The main causes of 

segregation are the freezing dynamics of the weld pool, hence pool size, shape, depth and 

the substrate temperature. Where additive manufacture differs from single pass welding is 

in the various orientations of the temperature gradients and the degree of remelting (which 

can concentrate segregates in a manner similar to weld pool centreline segregation). 

Mitigation strategies can take the form of varying the tool path and deposition fill-patterns. 

These SMD techniques can also assist in maintaining level height over successive layers. 

Efforts to correlate laves and associated crack orientations to potential microtexture within 

the weld deposits, were undertaken by matching dendrite arm orientations relative to the 

laves. Such lattice texture could be acquired from the epitaxy resulting from thermal 

gradients. However, no clear orientation preferences were noted.  

 



Since volumetric non destructive evaluation (NDE) of the as welded SMD flange had not 

been performed prior to this stage of the manufacturing sequence and no samples were 

available from the as welded flange prior to machining, it can not be confirmed whether the 

mechanical removal of surface material and associated machining induced residual stresses 

were pre-requisites for the introduction of the cracking or whether these features are solely 

a result of the PDHT processes. 

 

 

Discussion 

 

The current trials have demonstrated the potential of SMD technology in the fabrication of 

complex engineering structures. Within the aerospace sector, the near net shape capability 

of additive SMD should offer obvious benefits in terms of improved materials yield and a 

reduction in mechanical surface removal operations – both key factors controlling the cost 

of individual components. SMD provides a relatively rapid manufacturing process for large 

scale features and can be automated through efficient multi-axis and multi-arm robotic 

controlled welding systems. 

 

However, detailed consideration must be given to the ultimate metallurgical and 

microstructural condition evolved during SMD manufacture. In particular, the present study 

has highlighted the presence of deleterious phases within the Alloy 718 MIG weld 

deposition structures (i.e. relatively brittle laves and δ phase segregation encouraged by 

extended time at high temperature during either deposition, through the cumulative 



exposure to transient deposition, or subsequent Post Deposition Heat Treatment (PDHT)). 

The present study has confirmed previous reports [25, 35], noting that these phases evolve 

in preferred orientations, potentially inducing an anisotropic mechanical response under 

subsequent loading. Volumetric changes associated with phase transformation may also 

have a local shearing effect across interfaces. In addition, associated discontinuities in the 

form of cracks and shrinkage porosity have been identified. In DS/ML weld deposition 

structures, the degree of reheating introduced during overlay operations appears to be 

critical for controlling the introduction of these defects [12, 45, 46]. However, despite 

systematic optimization of the major weld control parameters such features persist. This 

may prove to be a significant limitation in considering MIG for aerospace applications. 

Added to this, the adverse effects of residual stress have also been demonstrated (affected 

during either machining or PDHT operations) through the introduction of macroscopic 

cracking in this feature of the demonstrator casing component. 

 

For high integrity components in aero gas turbines subjected to relatively demanding 

loading regimes, such phases as laves and delta must either be eliminated through precise 

thermo-mechanical processing or otherwise demonstrated to be “benign” under typical 

service conditions (i.e. the component demonstrates sufficient “phase tolerance” and resists 

the formation of a critically sized crack from a pre-existing flaw over a specified period of 

operation). Given this philosophy, the major engine manufacturers appear to be adopting 

consistent strategies for additive manufacture (AM), restricting the techniques’ potential 

use to non critical component locations at this stage of process maturity [48]. Even in the 

present example of the developmental combustor casing, the SMD flange was designed as 



an additive feature upon an internal wall pedestal, ensuring the flange itself would not 

experience design limiting hoop stresses. However, casing structures routinely experience 

at least one major fatigue cycle per flight; the thermal-mechanical cycle imposed during 

normal engine use and shut down. High cycle fatigue may also be superimposed as a result 

of vibration. Therefore, improvements in additive technologies to avoid the introduction of 

crack initiating defects would clearly be advantageous. It is unlikely that MIG based SMD 

used for hybrid near net shape components without a homogenisation treatment can 

eliminate the laves phase formation, due to the restrictions on pool size and hence the 

influence on freezing rate and segregation. To this end, methods of metal deposition, 

having smaller volumetric build unit sizes, may prove more suitable for the manufacture of 

higher integrity components. By controlling the build up of material on the microscopic 

scale (for example individual molten “pools” may be less than a millimetre diameter with 

some AM techniques) any incipient porosity, the evolving grain size and the internal 

microstructure are all fundamentally smaller. The resultant volume of material should also 

demonstrate more homogeneous mechanical properties and any long range residual stresses 

minimised. Macro-scale demonstration components are currently under manufacture for 

future detailed characterization, Figure 14. 

 

Conclusions 

 

From the practical viewpoint, the current research has demonstrated that SMD processes 

generally provide a viable method of fabricating local, complex features in aerospace 

components. The ultimate microstructural condition of these features is, however, highly 



dependent on welding deposition parameters and practice. In the specific case of Alloy 718, 

it has been shown that phases such as laves and delta, deleterious to mechanical properties, 

may form through localised chemical segregation. The cooling rate in particular must be 

controlled to avoid such phases, with fast freezing and minimal re-heat favoured throughout 

the process history. Careful consideration of residual stresses imparted during fabrication 

and subsequent service loading is also required. 

Cracking in this alloy system is well documented. As new techniques for material 

volumetric forming are developed, corresponding process rules and models are required to 

ensure sound processing.  The cracks seen in this instance were closed and present in bulk 

material with comparatively large microstructural features relative to forgings, as such they 

were not evident until close to completion of the manufacturing route. In consideration of 

this type of flaw, it is important that appropriate volumetric inspection techniques are 

concurrently developed. 

Continued research is required to establish generic microstructural acceptance standards for 

this specific alloy, together with alternative nickel and titanium systems, which relate to 

these techniques of high rate, weld deposition. 
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Figure 1. Single stringer / multiple layer depositions. 
 
Figure 2. Schematic definition of weld width (2 x radius), track separation distance, 
overlap and reference axes (Y axis = direction of deposition). 
 
Figure 3. Double stringer / single layer depositions, showing the overlapping sequence of 
deposition employed.. 
 
Figure 4. An early example of a double stringer / six layer weld illustrated in the X-Z 
plane. Dashed line represents approximate location, orientation and extent of internal 
fissures.  
 
Figure 5. Laves phase viewed at relatively low magnification a) micro-stringers parallel 
to axis of epitaxy (X-Z plane) and b) rafted structure (X-Y plane). 
 
Figure 6. Fine scale δ phase needles in association with laves. 
 
Figure 7. Crack like fissures through dense region of laves precipitation. 
 
Figure 8. Sections through elongated porosity at different locations. 
 
Figure 9. Schematic representation of double stringer / multiple layer SMD cylinders. 
 
Figure 10. Chord sections extracted from the SMD casing flange. 
 
Figure 11. Simplified schematic representation of the combustion casing and internal 
flange together with three dimensional axis designations (not to scale). 

Figure 12. Schematic sections through location A’-A” in Figure 11(a) SMD weld bead 
lay-up, (b) post flange machining and (c) final specimen extraction operation. 

Figure 13. Sinuous cracking viewed after sectioning and etching. 
 

Figure 14. Cross-section of developmental DLD (Direct Laser Deposition) structure in 
Alloy 718. 
 
Table I. Optimized control parameters for a single pass MIG weld in IN718. 

 
Table II. Nominal SMD weld deposition parameters for fabrication of casing flange. 
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