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RÉSUMÉ 

Une des caractéristiques uniques des applications mobiles est la sensibilité au 

contexte. La mobilité et la puissance de calcul offertes par les smartphones permettent aux 

utilisateurs d’interagir plus directement et en permanence avec le monde extérieur. Ces 

capacités émergentes ont pu alimenter plusieurs champs d’applications comme le domaine 

de la reconnaissance d’activités. Dans le domaine de l'informatique omniprésente, la 

reconnaissance des activités humaines reçoit une attention particulière grâce à son implication 

profonde dans plusieurs problématiques de vie quotidienne. Ainsi, ce domaine est devenu  

une pièce majeure qui fournit des services à un large éventail de domaines comme la 

surveillance du trafic en temps réel, les réseaux sociaux, le markéting et la santé. Cependant, 

l'un des principaux problèmes qui peuvent compromettre un modèle de reconnaissance 

d’activité sur les smartphones est la durée de vie limitée de la batterie. Ce handicap représente 

un grand obstacle pour la qualité et la continuité du service. En effet, la consommation 

d'énergie excessive peut devenir un obstacle majeur aux applications sensibles au contexte, 

peu importe à quel point ce service est utile. 

Nous présentons dans de cette thèse une nouvelle approche non supervisée qui permet 

la détection incrémentale des activités externes sans épuiser les ressources du téléphone. Nous 

parvenons à associer efficacement les lieux visités par des individus lors de leurs 

déplacements à des activités humaines significatives. Notre approche comprend de nouveaux 

modèles de classification en ligne des activités humaines sans une utilisation massive des 

données historiques. 

Pour optimiser la consommation de la batterie, notre approche se comporte de façon 

variable selon les comportements des utilisateurs et le niveau de la batterie restant. De plus, 

nous proposons d'apprendre les habitudes des utilisateurs afin de réduire la complexité de 

l’algorithme de reconnaissance d'activités. Pour se faire, notre méthode combine la 

reconnaissance d’activités et la prédiction des prochaines activités afin d’atteindre une 

consommation raisonnable des ressources du téléphone. Nous montrons que notre proposition 

réduit remarquablement la consommation de la batterie tout en gardant un taux de précision 

élevé.  



 

 

 

ABSTRACT 

One of the unique features of mobile applications is the context awareness. The 

mobility and power afforded by smartphones allow users to interact more directly and 

constantly with the external world more than ever before. The emerging capabilities of 

smartphones are fueling a rise in the use of mobile phones as input devices for a great range 

of application fields; one of these fields is the activity recognition. In pervasive computing, 

activity recognition has a significant weight because it can be applied to many real-life, 

human-centric problems. This important role allows providing services to various application 

domains ranging from real-time traffic monitoring to fitness monitoring, social networking, 

marketing and healthcare. However, one of the major problems that can shatter any mobile-

based activity recognition model is the limited battery life. It represents a big hurdle for the 

quality and the continuity of the service. Indeed, excessive power consumption may become 

a major obstacle to broader acceptance context-aware mobile applications, no matter how 

useful the proposed service may be. 

We present during this thesis a novel unsupervised battery-aware approach to online 

recognize users’ outdoor activities without depleting the mobile resources. We succeed in 

associating the places visited by individuals during their movements to meaningful human 

activities. Our approach includes novel models that incrementally cluster users’ movements 

into different types of activities without any massive use of historical records.  

To optimize battery consumption, our approach behaves variably according to users’ 

behaviors and the remaining battery level. Moreover, we propose to learn users’ habits in 

order to reduce the activity recognition computation. Our innovative battery-friendly method 

combines activity recognition and prediction in order to recognize users’ activities accurately 

without draining the battery of their phones. We show that our approach reduces significantly 

the battery consumption while keeping the same high accuracy.  
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CHAPTER 1 

INTRODUCTION 

1.1. THE ERA OF SMARTPHONES  

The current era of smartphones can be considered as a golden age of mobile 

phones. In the modern world, these devices have become such an indispensable part of our 

lives that it is difficult to live without it, regardless of age, sex or social status.  

Throughout its history, telephony has changed, new ways of communication have 

been devised, new models have been launched to meet the constantly changing demands 

of society, and at times, creating needs inconceivable up until then. The first telephone 

device was invented by Alexander Graham Bell in 1876 [1]. No one imagined that phones 

would evolve so remarkably and have such wide-reaching effects 140 years later. 

Smartphone is a mobile phone with advanced features and functionality beyond 

traditional functionalities like making phone calls and sending text messages. They have 

been in a rapid expansion in the last decade, which was influenced by four important and 

continuing phases that led to major changes in our view of the world [2]. 

The first phase was purely meant for enterprises. In 1982 Bell Laboratories in the 

United States created the device now known as the first generation mobile phone (1G, 

analog voice) [3]. Second-generation phones (2G) appeared in 1990. They were smaller, 

lighter and cheaper, and based on GSM (Global System for Mobile Communications) 

providing digital cellular communication [1], which improved the quality and security of 
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voice transmission. From that moment on, and following the expansion of computer use 

and the Internet, workstations connected to a local network were replaced with desktops 

and laptops with LAN (Local Area Network) and WAN (Wide Area Network) connections 

[4]. Society started to address the need for data transmission (Multimedia). And so began 

what is known as the third generation (3G) and the development of UMTS (Universal 

Mobile Telecommunications System) technology [2]. Mobile phones began to incorporate 

Internet connection, allowing the transmission of files. Among the functions or services 

offered, photo and video cameras and games gained great importance, adapting mobiles 

to the home and business environments. 

Fourth generation (4G) devices appeared with faster voice and data transmission 

speeds [5]; they became vital social and leisure attributes [6]. The current tendency is 

clearly toward the integration of telephony with a large part of the services and applications 

that can be obtained using a computer. The challenge that various international technology 

companies were facing is the integration of a telephone, camera and laptop computer in 

the same device with access to numerous applications such as videoconferencing and 

social networks [7]. 

Recent technological advances and miniaturization have accelerated the 

convergence between mobile phones and powerful computers facilitating the development 

of the smartphone technology [6]. This is when the real revolution got under way.  

Smartphones computation and storage capabilities are ever-growing while integrating a 

set of sensors (accelerometer, microphone, GPS, Wi-Fi, digital compass, gyroscope, and, 

in the future, air quality and chemical sensors [8], [9]). As such, the mobile phone is no 

longer a communication device only, but also a powerful environmental sensing unit that 

can monitor a user's ambient context [2], both unobtrusively and in real time. 
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This new generation of mobile phones has totally changed the way that people 

interact with mobile devices [6], so users can do more than just make calls. A smartphone 

can serve as a functional laptop or desktop that can fit in a pocket or small bag. Sensors 

enabled smartphones are set to become even more central to people’s lives as they become 

intertwined with existing applications such as social networks and new emerging domains 

such as green applications [10], global environmental monitoring [11], personal and 

community healthcare [12], sensors augmented gaming [13], virtual reality [14], and smart 

transportation systems [15].  

Consequently, a new paradigm is fast emerging: people are beginning to replace 

their personal computers with smartphones. The mobility and power afforded by 

smartphones allow users to interact more directly and continuously with their surroundings 

[16]. The set of services proposed by smartphones motivated people to take this powerful 

portable unit with them everywhere. This is how the smartphones entered its age of 

ubiquity.    

1.2. THE UBIQUITY OF SMARTPHONES 

Mark Weiser,  who is known as the father of ubiquitous computing (ubicomp), 

initiated research work at Xerox Palo Alto Research Center (PARC) in 1988 [13]. He 

imagined ubiquitous computing as a world where computation and communication would 

be conveniently at hand and distributed throughout our everyday environment [17]. In 

contrast to the desktop computing, ubiquitous computing can occur using any device, in 

any location, and in any format. 

The interactivity of ubiquitous computing devices to adapt to various situations 

necessitates different kinds of principles when building applications. In [18], Banavar 

provides us with different views of ubicomp elements: (1) A device is not a repository of 
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custom software, but a portal into an application or data space. (2) An application is not a 

software to exploit a device’s capabilities but is a means for a user to perform a task. (3) 

The computing environment is not a virtual space that exists to store and run software, 

rather it is a user’s information enhancing surroundings [3]. Tasks need to be dynamic in 

ubicomp so that they can easily be transferred from device to device.  

As mobile phones are rapidly becoming more powerful computationally, there has 

been significant progress toward Weiser’s vision. Smartphones represent the first truly 

ubiquitous mobile computing device. Context aware computing and smart wearables [7], 

[17], wireless sensor networks, activity recognition using wearables [19], and Human-

Computer Interaction (HCI) [20] are just examples of technologies that have spun off the 

ubiquitous computing idea. 

The mobility and power afforded by smartphones allow users to get involved more 

directly and constantly with the external world more than ever before [6]. It helps both 

keeping in touch with others and managing everyday tasks while being everywhere. 

Technological trends result in ever more features packed into this small, convenient form 

factor. Smartphones can already see, hear and sense their environment.  

The emerging capabilities of smartphones arise the use of mobile phones as input 

devices to various application fields. The ubiquity of mobile phones gives them a great 

potential to be the default physical interface for ubiquitous computing applications [2]. In 

fact, smartphones on board sensor data is interpreted through lightweight machine learning 

algorithms running on the smartphone itself. It is giving rise to a new area of research 

called smartphones sensing [21]. Consequently, by embedding these specialized sensors 

and pushing research in Artificial Intelligence (AI) [22] in the direction of telephony, it is 

now possible to continuously sense and infer people’s physical activities, social 

interactions and surrounding context. Ultimately, it will be able to monitor their moves, 
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predict their needs, offer suggestions, and even understand their moods [23]. As a result, 

phones get to work in a more autonomous way [24]. 

As such, Smartphones are ubiquitous and becoming more and more sophisticated, 

with ever-growing computing, networking, and sensing powers. This has been changing 

the landscape of individuals’ daily life. It has even opened doors for many interesting data 

applications. One of these promising fields is activity recognition, the subject of the 

present thesis. 

1.3. ACTIVITY RECOGNITION  

In our everyday lives, we often try to understand the activities of people around us 

and adjust our behavior accordingly. Our human nature is made to be sensitive to the 

environment. At home, we are curious to know what the rest of the family is doing: 

cooking, reading or watching TV; at work, we may need to know what a colleague is 

doing: is he in a meeting or on the phone; in the street, we keep an eye on the traffic light 

to be able to cross the road; while driving, we must be aware of the behavior of surrounded 

people. This ability to recognize activities seems so natural and simple for ordinary people, 

but it actually requires complicated functions of sensing, learning, and inference. We 

indeed all execute these three tasks without even aware that. Let us take the example of 

how we recognize a cooking activity. Maybe we happen to see someone at the dinner time 

in the kitchen, or we smell something is cooked, or we just find that the stove is on. From 

such evidences, we could infer the activity based on our past experiences [25]. All these 

functions of sensing environments, learning from past experience, and applying 

knowledge for inference are part of the amazing human intelligence; they are still great 

challenges for modern computers. The goal of activity recognition is to enable computers 

to have similar capabilities as humans in order to recognize people’s activities [26]. If 
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eventually we develop accurate computers that can reliably recognize people’s various 

activities, we can drastically improve the way people interact with computers. We will 

have huge impacts on behavior, social and cognitive sciences, and we will be much closer 

to our dreams of developing robots that can offer help in our daily lives [27]. To achieve 

this goal, we must provide computers with artificial activity recognition functions that 

ordinary people possess [25]. 

Activity recognition is an important technology in pervasive computing [17], [28]. 

The main reason is that it can be applied to many real-life, human-centric problems. 

Activity recognition offers the possibility to understand what people are doing at a specific 

moment, and estimates their future actions. This context awareness property makes this 

field a major piece that provides services to a range of application domains such as real-

time traffic monitoring [29], fitness monitoring [30], personal biometric signature [31], 

urban computing [32], social networking [33], marketing [34], police and security [35] 

and healthcare [36]. For instance, patients with diabetes, obesity, or heart disease are often 

required to follow a well-defined exercise routine as part of their treatment. Therefore, 

recognizing activities such as walking, running, or cycling becomes quite useful to provide 

feedback to the caregiver about the patient’s behavior. Moreover, it can be used to 

automatically motivate the patient to be more active when no activity is detected [9]. 

Likewise, activity recognition can be used to assist people suffering from Alzheimer’s 

disease in their daily outdoor tasks. Using some beforehand knowledge on people’s 

destinations, activity recognition system can be used to detect every anomaly in their 

behaviors and launch assistance processes like reminders, suggesting a new destination or 

home back roads [37]. Furthermore, as one branch of human computer interaction, the 

activity recognition makes the computer even “smarter”, it could provide the 

corresponding services based on what the user is doing [9]. For example, suppose that the 
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user phone detects that the user is about to leave the room and its weather application 

indicates that it will rain later. A reminder will pop up with a message “Take an umbrella, 

it is going to rain with a high probability”. As smartphones become as essential as keys 

and the wallet are nowadays, the activity recognition using smartphones could help in 

achieving our daily tasks. It could help in the prevention of dangerous activities, such as 

elder people’s fall detection [38], youth Autism Spectrum Disorder detection in a 

classroom [39], or even suicide prevention [40].  

The emerging concept of activity recognition is a new topic for data analysis. 

However, research community’s efforts are increasing day by day to carry clear 

definitions and common understandings. Diane Cook defined in her book [41] the activity 

recognition as the task of measuring the physical activity of a person via the use of 

objective technology. She presented in [42] the difference between the activity 

recognition and the activity discovery that aims to discover patterns in the data that does 

not belong to a predefined class. She demonstrates that activity discovery not only sheds 

light on behavioral patterns, but it can also boost the performance of recognition 

algorithms. Moreover, Lara and Labrador presented in [34] a survey on activity 

recognition using wearable sensors. In that work, a general architecture is first presented 

along with a description of the main components of any human activity recognition 

system. They also proposed a two-level taxonomy in accordance to the learning approach 

(either supervised or semi-supervised) and the response time (either offline or online). 

Then, the principal issues and challenges are discussed, as well as the main solutions to 

each one of them. Twenty-eight systems are qualitatively evaluated in terms of 

recognition performance, energy consumption, obtrusiveness, and flexibility, among 

others. Finally, they present some open problems and ideas that, due to their high 

relevance, should be addressed in future research.  
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As mentioned above, human activity recognition refers to the task of measuring 

the physical activity of a person via the use of objective technologies. This task is 

extremely challenging owing to the complexity and diversity of human activities. The 

volume and the complexity of data used in activity recognition systems exceeds the 

capacity of human computations [18]. To address this weakness, these complex tasks are 

delegated to the machines that have the ability to perform such tasks rapidly and 

efficiently. With this delegation, scientists have sought to create systems able to execute 

tasks in the place of humans. The goal is to give more control to software and to replace 

humans in critical and complex functions. Within this context, the topic of Artificial 

Intelligence (AI) [22] intervenes naturally. Artificial Intelligence has always been in the 

fiction dreams of human, and thus it has been an important trend in the creation of activity 

recognition systems [3].      

1.3.1. DATA MINING  

The last decade has been the mobile device technology era where the capture of 

the evolving position of moving objects has become ubiquitous. Mobile wearable tracking 

devices, e.g., phones and navigation systems collect the movements of all kinds of moving 

objects, generating huge volumes of mobility data. In combination with the Internet and 

social media, these trends have led to a new situation where the data grow exponentially 

[16]. The quantity of data, collected from moving users, challenges human ability to 

analyze the stream of input data. Therefore, new methods for online mining of moving 

object data are required. As such, activity recognition intervenes to propose intelligent 

systems to infer temporally contextualized knowledge regarding the state of the user on 

the basis of a set of heterogeneous sensor readings. 
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Data mining is the set of methods and algorithms allowing the exploration and 

analysis of databases [43]. It exploits tools from statistics and artificial intelligence. Data 

mining is used to find patterns, associations, rules or trends in datasets and usually to infer 

knowledge on the essential part of the information. It is often seen as a subtopic of machine 

learning. However, machine learning as defined by Arthur Samuel in 1959 [20], relates to 

the study, design and development of the algorithms that give computers the capability to 

learn without being explicitly programed. Contrary to data mining, machine learning is 

typically supervised, since the goal is to simulate the learning of already known properties 

from experience (training set) in an intelligent system [43]. Therefore, a human expert 

usually guides the machine in the learning phase. Within realistic situations, it is often not 

the case. While the two are similar in many ways, generally, in data mining the goal is to 

discover previously unknown knowledge that can then be exploited in activity recognition 

to make better decisions about the user performed activity. 

This difference between machine learning and data mining is well described in [26] 

but under a different point of view. Authors divided human activity understanding into 

activity recognition and activity pattern discovery. The first focuses on accurate detection 

of the human activities based on a predefined activity model (machine learning). 

Therefore, an activity recognition researcher builds a high-level conceptual model first, 

and then implements the model by building a suitable pervasive system. On the other hand, 

activity pattern discovery is more about finding some unknown patterns directly from low-

level sensor data without any predefined models or assumptions. Hence, the researcher of 

activity pattern discovery builds a pervasive system first and then analyzes the sensor data 

to discover activity patterns. Even though the two techniques are different, they both aim 

at improving human activity technology. Additionally, they are complementary to each 
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other, the discovered activity patterns can be used to define the activities that will be 

recognized and tracked.  

As described in [44], the complete process of data mining is illustrated in Figure 1. 

Before beginning the cycle, it is important to understand the context and the data related 

to the situation in which the data mining algorithm is applied. For example, we should 

know what the goal of the data mining is. What the consequences of errors are, whether 

they are insignificant (marketing) or critical (healthcare and police). Data consideration is 

also important but usually for the strategy design. First of all, it is important to know the 

types of attributes that are the most representative. Whether there is any strong correlation 

between two or more attributes. Those are examples of questions one should answer before 

even beginning the data mining cycle.  

 

Figure 1: The overall data mining process 

The first step is to collect and clean the data from potentially more than one source, 

which can be devices, sensors, software or even websites. The goal of this step is to create 

the data warehouse that will be exploited for the data mining. The second step consists in 

the preparation of the data in the format required by the data mining algorithm. Sometime 

in this step, the numerical values are bounded; other times, two or more attributes can be 

Collecting and 
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Data preparation
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merged together or completely deleted. It is also at this step that high-level knowledge 

(temporal or spatial relationships, etc.) can be inferred for suitable algorithms. The next 

step is the data mining itself. It is important to choose or design an algorithm for the context 

and the data [43]. In Chapter 2, the main Activity recognition algorithms will be reviewed 

along with an assessment of their advantages and disadvantages depending on the 

application requirements. Finally, the data mining step should result in a set of models 

(decision trees, clusters, rules, etc.) that need to be evaluated. If the evaluation is not 

conclusive enough, the cycle can be repeated from one to many times. Indeed, data mining 

is a method that often does not give expected results the first time. Note that the collection 

and cleaning step is generally done only once regardless of the results. 

Despite the massive use of data mining in activity recognition systems, there are 

still many issues that motivate the development of new techniques to improve the accuracy 

of data mining techniques for the activity recognition. Some of these challenges are (1) the 

selection of the attributes to be measured (2) the construction of a portable, unobtrusive, 

and inexpensive data acquisition system (3) the design of feature extraction and inference 

methods (4) the collection of data under realistic conditions (5) the flexibility to support 

new users without the need for retraining the system, and finally and the most important 

point, the subject of our thesis, the implementation on mobile devices meeting energy and 

processing requirements [6]. 

1.4. MOBILE-BASED ACTIVITY RECOGNITION  

Traditional activity recognition systems are built on post treatment processes as 

described in Figure 1. First, researchers collect and prepare data, using smartphones for 

example, to sense the user environment. After that they use data mining algorithms to train 

the models that will be used to detect the activities performed by the user [41]. These 
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algorithms may become complex and computationally expensive. As such, researchers 

tend to achieve these tasks on powerful machines (servers) following a pre-defined 

schedule, e.g. every day, every week…etc. [45]. For instance, authors of [23] proposed an 

approach to learn users' frequent patterns to answer the problem of activities models 

creation from a smart home sensor. The aim of this work is to learn users’ patterns moving 

inside a smart home and use these patterns to predict the users’ next activities or to detect 

abnormal activities. As user data come continuously inside a smart home, they have 

decided to launch the learning process using a distant server on predefined moments (every 

week). However processing data on predefined moments may become an obstacle for 

some applications that require an instantiate information about the user activity.          

As presented above, smartphones computation and storage capabilities are ever-

growing while integrating a suite of sensors that can be used to collect the data needed to 

feed the data mining models. As such, the scientific community started to figure out that 

it will be more convenient to implement the activity recognition model on smartphones 

rather than delegate it to distant servers. Consequently, smartphones are becoming not only 

sensing units, but a powerful machine that can handle an entire AI model.     

In fact, achieving activity recognition tasks on mobile has several advantages: (1) 

the ubiquity of smartphones make this technique very efficient. As users take their phones 

with them everywhere, pushing activity recognition on smartphones let detecting users’ 

behaviors anytime and everywhere. (2) Centralizing calculation on users smartphones 

facilitate the development of offline application to avoid the Internet dependency. (3) 

Naturally, using smartphones motivate to head toward the online learning that will offer 

instantiate information about the user state. Contrary to traditional systems, mobile-based 

activity recognition can detect the user achieved activity during it execution.  



 

13 
 

This set of advantages motivated the research community to invest in this direction. 

Smartphone applications with activity recognition techniques have been shown up in 

recent years as an alternative solution to traditional systems [46]. These applications 

usually have similar roles to track users’ motion and activity logs such as jogging route, 

steps taken, sleeping time, daily visited places…etc. By mining the logged data, they may 

offer the user a summary on his life style and quality. For instance, authors of [47] 

presented myHealthAssistant where both daily activities as well as specific gym exercises 

and their counts are recognized and logged. This preventive healthcare application intends 

to motivate patients to increase their level of physical activity and to decrease the risk of 

disabling health conditions. The work of Song et al. [35] is another example of mobile-

base activity recognition systems. They proposed a floor localization system to find 9-1-1 

caller in buildings by inferring the current floor level using activity recognition techniques. 

As seen so far, the smartphones have become so ubiquitous and powerful to a point 

that they have replaced computers. They have become a primary input for human activity 

recognition. Although the research on activity recognition is beneficial from the mobile 

sensors’ unobtrusiveness, flexibility, and many other advances, it also faces challenges 

that are brought by them. In the next section, we review the major, common challenges for 

activity recognition using mobile phones. 

1.5. MOBILE-BASED ACTIVITY RECOGNITION CHALLENGES  

1.5.1. COMPLEXITY OF THE ACTIVITY RECOGNITION  

First of all, the accuracy of activity recognition, especially those based on the 

accelerometer data [48], is heavily affected by the subjects participated in training and 

testing stages. This is mainly due to the fact that different people have different habits and 
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motion patterns. Even for the same subject, he may execute an activity differently at 

different times. In [48], the comparative experiments show that training and testing on the 

same subject achieves the highest accuracy. Training and testing on the same group of 

multiple subjects has the second-highest accuracy. The accuracy decreases when the test 

data is collected from the same subject but on different days. The lowest accuracy is in the 

setting where the training data is collected from one subject on one day and testing is 

conducted on another subject on a different day. 

For the supervised systems, it is highly desirable that the training data must contain 

as many varieties of the subjects as possible. However, it is not easy to coordinate people 

of different ages and body shapes to collect data under a controlled lab environment, not 

to mention the varieties of the environment itself. 

Another challenge is linked to the position of the phone when retrieving data from 

sensors. Due to the property of some sensors both in wearable sensors and smartphones 

(such as accelerometer), its raw reading heavily depends on the sensors’ orientation and 

positions on the subject’s body [24]. Moreover, these sensors are known to generate a lot 

of noise [46]. For example, when a user is walking while holding a phone in his hand, the 

moving data reading is quite different from the data reading if the phone is in his pocket 

[9]. 

The complexity of users’ activities also brings an additional challenge to the 

recognition model. Users’ behaviors when performing an activity may be too complex and 

too unpredictable that it may become very hard to recognize them. For example, the motion 

during the transition period between two activities is difficult for the underlying 

classification algorithm to recognize. People performing multiple tasks at the same time 

might also confuse the classifier which is trained under one activity-per-segment 

assumption [45]. Culture and individual difference might result in the variation in the way 
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that people perform tasks. In addition, the change in user habits may become a major 

obstacle for pattern detection.  

1.5.2. OUTDOOR VERSUS INDOOR ENVIRONMENTS  

Many activity recognition solutions are designed for confined areas such as Smart 

Homes (SH). The main idea behind these indoor systems is to improve the existing 

environments by deploying a wide range of sensors in the user living area (e.g. 

accelerometers, loadcells, ultrasonic sensors, temperature sensors, flow switch, light 

sensors, pressure mats, RFID, IR motion sensors, electromagnetic contacts, smart power 

analyzer, microphones, video cameras…etc.). The data retrieved from these sensors are 

analyzed by centralized computers to detect the users’ performed activities. For instance, 

we can use door contacts sensors to detect when a door in the user apartment is opened, 

we can use RFID tags to locate every moving objet inside the SH.  

However, when we try to recognize users’ activities in outdoor environments, we 

are confronted to another level of difficulty. The main reason is that reproducing the same 

technique as SHs may become technically and economically unfeasible in the city. As a 

solution, we have to replace all the sophisticated sensors of SH by one unit: the user 

smartphone. However, embedded sensors in smartphones are much fewer and less accurate 

than the external sensors used in SHs. Also, the phone resources are much more restricted 

than the powerful computers used in indoor environments. Obviously, this passage from 

SHs to smartphones is very challenging task.  

Let us compare the city to SHs. As the city is much wider, the number of activities 

that can be executed there is much higher, which makes the activity recognition technique 

more challenging. Furthermore, as we will see in Chapter 3, outdoor activity recognition 

needs a background geographic data source to detect users visited places. Nevertheless, it 
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is known that geographic data is characterized by heavy size and complex relation [49]. 

Thus, manipulating this type of data on mobile phones may become very challenging 

process.   

1.5.3. CHANGEABILITY 

Human behaviors are very complex and hard to predict, especially in open spaces 

like cities. One major problem met when trying to incrementally detect a user's activities 

is the changeability in his habits. For instance, a user that moves in the city, and that has 

the routine of going from home to work, can change this routine at any moment according 

to some unknown external pressures, e.g.  an unexpected appointment, the user got sick, 

he unexpectedly drove his son to school…etc. As such, this change in a user habits may 

become a major obstacle for context detection and for prediction algorithms. We answer 

this issue by proposing, in Chapter 5, a new algorithm that let detecting these unexpected 

situations that may occur in a user routines.    

1.5.4. DATA SIZE 

A user that moves in the city generates a huge amount of data. For instance, 

suppose that we have an application that retrieves a user’s context data each 10 seconds. 

This sampling rate will generate about 21600 points per day for each sensor. Storing and 

processing incrementally all this data can quickly saturate the phone resources (RAM, 

storage, battery…etc.). As such, processing user data has to be done very carefully and 

wisely. We propose in this context, a new approach that estimates incrementally an 

appropriate time to process this data. In Chapter 3, we propose to not treat data all the time, 

but on calculated frequencies called 𝑇𝑚𝑖𝑛 that represents an estimation of the probable next 
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activity moments. Furthermore, in order to preserve the phone resources, we propose in 

the same chapter to work on few amount of data by introducing a dynamic temporal 

window TW. We also demonstrate that this technique preserves the phone resources while 

keeping a high accuracy rate.  

1.5.5. ENERGY AND RESOURCE CONSTRAINTS  

Generally, Activity recognition applications are supposed to operate 24 hours a 

day, 7 days a week, in particular for fields such as healthcare. As such, they require 

continuous sensing as well as online updating for the recognition model, both of which are 

energy consuming. For the online updating, it might also require significant computing 

resources due to the complex model that might be implemented [9]. Furthermore, one 

important challenge is the phone battery. In fact, the limited battery capacity of mobile 

devices represents a big hurdle for the quality and the continuity of the service. The 

embedded sensors in the mobile devices are major sources of power consumption. Hence, 

excessive power consumption may become a major obstacle to broader acceptance 

context-aware mobile applications, no matter how useful the proposed service may be. 

Unfortunately, the limited battery capacity of mobile phones has not had the full 

attention of the research community. The majority of related works are basing their 

efficiency factors on the accuracy of their models while neglecting the model impact on 

the phone resources. As reported in [46], the most of the studies are missing resource 

consumption analysis, such as CPU, memory and battery usage. For the online activity 

recognition, such an analysis is an important factor in determining the feasibility of its 

implementation on a mobile phone. So far, comparative studies have been done offline, 

where different classification methods are compared in different simulation setups based 

on the accuracy only. We believe that it is not a fair comparison. In order to report a 
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classification method or a set of features as most suitable for activity recognition on mobile 

phones, it is important to consider the trade-off between accuracy and resource 

consumption. As such, we focus this thesis on filling the gap between the accurate activity 

recognition service and the wise use of the mobile resources.      

1.6. CONTRIBUTION OF THIS THESIS 

The contribution of this thesis follows the footsteps of data mining and activity 

recognition approaches that have been developed during the last decades. Outdoor activity 

recognition field falls into two approaches; motional approaches that detect users’ motion 

state (walking, taking a bus, running, etc.) and location approaches that determine the 

user's activity based on detecting his visited places, e.g. museums, cinema, office...etc. It 

is in that second field that our work fits. It allows determining the nature of the user’s 

activity from a series of geographic positions. 

In this thesis we made a step forward in the context of online outdoor activity 

recognition using Smartphones. We propose an approach that operates completely on 

users’ smartphones without any connectivity requirement. In particular, we explore the 

fundamental techniques to reduce the battery consumption of smartphones while 

recognizing incrementally users’ activities. 

Users’ data are coming continuously. Storing and processing all data may become 

resource-hungry technique. As such, we answer during this work problems linked to 

streaming data, incremental learning and battery awareness. In fact, we succeed in making 

a link between the data mining algorithms and the mobile phone resources in order to 

improve the activity recognition power consumption on smartphones. Our main 

contributions during this thesis are summarized in the following points:  
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1. The majority of related works are based on the classification of historical records 

of people’s trajectories using non-incremental data mining algorithms. These 

methods fail in their ability to instantly detect the user performed activities. As 

such, they cannot be used to fields such as assistance in which we need a real-time 

access to people’s state. Research on offline activity recognition has been reviewed 

in several earlier studies in detail. However, work done on online activity 

recognition is still in its early stages and is yet to be reviewed. Our first 

contribution includes an online activity recognition service that let detecting 

incrementally users’ activities without a massive use of users' historical records.  

2. The second contribution continues in the direction of online learning where we 

propose a new version of online K-means that is designed for streaming services 

on mobile phones. We propose a novel self-adaptive clustering approach that 

adjusts the computational complexity of the algorithm according to the remaining 

battery level. The goal is to prevent the massive draining of the mobile resources 

in order to capture users’ movements for the longest time possible. Our mining 

method proposes a temporal data window characterized by a variable size 

according to a person’s travel behavior and his phones’ remaining resources. 

3. Our third contribution concerns the type of the recognized activities. As described 

in Chapter 2, a significant part of related works has focused recognizing users’ 

outdoor activities on detecting stops in their trajectories. Unfortunately, these 

works fail to detect activities that needs a movement to be executed such as 

shopping and running in a park. We demonstrate that the novel approach that we 

propose, succeeds to recognize both stationary and moving activities.  

4. Activity recognition needs a spatial analysis of background geographic data in 

other to obtain semantic information about the performed activity. However, in 
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future cities (smart cities), the geographic data can change frequently.  We propose 

a new spatial exploration technique in smart cities based on a distributed users’ 

collaboration. This technique aims to avoid the use of the predefined geographic 

databases that can be very expensive to get and very difficult to update in smart 

cities; those future cities where information can change every hour and every day. 

The proposed service called NomaBlue is disconnected from the Internet, it can 

operate in any indoor/outdoor area and it doesn’t require any pre-defined 

geographic databases. 

5. After recognizing users’ activities in smart cities, we propose an incremental 

approach to predict their next activities. Our fifth contribution includes a new 

algorithm for the online prediction of users’ next visited locations that not only 

learns incrementally the users’ habits, but also detects and supports the drifts in 

their patterns. At this stage, we propose a new algorithm of online association rules 

mining that supports the concept drift. 

6. Our last contribution includes a novel hybrid approach that combines activity 

recognition and prediction algorithms. This combination is designed to online 

recognize users’ outdoor activities while modulating the utilization of the mobile 

resources. Our approach minimizes activity computations by wisely reducing the 

search frequency of activities. We demonstrate that our approach is capable of 

reducing the battery consumption up to 60% while maintaining the same high 

accuracy rate. 

After defining the major contributions of this thesis, we present next the research 

methodology that we follow to achieve these goals.  
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1.7. RESEARCH METHODOLOGY 

The research presented in this thesis was carried out by following a research 

methodology divided into four key steps that were not necessarily done fully sequentially. 

The first phase of the present work was to elaborate a state of the art of the research 

area related to the problem of activity recognition. In the first part, we the field of online 

activity recognition, particularly in an applicative context of mobile environment. It has helped 

to identify issues and specific needs of mobile phones. The second part of this phase aimed to 

achieve a state of the art on existing data mining approaches while focusing on the 

unsupervised streaming algorithms. The field of semantic trajectory analysis was also explored 

in order to acquire strong understandings on users’ trajectories and to understand the different 

types of user mobility in the city.  This part has allowed arriving to the proposed contributions 

of this thesis. 

The second phase consisted in elaborating a complete solution of the activity 

recognition based on smartphones. This part was elaborated in the form of four layers as 

described in Figure 2. The first layer includes an online activity recognition model that 

recognizes users visited places incrementally and without using the Internet, a model that is 

aware of the user behavior and the limited phone resources. The second layer is to adapt the 

first layer to smart cities by adding a supplementary spatial exploration model that is designed 

to operate in future cities. In the third layer we propose an online algorithm that learns users’ 

habits and predicts their next activities carrying the change that can occur in their habits. The 

last layer consolidates all the previous layers to propose a hybrid system, a system that 

switches between activity recognition and prediction in order to reduce the phone battery 

consumption efficiently.    
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Figure 2: The four layers of our mobile-based activity recognition approach 

The third phase consisted into a software implementation of each of the four layers 

presented above. To do so, we have chosen to develop them using the Java programming 

language running on Android operating systems. The android application lets online 

collecting traces of users that are moving in the city, and to incrementally switch them into 

meaningful human activities. The application that we developed is battery-aware, i.e. it has 

the ability to self-adapt the computational complexity of the activity recognition algorithm 

according to the remaining battery level. The goal is to prevent the massive draining of the 

mobile resources in order to capture users’ movements for the longest time possible. 

 The last phase of this research consisted in validating the new created and 

implemented model. In addition, it has the purpose of verifying the usefulness of the online 

approach and its impact on the phone resources. Tests were designed for each layer 

presented earlier. Then, a global experiment was done on the global solution to evaluate 

it. 

It is worth noting that this research has led to multiple scientific publications: 

 The advances in online activity recognition using mobile phones were published in 

the proceedings of the 8th ACM International Conference on Pervasive 

Technologies Related to Assistive Environments [50], the IEEE International 

Conference on Mobile Services (MS) [51], the 13th International Conference on 

Battery-Aware Activity recognition 

Spatial recognition in smart cities

Activity prediction

Hybrid activity recognition
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Mobile Systems and Pervasive Computing (MobiSPC) [52], The Journal of Sensors 

[53] and under review for the Pervasive and Mobile Computing Journal [54].  

 Our contributions on activity prediction were published in the proceedings of the 

6th international workshop on Human Behavior Understanding in conjunction with 

the ACM International Joint Conference on Pervasive and Ubiquitous Computing 

(UbiComp) [55] and under review for the Journal of Ambient Intelligence and 

Humanized Computing [56]. 

 Our contributions in the field of spatial recognition in smart cities are under review 

in the IEEE International Conference on Pervasive Computing and Communication 

( PerCom 2017) [57] and the Expert Systems With Applications Journal [58].  

This encouraging recognition from scientists supports the conclusions of this thesis, 

the importance of the works realized by our team, and the obtained results.    

1.8. THESIS ORGANIZATION 

This thesis is divided into four parts separated among seven chapters. The first part 

is an introduction to the concepts that will be discussed throughout the thesis. It has 

provided a description of the ubiquity of Smartphones and how are used to bring more 

value to the activity recognition topic. It also presented the principal limits of mobile 

phones that we have to surpass during this thesis.   

The second part of this thesis reviews the related work within Chapter 3. At first, 

we bring a discussion of the different types of activity recognition. We describe the process 

of tracking peoples’ movements, how to model them, and how to define an outdoor 

activity. We also give details on the learning techniques that can be used to detect the 

users’ activities. The second part of this chapter is devoted to related works on the activity 

recognition. We analyze some important works in both location and motional systems. In 
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the third part, we present some important prediction works on learning users’ patterns to 

estimate their next probable actions. Finally, we highlight works that propose mechanisms 

to reduce the phone battery consumption.  

The third part of this thesis, which comprises Chapters 3, 4, 5 and 6, describes our 

contributions. Each chapter is the subject of one layer of our Activity recognition system.   

In Chapter 3 we propose our first layer. We describe the overall approach of our 

battery-aware mobile activity recognition system.  We detail our proposal in terms of three 

components: trajectory classification where we classify the ongoing user trajectory in 

order to detect his visited places. Next, we describe the traditional spatial recognition 

process and the activity discovery step that are needed to obtain semantic information 

about the performed activity. Experimental evaluations are also detailed at the end of this 

chapter where we describe the different datasets used in the experiments as well as the 

results of our approach.  

In Chapter 4, we introduce the second layer NomaBlue. It is a new spatial 

recognition system that is designed for future cities. We justify during this chapter the need 

for such system. We present the different part of this collaborative spatial recognition. We 

give some examples of NomaBlue usages and we demonstrate, by using two datasets, that 

NomaBlue is efficient and technically feasible. We also show that NomaBlue is capable 

of creating an efficient dynamic flow of updated information in the smart cities. This 

updated information improves the user's urban explorations without using the Internet or 

predefined geographic database.    

In Chapter 5, we introduce a new approach of predicting users’ next destinations 

from irregular patterns, we show how we learn users’ habits, how we proceed to track the 

new habits, and how the algorithm behaves when they occur.  
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A global hybrid approach is described in Chapter 6. An approach that combines 

both activity recognition and activity prediction in order to reduce the computational 

complexity of our approach, thus, the mobile battery consumption. The experimentation 

at the end of the chapter demonstrates how deeply our approach has been experimented to 

test its accuracy and ability to save batteries. 

The fourth part of the thesis, composed of Chapter 7 and the appendix, concludes 

by presenting a detailed account of the research project highlighting the contributions of 

this work over previous works. This chapter also addresses the limitations of the proposed 

model and future works arising from this research. The chapter concludes with a more 

personal assessment of this experience of initiation into the world of scientific research. 

The appendix provides further details on some aspects related to the thesis that were not 

fitting in the text.
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CHAPTER 2 

RELATED WORKS 

2.1. TRACKING PEOPLES’ MOVEMENTS 

Human‘s activity recognition has been an active topic of research for several 

decades. However, only in recent years, with the increasing availability and facilities of 

collecting movement datasets from GSM or GPS equipped devices or even network 

wireless technologies like WI-FI and RFID, we have the possibility to study users’ 

activities from their movement traces. 

Mobile tracking devices, e.g., phones and navigation systems, sense the movement 

of persons represented by positioning records that capture geo-location, time, and a 

number of other attributes. Sensing is based on a collection of information related to the 

achieved activity from raw sensor data (GPS, Wi-Fi, RFID, Bluetooth signals, 

microphone, camera, accelerometers, magnetometers, gyroscopes, barometers, proximity 

sensors, etc.) to extract pertinent information about the current activity.  

Early GPS receivers could perform geo-location in outdoor environments with an 

accuracy varying between 300 m and 1 km [59]. However the current generation of 

smartphones have built-in GPS receivers that are accurate to within a few meters outdoors 

[60]. Outdoor trajectories are retrieved in the form of a GPS collection, each GPS contains 

some geographic information like; latitude, longitude, altitude, timestamp, speed, 

orientation, etc. Utilizing the device’s GSM module to estimate the distance to cellular 
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base stations [61], or the Wi-Fi module to estimate the distance to the known access points 

can increase the accuracy of GPS-based positional estimates and assists it where GPS 

signals are ineffective [62]. Although more power-intensive, these two approaches can be 

combined to improve positional estimates in outdoor environments.  

This series of position points represents a trajectory that needs to be enriched by 

some semantic information to be more useful for human behavior understanding. The role 

of next sections is to present how to process to switch semantically the raw sensor data 

into meaningful human activities.  

2.2.  MODELING USERS’ MOVEMENTS 

While the ability to record continuous movement is the foundation of managing 

human outdoor activities, satisfying application requirements requires more than that. 

Namely many applications need a more structured recording of movement, i.e. as a 

temporal sequence of journeys, each one occupying a time interval in the object's lifespan 

and taking the object from a departure point to a destination point [63]. Daily trips of 

employees going from home to work and back, weekly journeys of individuals doing 

shopping at a mall, and movements of going to a restaurant or cinema are examples where 

the movement of persons is clearly perceived by the monitoring application as countable 

traveling units. 

The emerging concept of semantic trajectory is a new topic for trajectory data 

analysis; however, the research community’s efforts are increasing day by day to carry 

clear definitions on semantic trajectories. For instance, Spaccapietra et al.  [63] propose a 

conceptual model for trajectories using two alternative approaches for trajectory modeling, 

based respectively on data types and design patterns. 
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2.2.1. TRAJECTORIES DEFINITION  

Trajectories are defined as spatio-temporal functions that records the changing of 

the position of an object moving in a space during a given time interval [63]. Each 

trajectory includes a list of sample points that implement the function of the time-varying 

point; a list of stops; a list of moves, which lies between two consecutive stops, or between 

the beginning of the trajectory and the first stop, or between the last stop and the end of 

the trajectory, see Figure 3 . 

 

Figure 3: Example of a GPS trajectory of going from A to B 

The original sense of the term trajectory denotes the changing position of an object 

in geographical space. It can be a 3D space (e.g. the trajectory of a plane or a person in a 

mountain) or a 2D space (e.g. the trajectory of a car on the highway). A trajectory is called 

spatio-temporal if spatial coordinates are used to express the position of the traveling 

object in the form of time stamped elements. Most frequently, the traveling object is 

geometrically represented as a point (e.g., a person, an animal, a car, a truck, a plane, a 

ship, a train). Yet the traveling object may have a surface or volume geometry (e.g. clouds, 

air pollution, oil spills, avalanches), in which case both change in position and change in 

shape may lead to a change in the trajectory.  
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2.2.2. THE COMPOSITION OF TRAJECTORIES  

A trajectory has two facets: (i) a geometric facet which is represented by a spatio-

temporal recording of the traveling point position. It is a delimited segment (i.e., a single 

continuous subset) of the spatio-temporal path covered by the object's position during the 

whole lifetime of the activity (ii) a semantic facet which is represented by the information 

that conveys the application-oriented meaning of the trajectory and its related 

characteristics.  

The main idea is to associate semantic information to every trajectory component 

as follows: 

Stops. Stops are a set of points where the user speed is too slow or null. For 

example, if trajectories are seen by the application as moves between cities, the 

database must be able to store and return in which city a stop is located. The same 

trajectories may be seen by another application as moves between countries, thus 

calling for a link between stops and countries [63]. For migrating birds, stops may 

be in geographical regions of interest to the birds or to the ornithologist. 

Moves. Individuals need to move from a geographic area to another, this 

movement behavior is characterized by a set of points that share a high velocity 

depending on the type of the mode of transport (pedestrian, car, bus, train, etc.). 

For example, an application monitoring peoples' use of a train network may need 

to record which train has been used for which move, e.g. a trajectory of a traveling 

person may consist of a first move using the first train from City A to City B and 

a second move using the second train from City B to City C. 

Begin and end of the trajectory. A trajectory is defined by start and end points. 

These points are important for trajectory analyses because they often represent an 

important event in user behaviors, e.g. start point is home and the end point is the 
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work office. For instance, a company that monitors business trips done by its 

salespeople may restrict trajectory analyses to originate and end in the company's 

buildings.  

2.3. USERS’ OUTDOOR ACTIVITIES  

It is necessary to have some common understandings on people’s outdoor 

activities to be able to recognize them automatically. In the next point, we are going to 

see that depending on the nature of the studied trajectory part, we are able to learn the 

executed activity type.  

An outdoor activity can be seen as a quality or state of being active or a vigorous 

or energetic action made in an environment other than home [42]. Activity thus 

encompasses both state and energy spent to achieve some outdoor task. 

Activity recognition is defined in [45] as a technique capable of associating sensor 

readings and other inputs to a label taken from a set of distinct activities. The task 

therefore involves determining a set of activity labels and assigning sensor readings and 

other inputs to the appropriate activity labels. 

2.3.1. DEFINING ACTIVITY LABELS  

Generally, in mobile and ubiquitous computing applications, the set of considered 

activity labels is constrained by the nature of sensors at hand and depends on the final 

application. A fitness monitoring system will define stationary, walking and running as 

activities whereas an automatic diary application will use just one traveling activity and 

divide the stationary state into several depending on the location of the user [45] such as 

staying at home and working in the office. Consequently, proposing a common 
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understanding about labels is a challenging process since the level of activity detail 

depends on the use of the application. In many cases, human activity labels are assigned 

based on the context data and background knowledge. The context data includes sensor 

data, time and user inputs. Background knowledge is usually provided by GIS experts. 

The ideal scenario is to mine activity labels automatically which is a challenging task. 

We explore this weakness to bring novelties to the outdoor activity field. For example, 

we can extract the geographic information automatically from GIS platforms like 

OpenStreetMap [64]. Next, we can explore the ontology used in these platforms to extract 

contextual information about the concerned geographic entities [65], e.g. name: 

university; number of floors: 5; type: educational; entity type: building;…etc.  

2.3.2. LEARNING TECHNIQUE   

Globally, activity recognition models rely on matching the context data to activity 

labels. The activity learning techniques pass by three steps as described in Figure 5. 

2.3.2.1. Sensing 

Thanks to current sensor technologies, large scale capture of the evolving position 

of individual mobile objects has become technically and economically feasible. Mobile 

wearable tracking devices, e.g., phones and navigation systems, sense the movement of 

people represented by positioning records that capture geo-location, time, and a number 

of other attributes. Sensing step is based on a collection of information related to the 

achieved activity from raw sensor data (GPS, Wi-Fi, RFID, Bluetooth signals, 

microphone, camera, accelerometers, magnetometers, gyroscopes, barometers, proximity 

sensors, humidity sensors, temperature sensors, ambient light sensors…etc.) [9] to extract 
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pertinent information about the current activity. Some of the most important sensors are 

described in Table 1. 

Table 1: A set of mobile phones sensors 

Sensor Description 

GPS Receives information from GPS satellites and then 

calculates the geographical location of the device 

Accelerometer 

 

Measures the acceleration force that applied to the 

device, including force of gravity 

Ambient temperature  Measures the ambient room temperature 

Gravity sensor Measures the force of gravity that is applied to the 

device, in three axes (x; y; z) 

Gyroscope Measures the device’s rotation in three axes (x; y; z) 

Light sensor Measures the ambient light level (illumination) 

Linear acceleration Measures the acceleration force that applied to the 

device, force of gravity is excluded 

Magnetometer Measures the ambient geomagnetic field in three axes 

(x; y; z) 

Barometer Measures the ambient air pressure 

Proximity sensor Measures the proximity of an object relative to the 

view screen of a device. 

Humidity sensor Measures the humidity of ambient environment 

As shown in Figure 4, three families of smartphone-based positioning solutions 

have been studied extensively: satellite-based solutions, sensor-based solutions, and RF 

(radio frequency) signal-based solutions [19]. Although the nature of sensors has become 

much more diversified, a good inference system is capable of accurately recognizing 
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activities using the minimum number of sensors. We aspire to take this challenge in our 

work in order to recognize users’ activities using a minimum number of sensors in order 

to preserve users’ mobile resources.     

 

Figure 4: Three families of smartphone-based positioning solutions. Source:[45]  

2.3.2.2. Pre-Processing  

In this step, activity recognition systems transform raw data into a reduced 

representation called a feature vector [45]. The accuracy of the system depends strongly 

on how data is represented. Features should help differentiate between the studied 

activities. They can be low-level, such as mean and variance computed on a specific 

physical signal or high-level, like the user’s abstracted location as estimated from cell 

tower signals.  

2.3.2.3. Inference 

The inference module is the core of an activity recognition system and the place 

where machine learning models are implemented. At this stage, the feature is transformed 
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using some background knowledge into a meaningful human activity, e.g., staying at 

home, walking and driving, going to the restaurant…etc.  

The treatment of these feature vectors varies from one solution to another. As the 

size of vectors supported in this inference process has an impact on the precision of 

algorithms (accuracy increases with the number of supported vectors), the majority of 

related works [66]–[69] has opted for a post treatment of these vectors’. They are 

processed on a specific time (end of the day, week, month, etc.) to make sure that the 

inference model has enough information to make a decision.  

The post treatment of historical records usually uses massive databases of users 

feature vectors to guarantee a good accuracy of algorithms. It is made generally on desktop 

computers instead of on the data collection device (smartphone) to avoid problems linked 

to: (i) the reduced storage and calculation capacities and (ii) the complexity of performing 

an online inference process. This architecture is illustrated in Figure 5 in which sensing is 

limited to the phone’s own sensors and pre-processing performed on the phone and the 

inference process on desktop computers. Unfortunately, these techniques are limited 

because they cannot be applied to fields where we need instant information about the user 

activity like police, assistance, emergency management…etc. Consequently, it is 

important to replace these offline solutions by online solutions in which the inference 

process will be made on smartphones. This online recognition of people’s activities offers 

the possibility to understand what people are doing at the present moment, and estimates 

their actions in the future. It is in this context that our research fits, in which we exploit the 

increasing computational power of mobile phones in order to propose an absolute online 

solution that recognize users’ activities during its execution while using a minimum of 

phone resources. 
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Figure 5 : Architecture of a mobile-phone-based activity recognition system. Source:[45]  

Sensing and pre-processing are performed directly on the phone while inference is made on a 

desktop computer with greater computational resources. 

2.3.3. THE SEMANTIC OF TRAJECTORIES  

People activities are divided into two behaviors: stationary and non-stationary, 

where the second one is also divided into two categories moving to reach a goal and 

moving to do a goal. For example, working in the office is a stationary activity while going 

from the workplace to a shopping center is non-stationary activity. Shopping itself is also 

a non-stationary activity, but the goal is to do shopping, so it’s an activity with movements 

(see Figure 6). Based on these concepts, users’ activities can be divided into three types: 



 

37 
 

1. Stationary activities that are characterized by stops. 

2. Activity with movements are non-stationary activities that require movement 

over a time interval. 

3. Moves are a set of behaviors that aim to move from a geographic area to another 

using transportations (car, bus, train, etc.). 

 

Figure 6: Relation between moves, stops and activities with movements 

Recognizing the activities defined above vary in function of the type of sensors and 

the application field. Before studying the inference techniques, we are going to go further 

in the definition of activity types.   

2.3.4. LOCATION VERSUS MOTIONAL ACTIVITY RECOGNITION 

The best way to introduce the locational activity recognition may be to associate 

the performed activity to the better known and nearest geographic entity. In the latter, the 

objective is to estimate the position of a device anywhere as accurately as possible using 

techniques such as multilateration [70] or assisted GPS[71]. In contrast, locational activity 

recognition is interested in the meaning of the user’s location rather than its coordinates. 

In other words, a locational activity recognition system distinguishes between locations 

only if it helps to determine what the user is doing [45]. Typical locations which reflect 

the user’s activity are the workplace, home, restaurant, shopping center, gym, 

cinema…etc. 

Stop 

Moves 

Activity with movements

Moves
POI POIUser position 
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 In motional activity recognition, the user’s activity is abstracted as a motion state 

or a mode of transportation. Some motion states can be identified from cellular signals 

even without any knowledge about the location of observed cell towers [45]. For example, 

fluctuations in GSM signals have been shown to be sufficient to determine with reasonable 

accuracy whether a mobile phone carrier is walking, driving a motor car or staying 

stationary [72], [73]. The accelerometers embedded in recent smartphones can serve the 

same purpose and further distinguish between finer movements such as sitting, standing 

or running [74], [75], or even further, to detect stairs walking [76] or fall detection using 

gyroscope sensors [36]. 

As seen above, activity types differ in several ways. Consequently, the learning 

techniques of these activities vary too. In the next section, we are going to present the most 

important works and learning techniques that tried to recognize users’ activities.    

2.4. ACTIVITY RECOGNITION MODELS 

Activity recognition models vary on many axes. We will introduce some important 

data mining algorithms that have played an important role in pattern recognition field [72]–

[75], [77], [78]. We are going to highlight three axes to be able to distinguish the existing 

works; the first axis is the manner of sample processing; secondly if the approach used is 

supervised or not and finally, if the algorithm used is incremental or not. We will end up 

with studying some existing works while developing a critical analysis. 

2.4.1. GENERATIVE VERSUS DISCRIMINATIVE MODELS 

Models implemented to recognize activity fall in one of two categories. Generative 

and discriminative models. Generative models [79] specify a joint probability distribution 
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𝑃𝑋1 𝑋2 … 𝑋𝑛 𝑌 over features 𝑋1 , 𝑋2 , …  𝑋𝑛 and the inferred activity Y. They can either model 

data directly or be used to form a conditional distribution 𝑃𝑌|𝑋1 𝑋2 … 𝑋𝑛  through the use of 

Bayes’s rule. Model parameters are usually estimated to maximize the likelihood of 

training data and new instances are classified to the most probable class given the features 

[45]. A generative probabilistic distribution is a principled way to model many machine 

learning problems and activity recognition problems, for instance, the Reality Mining 

project in [66] investigates how cell towers information and Bluetooth proximity data can 

complement each other to help infer important locations and social relationships using the 

Hidden Markov Model. Moreover, the Bayesian Network (BN) used in [80] and the 

Dynamic Bayesian Network (DBN) in [68] represent examples of other generative works. 

The discriminative models provide a model only of activities conditional on 

features. This can either be done by specifying the conditional probability 

distribution 𝑃𝑌|𝑋1 𝑋2 … 𝑋𝑛 , or by specifying decision boundaries. The discriminative 

algorithms adjust a possibly non-distributional model to data optimizing for a specific task, 

such as classification or prediction. For instance, in [69], Farrahi and Gatica-Perez 

consider a subset of 30 users and 121 consecutive days from the Reality Mining dataset 

[66] to compute both location and proximity features at two different time scales (a fine-

grained one every 30 minutes and a coarse-grained one every 3-4 hours). The predictive 

power of those features is then evaluated for two different tasks. Features are tested alone 

and in pairs of one location and one proximity feature. Using a Support Vector Machine 

with a Gaussian kernel, the authors aim at (i) classifying a user's day as a weekday or 

weekend and (ii) classifying a user as a business or engineering student. Furthermore, the 

Artificial Neural Network (ANN) in [81] and C4.5 Decision Tree (DT) used in [74], [75] 

represent other examples of discriminative models. Although generative models usually 

require more training data and are sometimes outperformed by discriminative models. 
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They hold a major advantage over the latter in their ability to generate values of any 

variable in the model. Therefore, generative models can simulate data and provide a better 

understanding of the underlying processes [45]. 

2.4.2. SUPERVISED VERSUS UNSUPERVISED LEARNING 

In addition to generative and discriminative models, learning techniques can be 

differentiated using another dimension based on the two ways of learning training 

(supervised and unsupervised). Most activity recognition systems rely on supervised 

learning. In this type of learning, training data is collected by the sensing module and 

transformed into a set of instances by the pre-processing module. Each training instance is 

then labeled for the user’s true activity when data was collected. The supervised inference 

model generalizes from training data the activity labels of the unseen instances in the test 

situations, it needs a dataset consisting of both features and labels. The task is to construct 

an estimator which is able to predict the label of an object given the set of features.  

Constructing the training set may represent a real challenge and sometimes a 

scientific lock because of the difficulty encountered during this process. One way to 

acquire the ground truth is to prompt for activity labels on the fly as the user performs his 

daily activities. This method has the advantage that the information collected is fresh in 

the user’s mind and therefore more accurate. However, providing labels using the interface 

of a mobile phone is not easy in practice. Also, not all activities can be labeled as they are 

performed. For instance, interrupting a meeting to input an activity label is not realistic. 

The authors of [82] proposed an online human activity recognition system on smartphones 

that classifies basic movements of a user, such as walking, running, sitting and standing. 

They developed a mobile application called activity logger in order to construct the 

training set, they demand for users to select the activity to be performed, put the phone 
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into the packet and start to perform the related activity. For each activity, the application 

creates different training data files in which raw data from the 3-axes of the accelerometer 

is being logged.  

An alternative approach is to label data after collecting data, e.g. at the end of the 

day, using a diary application or a paper notebook [83]. The issue with this method is 

obviously the low temporal accuracy and the limitations of human memory. In either case, 

activity labels provided by the user are subjective. For example, one user may interpret 

being at work as working while another user may only label as working time intervals 

during which he is actively engaged in his work. Secondly, training an activity recognition 

system in a supervised fashion requires considerable involvement from the part of the user 

who not only has to regularly charge his device and carry it with him for several weeks 

but also needs to spend time labeling his data [45].  

Unsupervised learning aims to relieve the user from the burden of labeling, usually 

by clustering data based on some distance measure. With unsupervised learning it is 

possible to learn larger and more complex models than with supervised learning. This is 

justified by the fact that supervised learning tries to find the connection between two sets 

of observations. The difficulty of the learning task increases exponentially in the number 

of steps between the two sets and that is why supervised learning cannot, in practice, learn 

models with deep hierarchies.  

One of the most common unsupervised algorithms is K-means, which tries to 

minimize the total intra-cluster variance [84]. K-means takes as a parameter the number 

of clusters, for example three clusters for stationary, walking and driving [73]. Moreover, 

our work in [50] succeeded in recognizing activities without any users’ intervention. The 

approach combines an online classification method based on K-means with spatial 

techniques to retrieve users’ activities automatically.  
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In many cases, the exact number of clusters depends on the user’s personal habits. 

In particular, this is the case for locational activities. A child may have three significant 

locations: home, school and park while other users may have many more including 

workplace, restaurant, supermarket and library. More recent algorithms, such as DBSCAN 

have been used in that context [85]. DBSCAN finds the number of clusters automatically 

from the estimated density distribution of data points [86]. In either case, devising an 

appropriate distance measure is a difficult problem and can be quite subjective. 

2.4.3. INCREMENTAL VERSUS NON-INCREMENTAL LEARNING  

Generally, a classification problem is defined as follows: a set of N training 

examples of the form (x ,y) is given, where y is a discrete class label and x is a vector 

of d attributes (each of which may be symbolic or numeric). The goal is to produce from 

these examples a model y  =  f(x) which will predict, with high accuracy, the classes y of 

the future examples x [80]. 

To solve this problem, traditional statistical analysis method (non-incremental 

methods) would load all training data into memory at once. However, compared to the 

explosive growth of today’s information, the storage capacity is far from adequate. 

Moreover, when it comes to temporal series, traditional data mining algorithms have 

shown many limitations. As such, incremental learning algorithms are efficient methods 

to solve these problems. In incremental learning, the sample size increases throughout the 

training phase where it is supposed that data items arrive one after the other and that the 

whole dataset is not fully available at the beginning of the learning process. 

One important problem met during the incremental learning is the change of the 

distribution of the observed variable during the learning process, this phenomenon is 
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called the concept drift, it means that the statistical properties of the targeted variable, 

which the model is trying to predict, change over time in unforeseen ways [87]. This 

causes problems because the predictions become less accurate as time passes.   

Incremental learning should be differentiated from online learning which conveys 

other meanings in the machine learning communities: in opposition to batch learning 

algorithms, online learning algorithms try to learn and update the current classifier using 

only the new available data without using any past observed examples [88] (historical 

data). 

2.5. ACTIVITY RECOGNITION WORKS 

We divide the activity recognition works into two types of approaches: location 

and motional approaches. Depending of the activity recognition application, systems tend 

to one specific type of systems, for instance, monitoring patient physical activities use 

motional systems in order to detect fatigue, however, a place recommender system will 

use location systems to propose an important place to visit.      

2.5.1. LOCATIONS APPROACHES  

The first main category of activity recognition approaches determines the user's 

activity in terms of location. We review below the major activity recognition systems that 

tried to recognize human activities basing on the spatial analysis of the users’ context, i.e., 

the environment in which the user is located.  
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2.5.1.1. Non-Mobile Approaches 

We mean by non-mobile approaches, a range of offline works that treat users’ 

movements after collecting them and not at the same time. To remove any sort of 

confusion, note that these systems may use mobile devices to track peoples’ traces but 

they are still non-mobile approaches since the inference process is made on desktops.   

a) Palma et al.’s Work:  CB-SMoT 

 A clustering method is proposed in [89] called CB-SMoT (Clustering-Based 

Stops and Moves of Trajectories). This algorithms is designed to infer semantic 

information from trajectories. It is a clustering method based on the speed variation of the 

trajectory. This method first evaluates the trajectory sample points and generates clusters 

in places where the trajectory speed is lower than a given threshold for a minimal amount 

of time. 

 In a second step, the method matches the clusters with a set of relevant geographic 

places defined by the user (see Figure 7). The intuition of this method is that the parts of 

a trajectory in which the speed is lower than in other parts of the same trajectory, 

correspond to interesting places, i.e. places that the user has probably visited. 

In a tourism application, for instance, a trajectory of a tourist that is visiting a new 

city would be something like: visit an important monument, visit a museum, go to his 

hotel, go to a night-club, and return to the hotel. Probably his/her trajectory has a lower 

speed around these places than it has in other parts of the trajectory where he was moving 

from one place to another. In a traffic management application, for instance, the speed of 

car trajectories will be lower in traffic jams, traffic lights, roundabouts, and electronic 

velocity controllers. Following this reasoning, they proposed a clustering-based algorithm 

to find low speed regions. 
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Figure 7: A descriptive diagram of CB-SMoT approach  

They proposed a two-step algorithm to extract stops and moves. In the first step 

the slower parts of a trajectory, which they call potential stops, are identified using the 

variation of the DBSCAN [90] algorithm that considers one-dimensional line 

(trajectories) and speed. In the second step, the algorithm identifies where these potential 

stops (clusters) found in the first step are located, considering the geography behind the 

trajectories. CB-SMoT takes each potential stop (clusters) and tests both intersection and 

minimal stop duration with the candidate stops. In case that a potential stop does not 

intersect any of the candidate stops, it still can be an interesting place. Then, in order to 

provide this information to the user, the algorithm labels such places as unknown stops. 

In [91], the same authors present a free software called Weka-STPM (Semantic 

Trajectories Pre-processing Module) that has been constructed into Weka [92] to 

preprocess raw trajectories in order to transform them into semantic trajectories. As a 

module of Weka, it allows the user to directly apply several mining algorithms available 

in Weka to mine semantic trajectories. Weka-STPM is the first tool for semantic 

trajectory reprocessing for data mining, it uses CB-SMoT in first order to generate the 

semantic trajectories. 
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The lack of this method is that data processing is non-incremental. It is not possible 

to real time analyze users’ mobility using this solution. Moreover, as seen earlier, users’ 

activities are divided into three families; stops, moves and moving activities, this solution 

detects only stops and moves and fails to recognize moving activities.  

Introducing DBSCAN    

DBSCAN (Density-Based Spatial Clustering of Applications with Noise) is an 

important density clustering method. It was developed by Ester [90] and it has influenced 

many other density-based clustering methods. The main advantage of DBSCAN is the 

capability to find clusters of many different shapes in a spatial dataset. Figure 8 shows some 

datasets where it is able to discover the intuitive visual clusters. 

 

Figure 8: Three datasets with its respective clusters [90] 

DBSCAN looks for some core cluster and tries to expand it by aggregating the 

nearest neighbors that met some conditions. In order to understand what these conditions 

are, it is necessary to present some related concepts. In fact, DBSCAN needs two 

parameters: MinPts and Eps. MinPts is a density measure that indicates the number of 

points needed in the neighborhood of a point in order to assign that point and its neighbors 

to a cluster. Eps is a distance used to delimit the neighborhood. Formally the neighborhood 

is defined as follows: 
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Eps-neighborhood of a point: The Eps-neighborhood of a point 𝑝, denoted by 

𝑁𝐸𝑝𝑠(𝑝) is defined by 𝑁𝐸𝑝𝑠(𝑝)  =  {𝑞 ∈  𝐷|𝑑𝑖𝑠𝑡(𝑝, 𝑞)  ≤  𝐸𝑝𝑠}, where 𝐷 is the whole 

dataset [89]. 

The Eps-neighborhood of 𝑝 represents all points inside a circle centered in p and 

with a radius 𝐸𝑝𝑠. The 𝑑𝑖𝑠𝑡(𝑝, 𝑞) is a function that returns the distance between the point 

p and the point q. 

Noise:  Let 𝐶1, 𝐶2, . . . , 𝐶𝑛  be the clusters of the database 𝐷 with respect to 𝐸𝑝𝑠 and 

𝑀𝑖𝑛𝑃𝑡𝑠. It is defined as noise the set of points in the database 𝐷 not belonging to any 

cluster 𝐶𝑖, this set can be defined as: 𝑁𝑜𝑖𝑠𝑒 = { 𝑝 ∈  𝐷 | ∀𝒊 ∶  𝑝 ∉  𝐶𝑖}.  

DBSCAN’s advantage is that it has a good performance on large spatial databases, 

outperforming other density-based algorithms like CLARANS [93]. DBSCAN’s 

complexity is 𝑂(𝑛𝑙𝑜𝑔𝑛). It requires little knowledge about the spatial domain, since it 

needs only two parameters in order to be performed: 𝑀𝑖𝑛𝑃𝑡𝑠 and 𝐸𝑝𝑠.  

 

Figure 9: Clusters with different granularities [86] 

The main disadvantage of DBSCAN is its difficulty to find clusters of different 

densities, like those shown in Figure 9. That figure shows 4 distinct clusters, where the 

cluster A has the greatest density among them and the cluster D has the lowest one. The 

clusters B and C have intermediate densities. 
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b) Huang et al.’s Work: STPA 

The work of [94] infers activities from users trajectories. This paper presents an 

approach using spatial temporal attractiveness of a POI (place of interest) to identify 

activity locations and durations from raw GPS trajectory. The algorithm they propose finds 

the intersections of trajectories and spatial-temporal attractiveness prisms to indicate the 

potential possibilities for activities. Authors consider POIs as normal facilities where their 

attractiveness is decided by some intrinsic factors. For example, larger shopping malls 

usually attract more people if they go for purchases. They define this kind of factor as 

static, they are described as follows: 

 The size of POI: generally the greater the size is the higher the attractiveness is 

under the same other conditions and the longer the duration is; 

 The popularity of POI: generally the greater the popularity is the higher the 

attractiveness is; 

 Categories of POI: those POIs that have close relationship to individuals’ daily 

life normally have higher attractiveness, whereas functional POIs for special 

needs normally reflect lower attractiveness. 

Because POIs discussed in their work are related to certain type of activities, the 

attractiveness should include the factor to describe this kind of relationship. One of the 

activity’s basic components is starting time since a different time of the day implies 

different activities. Therefore POIs attractiveness will change as time flies forward. For 

example, restaurants are more attractive at midday when people normally choose to go for 

lunch. This kind of time varying factors are defined as dynamic factors named STPA. It is 

a function of the POI’s category C, the time of day t, and the type of day D 

(weekday/holiday). This function is called dynamic function 𝑓(𝐶, 𝑡, 𝐷) and is written as 

follows: 
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𝑆𝑇𝑃𝐴𝑝 = 𝐹(𝑆, 𝜀𝑝, 𝐶, 𝑓(𝐶, 𝑡, 𝐷)) (1) 

To implement STPA for practical activity identification, quantification method 

customizing STPA to an appropriate size is necessary. Since people will stay/move in an 

activity place, the area of this place can naturally describe the region that contains the 

activity. Authors use circle centered at POI P’s location whose area equals POI P’s size S 

to construct an attractiveness area in geographical plane. Then, the customized STPA of 

the POI P can be defined by Equation (2), where r is the standard radius of the circle; w1 

and w2 are weighted coefficients of 𝜀𝑝   and C respectively, r' (t) is time varying radius. 

𝑟 = √𝑆 (𝑤1 𝜀𝑝 + 𝑤2 𝐶) 

𝑟(𝑡) = 𝑓(𝐶, 𝑡, 𝐷) 𝑟 

𝑆𝑇𝑃𝐴𝑝 = 𝐹(𝑟(𝑡)) 

𝑤1 + 𝑤2 = 1 

(2) 

The experiments use one month of GPS trajectories provided by 10 volunteers. 

However, the small dataset used for experimentation appears unrepresentative for real 

users’ daily routines, especially as the work seems very sensitive to the number of POIs 

since the accuracy drops with the increasing of POI’s number which raises questions about 

the ability to use such work in big real datasets. 

2.5.1.2. Mobile approaches  

Mobile systems include activity recognition works that tried to achieve all the 

activity recognition steps (sensing, prepossessing and inference) on the mobile phone 

without the intervention of desktop computers.   
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a) Kang et al.’ work: Time-based clustering 

Kang et al. in [95] utilized the access point MAC address of a WI-FI network to 

capture location data on campus. They developed a time-based clustering algorithm to 

extract places taking advantage of the continuity of the WI-FI positioning. The developed 

application is called Place Lab. A new place is found when the distance of the new 

locations from the previous place is beyond a threshold, and when the new locations span 

a significant time threshold. The basic idea of their approach is to cluster locations along 

the time axis. As a new location measurement is reported, the new location is compared 

with previous locations. If the new location is moving away from previous locations, the 

new location is considered to belong to a different cluster than the one for the previous 

locations. 

 When a new location measurement event is generated by Place Lab, the cluster 

function in Algorithm 1 is invoked where 𝑑 and 𝑡 are the distance and time threshold 

parameters. The current cluster 𝑐1 is the set of location measurements that belong to the 

current cluster. The pending location 𝑝𝑙𝑜𝑐 is used to eliminate outliers. Even if the new 

location is far away from the current cluster (distance is larger than the distance threshold 

𝑑), the algorithm does not start a new cluster right away with the new location. Instead, 

the algorithm waits for the next location to determine if the user is really moving away 

from the cluster or the location reading was just a spurious outlier. The Places contain 

significant places where the user stays longer than the time threshold t. 

When a new location measurement is generated from Place Lab, the algorithm 

compares the distance between the mean position of the current cluster and the new 

location with the distance threshold 𝑑. If the distance is less than 𝑑, the new location is 

added to the current cluster and the pending location is set to null (lines 2-3). If the distance 

is larger than 𝑑, the algorithm checks if there is a pending location (line 5). If there is a 
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pending location, the algorithm closes the current cluster and checks the time duration of 

the current cluster (the difference between the oldest and newest locations in the cluster). 

If the time duration of the cluster is longer than the time threshold t, the cluster is added to 

the significant places (lines 6-7). Then, the algorithm starts a new cluster with the pending 

location and checks if the new location can be in the same cluster as the pending location 

(lines 8-14). If the distance between the new location and the current cluster is larger than 

𝑑 but there is no pending location, the algorithm set the pending location to the new 

location (line 16). 

When a cluster is added to the set of significant places, the Algorithm 1 checks if 

the cluster is the same as one of the existing clusters (their centroids are within distance 

𝑑/3 of each other). In order to identify more fine-grain places, authors use a smaller 

threshold (𝑑/3) than the one used for forming clusters (𝑑). The smaller threshold works 

because the difference between the averages of the location measurements over a period 

of time is likely to be much smaller than the difference between individual location 

measurements. If the newly added cluster is close enough to one of the clusters, then the 

two clusters are merged.  

This algorithm is simple and works in a novel incremental way on mobile devices. 

However, the algorithm does not consider the reoccurrence of readings at the same 

location. More simply, each time it discovers a place, it is a “different” place. This also 

makes it difficult to discover places that are visited with high frequency but short dwell 

time. Moreover, this method requires continuous location data collection with very fine 

intervals, and thus large storage. Another lack of this work is linked to the labeling of the 

discovered places since it is made manually by authors, the work needs to be improved by 

providing an automatic way of labeling activities. 
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Algorithm 1: Time-based clustering algorithm 

Cluster (loc) 

Input:     measured location loc; 

Output:  current cluster cl, pending location ploc, significant places 

Places; 

1: if (distance(𝑐1, loc) < d ) 

2:      add loc to cl 

3:      ploc = null 

4: else 

5:      if (ploc != null) 

6:           if (duration(cl) > t)  

7:                add cl to Places 

8:           clear cl 

9:           add ploc to cl 

10:           if (distance(cl, loc) < d)  

11:                add loc to c 

12:                ploc = null 

13:           else 

14:                ploc = loc 

15:      else 

16:            ploc = loc 

 

b) Spinsanti et al.’s Work: Where You Stop 

In [96], an algorithm is proposed to associate each stop in a user’s trajectory to a 

list of possible visited places and each of these places is quantified with a probability. After 

that, depending on the kind of activities associated to the identified place, the trajectory is 

classified into a probable trajectory behavior. In this work they assume the moving object 

is a person that travels using transportation means associated to a traceable (GPS) device 

(car, bus, metro, train). The person gets out of the transportation means to reach the final 
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destination walking. During this time interval the person is not traceable, which justifies 

the use of probability to find the visited place (see Figure 10). 

 

Figure 10: A descriptive diagram of Spinsanti’s work 

Movement data is collected from tracking devices, and trajectories are 

reconstructed from them. Given the trajectories, the first step is to identify the stops of the 

trajectories. The stops are the portion of trajectories where the movement stops for a given 

time duration and where they assume the user is performing some activity. For each stop 

of a trajectory, they compute the set of POIs that can be associated to it. Two conditions 

are taken into account: (i) having enough time to go and come back from a stop to POI and 

(ii) having enough time to visit the POI. This means that the amount of time a person could 

spend in a place is not the complete stop duration, but the time needed to cover the distance 

between the POI and the stop must be taken into account. So, during this step they 

disregard all the stops that cannot be associated to “interesting” places, such as the stops 

with a very short time duration that are typical of the movement itself, such as a traffic 

light. The component “Visited POI” takes as input the list of stops and the POIs and 

computes a ranked list – based on probabilities – of possible points of interests visited by 

the user. This probability is calculated in function of a spatial probability 𝑆𝑝𝑎𝑡𝑃 that is 
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linked to distance, and the temporal probability 𝑇𝑒𝑚𝑝𝑃 that is linked to time spent. The 

formula that computes the probability related to the distance between the POI 𝑃𝑖 and its 

associated stop is illustrated in Equation (3), 𝑑𝑖,𝑥 is the distance between the POI 𝑃𝑖  and 

the stop SX.  

 

𝑆𝑝𝑎𝑡𝑃𝑖,𝑥 =

∑ 𝑑𝑖,𝑘𝑘

𝑑𝑖,𝑥

∑
∑ 𝑑𝑖,𝑘𝑘

𝑑𝑖,𝑘
𝑘

 (3) 

The closer is the POI to the stop, the higher is the value returned by this formula.  

On the other hand, the formula that takes into account the average visit time of the 

POI 𝑃𝑖  is illustrated in Equation (4). 𝑇𝑀𝑖 is the average visit time of the POI 𝑃𝑖 and 𝑇𝐸𝑖,𝑥 

is the maximum time that a person has to spend to visit the POI 𝑃𝑖, that is to say the 

difference between the duration of the stop SX and the time needed to reach 𝑃𝑖 and to come 

back to the stop.  

𝑇𝑒𝑚𝑝𝑃𝑖,𝑥 =

𝑇𝑀𝑥
𝑇𝐸𝑖,𝑥

∑
𝑇𝑀𝑥
𝑇𝐸𝑖,𝑥𝑥

 (4) 

The total probability is calculated as described in Equation (5) where 𝛼 is a weight 

used to give more or less importance to the distance criterion. 

𝑃𝑖,𝑥 =
𝑇𝑒𝑚𝑝𝑃𝑖,𝑥 +  𝛼 𝑆𝑝𝑎𝑡𝑃𝑖,𝑥 

𝛼 + 1
 (5) 

The lack of this method is that users’ activities are broader to be categorized into 

one type based on stop behavior. Indeed, this work fails to recognize activities that require 

a movement during its execution like walking in a park or shopping. Moreover, this work 

uses numerous thresholds that are set manually such as the minimum duration of an 
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activity. Nevertheless, since these parameters may depend on user profiles, this work may 

be ineffective on large datasets that contain several profiles.       

c) Takeuchi et al.’s Work: CityVoyager 

CityVoyager presented in [97] is a recommendation system designed for mobile 

devices. It recommends shops to users based on data analyzed from their past location 

history. This approach applies location data to an item-based collaborative filtering 

algorithm. This algorithm is used in many online recommendation systems. It transforms 

location data history into a list that contains the names of each user’s frequently visited 

shops and rating values which indicate how fond the user is of each shop. This list can be 

directly used as input to the filtering algorithm to make recommendations in the exact 

same manner as conventional recommendation systems. The transformation of data is 

done using their place learning algorithm, which can find users frequented places 

completely with their proper names (e.g. “The Ueno Royal Museum”). No explicit user 

manipulation is required in the process. In addition, authors claim that their system is able 

to further narrow down shops based on prediction of user movement and geographical 

conditions of the city, such as the layouts of streets, resulting in more timely 

recommendations.  

In the place learning phase, raw location data from GPS is reconstructed into a list 

of each user’s frequently visited shops. This process can be further divided into two sub-

phases: detecting visits to shops, and finding frequented shops. 

1. In the visited shops detection step, authors use the unavailability of GPS signals as 

evidence that the user has gone indoors. GPS signals cannot penetrate through most 

building walls, so visits can be detected fairly accurately using this method. The 

system judges that the user has visited a shop when GPS signals are continuously 
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unavailable for a period of time longer than a threshold. The system then records 

the location of the visit, and also records the length of time that signals were lost, 

as the approximate duration of the visit.  

2. In the second step, the authors try to find the frequented shops. Following the above 

procedure, locations of a user’s past visits are plotted. By analyzing these plots of 

past visits, it is possible to reveal which shops the user has frequently visited. 

Unfortunately, this task is more difficult than it seems, since GPS is known to 

produce errors, of around 10 meters in clear-sky conditions and significantly larger 

in urban areas. The proposed place learning algorithm of past visits implies the 

existence of one or more frequented shops in the nearby area, but it is not possible 

to know exactly which shop(s) the user has frequently visited. The best that can be 

done is to estimate the frequented shops by the proposed place learning algorithm. 

Authors have evaluated the performance of their system at Daikanyama, one of 

Tokyo’s most popular shopping districts where they show the overall effectiveness of the 

approach. Although some aspects of the system still need further evaluation to be fully 

validated like the fail reported by the authors during the experimentation step when a shop 

which only sells fashion items for women was recommended to a male user. 

Authors track the visited shops by the loss of GPS signals, though, it is known that 

GPS signals frequently become lost in urban areas even when the user is outdoor, these 

situations increase the possibilities of false detections. Furthermore, it is also known that 

it is possible to visit a shop without losing GPS signal in the case when the shop doesn’t 

include many obstacles that hinder the diffusion of the GPS signal, these shops are surely 

unrecognized by this type of work.     
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They claim to propose an approach designed for mobile phones, however, there is 

no adaptation noted to support this demanding environment. For instance, finding 

frequented shops requires a heavy manipulation of the historical records of users' visited 

shops. Authors seem to neglect the limited mobile’s resources since there is no support 

for the limited battery life and there is no effort perceived to online detect and find 

frequent shops.  

Besides, as perceived in the CityVoyager system architecture presented in Figure 

11, the user app needs to be continuously connected to the server in order to receive 

recommendation data. Unfortunately, this constant connection with the server can generate 

both excessive energy consumption and heavy use of bandwidth.  

 

Figure 11: The CityVoyager system architecture 

2.5.2. MOTIONAL APPROACHES  

The second main category of activity recognition approaches outputs the user's 

activity in terms of motion state. We review below the major activity recognition systems 

for mobile phones which fall into that category. As previously, each system is named after 

the project in which it was developed followed by a short description. 
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a) Miluzzo et al.’s Work: CenceMe 

The CenceMe system [74], [75] combines inference of activity, travel, 

conversation and presence of individuals using a Nokia N95 mobile phone. CenceMe 

implements a split-level classification scheme whereby inference is run in part on the 

phone and in part on a back-end server to improve scalability. Activity recognition is 

performed directly on the phone using on-board accelerometer data to determine whether 

the user is sitting, standing, walking or running. The accelerometer sensor and event 

detector are Symbian C++ modules that act as daemons producing data for corresponding 

JME client (Java Micro Edition Embedded Client) methods. A reprocessing module 

fetches raw accelerometer data from the local storage component and extracts lightweight 

features including the mean, standard deviation and number of peaks of the accelerometer 

readings along the three axes of the accelerometer. CenceMe's inference module is based 

on a C4.5 Decision Tree and evaluated in a small-scale supervised experiment involving 

eight users, student and faculty from Dartmouth College. These users annotated their 

actions over a one-week period at intervals of approximately 15 to 30 minutes. With an 

average accuracy of 78.89% reported, figures are up to 20% lower than those reported 

using custom hardware [98]. In particular, the system has difficulties differentiating 

between sitting and standing, and between walking and running. 

The position of the phone was found to impact recognition accuracy. Specifically, 

holding the phone in a trouser pocket or at the belt produces similar results but having it 

at a lanyard position yields poor accuracy when classifying sitting and a slightly lower 

accuracy for running. The length of the lanyard cord and its type were also found to affect 

the results. 
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The CenceMe system is one of the existing implementations which actually runs 

on a mobile phone. However, the techniques implemented are relatively rudimentary and 

therefore achieve low accuracy even on a custom small-scale controlled experiment. 

Introducing C4.5 

The C4.5 algorithm [99] is an extension of the ID3 algorithm [100]. ID3 is an 

algorithm used to generate a decision tree from the top to down without backtracking. To 

select the most useful attribute for classification, a criterion named the information gain 

based on the information theory is exploited [44]. The information gain of a given 

attribute 𝑋 with respect to the class attribute 𝑌 is the reduction in uncertainty about the 

value of 𝑌 when we know the value of 𝑋. In order to calculate the information gain we 

need to know the information entropy. If 𝐸(𝑆) is the information entropy of the set 𝑆 and 

𝑛 is the number of different values  of  the  attribute in  𝑆, and 𝑓𝑠(𝑖) is the frequency of  

the value  𝑖  in  the  set 𝑆, then the information entropy is calculated according to the 

following equation : 

𝐸(𝑆) =  − ∑𝑓𝑠(𝑖)𝑙𝑜𝑔2

𝑖=𝑛

𝑖=1

(𝑓𝑠(𝑖)) (6) 

The entropy is always a number comprised between 0 and 1 inclusively. If all the 

examples are in the same class, the entropy of the population is null. If there is the same 

number of positives and negative examples in binary classification, the entropy is maxed. 

The best attribute is selected based on the information gain factor that is given by the 

following equation: 

𝐺(𝑆, 𝐴) =  𝐸(𝑆) − ∑𝑓𝑠(𝐴𝑖)

𝑚

𝑖=1

𝐸(𝑆𝐴𝑖) (7) 

𝐺(𝑆, 𝐴) is the gain of the set 𝑆 after a split over the 𝐴 attribute; 𝑚 refers to the 

number of different values of the attribute 𝐴 in 𝑆; 𝑓𝑠(𝐴𝑖) is the frequency of the items 
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possessing 𝐴𝑖 as 𝑖𝑡ℎ value of 𝐴 in 𝑆; and 𝑆𝐴𝑖 is a subset of 𝑆. There are three requirements 

for the training data of ID3 algorithm. The first one is that all of the training data objects 

must have common attributes, and these attributes should be previously defined. The 

second requirement is that the attributes’ values should be clearly indicated and a value 

indicating a special attribute should indicate no more than one state. The third requirement 

is that there must be enough test cases to distinguish valid patterns from chance 

occurrences. 

The most important improvement in C4.5 is the capability to handle both 

continuous and discrete attributes. To do that a threshold is created and the list of value 

is split into those which are above the threshold and those that are equal or below. Another 

improvement comes from its capacity to handle training data with missing attributes. In 

that case, the values of a missing attribute are simply not used in the gain and entropy 

calculations. Finally, C4.5 can backtrack on the tree to perform what is called the pruning. 

That important phase reduces the risk of over-fitting data by replacing the branches that 

do not help for a leaf. Due to that particular step, the C4.5 computational complexity is 

higher than its predecessor [44]. 

b) Kose et al.’s Work: OHARSP 

Authors in [101] propose an online human activity recognition system on 

smartphones. They focus on activity recognition using the embedded accelerometers on 

smartphones in order to classify basic movements of a user, such as walking, running, 

sitting and standing. The authors evaluated the performance of two classification 

algorithms: Naïve Bayes and Clustered KNN, which is an improvement of minimum 

Distance and k-nearest neighbor (KNN) classification algorithms that works in real-time. 
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The clustered KNN and the Naïve Bayes classifiers are implemented on Android 

phones to detect four main activities; which are walking, running, standing and sitting. 

For this purpose, the process is divided into two phases.  

At first stage, training data is collected for each activity separately. To do so, 

authors developed an application called Activity Logger. In this application, the user 

selects the activity to be performed, puts the phone into the packet and starts to perform 

the related activity. For each activity, the application creates different training data files 

in which raw data from the 3-axes of the accelerometer is being logged. Low pass filter 

is applied to raw data for noise removal. Before starting the activity recognition tests, a 

few minutes of training data for each activity is collected by each subject.  

In the second stage, activity recognition is performed using the selected classifier. 

First, the application extracts necessary features of training sets for each activity 

according to the classification method being used. Depending on the size of the training 

set and the processor performance of the phone, this step may take a few minutes. The 

main screen of the application allows the user to select the system parameters, such as the 

sensor sampling rate and window size.  

The performance of these classifiers is tested on five different subjects. Test 

results show that the clustered KNN approach outperforms other classifiers in terms of 

accuracy and execution time. Authors also analyzed the impact of sensor sampling rate 

and window size (that  is used for segmenting the data) on the performance of the activity 

recognition. They reported that the CPU and memory usage of their system never 

exceeded 42% and 22 MB respectively. Applications using minimum distance classifiers 

and clustered KNN consume nearly the same amount of resources. On the other hand, 

Naïve Bayes has considerably higher CPU usage.  
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c) Zheng et al.’s Work: GeoLife Transportation Mode 

The work reported in [102] is a part of a well-known research project called 

GeoLife, which is a GPS-log-driven application over Web Map. It focuses on lively 

visualization, effective organization, fast retrieval and deep understanding of GPS track 

logs for both personal and public use. The solution is designed for geographic and mobile 

applications on the Web, authors propose an approach using raw GPS data that is based 

on supervised learning to automatically learn the transportation modes including walking, 

taking a bus, riding a bike and driving (see Figure 12). 

 

Figure 12: A descriptive diagram of Zheng’s work 

When a GPS log file comes, first, the inference algorithm divides the GPS track 

into trips and then partition each trip into segments by change points. Then, it extracts 

features from each segment and sends these features to the inference model. 

Figure 13 depicts how authors calculate the features that will be used in the 

inference model. Given two consecutive GPS points, for example, 𝑝1 and 𝑝2, they 

calculate the spatial distance L1, temporal interval 𝑇1 and heading direction (𝑝1. ℎ𝑒𝑎𝑑) 

between them. 
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Figure 13: Feature calculation based on GPS logs. 

Subsequently, the velocity of p1 can be computed as Equation (8). 

𝑝1. 𝑉1 =  𝐿1/𝑇1.  (8) 

Then, the heading change, such as 𝐻1 of three consecutive points like 𝑝1, 𝑝2 and 𝑝3 

can be calculated as Equation (9). 

𝐻1 = |𝑝1. ℎ𝑒𝑎𝑑 −  𝑝2. ℎ𝑒𝑎𝑑|  (9) 

Further, more features, such as acceleration and expectation of velocity, can be 

calculated in this manner. 

Two alternative ways are considered when it attempts to learn a user’s 

transportation mode (see Figure 14). In one way, it regards the segments of GPS tracks 

as independent instances. General classifiers like Decision Tree are employed to perform 

inference. After the inference, a post-processing, which takes the transition probability 

between different transportation modes into account, is implemented to improve the 

prediction accuracy. For instance, if the prediction is 𝐶𝑎𝑟 → 𝐵𝑖𝑘𝑒 → 𝐵𝑖𝑘𝑒 while the 

ground truth is 𝐶𝑎𝑟 → 𝑊𝑎𝑙𝑘 → 𝐵𝑖𝑘𝑒 the algorithm assumes that a prediction error has 

occurred and corrects the prediction basing on the transition probability between different 

transportation modes. It is more probable to walk after leaving a car than to take a bike 

directly. 

In the other way, GPS data are deemed as a kind of sequential data. Conditional 

random field (CRF) [103], a framework for building probabilistic models to segment and 
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label sequence data, is leveraged to perform the inference. Since the conditional 

probabilities between different transportation modes have been considered in the CRF 

graphical model, in this way, it is not needed to pass by a post-processing step. In the 

inference, the mode of transportation can take four different values including Bike, Bus, 

Car and Walk.  

 

Figure 14: Architecture of GeoLife transportation approach 

 Four different inference models including Decision Tree, Bayesian Net, Support 

Vector Machine (SVM) [104] and Conditional Random Field (CRF) are studied in the 

experiments. Authors evaluated the approach using the GPS data collected by 45 users 

over six-month period. As a result, beyond two other segmentation methods, the achieved 

method showed a higher degree of accuracy in predicting transportation modes and 

detecting transitions between them.  

This method starts by a segmentation process, a step where the trajectory is 

divided into a set of the same velocity parts, authors claim that the solution is usable for 

mobile phones, however, this technique seems not very friendly to the limited resources 

environments. For instance, applying segmentation process on every trajectory is 
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penalizing for the computational complexity, why do authors repeat the same process 

even if the trajectory is the same? (e.g. there is no need to repeat the same calculation 

every time  the user goes from home to work as it is very probable that he will take the 

same transportation mode), consequently, it will be better to process the segmentation  

wisely in order to prevent a massive draining of mobile’s battery.    

2.6. LOCATION PREDICTION WORKS  

Significant research effort has been undertaken in both the mobile computing and 

the spatial data mining domains [63], [77]. Many advances in tracking users’ movements 

have emerged resulting in several proposals for predicting future users’ locations. The 

main approach proposed is to learn the user’s patterns from his historical locations and try 

to predict the next location via different techniques. 

a) Morzy’s Work 

In [78], Morzy introduces a new method for predicting the location of a moving 

object. He extracts the association rules from the moving object database using a modified 

version of Apriori [105] and uses the rules extracted when a trajectory is given via 

matching functions. He selects the best association rule that matches this trajectory, and 

then uses it for the prediction. 

Apriori is an association rule algorithm. An association rule is a rule of the form 

condition => consequence that aims to find relations between the data. For example, let's say 

that we have a dataset comprised of transactions made at Walmart by customers. We could 

discover a rule such as if Sunday and Diapers => Beers. That rule would mean that very often, 

when it is Sunday and someone buy diapers he will also buy beers. Association rules mining 

algorithms define the terms very often with two attributes named the support and the 
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confidence. The first one defines the minimum frequency of both the left and right part of the 

rule. For example, supposes we have the item set {{A}, {B}, {AB}, {BA}, {B}, {AB}, 

{AB}}, the support of AB would be 𝑆𝑢𝑝𝑝𝑜𝑟𝑡({𝐴𝐵}) =
3

7
≈ 43%. The second, the 

confidence, is the probability threshold of the right part being true if the left part is validated: 

𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 (𝑋 => 𝑌) = 𝑝(𝑌|𝑋) =
𝑝(𝑋 ∪ 𝑌)

𝑝(𝑋)
=
𝑆𝑢𝑝𝑝𝑜𝑟𝑡({𝐴𝐵})

𝑆𝑢𝑝𝑝𝑜𝑟𝑡({𝐴})
 (10) 

Apriori relies upon two principles. The first one is the search for the frequent k-

itemsets whose support is higher than a fixed minimum support. The second phase consists 

to build the association rules from the found frequent k-itemsets. A rule is retained only if 

its confidence is higher than a fixed minimum confidence [44]. Apriori uses a "bottom up" 

approach, where frequent subsets are extended one item at a time (a step known as 

candidate generation), and groups of candidates are tested against the data. The algorithm 

terminates when no further successful extensions are found. 

Apriori uses breadth-first search and a Hash tree structure to count candidate item 

sets efficiently. It generates candidate item sets of length 𝑘 from item sets of length 𝑘 − 1. 

Then it prunes the candidates which have an infrequent sub pattern. The candidate set 

contains all frequent  𝑘 − 𝑙𝑒𝑛𝑔𝑡ℎ item sets. After that, it scans the transaction database to 

determine frequent item sets among the candidates. For more details about Apriori 

algorithm please refer to the paper described in [105]. 

 Unfortunately, the work of Morzy does not allow incremental training of the 

models, since it is based on a posteriori learning. Secondly, the fact that authors propose 

matching functions in the form of strategies (simple, polynomial, logarithmic and 

aggregation strategies) can create computational complexities and difficulties to choose 

and set the right parameters for the right strategy.   



 

67 
 

b) Gambs’s Work 

Gambs et al. extend a previously proposed mobility model called the Mobility 

Markov Chain (n-MMC) in order to keep track of the n previous visited  locations [106]. 

Authors introduce Mobility Markov Chain (MMC) as a model that represents the mobility 

behavior of an individual as a discrete stochastic process in which the probability of 

moving to a state (i.e. POI) depends only on the previous visited states and the probability 

distribution of the transitions between states. More precisely, a MMC is composed of:  

• A set of states 𝑃 =  {𝑝1, . . . 𝑝𝑘}, in which each state corresponds to a frequent 

POI (ranked by decreasing order of importance). These states generally have an 

intrinsic semantic meaning and therefore semantic labels such as “home” or 

“work” can often be attached to them. The semantics of some states can sometimes 

be deduced automatically from the structure of the MMC.  

• A set of transitions, such as 𝑡𝑖,𝑗, which represents the probability of moving from 

state 𝑝𝑖 to state 𝑝𝑗 . A transition from one state to itself can occur if the individual 

has a probability of moving from one state to an occasional location before coming 

back to this state. For instance, an individual can leave his “home” to go to the 

pharmacy before coming back to “home”.  

Thereafter, authors describe in Algorithm 2 an algorithm for learning a n-MMC 

out of the trail of mobility traces 𝐷 of an individual, which is decomposed in two steps. 

During the first step, a clustering algorithm called Density-Joinable cluster (DJ-Cluster) 

[107] is used to discover the POIs. Afterwards, during the second step, the transitions 

between those POIs are computed. DJ-Cluster takes as input three parameters: (i) 𝑀𝑖𝑛𝑃𝑡𝑠: 

the minimal number of points necessary to form a cluster, (ii) 𝜀:  the maximum radius of 

the cluster and (iii) 𝑑𝑚𝑒𝑟: a merging distance for the clusters. 
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Algorithm 2: Construction of a n-MMC 

Cluster (loc) 

Input: 𝐷, 𝑛,𝑀𝑖𝑛𝑃𝑡𝑠, 𝜀, 𝑑𝑚𝑒𝑟 

Output: the Mobility Markov chain 

1: Run DJ-Cluster ( 𝑀𝑖𝑛𝑃𝑡𝑠, 𝜀) on 𝐷 

2: Merge the clusters that share at least a common point 

3: Merge the clusters that are within 𝑑𝑚𝑒𝑟 distance of each other 

4: Let 𝑙𝑖𝑠𝑡𝑃𝑂𝐼𝑠 be the list of all constructed clusters 

5: for each cluster C in 𝑙𝑖𝑠𝑡𝑃𝑂𝐼𝑠  

6:      Compute the 𝑡𝑖𝑚𝑒_𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙, 𝑟𝑎𝑑𝑖𝑢𝑠 and 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 of C 

7: end for 

8: Sort the clusters in 𝑙𝑖𝑠𝑡𝑃𝑂𝐼𝑠 by decreasing order according 

to their densities 

9: for each cluster 𝐶𝑖 in 𝑙𝑖𝑠𝑡𝑃𝑂𝐼𝑠  

10:      Create the corresponding state 𝑝𝑖 in the mobility Markov 

chain 

11: end for 

12: for each mobility trace 𝑚 in 𝐷  

13:      if the distance (𝑚, 𝐶𝑖) <  radius 𝑠𝑖 then 

14:      Update the 𝑛 − 1 locations and current position with 𝐶𝑖 

15:      Label the 𝑚, the 𝑛 −  1 previous locations, 𝐶𝑖 

16:      else 

17:      Label the 𝑚 with the value “unknown” 

18:      end if 

19: end for 

20: Delete all traces that are “unknown” 

21: Squash all the successive mobility traces sharing the same 

label into a single occurrence 

22: Compute all the transition probabilities between each pair of 

states of the Markov chain 

23: return the Mobility Markov chain computed 

 

 



 

69 
 

Authors show that while the accuracy of the prediction grows with n, choosing n > 

2 does not seem to bring an important improvement to the cost in terms of space. However, 

like the previous works, this one has a lack of computational complexity and the 

incremental support. In addition, the three datasets used in the authors’ experiments were 

collected in a controlled environment where data was gathered from specific participants 

who were aware of the experiments. 

c) Asahara’s Work 

Asahara et al. proposed in [108] a method for predicting pedestrian movement on 

the basis of a Mixed Markov chain Model (MMM) [109]. In their prediction model, they 

integrate some complex parameters such as pedestrian’s personality merged with his 

previous status. MMM is an intermediate model between individual and generic models.  

The prediction of the next location is based on a Markov model belonging to a 

group of individuals with similar mobility behavior. This approach clusters individuals 

into groups based on their mobility traces and then generates a specific Markov model for 

each group. The prediction of the next location works by first identifying the group a 

particular individual belongs to and then inferring the next location based on this group 

model (see Figure 15). 

The authors tested their solution in a major shopping mall and report an accuracy 

of 74.4% for the MMM method and, in a comparison over the same dataset, they reported 

that methods based on Markov-chain models, or based on Hidden Markov Models, achieve 

lower prediction rates of about 45% and 2%, respectively. 

 



 

70 
 

 

Figure 15: Pedestrian-movement prediction [108] 

d) NextPlace: A Spatio-Temporal Prediction Framework 

In [110], authors proposed a spatio-temporal user location prediction approach 

based on nonlinear analysis of the time series of start times and duration times of POIs 

visits. In order to obtain an estimation of the future behavior, the history of a user’s visits 

to each of its significant locations is considered. Then, for each location they try to predict 

when the next visits will take place and for how long they will last. After this estimation, 

the predictions obtained for different locations is analyzed, in order to produce a unique 

prediction of where the user will be at a given future instant of time.  

For each user, the proposed algorithm keeps track of all previous visits to a set of 

locations. I.e., for each visit it considers the instant when it started and how long it lasted. 

The algorithm predicts the next visits to a given location by means of the previous history 

of visits ((𝑡1;  𝑑1), (𝑡2;  𝑑2), … , (𝑡𝑛;  𝑑𝑛)): 

1. Two time series are created from the sequence of previous visits: the time series 

of the visit daily start times 𝐶 and the time series of the visit durations 𝐷 defined 

as follows: 𝐶 =  (𝑐1, 𝑐2… , 𝑐𝑛), 𝐷 =  (𝑑1, 𝑑2, … , 𝑑𝑛). Where 𝑐𝑖  is the time of the 

day in seconds corresponding to the time instant 𝑡𝑖  (i.e. 𝑐𝑖  is in the range [0; 

86400]); 
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2. They search in the time series 𝐶 sequences of 𝑚 consecutive values 

(𝐶𝑖−𝑚+1, … , 𝐶𝑖) that are closely similar to the last 𝑚 values (𝐶𝑛−𝑚+1, … , 𝐶𝑛); 

3. The next value of time series 𝐶 is estimated by averaging all the values 𝐶𝑖+1 that 

follow each found sequence; 

4. At the same time, in time series 𝐷 the corresponding sequences (𝑑𝑖−𝑚+1, … , 𝑑𝑖) 

are selected; the sequences have to be located exactly at the same indexes as those 

in 𝐶; 

5. The next value of time series 𝐷 is then estimated by averaging all the values 

𝑑𝑖+1 that follow these sequences. 

As an example, if the last three visits of a user to a location are Monday at 6:30pm, 

Monday at 10:00pm and Tuesday at 8:15am, authors analyze the history of visits in order 

to find sequences that are numerically close to (6:30pm, 10:00pm, 8:15am), i.e. (6:10pm, 

9:50pm, 8:35am) and (6:35pm, 10:10pm, 8:00am): then, assuming that the next visits that 

follow these subsequences start at 1:10pm and 12:40pm and last for 40 and 30 minutes 

respectively, they estimate the next visit at 12:55pm for 35 minutes, averaging both arrival 

times and duration times. 

The main idea behind this algorithm is the assumption that human behavior is 

strongly determined by daily patterns: the sequence of visit start times is therefore mapped 

to a 24-hour time interval, focusing only on the start time of each visit. The choice of the 

value 𝑚 has an impact on the accuracy of the prediction: in fact, this can be improved by 

taking into account more visits in order to identify particular patterns that may be present 

only in certain intervals of time such as specific days. 

Authors have evaluated NextPlace by comparing it with a version based on a linear 

predictor and a probabilistic technique based on spatio-temporal Markov predictors over 
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four different datasets. They have reported an overall prediction precision up to 90% and 

a performance increase of at least 50% over the state of the art. 

The lack of this approach is that the intuition behind NextPlace is built on the fact   

that the sequence of important locations that an individual visits every day is more or less 

fixed, with only minor variations that are also usually deterministically defined. As an 

example, if a woman periodically goes to the gym on Mondays and Thursdays, she may 

change her routine for those days, but the changed routine will be more or less the same 

over different weeks. As such, the authors excluded the fact that a user can change, for 

some reason, his routine (concept drift), for the example cited earlier, the woman can 

definitely stop going to the gym.  

e) DB-tree Algorithm 

Authors in [111] present two new algorithms that use the frequent patterns tree 

(FP-tree) structure to reduce the required number of database scans. One of the proposed 

algorithms is the DB-tree algorithm, which stores all the database information in an FP-

tree structure and requires no re-scan of the original database for all update cases, the 

algorithm stores in descending order of support all items and counts all items in all 

transactions in the database in its branches. 

FP-Tree preprocesses the transaction database as follows: in an initial scan the 

frequencies of the items (support of single element item sets) are determined. All 

infrequent items (that is, all items that appear in fewer transactions than a user-specified 

minimum number) are discarded from the transactions, since, obviously, they can never 

be part of a frequent item set. In addition, the items in each transaction are sorted, so that 

they are in descending order depending on their frequency in the database [112]. This pre-

processing step is demonstrated in Figure 16, which shows an example transaction 

database on the left. The frequencies of the items in this database, sorted descendingly, are 
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shown in the middle of this table. If we are given a user specified minimal support of 3 

transactions, items f and g can be discarded. After doing so and sorting the items in each 

transaction descendingly depending on their frequencies, we obtain the reduced database 

shown in Figure 16 on the right. 

 

Figure 16: Transaction database (left), item frequencies (middle), and reduced transaction database 

with items in transactions sorted descendingly depending on their frequency (right) 

 

Figure 17: FP-tree for the (reduced) transaction database shown in Figure 16. 

The DB-Tree is constructed in the same way as done in FP-Tree (see Figure 17) 

except that it includes all the items instead of only the frequent 1-items. The second 

algorithm is the PotFp-tree (Potential frequent pattern) algorithm, which uses a prediction 

of future possible frequent item sets to reduce the number of times the original database 

needs to be scanned when previous small item sets become large after database update. 
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The first disadvantage of the three algorithms, with all respect to the authors, is the non-

support of the concept drift, since none of them support the changes in the sequences 

behavior. The second problem is the restructuring of the tree to store the node in 

descending order of support. This technique not only increases the computational 

complexity, but represents likewise an inadequate solution to fields where the order of 

items is important like peoples’ habits.   

While developing a rich body of work for mining moving object data, the research 

community has shown very little interest to the online mining of these objects since the 

mainstream of related works relies on a post-hoc analysis of a massive set of data to learn 

and predict locations.   

Moreover, one of the big issues that can easily shatter the most robust next location 

predictive model is the habits’ drift. In fact, from the time when the data begins to behave 

in a non-regular manner; the predictive models will face difficulties to acheive their work. 

As such, in Chapter 5, we propose an online predictive model that supports the data drift.  

2.7. BATTERY-AWARE WORKS 

The problem of power management on mobile devices has been well-explored. 

We will detail above some important works in the field of phone energy saving.  

a) Galeana-Zapién’s Work  

In [113], authors propose a modular middleware architecture and runtime 

environment to directly interact with location-based application programming interfaces 

(APIs) and embedded sensors. The main reason of that is to manage the duty cycle process 

based on energy and context aspects. Authors propose an approach to adapt sensing rate 

and energy-aware transmission within a green context-aware middleware. The solution 
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builds upon the introduction of three modular components: dynamic scheduler, the 

mobility profiler and the batch transmission module that, in cooperation with the mobile 

operating system, interact with the mobile sensors for energy control purposes, see Figure 

18. 

 

Figure 18: Middleware architecture for context-aware and energy-efficient sampling and 

transmission of data sensor streams. [113] 

The dynamic scheduler component of the middleware allows to simplify the sensor 

reading processes in the mobile device. Sensor access is simplified by providing a single 

software layer that enables agile development of mobile applications. This framework is 

designed for applications that require to specify parameters to low-level rate-adaptive 

duty-cycling for GPS-based positioning, i.e., dynamic adaptation of sensing parameters. 

The periodic sensing interval of the dynamic scheduler can be selected to be flexible based 

on the granularity and energy consumption requirements given by the location sensing 
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application. Under different scenarios, this layer can be used as a low-level enabler for 

further energy savings. Developers are able to request controlled location updates 

according to established location resolution and energy trade-offs. 

For continuous location monitoring, periodic duty-cycling of GPS is not 

appropriate, as this embedded sensor could deplete the battery in a few hours. Thus, an 

energy-efficient usage of GPS is required, taking advantage of individual mobility 

patterns. The mobility profiler’s main goal is to estimate/predict the system state and user 

mobility from GPS data streams to dynamically schedule position updates to minimize 

power consumption with some tolerance in position accuracy.  

The context states, e.g., static or moving fast, can be used as a basis to define high-

level policies to further reduce energy consumption. By knowing the user mobility state 

and transitions, GPS updates can be rescheduled at specific times and trigger location 

readings according to some policies. For instance, sampling at a coarse grain when the 

user is rather stationary and raising the sampling rate gradually according to the estimated 

user speed. The mobility profiler in the middleware provides good hints of user mobility 

from GPS logs, so as to adaptively change the location sampling rate according to a policy. 

The batch transmission module is the key enabler of energy-awareness. It reduces 

the communication energy overheads introduced by the transmission of GPS data to a 

remote system through the wireless media. This module caches position fixes locally, and 

then, it selectively transmits packed subsets of GPS location streams driven by an adaptive 

duty cycle set by the mobility profiler and an energy budget. Moreover, this is the element 

that allows finding trade-offs between the relevance of the GPS data and the energy cost 

of transmitting such information through wireless access. 
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b) SenseLess 

The authors in [114] present the SenseLess application to perform energy-efficient 

mobile sensing. The proposed application makes use of less power-hungry sensors (e.g., 

accelerometer) as a means to augment location change detection. SenseLess is able to 

detect when a user is not moving, and then, it stops sensing the GPS position to save 

energy. It makes use of a GPS sensor, and when no GPS signal is detected, it resorts to 

Wi-Fi technology to acquire location information. The authors argue that compared to a 

GPS-only approach, the SenseLess application is able to reduce energy consumption by 

more than 58% when determining the user’s location and maintaining the accuracy of the 

sensed data. This approach, however, does not consider the resolution of locations, which 

is of paramount importance for location-based systems, as it is directly related to the 

quality of information. 

c) EnTracked 

This work proposes EnTracked [115], a system that, based on the estimation and 

prediction of system conditions and mobility, schedules position updates to both minimize 

energy consumption and optimize robustness. The realized appraoch tracks pedestrian 

targets equipped with GPS-enabled devices. The system is configurable to realize different 

trade-offs between energy consumption and robustness (see Figure 19).  

The proposed device model consists of two parts: a power model that describes the 

power usage of the phone; and a delay model that, for instance, describes the delays when 

requesting a phone feature, e.g., the time it takes for the GPS to return a position. In both 

models authors consider the following phone features:  accelerometer (a); GPS (g); radio 

idle (r); radio active (s); idle (i). 
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Figure 19: Entracker client logic [115] 

These are the features that authors find relevant for phone tracking, ’idle’ is not 

strictly a feature, but is included in the power model for completeness. For interactive user 

applications on the device, one would also need to take into account the power usage of 

features such as the computations of the application logic, the key strokes, camera use, and 

screen use. 

 The power model consists of two functions defined in Equation (11): the power 

function power and the consumption function 𝑐𝑑,𝑝 where 𝑑 is a feature’s power-off delay 

and 𝑝 its power consumption. 

𝑝𝑜𝑤𝑒𝑟(𝑇) =  ∑𝑖𝑝

𝑇

𝑡=1

+ 𝑐𝑎𝑑,𝑎𝑝(𝑎𝑡) + 𝑐𝑔𝑑,𝑔𝑝(𝑔𝑡) + 𝑐𝑟𝑑,𝑟𝑝(𝑟𝑡) + 𝑐𝑠𝑑,𝑠𝑝(𝑠𝑡) 

𝑐𝑑,𝑝(𝑥) = {
𝑝, if 𝑥 ≤ 𝑑
0, if 𝑥 > 𝑑

  

(11) 
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The equation uses the variables 𝑎𝑡, 𝑔𝑡, 𝑟𝑡, 𝑠𝑡 for the different features listed in the 

feature list above. Each variable denotes, at time step t, the number of seconds since the 

feature was last powered off (a variable is zero if the feature is in use in the current time 

step t). Since the idle power consumption is constant no variable is introduced. 

Furthermore the parameters 𝑖𝑝, 𝑎𝑝, 𝑔𝑝, 𝑟𝑝, 𝑠𝑝 denote the power consumption of a 

feature, e.g., 0.324 watts for internal GPS. The parameters 𝑎𝑑, 𝑔𝑑 , 𝑟𝑑, 𝑠𝑑 denote the number 

of seconds that a feature takes to power off after last use, e.g., 30 seconds for internal GPS.  

Authors provide extensive experimental results by profiling how devices consume 

power, by emulation on collected data and by validation in several real-world 

deployments. Results from this profiling show how a device consumes power while 

tracking its position. Results from the emulation indicate that the system can estimate and 

predict system conditions and mobility. 

d) EEMSS 

Authors in [116] have gone further to propose a whole framework of Energy 

Efficient Mobile Sensing System (EEMSS) for automatic users state recognition. The 

core component of EEMSS is a sensor management scheme for mobile devices that 

operates hierarchically. It selectively turns on the minimum set of sensors to monitor 

users’ state and trigger new set of sensors if necessary to achieve state transition detection. 

Energy consumption is reduced by shutting down unnecessary sensors at any particular 

time.  

The overall architecture of EEMSS is described in Figure 20 where: (1) System 

reads in the XML state descriptor which contains the sensor management scheme. (2) 

Management module determines the sensors to be monitored based on current users’ state 

which is specified by the sensor management scheme. (3) Management module instructs 

the sensor control interface to turn on/off sensors. (4) Sensor control interface operates 
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individual sensors. (5) Sensor interface reports readings to the classification module. (6) 

Classification module determines the user state. (7) Classification module forwards the 

intermediate classification result to the management module. (8) The user’s state is 

updated and recorded in real-time. (9) The relevant information is also displayed on the 

smartphone screen. 

 

Figure 20: System architecture of EEMSS [116] 

e) Other Works 

Viredaz et al. [117] surveye many fundamental but effective methods for saving 

power on handheld devices. These methods concern a range of phone components like 

processor, memory, display screen, audio system and wireless networking. It has been 

suggested from the architecture point of view that the system hardware should be designed 

as a collection of interconnected building blocks that could function independently to 

enable independent power management.  

In [118], authors propose a dynamic frequency/voltage scaling (DVS) to reduce 

power consumption by configuring the processor based on the requirements of the 
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executing applications. It is recognized as the basis of numerous energy management 

solutions [119]. DVS exploits the fact that the dynamic power consumption is a strictly 

convex function of the CPU speed, and attempts to save energy by reducing the supply 

voltage and frequency at run-time. In other words, the power-saving scheme should be 

fully customized for real-time power consumption situation and the specific application 

requirements. However, these methods are more suitable for lower-level systems design 

rather than application development. 

Authors of [120] introduce a technique to increase the battery lifetime of a personal 

digital assistant (PDA)-based phone by reducing its idle power, i.e., the power that a device 

consumes in a “standby” state. To do so, they essentially shut down the device and its 

wireless network card when the device is not being used to avoid energy waste. The device 

is powered only when an incoming call is received or when the user needs to use the PDA 

for other purposes. 

As seen above, significant efforts have been undertaken for a wise use of mobile 

resources. However, almost all the proposed techniques try to limit the calculation 

capacities to gain in battery life. Our perspective is different from this one, we propose a 

self-adaptive approach that changes dynamically the calculation capacities according to 

the battery life and the user state. Our work will also stand out by the flexibility that it 

offers to users, since we leave some freedom to them to choose the degree of austerity in 

the use of the battery. 

Contrariwise other solutions, our approach takes the remaining battery level as a 

parameter to adjust the battery consumption. The consumption of our battery-aware 

approach varies depending on the battery state. We demonstrate in Chapter 3 that our 

approach succeeds in managing the battery consumption efficiently without depreciating 

the accuracy of our algorithm.  
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2.8. CHAPTER CONCLUSION  

In this chapter, we reviewed the most important approaches regarding human 

outdoor activity recognition. We have discussed the advantages and disadvantages of each 

model in the optic of discovering what would be needed for this thesis. We have brought 

some common understandings concerning the principal notions of outdoor activity 

recognition such as trajectories, semantic enrichment of trajectories, sensing techniques, 

inference techniques...etc. We categorized the learning techniques in function of three 

axis; the first axis is the manner of data sampling, secondly if the approach used is 

supervised or not and, thirdly, if the concerned algorithm is incremental or not. In order to 

have a wide view on the existing outdoor activity works, we have divided the related works 

into two types; location systems that determine the user's activity in terms of location and 

motional systems that recognize activities in terms of motion state. As our work fits more 

in the category of location systems, we have developed this section into two types: non-

mobile approaches that require the use of computers for the activity recognition and mobile 

approaches that try to achieve all the recognition processes on the mobile phone.   

We have also explored the existing works that predict users’ next destinations from 

their historic patterns. Besides, we have highlighted some important battery-aware works 

since we aim proposing battery-friendly solutions throughout all the models that we 

develop either for the recognition or the predictive systems.     

In the next chapter, we will present our first part of contributions that focuses on 

proposing an online battery-friendly outdoor activity recognition system. 
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CHAPTER 3 

BATTERY-AWARE ACTIVITY RECOGNITION 

3.1. CHAPTER INTRODUCTION  

One of the unique features of mobile applications is the location awareness. 

Mobile users take their devices with them everywhere which increases the availability of 

users’ traces. Extracting and analyzing knowledge from these traces represent a strong 

support for several application domains, ranging from traffic management to marketing 

and social studies. However, the limited-battery capacity of mobile devices represents a 

big hurdle for context detection [9]. The embedded sensors in mobile devices are major 

sources of power consumption. Hence, excessive power consumption may become a 

major obstacle to broader acceptance context-aware mobile applications, no matter how 

useful the service may be. 

The user context can be related to the user environment, but also to the device 

itself. Since smartphones are battery-powered, in an ideal scenario, the application will 

self-adapt and adjust its behavior according to the current battery status of the device. It 

is in this context that our research presented in this chapter takes place. We propose a 

battery-aware activity recognition solution in order to preserve mobiles’ life battery. 

Outdoor activity recognition field falls into two approaches; motional approaches 

that detect users’ motion state (walking, taking a bus, running, etc.) and location 

approaches that determine the user's activity based on detecting the visited places 
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(museum, cinema office, etc.). It is in that second field that our work fits. It determines 

the nature of the user’s activity from a series of geographic positions.  

As seen in chapter 2, the research community has shown little interest to the online 

recognition of POI in users’ trajectories. The majority of related works are based on the 

classification of historical records excluding problems linked to mobile’s performance, 

like battery life and low-computational capacities. 

Moreover, nearly all approaches are based on the detection of stops within 

people’s movements, neglecting activities with movements. Additionally, only a minority 

of these studies tried to automatically identify the background geographic information, 

since generally we request a set of relevant geographic places defined manually by the 

user. 

The majority of outdoor activity-recognition approaches use a fixed activity’s 

minimum duration threshold that represents the minimum time a user has to spend inside 

a place to be declared as a visited place. This threshold prevents false activity detection, 

such as traffic jams.  

However, fixing the activity’s minimum duration threshold in advance will 

increase the error probability. The reason is that when it is set to a small value, it will 

increase the number of false activities, like passing by a POI; setting it to a high value 

will miss detection of some short-dwell activities, such as buying cigarettes at the 

convenience store. Thus, we propose in [53] a novel approach that online recognizes users 

visited places. Our algorithm is totally unsupervised and operates without any beforehand 

fixed threshold. 

We answer these shortcomings by proposing an approach that brings a novelty 

field via three points:  
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1. We propose a novel self-adaptive clustering approach that adjusts the 

computational complexity of the algorithm in function of the remaining battery 

level. The goal is to prevent the massive draining of the mobile resources in order 

to capture users’ movements for the longest time possible. Our mining method is 

based on a new version of online K-means, where we propose a temporal data 

window characterized by a variable size in function of a person’s travel behavior 

and his phones’ remaining resources. 

2. The majority of related works are based on the classification of historical 

records of people’s trajectories using a density-based approach, by which they try 

to identify the most visited place with post-treatment processes (e.g.: end of the 

day, every week, etc.). These methods fail in their ability to deal with less visited 

places by people, but important in their trajectories (e.g. cemetery, airport, etc.) 

and cannot be used to fields such as assistance in which we need a real-time access 

to people’s activity. That’s why we propose a new online solution which 

addresses these difficulties. 

3. This work not only handles stationary behaviors, but also activities with 

movements such as shopping. We introduce the speed and the variance of the 

orientation of people’s trajectories as a new variable in our system for this 

purpose. 

In this chapter, we will demonstrate an innovative method to real-time switch raw 

users’ movement data to meaningful human activities using only a mobile device without 

network or historical record requirements while consuming a minimum of mobile 

resources (see Figure 21).  
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Figure 21: Online activity recognition system without Internet or historical records 

The aim of the presented approach is to enrich peoples’ movements, represented in 

real time during their travel trajectories, with semantic information about the visited 

places. Our method is based on the online recognition of points of interest “POI” in users’ 

trajectories. A point of interest is an urban geo-referenced object where a person may carry 

out a specific activity. This service increases the use of this contribution, contrasting from 

economic uses such as traffic management, public transportation, commercials, and 

advertising, to more serious uses, for instance: security, police, and risk management.  

3.2. OVERVIEW OF THE APPROACH  

We assume the person is traceable via a smartphone, the type of users’ traces is not 

important to us since the proposed approach works for any movements type (GPS, WIFI, 

Bluetooth or GSM triangulation, pedestrian dead-reckoning, etc.). Usually, a person’s 

activities are divided into two behaviors: stationary and non-stationary, whereas the second 

one is also divided into two categories, moving to reach a goal and moving to do a goal. 

For example, working in the office is a stationary activity while going from the 

workplace to a shopping center is non-stationary activity; shopping itself is also a non-
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stationary activity, but the goal is to do shopping, so it’s an activity with movements (see 

Figure 22). Based on these concepts we introduce 3 types of clusters as follows: 

 

Figure 22: Relation between moves, stops, and activities with movements. 

1. Stop concept, represented by “c1”, characterizes stationary activities.    

2. Activity with movements “c2” is a non-stationary activities that require movement 

over a time interval.     

3. Moves, represented by “c3”, are a set of actions that aim to move from a POI to 

another.  

To deal with all these concepts, we present in Figure 23 the overall approach of our 

activity recognition mechanism.  

In the first step, we introduce a real-time classification method based on K-means 

to classify every new position data according to the three families: stops, moves, and 

activity with movements. At the same time, we observe the accumulation of types of 

clusters, such that, after a certain threshold of the same cluster’s accumulation, we 

conclude that the person is probably doing something interesting. For the second step, we 

summarize the accumulated clusters to a probable POI and we begin a geospatial research 

for the closest and the most meaningful geographical entity. If the search process succeeds, 

we determine this point as a POI. The third step is to assign the POI to an activity, for 

instance we assign a museum to tourism activity and gym to a sports activity. 

 

Stop « c1 »

Moves « c3 »

Activity with movements « c2 »

Moves « c3 »
POI POIUser position 
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Figure 23: The overall process of our activity recognition approach. 

3.2.1. TRAJECTORY CLASSIFICATION  

The aim of this step is to incrementally classify the continuous users’ positions into 

different kinds of activities. The most recent sequence of positions is stored in a temporal 

window called TW.   

Definition 1: positions' collection is an assembly of users’ position points P =

 {𝑝1, 𝑝2… 𝑝𝑛}. Each point p𝑖 ∈ P contains a latitude (𝑝𝑖. 𝑙𝑎𝑡), a longitude (𝑝𝑖. 𝐿𝑛𝑔𝑡), a 

timestamp (𝑝𝑖. 𝑇), a speed (𝑝𝑖. 𝑆) and a bearing (𝑝𝑖. 𝐵). We add to this information the 

variance of bearing (𝑝𝑖. 𝑉) of the last  𝐿𝑇𝑊  position points where 𝐿𝑇𝑊 is the size of our 

temporal window TW, and finally, the weight (𝑝𝑖.W) that represents the importance of the 

point 𝑝𝑖 according to the time generation.   

trajectory 

classification +

New Position data

Trajectory classification

Clustering Redistribution of weights Cluster’s accumulation search

trajectory 

classification
trajectory 

classification
trajectory 

classification

trajectory 

classification

Spatial recognition

Activity discovery 



 

90 
 

Definition 2: temporal window TW is a subgroup of a positions’ collection with a 

variable length 𝐿𝑇𝑊 .  

In fact TW contains all 𝑝𝑖 with not null weight  𝑝𝑖. 𝑊, see Figure 24 that represents 

the relation between positions’ collection and TW. Every point in the positions’ collection 

is a record row from the database.     

 

Figure 24: The relation between a position collection P and TW 

Once a new position data is received, we achieve three parallel processes like 

presented below:   

3.2.1.1. Process 1: Classification  

At the arrival of a new position data, 𝑝𝑛 is stored in TW. The classification process 

is not launched on every data arrival but after a threshold called 𝑇𝑚𝑖𝑛 that will be exposed 

in Process 3. We classify 𝑝𝑖 in TW using online K-means, we consider two variables: 

speed 𝑝𝑖. 𝑆 and variance of bearing 𝑝𝑖. 𝑉. 

Temporel Window TW With length L

Positions collection P

…𝑝𝑛−( +1) 𝑝𝑛− 𝑝𝑛−1 𝑝𝑛

Location Id Latitude Longitude Time Speed Bearing Variance weight

601 48.4210453 -71.0572413 Mon Nov10.. 0.74 76.5 49.7 0.61

602 48.4210453 -71.0572532 Mon Nov10.. 0.79 76.5 88.36 0.73

603 48.4210453 -71.0572567 Mon Nov10.. 0.24 76.5 115.7 1.0
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The variance of bearing 𝑝𝑖. 𝑉 is calculated using this formula: 𝑝𝑖 . 𝑉 =

∑(𝑝𝑖 − 𝑝𝑖̅) 𝑙⁄  where 𝑝𝑖̅ = ∑𝑝𝑖 𝐿𝑇𝑊⁄ . This calculation is made before recording the new 

𝑝𝑖  in TW and it represents the variance of user’s orientation in the last 𝐿𝑇𝑊 𝑝𝑖.   

Stop behaviors are characterized by a very low 𝑝𝑖. 𝑉 and 𝑝𝑖. 𝑆; however, move 

behaviors are characterized by high 𝑝𝑖. 𝑆 and low 𝑝𝑖. 𝑉 because a person’s movements 

using transportation tend to be in a quick and straight manner. Moving activities are 

branded by a low 𝑝𝑖. 𝑆 and high 𝑝𝑖. 𝑉 (see Figure 25) since these activities are pedestrian 

actions which generally require a frequent shift of orientation like visiting a museum, 

shopping in a mall, or walking in a zoo. As said previously, these three types of clusters 

represent three families of activities and not three activities, each family containing a set 

of activities depending on the user’s visited places. 

 

Figure 25: Inferring activity types using the speed and the variance of orientation 

Note that is it is known that when a user stops somewhere, his positions during this 

stop may vary in the surroundings of the stop due to the positioning error of the tracking 

system. Consequently, in our algorithm, we automatically put the bearing 𝑝𝑖. 𝐵 → 0 when 

we detect that the speed 𝑝𝑖. 𝑆 → 0 to avoid any error linked to this situation.  

Pi.V

Activities with movements

c2

Stops

c1 c3

Moves

Pi.S
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3.2.1.2. Process 2: Distribution of weights 

Every  𝑝𝑖 has a weight which determines the degree of resemblance of  𝑝𝑖’s class 

to the current activity. The weight of each data point decreases exponentially with the 

time 𝑡 according to a fading function  𝑤𝑖 =  𝑓(𝑡) = 2
−𝜆𝑡, where 𝜆 > 0. The exponentially 

fading function is widely used in temporal applications where it is desirable to gradually 

discount the history of the past behaviors. The parameter λ is called exponential decay 

constant; the higher value of λ, the lower importance of the historical data compared to 

more recent data. The overall weight of the data stream is the constant presented in 

equation (12) Where 𝑡𝑐 (𝑡𝑐 →∞) is the current time.  

𝑊 =∑ 2−𝜆𝑡 =
1

1 − 2−𝜆

𝑡=𝑡𝑐

𝑡=0
 (12) 

𝜆 can also be seen as the determining parameter of TW’s length. When 𝜆 

approaches 1, TW shrinks to its smallest size. Inversely, when 𝜆 approaches 0, TW 

spreads to its maximum size (see Figure 26). 

 

Figure 26: The impact of varying λ on TW’s length. 

We chose a variable value of λ between 0 and 1 depending on two parameters: the 

remaining battery level “𝛽” and the disorder of data “E” that already exists in TW (class 

of every 𝑝𝑖). Thus, these parameters are defined in the following definitions: 
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Definition 3: The remaining battery level is represented by  𝛽 = 𝛽𝑟 𝛽𝑡ℎ⁄  where 

𝛽𝑟 is the real remaining battery level. 𝛽𝑡ℎ represents a battery threshold specified by the 

user from which the algorithm starts to minimize calculation (see Figure 27).  

This user-defined parameter adds some flexibility to the application. For instance, 

if the user prefers to keep good precision even if it drains the mobile battery, 𝛽𝑡ℎ should 

take a small value (e.g. 10 %). Conversely, when the user aims for a good preservation of 

the mobile battery, 𝛽𝑡ℎ should be given a higher value of around 90% or 100%. Again, 

when the user knows that he will not spend much time outside, he can adjust 𝛽𝑡ℎ to a 

small value to promote the precision and vice versa.   

 

     Figure 27: Example of β variation using a threshold 𝜷𝒕𝒉 = 𝟓𝟎%. 

Definition 4: The disorder of data E represents the quality of TW’s data that has 

a link with the ability to make a decision.  

When we are sure that an activity is performed, we need less data to make a 

decision so E → 1, and E → 0 when we have problems finding out what type of activity 

is executed. In other terms, when the user behavior is unpredictable, because the data in 

TW is heterogeneous, we say that there is a high disorder in his data (E→1). Contrariwise, 

when we see that the user behavior is stable, we say that there is a stability is the user data 

(E → 0). 
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The disorder of data is often calculated using the entropy, which is a measure of 

unpredictability of information content, or in other terms, it measures the homogeneity in 

a set of information. Consequently, E is calculated using the entropy of Shannon [121]; 

E of the new position point 𝑃𝑛 is calculated using the entropy of the old dataset in TW.  

The value of E is calculated as follows: 

𝐸 = 1 − 𝐻2(𝑝𝑖) = 1 −∑  𝑝𝑖 𝑙𝑜𝑔2 𝑝𝑖 

𝑛−1

𝑖=0

 (13) 

     After introducing the remaining battery level 𝛽 and the data disorder 𝐸, we 

propose a relation between the two parameters to calculate 𝜆, we put: 

𝜆 = 1 − 𝛽 + 𝐸𝛽 (14) 

The equation demonstration is shown below.    

Demonstration: Our proceeding starts from the following logical rules: 

1. We shrink the TW’s length to reduce the number of clustered points (in order 

to reduce battery consumption) when the battery is low or when we have some 

certitude about the user’s activity, in other terms, stability in the user’s 

behavior characterized by a low disorder of data.  

2. We spread the length of TW when we need numerous position points to make 

a decision (high disorder in the user’s TW data) as long as we have enough 

battery level.   

These two conditions are sited as follows: 

{

Battery high +  high disorder →  TW spreads
Battery high +  low disorder →  TW  shrinks 
Battery low +  high disorder →  TW shrinks  
Battery low +  low disorder →  TW shrinks   

 (15) 

If we parse the characteristics mentioned in Equation (15) into a mathematical 

representation using the following relations: 



 

95 
 

Table 2: Mathematical representation of the user, battery, and TW states. 

Characteristic Interpretation 

Battery high 𝛽 → 100% 

Battery low 𝛽 → 0% 

High disorder 𝐸 → 0 

Low disorder 𝐸 → 1 

TW spreads 𝜆 → 0 

TW shrinks 𝜆 → 1 

Then, Equation (15) will be written as follows: 

{

𝛽 →  100% and 𝐸 → 0 ⟹  𝜆 → 0
𝛽 →  100% and 𝐸 → 1 ⟹  𝜆 →  1
𝛽 → 0% and 𝐸 → 0 ⟹  𝜆 →  1     
𝛽 →  0% and 𝐸 → 1 ⟹  𝜆 →  1     

 (16) 

Let 𝛽, 𝐸 and 𝜆 be Boolean parameters that take values as follows: 

Table 3:  Parsing β, E and λ to Boolean parameters. 

Interpretation Boolean parameters 

𝛽 → 100% 𝛽 true 

𝛽 → 0% 𝛽 false 

𝐸 → 1 𝐸 true 

𝐸 → 0 𝐸 false 

𝜆 → 1 𝜆 true 

𝜆 → 0 𝜆 false 

The logical rules in Equation (16) can be illustrated in the following truth table: 

Table 4: The truth table of β, E and λ. 

            𝜷         𝑬           𝝀 

true false false 

true true true 

false true true 

false false true 

We notice that this truth table is that one of the Boolean implication function 

where: 
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𝜆 ≡  𝐹 (𝛽, 𝐸) ≡  ¬𝛽 ⋁ 𝐸 ≡  𝛽 
𝑏𝑜𝑜𝑙𝑒𝑎𝑛
→      𝐸 (17) 

In Boolean logic, the truth values of variables may only be 0 or 1; however, our 

parameters 𝛽,𝐸 and 𝜆 take continuous values between 0 and 1 where β = 1 means full 

battery and β = 0 means empty battery. Yet, in real life there are many states between full 

and empty states. As such, the fuzzy logic was introduced [122] which is a form of many-

valued logic in which the truth values of variables may be any real number between 0 and 

1. Fuzzy logic has been extended to handle the concept of partial truth, where the truth 

value may range between completely true and completely false. In this context, the 

Equation (17) is called fuzzy implication and is written as follows: 

𝜆 ≡ 𝐹 (𝛽, 𝐸)  ≡  𝛽 
𝑓𝑢𝑧𝑧𝑦
→    𝐸 (18) 

Using the inequality of Reichenbach [123], the fuzzy implication in equation (18) 

can be written as follows:  

𝜆 =  𝐹 (𝛽, 𝐸)  =  1 −  𝛽 +  𝛽 𝐸 (19) 

We notice that the Equation (19) and the Equation (14) are the same. Consequently 

Equation (14) is proven. This equation has been tested in Figure 28 where we varied the 

two parameters β and E to observe the sensitivity of λ (the length of TW) to these changes.  

In Figure 28, we notice that the sensitivity of TW’s size (the value of λ) is linked 

to the battery level β and disorder E. However, when β begins to drop, the size of TW 

starts to ignore disorder E until it reaches a total ignorance when β=0 (see Figure 28 when 

β=0). After having distributed the weights of each 𝑝𝑖 in TW and calculated the size of TW 

in function of the battery level β and disorder E, it is time to see if the user is performing 

some interesting activity. 
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             Figure 28: λ variation in function of β and E. 

3.2.1.3. Process 3: Clusters accumulation search  

The algorithm recognizes that someone is doing an activity if the weight of its 

cluster 𝑊 exceeds a value µ, where  µ =
𝑊

𝑘
   with k representing the number of clusters 

(activity families) used by K-means to classify TW. In our case k=3 because we are trying 

to identify three families of clusters: Stops; moves; activities with movements. 

The most important question is “when do we search for a cluster accumulation?” 

To minimize the use of device resources, it is recommended to handle this step carefully. 

The research process is not launched on every data arrival T but after a time called 𝑇𝑚𝑖𝑛 

in which it is expected to have an activity.  

Proposition 1: 𝑇𝑚𝑖𝑛 is the time from which 𝑤𝑖 = 𝑓(𝑡) = 2
−𝜆𝑡 reaches µ, this is 

verified in this following condition  2−𝜆𝑇𝑚𝑖𝑛µ + 1 = µ , after development, the equation 

is written as Equation (20) where λ = 1- β + β E. 

  𝑇𝑚𝑖𝑛 =
1

𝜆
log

µ

µ − 1
 (20) 

 Consequently, on every 𝑇𝑚𝑖𝑛 we check if there is any activity whose weight 𝑊𝑗 

exceeds µ; If found, we summarize the points 𝑝𝑖 to one point 𝐶𝑗 (𝐺𝑗, 𝑊𝑗). 

β E F(β,E)=λ , 𝐸,  
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𝑊𝑗 = ∑ 𝑤𝑖𝑗
𝑛
𝑖=0  and 𝐺𝑗 = ∑𝑃𝑖𝑗 𝑛⁄  , n is the number of points in this cluster and 𝑝𝑖𝑗 

represents the points 𝑃𝑖 in the cluster j. Then, we move to the spatial recognition of the 

summarized point 𝐶𝑗. 

 

Figure 29: The relation between λ and 𝑻𝒎𝒊𝒏 

              

As said previously, 𝜆 is not static. It varies between 0 and 1 depending on the 

disorder of data in TW and the remaining battery level. From the relation between 𝜆  and 

𝑇𝑚𝑖𝑛 in Figure 29, we note that 𝑇𝑚𝑖𝑛 is also affected by these parameters. When 𝜆 is near 

1, TW will contain a minimum number of position points (see Figure 26) for the reason 

that the battery is low or there is some stability in the user’s behavior (e.g. staying at home); 

in this case, there is no need to process the calculations on every step, otherwise, this 

useless calculation depletes the battery. Consequently, 𝑇𝑚𝑖𝑛 will take a maximum value 

(see Figure 29).  

Conversely, when 𝜆 is near 0, TW will contain a maximum number of position 

points (see Figure 26) for the reason that the battery is well charged and there is a big 

disorder in TW which troubles the users’ activity identification. In this case the algorithm 

will process the calculations on every position-point arrival to quickly determine which 

type of activity the user is performing. Accordingly,  𝑇𝑚𝑖𝑛 will take a small value (Figure 

29).  
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Algorithm 3: Trajectory classification 

Input:     A position point 𝑝𝑖; 

Output:  The activity of the person; 

24: For each T  

25:     Store 𝑝𝑖 in TW ; 

26: End for each  

27: For each 𝑇𝑚𝑖𝑛   

28:     Classify every point in TW ; 

29:     Update 𝜆; 

30:     Update the centers of clusters  𝐶𝑗 (𝐺𝑗, 𝑊𝑗)   ; 

31:     Calculate the threshold µ; 

32: If (max(𝑊𝑗)>µ) then  POI = spatial recognition (𝐺𝑗);  

33: End 

34: Update 𝑇𝑚𝑖𝑛; 

35: Return Activity 

36: End for each 

Algorithm 3 achieves two processes. The first is to store every position 𝑝𝑖 when it 

arrives; the second performed every 𝑇𝑚𝑖𝑛 to reduce the calculation. First step is to classify 

every point 𝑝𝑖 in TW, then update the value of 𝜆 depending on the disorder of the activities 

types in TW and the remaining battery level. After calculating the center of gravity 𝐶𝑗 of 

each cluster and the threshold µ, we begin the search for an accumulation of a cluster that 

is verified by the condition max (𝑊𝑗) > µ, we use the max of clusters’ weight to avoid the 

case where two clusters exceed µ at the same time. If the condition is verified, we begin 

the geographic environment recognition of 𝐶𝑗. Finally, we update the value of 𝑇𝑚𝑖𝑛 that 

will determine the next process repetition. 

After searching for a cluster’s accumulation, we move to step 2: spatial recognition 

of 𝐶𝑗.   
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3.2.2. SPATIAL RECOGNITION 

This task aims at further to understand the movement behavior of users, in terms 

of more semantically meaningful POI. In this step, we are going to transform a cluster of 

GPS points to an expressive human activity. First we are going to search for the nearest 

geographic entities to this cluster, thereafter, we are going to associate an activity type to 

the found entity.     

We search for the closest and the most significant geographical feature compared 

to 𝐶𝑗, it is performed using a spatial query in a spatial database. We propose for this step 

two ways to execute spatial analysis requests in the city. The first solution is to store a 

geographic database of the city in the mobile phone in order to avoid using the Internet. 

The second solution is designed for smart cities and is presented in Chapter 4.   

 Our first solution is designed to work for the actual situation where cities are not 

“too smart” yet. Our database is powered by OSM [64]  and stored in the users’ device for 

local use. This technique aims to discard networks use by offering offline services that will 

save a user’s money and a phone's battery. 

In fact, many mobile GIS solutions [124] offer an offline version to avoid the 

constraints linked to the use of networks. For instance, Esri company [125] (one of the 

world’s biggest GIS companies) have provided a whole runtime called “ArcGIS Runtime 

mobile SDK” [126] to support offline mapping, it includes map viewing, interaction, 

editing and routing while fully disconnected from wireless.  

Consequently, offline processing of geographic data has become easier. However, 

the limit of this technique is the size of the stored data, since geographic data may cause a 

massive use of storage capacity, for instance, the size of the OSM planet database is over 

666 GB [64].  The usual solution to face this problem is to download a specific database 

to each user depending on the cities where they live, for instance the size of the whole New 
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York region is only 140 MB [127] including all geo-data types such as roads, highways, 

buildings, public parks… etc. This can be done manually by the user, since he can define 

his area of interest while being connected by choosing the area to download and 

panning/zooming to the area of capture. The second way is to download the geographic 

database automatically by the application by detecting the user's daily staying area. For 

instance, if the application detects that the user is living in Montreal City, it will wait until 

being connected to download the OSM data of Montreal and its surroundings.    

Many techniques to extract geographic data from OSM exist; the easiest way is to 

download and extract it from the OSM website. There are various Web services that 

provide data extracts for a geographic area. For example, GeoFabrik [128] is a company 

which specializes in working with OpenStreetMap. They provide a variety of free extracts 

in Shapefile [49] and raw OSM format on their download website [129]. After 

downloading raw OSM Data, and storing it in a spatial database, we use Algorithm 4 to 

search for the nearest spatial feature to 𝐶𝑗. 

Algorithm 4: Spatial recognition 

Input: A center of clusters 𝐶𝑗;    

Output: POI, Date; 

1: If  ( there are some geographic entities in the neighborhood )  

2:      //search in the geographic database  

3:      POI = the nearest geographic entity;   

4:      Date= Get current date(); 

5: Else  

6:      POI = null ; 

7: End  

8: Return POI, Date 
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The querying process to search for the closest geographic entity is a famous 

technique based on identifying a proximity buffer, proximity analysis determines the 

relationship between selected geographic elements by identifying the locations of other 

elements within a specified distance (50m in our case). Creating buffer zone regions is the 

most common method used in proximity analysis [130].  

If the spatial recognition step finds a geographic entity in the neighborhood of the 

positions’ cluster, we can declare that the user has visited this place. 

3.2.3. ACTIVITY DISCOVERY 

Activity discovery is based on the exploitation of tags in OSM. OpenStreetMap 

data adheres to a simple XML schema with three basic elements: (i) nodes, i.e., single 

geospatial points; (ii) ways, intended as ordered sequences of nodes; (iii) relations, 

grouping multiple nodes and/or ways. Each element includes a unique identification code, 

latitude and longitude coordinates, versioning information and optional general-purpose 

informative tags. A tag is a key-value pair of Unicode strings of up to 255 characters. Each 

tag describes a specific feature of a spatial data element [65]. This step allows to have a 

meaningful human semantic information about the user visited place.   

Tags are written in OSM documentation as key=value. The key describes a broad 

class of features (for example, highways or names). The value details the specific feature 

that was generally classified by the key, for example, the geographic entity that contains a 

tag “building= apartment” represents a building arranged into individual dwellings, often 

on separate floors.    

We assume that each tag represents an activity and each activity belongs to an 

activity family (see Figure 30). 
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Figure 30: The taxonomy of activities. 

Activities are organized in a taxonomy which generalizes the kinds of activities of 

interest for the movement analysis. For example, the “going to college” activity can be 

specialized in “education”, and so on. Subsequently, for example, if the nearest geographic 

entity to 𝐶𝑖 has a tag “amenity=library” we deduce that the user is doing an educational 

activity in the library. This is performed using an algorithm (see Algorithm 5) that searches 

for the nearest geographic entity, and extracts the tags related to it in order to deduce the 

activity achieved by the user.  

This taxonomy is also used to mine quickly users’ past activities, for instance, if 

we search for the public transportation token by the user, we just have to specify the 

activity type as “Transportation” in the SQL request and search for the transportation mode 

(bus station, taxi station, etc.). 
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Algorithm 5: Activity discovery 

Input: POI;    

Output: Activity; 

1: If  (POI = null ) then  

2:      Activity = ‘no activity’;   

3: Else  

4:      Tag = Get the tag of  POI  ; 

5:      Activity  = Search for activity taxonomy (Tag) ; 

6: End else  

7: Return Activity 

Depending on the application requirements, the activity discovery process can 

extract further information about the visited POI, such as the address, the number of floors, 

the opening hours and the building height. This semantic information allows to enhance 

the way users perceive and interact with their surroundings. For instance, authors in [65] 

proposed a system for a mobile navigation assistant fit for the purpose of moving within a 

complex built space. Their process of semantic-enhanced POI discovery is based on the 

exploitation of OSM tags, the same as our method, the results are used in an augmented 

indoor/outdoor navigation system.     

3.3. EXPERIMENTAL EVALUATION  

In order to test our approach, we will divide the experimentation section into two 

parts: first, we will test the accuracy of our approach using the Family Coordination dataset 

[131] by comparing it with CB-SMoT method; then, we will test our approach’s ability to 

save battery life by comparing our solution to LifeMap application described in [132].  
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3.3.1. FAMILY COORDINATION DATASET 

We used the dataset described in [131] where researchers have conducted 

experiments in order to reveal the underlying causes of coordination breakdowns that a 

routine learning system might be able to address. They tracked GPS locations of the 

members of six families during six months in Pittsburgh City in Pennsylvania, USA (see 

Figure 31).  

 

Figure 31: An example of our Spatialite Database that contains the geographic entities of 

Pittsburgh. 

Researchers made an effort to recruit a wide cross-section, selecting families from 

a variety of ethnic and economic backgrounds, as well as expressing a variety of planning 

styles, child-rearing models, and transportation preferences. The GPS sampling for every 

family member including children (a total of 26 persons) was set at one-minute intervals 

which led to gathering more than two billion and half of GPS points. Moreover, every 

night during the study, a member of the research team called the families, and interviewed 

each parent about that day’s management of their kids’ activities. In preparation for the 

Buildings
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interviews, family members were asked to input their daily activities into a Web-based 

survey. Researchers then used the survey to scaffold the phone interview, probing and 

documenting the overall family logistical plan at each point throughout the day. We used 

this information to compare the inferred activities to the real executed activities. 

3.3.1.1. Test scenario 

We compared our solution to CB-SMoT algorithm [89] described in Chapter 2. 

CB-SMoT is widely used to extract visited places from locations’ trajectories. We have 

implemented this algorithm using Weka-STPM platform [91], an extension that adds 

trajectory processing tools to Weka (Waikato Environment for Knowledge Analysis) and 

includes CB-SMoT as a clustering algorithm. However, since Weka-STPM is a desktop 

solution, we have created a mobile version using the CB-SMoT class included in Weka-

STPM. The input was the family coordination dataset parsed into a Postgresql/PostGIS 

[133] database and the output was the inferred semantic trajectories (a following of visited 

places retrieved using Weka-STPM).  

Our solution was implemented on a Huawei P7 android phone where we have 

deployed our application that contains the online recognition algorithm, family 

coordination dataset and a SQLite database [134] that contains the geographic entities of 

Pittsburgh City needed in the spatial recognition process. Note that, as said previously, this 

first part of the experimentation is dedicated to test our approach in terms of accuracy, 

consequently, we will suppose that the phone’s battery is fully charged during all the 

processes principally because we don’t have access to the battery’s life data in the family 

coordination dataset. The ability to save the phone’s battery and its impact on the accuracy 

will be presented in the second part.      

 



 

107 
 

3.3.1.2. Results Analysis 

Results presented in Table 5 represent the comparison of our approach with three 

versions of CB-SMoT algorithm, by varying its 𝑀𝑖𝑛𝑇𝑖𝑚𝑒 parameter each time, it was set 

to 60s in version 1, to 180s in version 2 and to 500s in version 3.     

We have tested 10525 activity gathered from the activities of the 24 members of 

families.  

Correct activities represent the number of activities recognized successfully, 

missed activities represent the number of activities that the users did but the algorithms 

have failed to recognize, false activities represent the number of meaningless discovered 

activities like recognizing the stop of a car in a traffic jam as going to gas stations. The 

accuracy and the error are calculated as mentioned in Equations (21) and (22) respectively. 

  𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝐶𝑜𝑟𝑟𝑒𝑐𝑡

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑠𝑡𝑒𝑑 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑖𝑒𝑠
 

 

(21) 

𝐸𝑟𝑟𝑜𝑟 =
𝑚𝑖𝑠𝑠𝑒𝑑 + 𝑓𝑎𝑙𝑠𝑒

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑠𝑡𝑒𝑑 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑖𝑒𝑠
 

 

 

 

 

 

 

 

(22) 

Table 5: Comparison of our approach to CB-SMoT algorithm  

 Our 

approach 

CB-SMoT V1 

𝑴𝒊𝒏𝑻𝒊𝒎𝒆=90s 

CB-SMoT V2 

𝑴𝒊𝒏𝑻𝒊𝒎𝒆=180s 

CB-SMoT V2 

𝑴𝒊𝒏𝑻𝒊𝒎𝒆=500s 

Tested 

activities 
10525 10525 10525 10525 

Correct 8313 4028 7157 8257 

Missed 1812 6497 3368 2268 

False 578 181 909 2789 

Accuracy 78% 38% 68% 78% 

Error 22% 63% 40% 48% 

Globally, our algorithm behaves better than CB-SMoT in terms of accuracy and 

error. We have recorded the accuracy of 78% in our solution and 61% for the average 

accuracy of the three versions of CB-SMoT. On the other hand, our error was around 
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22%, while the average error of the three versions of CB-SMoT was around 50%. These 

results are explained in the following points: 

Our algorithm succeeds to recognize more activities because it supports the 

recognition of activities with movements contrariwise of CB-SMoT that recognizes only 

stop and move activities (see Figure 32). 

CB-SMoT shows a higher error because of the 𝑀𝑖𝑛𝑇𝑖𝑚𝑒 threshold that is set 

manually (the time of staying from which the algorithm considers that the user has visited 

this place). Setting this threshold to a small value will increase the number of false alarms, 

see CB-SMoT V1 in Table 4. While setting it to high value will increase the number of 

missed activities, see CB-SMoT V2 in Table 5. And in both cases, the error will be 

increased since it is calculated in function of the number of false and missed activities.   

 

Figure 32: An example of one user’s GPS locations projected on the geographic entities layer of 

Pittsburgh; (A): stationary activity, (B): activity with movement, (C) moves. 

  After having tested the accuracy of our approach, we will go further in the 

experimentation of our battery-saving technique. 

A

B
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3.3.2. LIFEMAP DATASET  

3.3.2.1. Dataset  

Researchers in LifeMap project collected real traces from 68 persons over four 

weeks using HTC Hero, HTC Desire, and Samsung Galaxy S smartphones. The tracking 

application (called LifeMap) was running as a background service to automatically collect 

the user’s mobility and to trace sensor usage time. To collect the ground truth, the 

participants explicitly labeled the place names and kept a diary of places they had visited 

with the entrance and departure times. Moreover, the advantage of using such dataset is 

the ability to compare the power consumption of our method to the authors ‘one, since 

authors tracked the battery status during all the experimentation process.  

3.3.2.2. Test scenario 

In this step we will compare our approach to the LifeMap application used to 

recognize users’ mobility. The project can be found in [132], the LifeMap  dataset in [135] 

and the LifeMap mobile application can be found on android play store. 

We used the LifeMap dataset to test our battery-aware approach. To do so, we 

developed an android application that is fed from LifeMap datasets. The main idea is to 

make it out as if the users have moved holding our application in their phones. The 

application recuperates the GPS coordinates one by one and processes each point using 

our online approach. After that we compare the battery consumption of our application 

with LifeMap application’s one (see Figure. 33).  
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Figure. 33. Test scenario to compare our solution with LifeMap application using LifeMap Dataset. 

LifeMap application uses a set of sensors to recognize users’ activities, these 

sensors include GPS, accelerometer, digital compass and Wi-Fi, the application uses a 

combination of these sensors to retrieve the activity performed by the user, it is clear that 

the use of all these sensors represents a major source of power consumption. Consequently, 

in order to bring an objective comparison between the LifeMap application and our 

application, it is logical that we have to include the same sensors even if we use only the 

GPS sensor.  

Indeed, we have enriched our application with the same sensors used in LifeMap 

application but the processing of this information is made under the rules defined by our 

battery-aware approach. For example the processing of data is made on the estimated 𝑇𝑚𝑖𝑛 

that is calculated in function of the remaining battery level and the user’s behavior. 

Moreover, even if the GPS is activated, the application consumes more resources 

when it requests the users’ position from the GPS satellites (in the case of LifeMap) than 
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when it retrieves it from a database (in the case of our application). Consequently, in order 

to compare objectively the two approaches, we continue to obtain the user position from 

the database, however, on every point retrieved, we request the GPS satellite for a GPS 

position. Surely, this position is useless but it let consuming the same resources used by 

LifeMap application to get a GPS position. 

In order to automatically recognize users’ activities, we have constructed a 

Spatialite geo-database [134] where we stored the background geographic data needed in 

our spatial recognition (see Figure. 34). 

 Note that users’ locations are recorded on different frequencies, authors in 

LifeMap dataset have linked the activity declared by the user to the sampling frequency in 

order to minimize the size of the database and the power consumption, which has 

sometimes led to low frequencies (e.g. every 10 minutes). In our approach, we try to 

recognize accurately users’ activities while protecting their phones’ battery. In order to test 

this service, we need to increase the sampling frequency to see if our work well behaves 

using a lot of location points. Consequently, we have implemented an interpolation 

algorithm that estimates the missing locations when the sampling frequency is high (more 

than one minute). 

 

Figure. 34. An example of one user’s trajectory projected on: (A) OpenStreetMap raster layer and 

(B) Vector layer retrieved from our geo-database.  
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Our application was deployed on the Samsung Galaxy S smartphone, one of the 

smartphones’ model used by LifeMap application to recognize activity.  

After having filled the necessities regarding the comparison between the two 

approaches, we will present the results of both of them. 

3.3.2.3. Test results 

The total number of recorded hours of battery status in LifeMap dataset is 48900 

hours. In order to experiment all the hours using one smartphone, we will need over five 

years of experimentations. Accordingly, we chose to use one random day of each user 

(rather than 30 days) using five smartphones. The total number of compared hours is 1632 

hours. Due to insufficient space, we present in Figure 35 the tracking of one user’s battery 

life for 72 hours using LifeMap and three versions of our approach where we vary each 

time the value of the threshold 𝛽𝑡ℎ from where the application start to save battery life.    

Our approach shows an interesting battery saving capacity. Globally, it consumes 

less resources than LifeMap even when  𝛽𝑡ℎ  is set to a low level (40%).  

We notice that in our approach, battery consumption varies in function of 𝛽𝑡ℎ. 

When it is set to 100%, our algorithm starts to save the battery from the first moments, 

which explains the long battery life noticed in the graph 2 of Figure 35. However, when 

 𝛽𝑡ℎ is set to 40%, we notice that the life of the battery (graph 4) looks a bit like LifeMap’s 

one (graph 1). In this case, the algorithm consumption behaves like LifeMap between 

100% and 40%, but, when it falls under 40%, the algorithm starts saving batteries (see the 

horizontal dotted line in graph 4). 
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Figure 35. Results comparison between LifeMap and our solution for 72 hours of activity 

recognition. (1) LifeMap, (2) our solution using 𝜷𝒕𝒉 = 100 %, (3) our solution using 𝜷𝒕𝒉 = 70%, (4) 

our solution using 𝜷𝒕𝒉 = 40 %. 

Thus, 𝛽𝑡ℎ has an impact on the resource consumption, but what about the accuracy? 

Is it affected by the variation of  𝛽𝑡ℎ? To answer these questions, we have tracked the 

accuracy of our algorithm when varying 𝛽𝑡ℎ, results are presented in table 5.  

Table 6: The impact of varying 𝜷𝒕𝒉 on the accuracy 

 𝜷𝒕𝒉 = 𝟏𝟎𝟎% 𝜷𝒕𝒉 = 𝟕𝟎% 𝜷𝒕𝒉 = 𝟒𝟎% LifeMap 

Accuracy 68,7 % 77,1 % 85,4 % 78% 

The authors of LifeMap reported in [136] that the accuracy is around 78%. In our 

case, when  𝛽𝑡ℎ is set to a value less than 70%, the accuracy of our approach exceeds the 

LifeMap’s one (see Table 6). This is justified by the fact that the LifeMap’s technique for 

detecting important places is based on the time spent by the user at around the POI. When 
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a user stays at a given location for more than 10 minutes, the user state is considered 

stationary and the place is labeled as a POI. This technique fails to recognize moving 

activities that require a movement to be executed. Furthermore, using a fixed time 

threshold leads to missing some short activities or false detecting some activities when the 

time threshold is set to a small value.  

Varying  𝛽𝑡ℎ has an impact on the accuracy, more  𝛽𝑡ℎ is set to high value more 

accuracy drops. This is justified by the fact that when  𝛽𝑡ℎ takes a high value, the temporal 

window TW shrinks to take fewer examples and the next processing time 𝑇𝑚𝑖𝑛 will be set 

further. So if we try to save the battery, we will automatically lose a little bit of accuracy. 

But is there a compromise between  𝛽𝑡ℎ and the accuracy? Is it possible to find a  𝛽𝑡ℎ value 

that saves as much as possible the accuracy and the battery at the same time?   

We have tracked the accuracy of one user’s data from LifeMap dataset when 

varying slowly 𝛽𝑡ℎ, results are presented in Figure 36 where the accuracy and an 

estimation of battery life are presented in function of 𝛽𝑡ℎ . We notice that the higher value 

of  𝛽𝑡ℎ is, more we save resources and lose precision.  

 

Figure 36: The impact of varying  𝜷𝒕𝒉 on the accuracy. 
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( 𝛽𝑡ℎ) and the accuracy function A ( 𝛽𝑡ℎ) at the same time. This is a multi-objective 

optimization problem where we optimize two different functions. One of the existing 

solutions is the weighted sum method [137]. The solution is based on selecting a scalar 

weight  𝑠𝑖 and maximizing the following composite objective function: 

𝑈 =  𝑠1 ∗ L ( 𝛽𝑡ℎ) +  𝑠2 ∗ A ( 𝛽𝑡ℎ) (23) 

In our case the importance of the accuracy and the battery life are equal, so, the 

weight of the two variables  𝑠1 and  𝑠2  are equals too ( 𝑠1 =  𝑠2 = 1), after addition, the 

value of 𝛽𝑡ℎ that maximizes 𝑈 is 𝛽𝑡ℎ = 60% (see Figure 37). Thus, if we need to maximize 

the accuracy and the battery life at the same time, 𝛽𝑡ℎ should be set around 60%.  

 

Figure 37: Optimization of 𝜷𝒕𝒉 to maximize the accuracy and the battery life. 

The average precision of our approach when varying  𝛽𝑡ℎ from 0% to 100% is 79% 

(see Figure 36). For a system that proposes an online activity recognition system while 

keeping a long battery lifetime, we believe that these results are promising. 

The threshold 𝛽𝑡ℎ from which the system starts to save the phone’s battery can be 

set automatically depending on the activity performed. Indeed, after having learned users’ 

habits, we can link 𝛽𝑡ℎ to the predicted activity. For instance, when we predict that the 
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user is going to spend a small time outdoor, we set 𝛽𝑡ℎ small value in order to promote the 

accuracy and vice versa.   

3.4. CHAPTER CONCLUSION  

In this chapter we proposed a new battery-aware technique for extracting 

semantically and incrementally important geographical locations from users’ movements. 

We associate the places visited by individuals during their movements to meaningful 

human activities using an algorithm that clusters incrementally users’ movements into 

different types of activities using two parameters, speed and the variance of the moves 

orientation. After detecting an important accumulation in a cluster’s weight, the cluster is 

summarized into one point and another process will be launched that aims to search the 

most meaningful geographic entity near to this point (POI), when found, we associate a 

semantic activity to it. Aiming to save phone batteries, our algorithm was implemented to 

change its computational complexity in function of the remaining battery level and the 

users’ behaviors.  

Our approach has been experimented using two real case-studies to test the 

accuracy of our recognition mechanism and to observe the impact of our technique on 

phone’s resources. These tests demonstrate that with a minimum of information, our 

proposals are capable of online recognizing a person’s activities without depleting the 

phone resources.  

Several promising directions for future works exist. First, the enhancement of 

spatial recognition process with the introduction of probability to assign a cluster to a 

geographic entity. This probability approach can take advantage of previously recognized 

activities, for example a person doing tourist activities all day has more probability to 

finish his day in a restaurant or in a hotel than in other places. The second enhancement 
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that can be applied to our inferring process is users’ profiling. In fact move's pattern of 

individuals varies from an individual to another one based on several factors such as age, 

health, and sex. The implementation of such pattern profiling models will improve the 

accuracy of our activity recognition process.  

The third enhancement is about proposing new ways of spatial analysis for future 

cities. As seen in the spatial recognition step (3.2.2), storing the geographic database on 

mobile phones may generate problems linked to the big storage space that may be required 

to keep such big database on mobile phones. As such, we propose in the next chapter a 

novel approach to answer this problem. We propose a new spatial exploration system that 

offers geographic information without using the Internet and without using any predefined 

geographic database.  
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CHAPTER 4 

NOMABLUE: SPATIAL EXPLORATION IN SMART CITIES 

4.1. CHAPTER INTRODUCTION 

Smart Cities are employing information and communication technologies in the 

quest for sustainable economic development and the fostering of new forms of collective 

life. They facilitate connections between citizens and organizations that are of paramount 

important for their long-term sustainability. As cities become more complex and their 

communities more dispersed, questions such as ‘where can I find ...’ are increasingly 

pertinent. In this chapter, we introduce NomaBlue, a new vision of spatial recognition in 

smart cities. The proposed system is based on an intelligent nomadic data collection and 

users collaboration using smart Bluetooth technology.  We demonstrate using evaluations 

that our approach is capable of proposing an efficient spatial recognition service while 

supporting a range of users’ constraints. Our system doesn’t require an access to the 

Internet, it can operate in any indoor/outdoor area, it doesn’t require pre-defined 

geographic databases, and it uses a new concept of nomadic data collection and sharing to 

speed-up the circulation of information in smart cities.    

The concept of Smart City (SC) as a means to enhance the quality of citizens’ lives 

has been gaining increasing importance in the agendas of research communities. There is 

no unique definition for a smart city. The interpretations and definitions used by different 

interest groups, stakeholders and regions vary substantially. However, there is wide 

agreement about the fact that SCs are characterized by a pervasive use of information and 
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communication technologies [138], which, in various urban domains, help cities make 

better use of their resources, and assure future viability and prosperity in metropolitan 

areas. 

One of the evolving domains of Smart Cities is smart buildings in which 

researchers are adopting sustainable building technologies to create smart living and 

working environments. These entities will keep a range of continues calculations to 

propose efficient services to citizens, e.g. Aspects related to the quality of life in a 

residential building such as comfort, lighting, and Heating [139]. Furthermore, these smart 

buildings will provide a real-time extern information to the city and its citizens, 

information that will facilitate the urban development and the citizens' quality of life.  

Consequently, people will no longer visit an ordinary place, but a smart place of interest 

SPOI. It is a smart urban geo-referenced object where a person may carry out a specific 

activity. These SPOIs provide enhanced information both unobtrusively and in real time. 

For instance, SPOI will provide continuously a set of static metadata such as the nature 

and the type of the building, number of floors, opening hours, …etc. and dynamic metadata 

such as temperature, humidity, the number of people inside the building, discounts of the 

day if the building is a shop, menu of the day if the building is a restaurant, …etc. 

 In SCs, the update of this metadata needs to be instantaneous in order to provide 

an efficient information about the users’ context.  This characteristic will increase the use 

of such service to become a primary input for a new class of mobile services such as smart 

traffic monitoring, social networking, marketing and cognitive assistance. 

Though, existing geographic data providers [63],[123], [139] encounter difficulties 

to meet the problem of updating information in smart cities, information that can change 

every hour. In fact, existing geo-exploration techniques are based on pre-defined spatial 

databases that provide a static information about the concerned geographic entity such as 
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the geographic shape, amenity, entrance…etc. However, this information is insufficient 

when used in smart cities because of the inability to provide richer and updated 

information. The main reason is that the majority of spatial data used around the world 

suffers few months’ delay [49]. For instance, let us take the case of a recommendation 

application that suggests a set of shops located in the surroundings of users, and imagine 

that a new shop has just opened in the neighborhood. As the existing spatial analysis 

techniques refer to the pre-defined spatial databases for the recommendation process, this 

new shop is unrecognizable by these services until the next database update (which can 

take several months). Moreover, every shop may have a specific daily information that it 

would like to share, e.g., new products, discounts, new opening hours …etc. Handling 

these daily updates may become unfeasible using the existing spatial analysis techniques 

due to the time and the cost needed for such daily data collection and management.     

In order to address such weaknesses, we propose a new vision of spatial recognition 

that offers to the citizens of SCs, an instantiate spatial service without any use of pre-

defined spatial databases. Basing on a nomadic data collection and sharing, our work will 

offer an updated information about the Smart Cities’ geographic entities. In this chapter, 

we introduce NomaBlue, a smart Bluetooth-based and battery-friendly offline service that 

operates on users’ phones without any additional connections requirement.  

Citizens in smart cities play an important role in the evolution patterns of SCs as 

they represent one of the mobile agents of the city. They move in the various corners of 

the city taking their mobile devices with them everywhere. On the other side, the mobile 

phone is no longer a communication device only, but also a powerful environmental 

sensing unit that can monitor a user's ambient context discreetly and incessantly. As such, 

we will combine the sensing power of mobile phones and smart buildings in order to 

provide an efficient smart spatial recognition service.  
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The main idea of our system is based on the observation of a real-life situation. 

When a person is searching for some place in the city, he would probably start asking 

people around him if they know where to find this place, he would continue asking the 

people that he meets until finding his way. NomaBlue reproduces the same process but 

more efficiently; when two users meet each other in the street, they share a quantity of data 

instantly and unobtrusively using low energy Bluetooth signals, without any physical 

contact or even knowing what the other user is searching for. 

In order to well introduce our approach, we will introduce next some basic 

knowledge on geographic data sources as well as social interactions and Bluetooth systems 

in the cities.  

4.1.1. GEOGRAPHIC DATA SOURCES 

Geospatial analysis in urban areas has been well-explored in the last decades [49], 

[130][130]. As such, Geographic Information System GIS has taken off in a big way. 

Moving from the realms of academic research, the technology was first harnessed to the 

needs of large information-hungry organizations such as local authorities, environmental 

agencies, emergency services and utilities providers. More recently, GIS has leapfrogged 

onto the back of advances in desktop and mobile computing to find applications in every 

conceivable area of business activity [65], [125].  

Location-aware mobile applications are fed from geographic warehouses in two 

ways: online and offline modes [49]. Online services require the Internet to communicate 

with the centralized geographic servers, this is insured using cartographic Web services 

such as Web mapping, feature and processing services [130]. The geographic data can be 

produced manually by the application developers or by referring to one of the geo-data 

provider companies such as Google [140], ESRI [125] and OpenStreetMap (OSM) [64]. 
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Let’s take the example of the Waze application [141], it is a community-based traffic and 

navigation app that shares real-time traffic and road information, the aim is to save 

everyone time and gas money on their daily commute. Every Waze user that went to share 

or get traffic information needs to be connected to the Internet because they use Web 

Feature Services [49] to store and defuse the users’ notifications. Our work is similar to 

Waze in some points since both works are community-based systems. Moreover, similarly 

to our work, Waze try to fill the gap between users and geographic data providers by 

offering information that does not exist in the providers databases, e.g., nearby police 

activity, accidents, traffic cameras, potholes,…etc. However, in our case, users don’t need 

to be connected to the Internet and don’t need to harvest and share any information 

manually since in NomaBlue, the data collection and sharing processes are made without 

any user intervention.   

The second technique to provide geo-data is the offline mode that is designed to 

avoid using the Internet to get data. The main idea is to store the geographic database of 

the city in the user’s mobile phone. In fact, many mobile GIS solutions such as [142] offer 

an offline version to avoid the constraints linked to the use of networks. For instance, Esri 

company, one of the world’s biggest GIS companies, have provided a whole runtime [126] 

to support offline mapping. It includes map viewing, interaction, editing and routing while 

fully disconnected from wireless. However, this technique requires the storage of the 

whole heavy geographic database in mobile phones, those devices characterized by a 

limited storage and calculation capacities. Moreover, the user has to download a different 

database each time he moves to a new city, else, the system is unusable. Unlike these 

systems, our approach is designed to operate from the first instants without using any 

predefined geographic database. As the data collection is based on a collaborative data 
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sharing, the system can operate in any area that contains a minimum of collaborators from 

whom the user will get city information. 

4.1.2. SOCIAL INTERACTIONS IN THE CITIES  

In addition to user mobility, another defining characteristic of mobile systems is 

user social interaction. A variety of new applications focus on facilitating social activities 

in pervasive systems. For example, new Internet dating services allow clients to use their 

cell phones’ Bluetooth radios to detect when they are in the proximity of a person that 

matches their interests [143]. Other companies are offering file-sharing software for 

mobile phones that allows users to share ring-tones, music, games, photos, and video 

[144]. The digital encounter concept used in these apps is well explained in [145] where 

authors explore the types of encounters that technology enables. They also investigate the 

relation between consciousness of communication and intention of interaction in a city 

context by comparing two prototypes that generate different types of digital encounters. 

Authors in [146] have gone further in exploiting social interactions in mobile 

systems where they investigate how mobile systems could exploit people’s social 

interactions to improve these systems’ performance and query hit rate. They study three 

diverse mobile systems: DTN routing protocols, firewalls preventing a worm infection, 

and a mobile P2P file-sharing system to confirm that mobile systems can benefit 

substantially from exploiting social information.  

4.1.3. BLUETOOTH SYSTEMS  

The constrained physical and link layer technologies in smart cities are generally 

characterized by low energy consumption and relatively low transfer rates. One of the most 
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prominent solutions in this category is the Bluetooth Low Energy (BLE) or also called 

Bluetooth 4.0 or Smart Bluetooth [147]. BLE advertising beacons are particularly 

attractive because of the promise of long battery lives of many years, and so low 

maintenance requirements. Moreover, the low price of Bluetooth beacons (around 20 $) 

represents an attractive solution for transmitting SPOI metadata [148]. Beacons transmit a 

low-power signal that can be picked up by nearby Bluetooth-enabled mobile devices, 

including smartphones. They broadcast short-range signals that can be detected by apps 

on mobile devices in close proximity to a beacon (20-200m)[148]. 

 Moreover, the future Bluetooth 5.0 is supposed to quadruple range, double the 

speed and increase data broadcasting capacity by 800% [149]. Extending range will deliver 

robust, reliable Internet of Things (IoT) connections that make full-home and building and 

outdoor use cases a reality. Higher speeds will send data faster and optimize 

responsiveness. Increasing broadcast capacity will propel the next generation of 

“connectionless” services like beacons and location-relevant information and navigation. 

These Bluetooth advancements open up more possibilities to build accessible and 

interoperable Bluetooth apps. 

Bluetooth has a very important role to play in the development of smart cities. 

Bluetooth is an emerging platform for future telecommunications and thus has a lot to 

offer. Since the birth of BLE technology in June 2010, we have witnessed valuable works 

that use this low-energy technology in several areas [150]. In 2014, Regent Street (RS) in 

London is set to become the first shopping street in Europe to pioneer a mobile phone app 

which delivers personalized content to shoppers during their visit [151]. Every store along 

the mile-long RS has installed BLE beacons to broadcast offers to shoppers as they walk 

past the shop front. The mobile app available to download from the App Store and Google 

Play, uses Beacon devices which are placed in stores to push personalized messages and 
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offers to consumers' smartphones whilst they stroll down the street and shop. Moreover, 

users have the ability to pay their bills transmitted automatically by beacons to their phones 

at the end of their shopping. 

In fact, RS application is a good example that supports the usability and feasibility 

of our approach. RS application can be seen as a use case of NomaBlue, since the spatial 

exploration is made using BLE devices. However, the RS app wait until shoppers walk 

past by the beacon to alerts their phones about the shops information. Our work is different 

from this, if NomaBlue is deployed in RS, the users will be notified about the shops 

information without necessarily passing by them. The concept of collaborative data 

exchange that we propose transfers permanently the set of the daily offers and upcoming 

events from one user to another along the RS. 

Furthermore, a British department store group called House of Fraser [152] 

announced in August 2015 the introduction of beacon-equipped mannequins in its 

Aberdeen store to provide customers with a more engaging retail experience. When a 

customer with an enabled smartphone app is within 50 meters of the mannequin, the 

beacon sends a signal providing them with useful information: details about the clothes 

and accessories the mannequin is wearing, the price, where the items can be found within 

the store and links to purchase the items directly from the retailer’s website. 

Samsung’s digital discovery tool [153] is another example of BLE usability in SCs. 

Samsung, Sydney Opera House’s principal partner, created the discovery program to 

enhance junior tours of the opera house for years 3 and 4 students. BlueCats company 

[154] provided offline beacon caching to enable the devices to range beacons without 

Internet connectivity. The ‘Quest to Stop the Mischief-making-Opera Ghost’ app, existing 

only on the tablets designated for the project, enhances student engagement with the Opera 

House including questions and information relating to the Australian national curriculum 
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such as the creative arts, drama and indigenous history. The BlueCats BLE beacons used 

in this project enabled a more immersive, and engaging experience with the tour and the 

rich history of the Opera House. 

All of these projects are city probes: a technological perturbation of the city 

experience made with the aim of understanding more about how to design user experiences 

in the city. As seen above, significant efforts have been undertaken for an efficient usage 

of BLE devices in future cities. In this context, we propose a new spatial recognition 

system that offers an offline use of geographic data using BLE devices. Unlike the existing 

solution, our approach is disconnected from the Internet, it doesn’t require pre-defined 

geographic databases and use a new concept of nomadic data collection and sharing to 

speed-up the circulating information in SCs.  

The following sections detail our contribution: Section 2 presents our approach; 

Section 3 illustrates some usage examples of NomaBlue; Section 4 describes the 

experimentations. Finally, conclusion and future focus, are summarized in Section 5. 

4.2. NOMADIC DATA COLLECTION FOR SPATIAL RECOGNITION  

We adopt that in SCs, every building is a kind of alive entity that can interact with 

its environment. These entities have the intelligence of capturing some information and 

transmitting others dynamically in function of the situation context. In our work we will 

focus on the transmission capability of smart buildings. Every SPOI contains one or more 

Bluetooth transmitters that represent its identity. As said earlier, the constrained physical 

and link layer technologies in smart cities are generally characterized by low energy 

consumption. Thus, we adopt that the Bluetooth devices used in the Smart buildings are 

Bluetooth 4.0 which is an upgrade of Bluetooth 3.0 that includes a power-saving feature 

called "low-energy technology". It also relies on high-speed data transfers introduced in 
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Bluetooth 3.0. A BLE device can operate for several years without changing its battery 

[155]. 

Thus,  every transmitter propagates continuously  a low energy Bluetooth signal 

that contains all kinds of SPOI metadata, static or dynamic, calculated automatically (e.g. 

number of people inside the SPOI) or put manually by a human (e.g. a slogan of a 

restaurant), diffused all-time or at specific moments. Actually, the metadata can contain 

all types of transmittable human information about the SPOI. 

For instance, let us take the example shown in Figure 38, imagine that the blue 

rectangles represent shops located in an urban area and the small dark points represent 

Bluetooth transmitters located inside every shop. These BLE devices will transmit a 

constant signal containing information that the shop owner would share with the 

community. The system accepts a BLE transmitter administrator for each building (in our 

example, he can be the shop owner) that has the ability to update information contained 

inside the transmitter using a mobile administrator application, see Figure 38 where the 

building administrator updates information of the BLE transmitter.  

The metadata can contain for example the opening hours, the type of business, the 

daily or weekly discounts and the congestion inside the shop calculated by counting 

sensors that reflects the number of visitors. Users moving in the surroundings of this area 

are continuously informed about the metadata described earlier, consequently, if a user is 

searching for a specific product, he will get immediately all the opened shops having 

discounts concerning this product. Moreover, a user can choose between the shops in 

function of the congestion inside the shop or the waiting time in the checkout line. We will 

see next, how NomaBlue keeps users aware of the information updated in the 

neighborhoods.   
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Figure 38: An example of a smart city disposition 

We assume that every user has a Bluetooth 4.0 equipped mobile phone. When a 

person moves in the city, our system tracks continuously the Bluetooth signals found in 

the neighborhood in order to explore the nearby SPOI. Thus, each time that the application 

(deployed on the user phone) detects a new BLE signal, it connects to it and extracts the 

concerned metadata. This metadata is processed and stored in the user’s phone (See 𝑈3 in 

Figure 38).  Note that in real life, a geographic area may contain a multitude of BLE 

signals, not necessarily only those of SPOI. Identifying and securing SPOIs’ BLE signals 

are necessary steps, but as our contribution is principally focused on the nomadic data 

sharing, we will not go deep in the description of this step. Generally, BLE device 

companies such as [154] provide their own embedded identification and security 
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protocols. Moreover, they provide a cloud platform to store and protect every beacon data, 

and offer mobile tools to manage the fleet of beacons, edit its properties and view collected 

insights.          

Therefore, every user 𝑈𝑖 collects a quantity of data 𝑄𝑖 that represents the set of 

already explored SPOIs. In order to propose a better spatial exploration, we introduce a 

new sharing concept. On every two user encounter in the street, they share a sub-quantity 

of data instantly and unobtrusively. The shared data will let the user being aware of an 

unexplored region yet, this characteristic will create a dynamic that will speed-up the flow 

of the circulating information, and will keep it updated and available for everyone. For 

instance, suppose that 𝑈1 receives a part of 𝑈2’s knowledge (see Figure 38), 𝑈1 will 

accordingly have information about all the buildings that are situated on the other side of 

the street without any effort.  

However, the number of persons present in the street may become higher in big 

cities, doing bilateral sharing for every two nearby users may become very resource-

hungry for mobile phones. As such, we present in the following sections how we proceed 

to explore the maximum city space in the least time while minimizing the data sharing.  

4.2.1. NOMADIC SPATIAL EXPLORATION 

Whenever the user moves, the NomaBlue mobile app in his device connects to 

every new building BLE signal to explore the SPOI data. The exploration is made under a 

frequency rate that is linked to the user speed. In order to simplify our approach, we will 

adopt that the Bluetooth sampling rate Ts for building exploration is 30 sec.    

The set of collected data is stored incrementally in the mobile phone. As said 

previously, the buildings can transmit any communicable human information, so, it was 
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crucial to introduce an ontology part in our system that structures the set of information 

that the buildings want to send.  

Our work in this context is inspired by the OSM ontology [65]. Each building entity 

includes a unique identification code, latitude and longitude coordinates, versioning 

information and optional general-purpose informative tags. A tag is a key-value pair of 

Unicode strings of up to 255 characters. Each tag describes a specific feature of a spatial 

data element.  

Tags offer a meaningful human semantic information about the SPOI. Tags are 

written as key=value. The key describes a broad class of features, for example names, 

types, height…etc. The value details the specific feature that was generally classified by 

the key. For example, buildings contain the tag building that can take one of the following 

values:  

𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝑠 =  {𝑎𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡𝑠, ℎ𝑜𝑡𝑒𝑙, ℎ𝑜𝑢𝑠𝑒, 𝑐𝑜𝑚𝑚𝑒𝑟𝑐𝑖𝑎𝑙, 𝑐𝑎𝑡ℎ𝑒𝑑𝑟𝑎𝑙, 𝑘𝑖𝑜𝑠𝑘. . . 𝑒𝑡𝑐. } 

After that, if the building is commercial we can add the tag shop with one of the 

following values: 

𝑆ℎ𝑜𝑝 =  {𝑎𝑙𝑐𝑜ℎ𝑜𝑙, 𝑐𝑜𝑛𝑣𝑒𝑛𝑖𝑒𝑛𝑐𝑒,𝑚𝑎𝑙𝑙, 𝑠𝑢𝑝𝑒𝑟𝑚𝑎𝑟𝑘𝑒𝑡. . . 𝑒𝑡𝑐. }. 

Furthermore, we can add other relevant information such as: 

{𝑓𝑙𝑜𝑜𝑟 =∗, 𝑤ℎ𝑒𝑒𝑙𝑐ℎ𝑎𝑖𝑟 =∗, 𝐼𝑛𝑡𝑒𝑟𝑛𝑒𝑡 𝑎𝑐𝑐𝑒𝑠𝑠 =∗, 𝑜𝑝𝑒𝑛𝑖𝑛𝑔 ℎ𝑜𝑢𝑟𝑠 =∗,

𝑝𝑎𝑦𝑚𝑒𝑛𝑡 𝑚𝑒𝑡ℎ𝑜𝑑𝑠 =∗, 𝑝ℎ𝑜𝑛𝑒 =∗, 𝑤𝑒𝑏𝑠𝑖𝑡𝑒 =∗ … 𝑒𝑡𝑐. }.   

Consequently, the data stored in users’ phones will look like the example presented 

in Table 7. At every new BLE signal detected, our system read the Bluetooth data and save 

a new record in the SPOIs table.   
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Table 7: A simplified example of the SPOIs table 

ID Longitude Latitude Tags 

1 -71.0572413 48.4210453 

Building= hotel, Name= the hotel, 

Stars=4, Rooms=25, Beds=45, 

Breakfast=yes, 

Internet_access=wlan … 

2 -71.0572532 48.4210250 
Building=stadium, Sport=soccer,  

Capacity=70K, Owner=The city… 

For information about the technical way of reading Bluetooth data, please refer to 

the Bluetooth Generic Attribute Profile (GATT) [155] that defines the way that two 

Bluetooth Low Energy devices transfer data back and forth using concepts called Services 

and Characteristics.    

So far, we have seen that every user in the city harvests data from the buildings 

BLE transmitters. But as said earlier, if we aim for a more efficient spatial exploration 

system, we have to introduce a resource-sharing process that let exploring city areas 

rapidly and efficiently, without necessarily going there. We are going to see in the 

following parts, under what rules our sharing process is designed.    

4.2.2. KNOWLEDGE SHARING 

In the parallel of exploring the buildings BLE signals in the SC, the users have the 

ability to send and to receive information unconsciously and promptly. This sharing 

process can be seen as a collaborative social mechanism to keep the circulating 

information updated and widely shared. Therefore, we have implemented some sharing 

rules in order to maximize the user explored city space while minimizing the exploration 

time.  

Sharing knowledge at every two users meeting is a power-hungry technique. 

Consequently, in order to propose a phone battery-friendly solution, we adopt that the 

knowledge sharing is not processed at every moment but at a specific moment called Te. 
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In fact, the idea behind Te is quite similar to the human heart rate. The heart rate can vary 

according to the body's physical needs, including the need to absorb oxygen and excrete 

carbon dioxide. When the need to these parameters increases, the heart rate increases too, 

and vice versa. In a similar way, the time exchange frequency Te is calculated in function 

of the necessity of obtaining new knowledge (metadata of new SPOIs). When the user 

needs to further explore his surroundings the Te frequency decrease (i.e. the exploration 

rate increase) and vice versa. 

 Suppose that the user knowledge linked to the explored SPOIs is represented by a 

circle that contains all the explored buildings such represented in Figure 39. As such we 

introduce the knowledge circle KC, as an area which its center is the center of gravity of 

the explored entities.  

 

Figure 39: An example of one user’s Knowledge circle KC. Blue squares are explored entities. 

Outside the circle, the area is unknown. 
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Users’ knowledge can be divided into several areas depending on the user patterns. 

For instance, a user’s knowledge can be divided between two distant cities because he has 

the habit of spending time in both of them. As such KC has to behave accordingly, because 

if we form one circle for both cities, the KC will certainly contain unexplored areas 

(compare (A) and (B) in Figure 40). 

Moreover, users’ knowledge may contain noise, for instance, the geographic 

coordinate of a BLE transmitter may be introduced wrongly (the buildings will be 

considered very distant from the user). Another example of the noise generation is when a 

user receives a small quantity of data from a user that came from a distant provenance. As 

seen in Figure 40, including noise in KC fake the user’s knowledge representation.  

 

Figure 40: Example of a user’s knowledge presentation in Montreal City using one global KC (A) 

and multiple KCs without noise (B). The user's knowledge is scattered between two regions forming 

two clusters and some noise between them. 
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As such, the calculation of KC must be handled carefully to avoid including 

unexplored areas inside the circle. A user may have several KCs depending on his pattern 

(ex. (B) in Figure 40). Basing on these facts, we calculate KC  by using an incremental 

version of DBSCAN algorithm [90]. Given a set of points in some space, DBSCAN 

groups together points that are closely packed together, i.e., points with many nearby 

neighbors, marking as outliers points that lie alone in low-density regions, i.e., whose 

nearest neighbors are too far away. 

This algorithm can be tuned with two parameters: ε which determines how far to 

search for points near a given point, and minPts, which determines how many points 

should be present in the neighborhood of a given point in order to keep expanding a given 

cluster. In NomaBlue, we use 𝜀 =  100𝑚 and 𝑚𝑖𝑛𝑃𝑡𝑠 =  5, which means that the 

minimum number of entities to form a KC is 5 entities in a diameter of 100 m. These 

parameters are learned from the simulated dataset presented in the experimentation 

section.   

By definition, a user moves inside one of  his KCs. Our work is to make sure that 

the user will never be out of his KC to avoid going to an unexplored area. Thus, we 

introduce the position indicator P that is calculated as follows:  

𝑃 =   𝑈𝐷𝐵 𝐾𝐶𝑟𝑎𝑑𝑖𝑢𝑠 ⁄  (24) 

Where 𝑈𝐷𝐵 is the distance from the user to the KC border and 𝐾𝐶𝑟𝑎𝑑𝑖𝑢𝑠 is the 

radius of KC. If the user has multiple KCs, P is calculated using the KC in which the user 

is located. 

P can be seen as a knowledge security indicator. When the user is in the center of 

his knowledge P → 0, which means that the area around him is well explored. However, 

P → 1 when a user approaches the border of the explored area, this means that the user 

will soon be in a situation of knowledge deficit. 
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Te is linked to P. When P → 0, the user is near the center of his knowledge. 

Consequently, there is no need to explore further the neighborhood, so, the frequency 

time of knowledge sharing Te will be increased. On the other hand, when P → 1 because 

the user is near the KC border, we need to enrich the user knowledge quickly by providing 

new SPOIs, so, Te will take small frequencies. Based on these conclusions, we calculate 

Te as mentioned in the Equation (25) where 𝐷𝑒 is the duration of the exchange. 

𝑇𝑒 = 𝑒
2(1−𝑝) 𝐷𝑒  (25) 

Note that we set 𝐷𝑒 as a user-defined threshold in order to simplify our proposal. 

It can be calculated dynamically by adjusting it in function of the user situation, i.e., speed 

and number of neighbors.  

 

Figure 41: Relation between 𝑻𝒆 and P. Using 𝑫𝒆 = 𝟔𝟎 𝒔𝒆𝒄 

The Figure 41 illustrates an example of 𝑇𝑒 variation in function of P. For instance, 

when the user position at the moment 𝑇 is 𝑃 = 0.3, given Equation (25), the next moment 

for sharing knowledge will be: 𝑇 + 250 𝑠𝑒𝑐 (see Figure 41). So the algorithm will wait 

250s to receive knowledge from other users during 𝐷𝑒 = 60 𝑠𝑒𝑐. After that, the  𝑇𝑒 will 

be updated in function of the new P and so on. 

   As seen so far, we have discussed how we choose the appropriate time to share 

knowledge in order to reduce the power consumption of our approach, this time is 

calculated in function of the users’ necessity to explore the city. The next step will continue 
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in this battery saving perspective where we will discuss the protocols of the sharing 

process.    

4.2.3. PAIRING SELECTION 

On every 𝑇𝑒, the user will unobtrusively make a data exchange with the nearby 

other users during a duration 𝐷𝑒 . As the time disposed for this step may be short, and in 

order to minimize the data exchange to preserve phone resources, the sharing process 

must undergo a pairing selection. The pairing is a mechanism in which two devices 

establish a relationship by creating a shared secret key known as a link key. If both devices 

store the same link key, they are said to be paired or bonded, and so, they can 

communicate mutually. 

During the sharing duration 𝐷𝑒 , the user may have several other users with whom 

he can share data. However, we will select during this process only few users basing on 

two rules; the selected user has to be free (not already paired with another user), and the 

second rule is that there is no need to receive the same data from several users. This 

technique aims to discard the useless calculations that drain the phone resources. 

Consequently, we select each time, a free user with a different profile to be sure that he 

brings new knowledge. The user profile is deduced from his geographic provenance, or 

in other terms, we will choose each time a new user that came from different provenance. 

 For instance, let us take the example presented in Figure 38, there are six users 

𝑈𝑖 in this city area. For the user 𝑈1, suppose that at the moment 𝑇𝑒, he starts receiving 

data from other users, the first user that he meets is 𝑈2, so he keeps receiving data from 

him during a pairing duration 𝐷𝑝 (will be introduced later). After that 𝑈1 will choose a 

new user from whom receiving data, he has the choice between 𝑈3, 𝑈4, 𝑈5, 𝑈6, the 
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algorithm will notice that all the users came from different provenances except 𝑈4 and 

𝑈5, consequently, 𝑈1 will receive data from 𝑈3 , 𝑈6 and only the first come between 𝑈4 

and 𝑈5. 

To differentiate between the user provenances, we introduce the concept of user 

provenances signature 𝑈𝑆𝑖. It is a ID combination of the last three roads that the user has 

passed through. For example, in Figure 38, when 𝑈4 is near 𝑈1 , he will have the following 

signature: 𝑈𝑆4 = (16,23,131). Thus, at each meeting of a new user, the algorithm checks 

for his 𝑈𝑆𝑖, if the signature is already known, the algorithm will pass to another user, 

otherwise, it requests a pairing between the two users. 

4.2.4. SENDING DATA  

We are aware that sending files in urban areas might suffer from some difficulties 

linked to the interruptions that may break the sending process. Moreover, as the Bluetooth 

4.0 is not designed for sending heavy data, we will process by sending a multitude of 

small compressed files, this allows to insure that a minimum of data is sent if any 

interruption happens. The theoretical data transfer speed of BLE is up to one Mbit/s, but 

this rate concerns the physical Layer transfer speed and doesn't account for a protocol 

overhead. The achievable data rate is a device dependent value between 10 kB/s and 70 

kB/s [155]. 

As such, we send small files that contain 10 SPOIs metadata, the size of each file 

when compressed is around 1000 b, i.e. less than 1 Kb, this number is obtained from the 

average size of 1000 compressed files, each file contains 10 different real OSM POIs with 

different numbers of tags (see Figure 42). Thus, we can send theoretically between at least 

5 and 10 files (50-100 SPOIs data) per second, and up to 700 files (7000 SPOIs data).     
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Figure 42: An example of the sending data process 

The compression process is a background service that operates incrementally. On 

every new 10 POIs, the algorithm compress them into a separated file using zlib 

compression library [156]. Consequently, when the algorithm needs to send packets to 

another user, it will find these files ready to be sent one by one (see Algorithm 6, lines 

[1,6])  . 

Sharing data between two users accept two scenarios. The first one consists of 

sharing in the two directions, i.e. every user send and receive data. This scenario happens 

when both the two users are on their sharing time intervals [𝑇𝑒, 𝑇𝑒+𝐷𝑒] (i.e. both users 

need to receive data).  

The second scenario is when only one user is on his sharing time interval (i.e. only 

one user needs to receive data). For the bidirectional sharing, the algorithm in each device 

sends and receives the small already compressed files alternately, while in the 

unidirectional sharing, the sending user will keep sending the compressed files 

continually (see Algorithm 6, lines [7,10]). 

The pairing duration between two users 𝐷𝑝 is calculated as illustrated in Equation 

(26), 𝑁𝑏𝑛  is the number of nearby not paired users. 

𝐷𝑝 = 𝐷𝑒 𝑁𝑏𝑛 ⁄  (26) 

The aim of such technique is to harvest the maximum data from different 

provenance, consequently, a bigger KC. For instance, suppose that 𝐷𝑒 = 60𝑠𝑒𝑐, if the 

algorithms detects only one nearby user, the whole duration will be dedicated to 
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exchanging with that use. However, if the algorithm detects three potential users, the 

duration 𝐷𝑒  will be divided into three intervals, i.e. 20 sec for each user.      

This pairing duration 𝐷𝑝 is recalculated after every pairing step, because the 

number of nearby users may change meanwhile. 

Algorithm 6: The overall algorithm of NomaBlue 

Input: A user position; 

Output: A set of SPOIs data; 

1: On every Ts 

2:    Read and store Beacons data;  

3:    If ( number of non-compressed POIs >= 10 )  

4:           Compress data;  

5:           End   

6: End  

7: On every Te 

8:    Repeat until T ≥ Te  + De 

9:    On every 𝐷𝑝  

10:                Choose one  free user with different signature 𝑈𝑆𝑖; 

11:         If ( selected user is on his exchange time ) 

12:     Bilateral exchange (compressed files); 

13:         Else 

14:     Unilateral exchange (compressed files); 

15:         End  

16:                Recalculate 𝐷𝑝 

17:                  End 

18:    End repeat  

19:    Calculate KC, P and new Te ;  

20: End  

As described in Algorithm 6, NomaBlue users achieve two parallel processes, the 

first process (see lines [1,6]) is the SPOIs exploration, where every user scan the nearby 

BLE of SPOIs, on a sampling frequency rate called Ts.  
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Simultaneously, the second process (see rows [7,20])  is achieved on every time 

exchange rate Te. At this moment, the users exchange information basing on their 

knowledge acquisition necessity, they share their knowledge about the explored SPOIs 

during an exchange duration De.  

After describing the overall process of NomaBlue System, we will see in the 

following section our vision for NomaBlue usability in the real world.      

4.3. EXAMPLES OF NOMABLUE USAGE 

In this part we will present few examples of use cases where NomaBlue can be 

used to enhance the existing spatial exploration systems.  

4.3.1. GEOSPATIAL DATA COLLECTION 

NomaBlue is not a rival of the existing geospatial data provider companies such 

Google maps [140] and OSM [64], on the contrary, it can represent a support service for 

these existing technologies. Updating the geospatial data is a complicated and expensive 

task, and the most important, as seen in the related works, it is a task that take a long time. 

NomaBlue can represent a nomadic data update system that helps the geographic servers 

to stay updated and informed by any change in the cities’ entities. Thanks to the versioning 

data stored in each SPOI, it is possible to retrace any update in the SPOIs data.  NomaBlue 

can be programed to transfer periodically the users’ data into a central server that treats the 

various data provided by each user, and use it to update the geospatial databases.  
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4.3.2. MARKETING 

Companies spend valuable efforts in marketing to let the user informed by any 

information that the company would like to share to improve its sales. By using technology 

to help salespeople provide a more personalized shopping experience, brands can retain 

the high level of customer service that people expect, while also offering new services that 

mimic what shoppers previously have found only online. NomaBlue can be used by a 

recommendation system that proposes to a user a set of pertinent shop in his neighborhood 

basing on his personal preferences, wherever he is indoor or outdoor. Moreover, the users 

will receive alerts directly to their phones providing information on new products, 

upcoming events and exclusive offers available only to those shopping in the stores that 

day, while being disconnected from the Internet.  

 

Figure 43: Example of SPOI containing more than one BLE transmitter, this scenario show how 

the beacons are used to interact with users inside the shop. Source:[157] 

Suppose that a mall adheres to such a solution, NomaBlue can offer to one user 

that has never visited this mall before, a set of relevant information about the pertinent 

shops and products inside the mall while just entering the mall (see Figure 43). We believe 
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that the first interactions with other users who leave the mall and who potentially explored 

the shops in the mall will bring enough user knowledge to guarantee a good shopping 

experience. 

4.3.3. NAVIGATION 

NomaBlue can be used to enhance the navigation systems. It can operate without 

using the Internet or any prior geographic database. Suppose that a user has moved to a 

new city. While just walking in public areas, the user will acquire enough knowledge from 

other users to navigate easily in the city without having any pre-defined database. The 

sharing capability can be seen as if the user ask permanently the other nearby users where 

he can find a pharmacy, a cinema, a restaurant…etc., but with a discreet and fast way. 

Thus, NomaBlue can support the existing navigation platforms when for any reason, the 

background geographic data is not available (the Internet absence, Web server failure 

...etc.).         

4.4. EXPERIMENTAL EVALUATION  

We will test our approach using real and simulated datasets to validate the 

feasibility and the performance of our system. Firstly, we are going to present the 

experimentations conducted inside the campus of the university of Quebec in Chicoutimi 

and secondly we are going to expand the tests by simulating the movement and the 

interaction of up to 100 000  users in the whole city of Montreal (4900 km2). 
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4.4.1. REAL DATASET  

We have deployed 10 BlueCats beacons [154] on one of the university floors, and 

we asked 10 students to move freely on the same university floor holding their android 

phones that contain the NomaBlue android app. The sampling frequency Ts was set to 30 

sec and the exchange duration De was set to 60 sec. 

The experiment lasted 60 minutes while changing the beacon locations every 10 

minutes. The beacons were located either on the corridors, in offices or in classrooms (see 

Figure 44). Each beacon transmits the following data: longitude and latitude, the corridor 

ID in which the beacon is located, versioning information and additional information such 

as the type of the entity (class, office or laboratory), the capacity of the class, the name of 

the office occupant, the name of the laboratory...etc.  

 

Figure 44: Experimentation process on the university campus 

The results showed that the average time exchange frequency Te during the whole 

experiment was around 249 sec. In Figure 45 we present the average Te and P evolution 

during the whole testing process. We noticed that in most of time, the average position 
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indicator P is between 0 and 0.4, which globally implicated a Te value between 200 and 

440. This means that the users were in most of the time, in the center of their KCs. 

 

Figure 45: The evolution of Te  in (A) and P in (B) during 60 minutes 

We also noticed that every 10 min, 𝑃 = 1  and 𝑇𝑒 = 60 sec. This is justified by 

the fact that these moments are the moments when we changed the beacon positions 

(10,20,30,40,50 min), when the beacon positions change, the knowledge circle KC 

automatically shrinks because the users ignore  the new beacon distributions, the algorithm 

interprets the situation as a knowledge deficit because the distance between the user and 

the border of his explored area is null (P=1). Consequently, Te is set to its smallest value 

𝑇𝑒 = 𝐷𝑒 = 60 𝑠𝑒𝑐 to obtain rapidly information from the other users.      
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In order to test if the fact of introducing Te has an impact on preserving the battery 

life, we have tracked the phone’s memory usage of our method, a second version of our 

method (V2) where we discarded the concept Te (anytime knowledge transfer) and Waze 

app described in the related works. Results presented in Table 8 represent the mean RAM 

usage of each application for 60 minutes. 

Table 8: RAM usage experiment 

 Our approach Our approach V2 Waze 

RAM usage 26 Mo 48 Mo 67 Mo 

Our approach shows a promising RAM usage rate, better than the other solutions. 

Using a time exchange frequency Te in our approach has a big impact on preserving the 

mobile resources, the memory saving in this case was around 45% compared to the V2 of 

our approach where we discarded the concept of Te, and we transferred knowledge all the 

time. 

We are aware that this first part of the experimentation does not reflect the real 

world situation, since the number of users and implemented beacons are small. 

Consequently, we are going to go deeper in the second test using a simulated dataset that 

contains many more users and beacons.      

Before going to the second test, we have gathered an important parameter that we 

need to use in the simulated experiment. We perceived during the first test that the average 

range of the Bluetooth signal transmitted by the beacons was around 48 m depending on 

the position of the beacons and the number of obstacles. Moreover, we have tested the 

range of three beacons in outdoor environment for 30 minutes, the average range was 

around 70 m. Thus, in the simulation process, we are going to simulate a Bluetooth signal 

that vary between 40m to 70m.  
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4.4.2. SIMULATED DATASET  

We have simulated the movement of up to 100 000 citizens moving in the entire 

city of Montreal (70Km x 70Km), see (2) in Figure 46. The simulation model was 

developed using Netlogo platform [158], an agent-based programming language and 

integrated modeling environment that enables exploration of emergent phenomena.  

The developed model called CityAgents can be found in [159]. The main idea of 

our simulation is to reproduce the movement of citizens while remaining as realistic as 

possible. Every user moves freely in the Montreal City by following the path of the city 

roads, meanwhile, he has the possibility of spatial exploring and sharing data as described 

earlier. However, we suppose that the pairing process between users may fail, this 

probability is calculated as follows: 𝑁𝑈𝑁 ∗ 𝑃𝐹, where 𝑁𝑈𝑁 is the number of users in the 

neighborhoods and 𝑃𝐹 is a random failure probability ratio. We calculate this probability 

in function of the number of nearby users because it is known in the literature that the 

number of Bluetooth signals may create a noise that interferes the pairing process [155].   

The model uses two background spatial layers provided by OSM: the road layer 

that defines how the users move in the city, and the buildings layer that contains more than 

84200 entities that are used to feed the BLE beacons in terms of information (see Figure 

46). In fact, we adopt that every building contains a BLE transmitter and that the 

information transmitted is the data contained in the OSM buildings layer.   

Our simulation model contains two types of agents, firstly, the citizens are agents 

that move freely in the city, every citizen has a random destination, where when reached, 

the user stay a random duration ranging from 0 to 60 minutes, after that, a new random 

destination is assigned to the agent. The citizens move with a speed ranging from 2 km/h 

to 7 km/h. 
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The second type of agents, called in NetLogo environment: breed, is the buildings. 

We design the buildings as living entities that transmit information using its BLE beacons. 

Beacons are located inside every building and transmit a set of information in a range 

varying between 40m to 70m;      

When users are paired, we use a file transfer speed ranging from 5 to 10 kb/s (this 

speed represent the minimum transfer speed of BLE technology as described earlier), with 

a transfer failure probability same as 𝑃𝐹. 

 

Figure 46: CityAgents: our simulation platform with different zoom levels. (1)(3)(4) The simulation 

UI. (2) The whole Montreal buildings and roads layers projected from our database. 

Before presenting the results, we would like to affirm that the aim of the simulation 

setting is to approach as much as possible the real world situation, although that these 

parameters are too hard to calculate in the real world. For this reason, the simulation was 

not launched once, but several times, in order to ensure that the results are not sensible to 

one specific parameter value. Therefore, we have developed a java application that takes 

the NomaBlue simulation as a core, and launch it 1000 times. Every simulation lasted 30 

days, which generated a total simulation time around 83 years. Thanks to the time 
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acceleration feature of Netlogo, the real time needed for the whole experimentation was 

around 50 hours of continuous calculation. Besides, The Java application was designed to 

make the complex tasks that NetLogo cannot achieve easily such as user’s knowledge 

storage and the mathematical calculations.        

In order to measure the effectiveness of our approach, we introduce an exploration 

satisfaction indicator 𝐸𝑆𝐼. The aim of this indicator is to calculate the efficiency of the 

spatial exploration process in a radius 𝑟𝑎𝑑. We adopt that every user, during the 

simulation, is searching for a random geographic entity located in the city. 

 The 𝐸𝑆𝐼𝑟𝑎𝑑 is the time needed to acquire knowledge about this unknown entity 

located in the radius 𝑟𝑎𝑑. When done a new unknown entity is assigned to this user and 

so on. We repeat this process until all the entities in the radius 𝑟𝑎𝑑 are explored. The user’s 

𝐸𝑆𝐼𝑟𝑎𝑑  is the average time of all search processes and the global users 𝐸𝑆𝐼 indicator is the 

average of all users’ 𝐸𝑆𝐼𝑟𝑎𝑑 indicators. 

 In Table 9 we present the global 𝐸𝑆𝐼𝑟𝑎𝑑 results in radius 100m, 500m, 3km, 15km 

and 35km using a duration exchange 𝐷𝑒 = 90 𝑠𝑒𝑐 while varying the probability of failure 

𝑃𝐹 of the pairing and sharing processes.  

Table 9: The variation of 𝑬𝑺𝑰 in function of the exploration radius. 

Radius 100m 500m 3km 15km 35km 

NB users 10 500 1000 10k 100k 

𝐸𝑆𝐼 
(rounded 

seconds) 

          PF1 = 1 𝑟𝑎𝑛𝑑(100)⁄  9 132 311 1398 3471 

          PF2 = 1 𝑟𝑎𝑛𝑑( 1𝑘)⁄  8 127 305 1382 3134 

          PF3 = 1 𝑟𝑎𝑛𝑑(10𝑘)⁄  8 112 288 1340 3160 

          PF4 = 1 𝑟𝑎𝑛𝑑(100𝑘)⁄  8 112 287 1303 3091 

Average 𝑬𝑺𝑰 8  112  298  1356 3214 

 We notice from the average 𝐸𝑆𝐼 in Table 9 that our approach showed a promising 

efficiency rate in small areas (when the researched entity is near to the user), the user has 
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a high probability to find the location of the unknown building in the first searching 

moments. For instance the average search time ESI is around 8 sec when the search area 

is 100m. However, when we spread the searching radius, the system takes several minutes 

up to 50 minutes when the searching area is the whole Montreal City. This is justified by 

the fact that we supposed in the first of the experiment that the users are pedestrians, so 

their speed ranges between 2 and 7 Km/h. However in real life, the 𝐸𝑆𝐼 indicator will be 

much smaller because the users' speed will be higher since they move by using 

transportation. This high speed will bring the knowledge of distant places rapidly. 

In order to confirm this idea, we simulated the users’ movements for 10 days by 

including a ¼ of the population that takes transportation when moving in the city (car, 

bus..., etc.). The speed of this population was set to a random value ranging from 20 to 50 

Km/h, results are presented in Table 10. 

Table 10. The variation of 𝑬𝑺𝑰 when the user’s speed is increased. 

Radius 100m 500m 3Km 15km 35Km 

NB users 10 500 1000 10k 100k 

𝐸𝑆𝐼 (rounded seconds) 7 103 288 723 915 

We noticed that in this case, the 𝐸𝑆𝐼 is much smaller than when all the population 

are pedestrians. For instance, the ESI indicator for the whole city of Montreal dropped 

from  3214 sec (53 min) to 915 sec (15 min), see the last row and column of Table 9 and 

Table 10. 

We varied the probability of failure 𝑃𝐹 in order to test the sensitivity of our system 

to the user device failures. From Table 9, we noticed that when NomaBlue is applied to 

small places with a small number of users (up to 15km and 10k users) the system is not 

highly affected by the failure probability, even when it is set to a high value (PF 1 =

1 𝑟𝑎𝑛𝑑𝑜𝑚( 100)⁄ ). However when we increase the number of users, the sensitivity to the 
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failure increases too. For instance, in Table 9, when the number of users is set to 100k and 

the searching radius to 35km, the 𝐸𝑆𝐼 value for 𝑃𝐹 1 is much higher than that for 𝑃𝐹 4. 

After analyzing our system sensitivity to external parameters such as the failure 

probability, we will analyze next, the sensitivity to the internal parameters, De and Te. 

Remember that Te is an exchange frequency calculated dynamically in function of the 

users’ knowledge acquisition necessity, and De is a user fixed threshold that represents the 

exchange duration. In Figure 47, we present the variation of 𝐸𝑆𝐼3𝐾𝑚 in function of these 

two parameters.    

 

Figure 47: ESI evolution in function of De and Te 

Varying De has an impact on 𝐸𝑆𝐼, contrary to what one may think, when the De 

increases, 𝐸𝑆𝐼 increases too. This is justified by the fact that when the exchange time is 

high, the exchange frequency Te is so high that it reduces the efficiency of the spatial 

exploration (e.g. De = 400sec →Te = 33min).  On the other side, when De is too small, the 

efficiency is reduced too, because the time allocated for the knowledge exchange between 

users does not allow to gather enough information, moreover, it increases the number of 

transfer interruptions.     

Consequently, the main idea is to maximize De and Te (in order to preserve the 

phone resources) and to minimize 𝐸𝑆𝐼 at the same time. In Figure 47, we have noticed that 

the best value of De is when 𝐸𝑆𝐼 is around 500 sec. Thus, De parameter should be set 

between 50 sec and 100 sec. 
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Discussion 

We have presented above the exploration satisfaction indicator ESI, we have seen 

that this indicator varied in function of the studied area size. However, this indicator does 

not reflect the time needed to a user to obtain the information. This indicator was 

introduced to test the effectiveness and the robustness of our system. For instance, we 

reported a value of  𝐸𝑆𝐼500𝑚= 120sec, this value is calculated in an environment where we 

suppose that each second, every city structure is providing a new information. In real life, 

the frequency of updating information is much higher depending on the application 

requirement, e.g. every day if the information is daily discounts. Furthermore, NomaBlue 

is designed as a background service that operates continuously without waiting for a user 

request, which means that the service will keep harvesting the city information in order to 

provide an instantiate information. After that, when the user demands a specific 

information, the system will provide it directly (for the example cited earlier, without 

waiting 120 sec) because it has been already collected.  

4.5. CHAPTER CONCLUSION  

In this chapter, we introduced NomaBlue, a new spatial exploration technique in 

SCs based on a nomadic data collection and sharing. Our system senses the nearby BLE 

beacons to retrieve information about the city buildings, and shares this information with 

the other NomaBlue users without using Internet connection. Our proposal has been tested 

using both real and simulated data to discuss the feasibility of our system. The 

experimentation has shown that this system is capable of creating an efficient dynamic 

flow of information in the SCs that improves the user's urban explorations.   

We believe that NomaBlue is a promising project that can be used in various fields 

in spite of not reaching its maturity yet. Further experimentations in real cities have to be 
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done to adjust and improve this work. Future experimentation can be done in Montreal 

City using LIMVI laboratory [160], a mobile laboratory on smart cities and mobile 

computing. It includes a highly equipped and adapted recreational vehicle to conduct 

studies and validations directly in urban environments using several wireless sensors for 

urban deployment. 

In the context of this thesis, NomaBlue is used to replace the local OSM database 

used in the spatial recognition step (3.2.2) in Chapter 3 when the approach is used in SCs. 

As such, this thesis proposes two ways to search for the user surrounded geographic 

entities. The first one by storing the OSM database on the mobile phone, this solution is 

suitable to avoid Internet dependency in standard cities. The second way is to use 

NomaBlue as a background service in SCs. NomaBlue offers a spatial database for users 

without any Internet connection or any predefined database.    

After having presented our battery-aware activity recognition and the novel spatial 

exploration system in Chapter 3 and Chapter 4 respectively, we present next a new activity 

prediction approach that aims to predict incrementally users next visited paces.   
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CHAPTER 5  

ACTIVITY PREDICTION 

5.1. CHAPTER INTRODUCTION  

Few decades ago, understanding human behaviors was considered as a mystery 

where predicting peoples’ future was impossible.  Many changes have been noticed 

since this era. Thanks to current advances in location-tracking technologies and data 

mining techniques, predicting users’ behaviors has become possible. Our precedent work 

presented in Chapter 3 propose an online activity recognition system that offers the 

possibility to understand what people are doing at a specific moment by inferring 

incrementally people’s interesting places from raw position data. In this chapter, we are 

proposing an evolution of our precedent system that estimates the users’ actions in the 

future by predicting their next visited point of interest.  

We are addressing the issue of predicting the next location of an individual based 

on the observations of his mobility habits. One of the major problems met when trying to 

incrementally learn users’ routine is the concept drift [161]–[163]. The concept drift means 

that the statistical properties of the target variable (in our case, the users‘ habits), which 

the model is trying to predict, change over time in unexpected ways [87]. For instance, 

assuming that we learn a user’s habits using a traditional algorithm, a user lived in 

“address1” for one year, after that, he moved to “address 2”. This shifting will lead to not 

only shift the address but probably the habits too. Existing algorithms will take few months 

to detect that the user is making new habits. For instance, if we take the support of 60 % 
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using Apriori algorithm [164], it will take 7 months to detect the new habits, in the 

meantime, all the next locations proposed by these algorithms are probably false since the 

predictions are based on the old routines and not the new ones. 

Current works [78], [106], [108], [136], [165] that try to learn users’ routines and 

predict their future routines fail in the ability to deal with the changes in users’ behaviors. 

Moreover, there are only few works that attempt to incrementally predict the users’ next 

location. 

We bring a novelty via a novel online algorithm that extracts association rules 

carrying data drift during the learning process. Hence, the main idea is to help the new 

habits to become quickly frequent. We introduce a new criterion of support calculation 

based on a weight distribution instead of the classic number of occurrences. 

The following sections detail our contribution: Section 2 presents our approach; 

Section 3 describes the experimentation. Finally, conclusion and future works are 

summarized in Section 4.     

5.2. PREDICTION OF NEXT DESTINATIONS FROM IRREGULAR PATTERNS 

Our solution learns users’ habits by analyzing their visited places POIs. Our 

approach begins by constructing a sequence of 𝑃𝑂𝐼𝑖 that represents the tracking of users’ 

daily habits. Every sequence is stored incrementally in a tree structure called Habits' Tree 

‘HT’. On every sequence arrival, our algorithm checks for a drift in the distribution of 

sequences and allocates a new weight to the sequence concerned. When achieved, the new 

sequence is added to the user’s HT and finally, the algorithm predicts the next POI using 

the association rules drawn from HT (see Figure 48).    
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Figure 48: The overall approach of our prediction model 

In the following sections, we are going to present every part of our model starting 

by the sequence construction step.  

5.2.1. SEQUENCE CONSTRUCTION 

Users’ habits are composed of daily routines that define the pattern of users’ 

movements in the city. This step aims to represent users’ habits via a series of routines 

called sequence 𝑆𝑖. Every sequence contains a set of disjoint singletons 𝑃𝑂𝐼𝑖 (i.e. we can’t 

Addthe calculatedweights

Search for th weight to beadded
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find the same POI many times in the same sequence) and terminates at the end of the day 

(daily habits). For example, assuming that the user achieved the following activities during 

a day: Home, Work, Restaurant, Work, Gym, Home; the algorithm will construct 

incrementally two sequences from these habits: 

 𝑆1 : {Home, Work, Restaurant}. 

 𝑆2:  {Restaurant, Work, Gym, Home}. 

In fact, when  

Algorithm 7 detects a new POI that already exists in the sequence, like “work” in 

the example above, it stops constructing 𝑆1 and creates a new sequence 𝑆2. The reason of 

our proceeding is to optimize the storage of the sequences (this point will be discussed 

further). 

The sequences 𝑆𝑖 are stored in a Habits’ tree HT. It is a new data structure that we 

proposed and that takes the form of a special tree. In HT, every node represents a POI and 

is characterized by a weight 𝑤𝑖 that represents the weight of 𝑃𝑂𝐼𝑖’s in HT. Moreover, 

every node has an identifier 𝐼𝐷𝑖 that aims to identify the sequences by an integer (see 

Sequence Identification in 5.2.3). 

To give a brief idea of the way the data are structured in HT, we illustrated in Figure 

49 how our algorithm stored the two sequences 𝑆1 and 𝑆2 from the example above in a 

form of a series of nodes characterized by <name, 𝑤, 𝐼𝐷 >. 

 

Algorithm 7 is executed on every 𝑃𝑂𝐼𝑖 arrival, when 𝑆𝑖 is finally constructed we 

move to the next step:  the habits’ tree update.  

Note that an improvement can be made at this step to respect the definition of 

streaming learning, i.e. every new POI is treated instantly without waiting for the 

construction of  𝑆𝑖.  
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Figure 49: HT Structure construction 

 

Algorithm 7: Sequence construction 

Input: A 𝑃𝑂𝐼𝑗; 

Output: Sequence 𝑆𝑖; 

1: 𝑆𝑖 = null ; 

2: For each new 𝑃𝑂𝐼𝑖 

3:      If (! 𝑆𝑖.contains(𝑃𝑂𝐼𝑖) and  StillTheSameDay) then  

4:      𝑆𝑖 = 𝑆𝑖 + 𝑃𝑂𝐼𝑖 

5:      Else //new sequence 

6:      Return 𝑆𝑖; 

7:      If (StillTheSameDay) 𝑆𝑖 = Last 𝑃𝑂𝐼𝑖 

8:      Else 𝑆𝑖 = null ;        

9: End for each  
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5.2.2. HABITS’ TREE UPDATE 

The work of  [111] inspired us to plan this part. Authors in that work proposed a 

new algorithm for mining incrementally association rules called DB-Tree. DB-Tree is a 

generalized form of FP-Tree (FP-Growth [166]) which stores in descending order of 

support all items in the database and counts all items in all transactions in the database in 

its branches. The DB-Tree is constructed in the same way as done in FP-Tree except that 

it includes all the items instead of only the frequent 1-items. 

In our habits’ tree, tree data structure wasn’t chosen arbitrarily. Indeed, using this 

structure and storing all the sequences (frequents and not frequents) eliminate the need of 

rescanning the entire database to update the structure. Algorithms such as Apriori and FP-

tree rescan the entire database when previously not frequent 𝑃𝑂𝐼𝑗 become frequent in the 

new update. As such, our algorithm scans only the branches concerned by the new 

sequence, which optimizes the computational complexity. Additionally, storage 

optimizations are achieved using this structure, sharing paths between items in tree 

structure leads to much smaller size than that in a traditional database (see Figure 49, 

Figure 50, Figure 51). 

Let us take the following example: we take the HT presented in Figure 49 and we 

add two new sequences:  

 𝑆3 = {Home, Work, Gym, Cinema}.  

 𝑆4 = {Home, Gym}.  

From the updated HT presented in Figure 50, we can observe how the notion of 

sharing paths in the nodes Home and Work leads to a compression of the database 
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dimension (this characteristic will be discussed deeper in the experimental section). 

Additionally, we can notice that the algorithm added these sequences with different weight 

than the previous. The main reason is that it detects new behaviors, more details will be 

provided in the next sections.            

 

Figure 50: Sharing paths in HT structure 

On the arrival of a new sequence 𝑆𝑖 , the Algorithm 8 recursively processes each 

𝑃𝑂𝐼𝑖 in 𝑆𝑖 . If the 𝑃𝑂𝐼𝑖 exists in HT, the concerned node’s weight is updated, otherwise, 

the algorithm adds a new node with a new random 𝐼𝐷𝑖, and a new weight 𝑤𝑖 where the 

details of calculation is given in the next section.  

For example, supposing that after a certain time of learning, a user’s HT is 

structured like in Figure 50, the next day, the user did the following sequence:  

𝑆5 = {Home, Work, Gym, Friend’s Home}.  

Figure 51 shows how our algorithm updates the nodes: Home, Work, Gym; and 

adds a new POI: Friend’s Home. Note that Friend’s Home was added to HT with an 

unknown weight because it will be calculated in the next section (5.2.4).   
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Figure 51: An example of HT updated 

So after, seeing how we proceed to structure HT on every 𝑆𝑖  arrival, it is time to 

present how we calculate the weight that will be added in every node.  Actually, the weight 

is calculated in two ways depending on if the new 𝑆𝑖 is frequent or not, the formula is given 

as follows: 

{
    𝑤𝑖 = 1 + 𝑤𝑑𝑖 , if 𝑆𝑖 is not freq ent 
   𝑤𝑖 = 1                    , if 𝑆𝑖 is freq ent 

 (27) 

The drift's weight 𝑤𝑑𝑖 is an extra weight that will be added if the 𝑆𝑖  is considered 

as a not frequent habit. As we see, our distribution behaves in two ways:  a traditional way 

when the sequence 𝑆𝑖 is frequent (adding only 1 in every node), and a special way when 

𝑆𝑖 is not frequent (adding 1 + 𝑤𝑑𝑖), see lines [4,9] in Algorithm 8. The reason why we 

proceed this way is that we are trying to help only the new habits that aren’t frequents to 

become frequents, once arrived, we stop our help not to promote a sequence (habit) relative 

to another. 
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Algorithm 8: Habits' tree update 

Input: A sequence 𝑆𝑖; 

Output: HT; 

1: For each (POI in 𝑆𝑖 ) 

2:      HT.add POI 

3: End for each   

4: If (𝑆𝑖 is frequent )   

5:      𝑤𝑖 = 1; 

6: Else     

7:      𝑤𝑖 = 1+ Extra weight distribution (𝑆𝑖); 

8: End  

9: HT.add Weights (𝑤𝑖); 

The next section presents how we detect the drift in the user habits in order to 

calculate this extra weight 𝑤𝑑𝑖. Our contribution aims to track the drift in users’ habits, 

and to distribute the weights basing on these behavior changes. 

5.2.3. DRIFT DETECTION 

This part aims to track changes in users’ habits, or in other terms, it aims to check 

if the new sequence is an old or a new routine. Our technique is divided into two steps: 

firstly we formulate mathematically each new sequence and secondly we use this number 

to test if this sequence is new or not in order to figure out if it is a concept drift or not.  

5.2.3.1. Sequence identification  

In order to be able to use a concept drift test, it is crucial to parse the information 

contained in 𝑆𝑖 into a quantifiable entity. In other terms, instead of comparing a sequence 

of strings, we are going to parse every sequence into a number to facilitate the 
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comparison. In Fact, the introduction of 𝐼𝐷𝑖 in each node was in this perspective. Every 

new sequence will be represented by a variable called 𝑥𝑖 where 𝑥𝑖 is obtained by the 

concatenation of each 𝐼𝐷𝑖 present in 𝑆𝑖. 

For instance, in the example cited in Figure 49, if we want to calculate the 

mathematical representation of 𝑆2 = {Resta rant,Work, Gym, ome}. The variable 𝑥2 

will take a value 6070 (i.e. ID = 6 for Restaurant, ID = 0 for Work, ID =   for Gym, 

ID = 0 for Home). Similarly, the identifier of 𝑆1 is 𝑥1= 342 (i.e. ID = 3 for Home, ID =

4 for Work, ID = 2 for Restaurant). 

Once the sequence is identified by an integer, we use this number in the next step, 

the concept drift test.  

5.2.3.2. Concept Drift Test 

We use the Page Hinkley Test (PHT) [167] to detect changes in users’ habits, PHT 

is a sequential analysis technique typically used for monitoring change detection. It allows 

efficient detection of changes in the normal behavior of a process which is established by 

a model. The PHT was designed to detect a change in the average of a Gaussian signal 

[161]. This test considers a cumulative variable 𝑈𝑇 defined as the cumulated difference 

between the observed values (in our case the sequences’ identifier 𝑥𝑖 ) and their mean till 

the current moment.    

The procedure consists of carrying out two tests in parallel. The first makes it 

possible to detect an increase in the average. We calculate then:  

{
 

        𝑈𝑡 =∑ (𝑥𝑑 − 𝑥𝑑̅̅ ̅ −  𝛿)
𝑡

𝑑=1
, 𝑈0 = 0 

𝑚𝑡 = min(𝑈𝑡) , 𝑡 ≥ 1                   
𝑃𝐻𝑇 = 𝑈𝑡 − 𝑚𝑡                            

 (28) 

The second allows detecting a decrease in the average as follows: 
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{
 

       𝑈𝑡 =∑ (𝑥𝑑 − 𝑥𝑑̅̅ ̅ +  𝛿)
𝑡

𝑑=1
, 𝑈0 = 0

𝑀𝑡 = max(𝑈𝑡) , 𝑡 ≥ 1                   
𝑃𝐻𝑇 = 𝑀𝑡 − 𝑈𝑡                             

 (29) 

Where 𝑥𝑑̅̅ ̅ = (∑ 𝑥𝑑 
𝑡
𝑑=1 ) 𝑡⁄  and δ corresponds to the magnitude of changes that are 

allowed. When the difference PHT is greater than a given threshold (λ) a change in the 

distribution is assigned. The threshold λ depends on the admissible false alarm rate. 

Increasing λ will entail fewer false alarms, but might miss or delay some changes. 

Controlling this detection threshold parameter makes it possible to establish a trade-off 

between the false alarms and the miss detections.  

In order to avoid issues linked to the parameterization of λ, we were inspired by 

the work of [168] where authors propose a self-adaptive method of change detection by 

proving that  𝑡 can be self-adapted using this equation:  𝑡 = 𝑓 ∗ 𝑥𝑑̅̅ ̅ where f is a constant 

called the λ factor, which is the number of required witnesses seeing the changes. 

In our case, habits’ drift that we are tracking are brutal, in the sense that the user 

doesn’t usually change his habits gradually, so, we don’t need a large number of witnesses 

to detect the changes, that’s why we put  𝑓 = 2 in case of increasing average and 𝑓 = 1/2 

in case of decreasing average. 

For instance, assuming that the user has been doing the sequence 𝑆5 =Home, 

Work, Gym, Friend’s Home for 10 days, after that he changes his habit from 𝑆5 to 𝑆4 = 

Home, Gym (see Figure 50 and Figure 51).  

We are going to illustrate the detailed calculation of PHT after the change of habit 

(the 11th day). First, we need to represent the two sequences mathematically, as the 

concatenation process seen before, every sequence will be presented by 𝑥𝑖𝑑 where 𝑖 is the 

number of sequence 𝑆𝑖 and 𝑑 is the number of the day. As such, 𝑥510 = 345   and 𝑥411 =
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33  are the representation of 𝑆5 in the 10th day and 𝑆4 in the 11th day respectively (see 

Figure 50 and Figure 51). The new habit number 𝑥4 is less than 𝑥5, so we are tracking a 

decrease in the average, consequently we use the equations (29) as follows :   

{
 

 𝑈11 =∑ (𝑥𝑑 − 𝑥𝑑̅̅ ̅ +  𝛿)
11

𝑑=1
, 𝑈0 = 0

𝑀11 = max(𝑈𝑑) , 𝑡 ≥ 1                        
𝑃𝐻𝑇 = 𝑀11 − 𝑈11                                

   

{
𝑈11 = 𝑈10 + (𝑥411 − 𝑥411̅̅ ̅̅ ̅̅ +  𝛿)       

𝑀11 = max(𝑈𝑑) , 𝑡 ≥ 1                     
𝑃𝐻𝑇 = 𝑀11 − 𝑈11                             

 

As during the 10 days before the change of habit, the user was doing the same habits: 

𝑈10 =∑ (𝑥5𝑗 − 𝑥5𝑗̅̅ ̅̅ +  𝛿) =
10

𝑗=1
 ∑ (345 − 345 +  𝛿) = 10

10

𝑗=1
𝛿 

As said before 𝛿 represents the minimum of allowed changes. For us 𝛿 = 1, so 𝑈10 = 10.   

{
𝑈11 = 10 + (33 − 345 + 1)         

𝑀11 = max(𝑈𝑑) , 𝑡 ≥ 1                      
𝑃𝐻𝑇 = 𝑀11 − 𝑈11                             

    

{
𝑈11 = −3413                          
𝑀11 = 10                                     
P T = 3423                             

 

After calculating the threshold  11 = 1/2 ∗ 𝑥510̅̅ ̅̅ ̅̅  = 1728.5, we notice that we are 

in the presence of a change of habits because P T >  11.   

After having a value (PHT) that represents the stability of our users’ habits, we are 

going to use this variable to distribute the weight in every new POI’s node in HT.  
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5.2.4. EXTRA WEIGHT DISTRIBUTION 

As said earlier, our approach behaves in two ways (see Algorithm 8): a traditional 

way when the sequence 𝑆𝑖 is frequent (adding only 1 in every node), and a special way 

when 𝑆𝑖 is not frequent (adding 1 + 𝑤𝑑𝑖), the extra weight 𝑤𝑑𝑖 is calculated using an 

exponential function like follows: 

𝑤𝑑𝑖 = 1 − 𝑒
−
1
2
 𝑝𝑡 (30) 

𝑝𝑡 =
𝑃𝐻𝑇

λ𝑡
 represents an indicator of the user’s state. The greater is PHT than  𝑡 

more we are sure that the user is doing something new, and vice versa. For example, when 

there are no new habits in the user behaviors 𝑃𝐻𝑇 = 0, so, 𝑝𝑡 = 𝑤𝑑𝑖 = 0, see Figure 52. 

By against, each time 𝑝𝑡 approaches the value 1, or exceeds it, we conclude that the user 

has a drift in his habits.         

 

Figure 52: Mathematical representation of 𝒘𝒅𝒊 

For instance, in the past section we calculated the PHT = 3423  value on the 11th 

day and we found that it exceeds the threshold  11=1728.5. In this case the weight added 

will be calculated as follows: 
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𝑤11 = 1 + 𝑤𝑑11  

 𝑤𝑑11 = 1 − 𝑒
−
1

2
 
3423

1728.5 = 0.62 

So the weight that will be added to HT will be 𝑤11= 1.62.      

Algorithm 9: Extra weight distribution 

Input: sequence 𝑆𝑖; 

Output: Weight 𝑤𝑖 ; 

1: 𝑥𝑖 = HT.GetSequenceId(𝑆𝑖); 

2: Calculate  𝑡, 𝑈𝑇 , 𝑚𝑡, 𝑀𝑡; 

3: Calculate 𝑃𝐻𝑇; 

4: Calculate 𝑤𝑑𝑖; 

5: Return 𝑤𝑑𝑖 

After calculating the weight that will be added on 𝑆𝑖 arrival by using Algorithm 9, 

the next step is to get the association rules from HT to predict the next activity.  

5.2.5. NEXT DESTINATION PREDICTION 

5.2.5.1. Association Rules Mining 

Our technique is inspired by FP-growth algorithm and one of its incremental 

versions called DB-Tree [111]. The main difference between our work and theirs is that 

we introduced a weight distribution function that tracks the habits drift. Secondly, our 

structure doesn’t order the tree’s items in descending order of support like done in DB-

tree. In fact, DB-tree and FP-growth don’t make a difference between {Home, Work, 

Restaurant} and {Restaurant, Work, Home}. Obviously, we can’t use such technique 

when analyzing users’ habits, otherwise, it will lead to gross errors. 
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Suppose we have a database with a set of items like illustrated in Figure 50, 

I={Home, Gym, Work, Restaurant, Cinema} and 𝑀𝑖𝑛𝑆𝑢𝑝𝑝𝑜𝑟𝑡 = 60% of database 

transactions. To compute the frequent 𝑃𝑂𝐼𝑖 after constructing the habit tree HT, the 

algorithm mines the frequent 𝑃𝑂𝐼𝑖 that satisfy the minimum support represented by the 

𝑀𝑖𝑛𝑆𝑢𝑝𝑝𝑜𝑟𝑡 percentage of the maximum item’s weight in HT. From Figure 50, we have 

the weight of every item like follows (note that for every item, we add up the corresponding 

weights contained in the entire tree, for example Home’s weight = 3.4 + 1.0 because it 

appears twice in HT):  

 I = {(Home: 4.4), (gym: 3.4), (work: 3.2), (restaurant: 2), (Cinema: 1.2)} 

The minimum support will be: 𝑀𝑖𝑛𝑆𝑢𝑝𝑝𝑜𝑟𝑡 =
60

100
 (4.4) = 2.64. Thus, the 

frequent 𝑃𝑂𝐼𝑖 are all items greater or equal to 2.64 as {(Home: 4.4), (gym: 3.4), (work: 

3.2)}. 

The next step is mining the frequent patterns from HT and association rules that 

are similar to those in FP-growth [111] that was already described in the related works.  

5.2.5.2. Next Activity 

After mining the association rules from HT, we get from the same example in 

Figure 50 these rules:  

𝑊𝑜𝑟𝑘, 𝐺𝑦𝑚 →  𝐻𝑜𝑚𝑒 

𝑊𝑜𝑟𝑘 →  𝐺𝑦𝑚 

𝐻𝑜𝑚𝑒 →  𝐺𝑦𝑚 

𝐻𝑜𝑚𝑒 →  𝑊𝑜𝑟𝑘 

𝐻𝑜𝑚𝑒,𝑊𝑜𝑟𝑘 →  𝐺𝑦𝑚                                                                                                     

Predicting the next activity relies on choosing the most appropriate association 

rules with the highest weight that represent the user situation, and using the resulting clause 
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as predicted next activity. For example, if we know that the user has gone from home to 

work, using the last association rules: 𝐻𝑜𝑚𝑒,𝑊𝑜𝑟𝑘 →  𝐺𝑦𝑚, we can predict that he will 

go next to the gym.  

Finally, we present in Algorithm 10 the whole process that predicts the next activity 

from users’ current location and some of their past locations if exist. First we construct a 

sequence of POI from the current location, then we calculate the weight that will be added 

to HT and we update the tree using this weight. We search for the association rules and we 

predict the next location based on the user’s past activities (if exist). 

Algorithm 10: Final algorithm for activity prediction 

𝑆𝑖 = Sequence construction (𝑃𝑂𝐼𝑗); 

Output: Next activity; 

1: 𝑆𝑖 = Sequence construction (𝑃𝑂𝐼𝑗); 

2: 𝑤𝑖 = Extra weight distribution (𝑆𝑖) ; 

3: HT = Habits ‘tree update(𝑆𝑖); 

4: Return Next location = Activity prediction (HT,UPA);  

5: 𝑆𝑖 = Sequence construction (𝑃𝑂𝐼𝑗); 

Note that the sequence of these steps is not essentially like mentioned in Algorithm 

10. We present in this algorithm the whole process to explain how to start from a simple 

localization to predict the next user’s activity. In real life, these processes can be used 

differently, for example, there is no need to search for the association rules on every 

sequence arrival. The most correct way is to update HT on every 𝑆𝑖 (because the update 

does need a whole scan of the tree, so it’s not expensive in terms of calculation), and to 

search for the association rules in an appropriate time depending on the application 

requirements.  

For example, supposing that we try to assist a patient of Alzheimer's disease, the 

user tends to forget his next activities. The appropriate time that we are talking about is 
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when the proposed system detects an anomaly in the user’s behaviors because the user 

makes mistakes as he doesn’t know where to go next. At this moment the system searches 

for the association rules in order predict the next probable activity.     

5.3. EXPERIMENTAL EVALUATION 

In the experimentations, we address the following questions: (i) how does our 

algorithm compare with other states of the art, (ii) how does the disparity of habits affect 

the algorithm results and (iii) how does our algorithm behave in a mobile environment. 

5.3.1. DATASETS  

5.3.1.1. Synthetic Data 

We asked three users with different profiles to note their daily habits for three 

months. The choice of users wasn’t arbitrary, we chose them with different habits disparity 

level: (i) user 1 with very recurrent habits, (ii) user 2 with moderately recurrent habits and 

(iii) user 3 with very low recurrence level. The dataset contains 107 different activities 

(POIs). 

5.3.1.2. Real Data    

To push even further the level of our experiment, we used a renowned dataset from 

the Microsoft research project GeoLife [77]. The GPS trajectory dataset was collected in 

(Microsoft Research Asia) Geolife project by 182 users in a period of over three years 

(from April 2007 to August 2012). A GPS trajectory of this dataset is represented by a 

sequence of time-stamped points, each of which contains the information of latitude, 
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longitude and altitude. This dataset contains 17,621 trajectories with a total distance of 

about 1.2 million kilometers and a total duration of 48,000+ hours (see Figure 53).  

 

Figure 53: A Global view of Geolife trajectories 

These trajectories were recorded by different GPS loggers and GPS-phones, and 

have a variety of sampling rates. 91 percent of the trajectories are logged in a dense 

representation, e.g. every 1~5 seconds or every 5~10 meters per point. This dataset 

recorded a broad range of users’ outdoor movements, including not only life routines like 

go home and go to work but also some entertainment and sports activities, such as 

shopping, sightseeing, dining, hiking, and cycling. The final dataset includes 2831 

different visited places (POIs).  
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5.3.2. TESTING PROCESS 

Test process in association rules represent a delicate step, since how to test is 

related to the field of study. We created a specific testing process to represent as much as 

possible the activity prediction situation. The concept is based on the introduction of a 

second virtual user that will follow the real users’ movements all the time. However, 

during every sequence of POI, the virtual user will have a memory lapse (he will forget 

his next destination), in this case our algorithm will predict a next localization that will be 

compared to the real next activity (see Figure 54). 

 

Figure 54: Testing process with real and virtual users 

We adopt that the memory lapse happens randomly. In fact, on every 𝑆𝑖 arrival, 

our algorithm generates a random position between 1 and 𝑆𝑖’s length, this position 

represents the POI’s position where the virtual user will forget his next destination.  

The precision represents the number of sequences where activities were well 

predicted on the total number of sequences, by against, the global error GE, which is 

calculated using the number of sequences where the activities’ predictions were mistaken 

on the total number of sequences. 

The global error contains two types of error: learning error LE and habit error HE. 

LE represents an error in the prediction of the next activity when referring to the past 

Real user
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?

𝑆𝑖

𝑃𝑂𝐼𝑖
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activities. For example, the user has the habit of going sometimes from home to work and 

other times to drive his child to school. If we do a test starting from the POI “Home”, our 

algorithm will predict for example work as next destination because it’s the most recurrent 

activity after home. All the time when the user will go driving his child to school and when 

we predict work as next activity, the algorithm will record a LE.  

HE represents the disability to predict next activities because the user’s precedent 

POIs are not frequent. This error can be seen as a similarity index, the greater is HE, the 

more data is scattered. 

We evaluated our approach by highlighting three dimensions: first we tested our 

algorithm with a standard dataset, secondly with a dataset that contained a concept drift, 

and finally we tested the performance of our work on the mobile environment.     

5.3.3. STANDARD INCREMENTAL ACTIVITY PREDICTION EXPERIMENT  

In this step we used four users’ data: the three from the synthetic dataset and one 

user from Geolife dataset. Results presented in Table 11 represent the precision, GE, LE 

and HE of our algorithm on every user data.   

Table 11: Standard incremental activity prediction results 

 Simulated data (107 POIs) Geolife 

(2831 POIs) 
 User 1 User 2 User 3 User 4 

Precision 83%  71%  61%  68 % 

GE 17%  29%  39%  32 % 

LE 11%  14%  13%  9   % 

HE 6 %   15%  26%  23 % 
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Figure 55: Habit error HE evolution in the four users’ data 
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From Table 11, our algorithm predicts the next activities of user 1 (with very 

recurrent habits) with a precision of 83 % and a global error GE of 17% divided into 11% 

of learning error LE and 6% of habit error. User 2 and user 3 show less precision rate with 

respectively 71% and 61% of precision. User 4 data that contains 726 sequences and a 

total of 2831 POIs (classes) shows a precision of 68% and a global error of 32%.     

Discussion 

First, it is clear that our approach shows an interesting result with an average 

precision of 70.75%. Moreover, by analyzing the distribution of errors in every user’s data, 

we notice a correlation between the global error GE and the habit error HE. Indeed, the 

variation of learning error LE is so small that we preclude the possibility of linking 

between GE and LE.   

We conclude that the error in our approach is sensitive to the users’ habits 

similarity, which is somewhat logical because the definition word “Habit” is a routine of 

behavior that is repeated regularly, so, regularity in users’ movements is important to 

succeed in predicting his next location.   

In Figure 55, we track the evolution of HE in every user’s data. Results show 

globally two kinds of graphics: stepped graphic concerning user 1 and user 2 owning to 

the fact that those two users have some new behaviors, when arrived, the algorithm makes 

a mistake in that moment because the new sequence is unknown, but it catches up quickly 

in the next moments to recognize the sequence as frequent and predict the right activity. 

The second type of graphic concerning user 3 and user 4 is a moderately smoothed graphic 

which approaches a straight function, the user 3 and user 4 have dispersed habits which 

explain the continuous increase of HE over time.    
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5.3.4. INCREMENTAL ACTIVITY PREDICTION WITH CONCEPT DRIFT 

EXPERIMENT 

In this section, we compare our approach with an incremental version of FP-growth 

called DB-Tree [3] and CVFDT (Concept-Adapting Very Fast Decision Tree) [23], an 

extension of VFDT algorithm that handles the concept drift. 

The ideal dataset to experiment the three algorithms is a dataset where the user has 

made a relocation (change of address and probably of habits) using a dataset that contains 

a concept drift. For that, we paired two users’ dataset from Geolife users’ datasets into one 

dataset to say that the first user changes his address and his habits to the second user’s 

address and habits, the new dataset contained 389 POIs.           

Table 12: Comparison between our algorithm, DB-tree and CVFDT 

 Our algorithm DB-tree CVFDT 

Precision before the relocation 72 % 63 % 60% 

Precision after the relocation 69 % 51 % 60.5 % 

Global precision 70.5 % 57   % 60.25 % 

Table 12 presents the results of our experiment; we divided it into three indicators, 

precision before and after the relocation, and the global precision. 

Discussion 

Globally, our algorithm shows an interesting precision result with 70.5 % of 

precision contrary to DB-tree and CVFDT which show a low rate with respectively 57% 

and 61.5% of precision.     

To analyze the result presented in Table 12, we tracked the error evolution of the 

three algorithms (see Figure 56, Figure 57, Figure 58).  
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Figure 56: Error evolution in our algorithm 

After the relocation, our algorithm shows strength to these shifts (precision 

decreases only from 72% to 69%) and support time for habits change is small because the 

algorithm detects a change in the user’s habits and starts to add a supplement weight (drift's 

weight 𝑤𝑑𝑗) until that the new sequences become frequents.  

 

Figure 57: Error evolution in DB-tree algorithm 

Contrariwise, in Figure 57, DB-tree encounters difficulties to revive its model after 

the relocation to detect the new behaviors (see the drop of the precision from 63% to 51% 

in Table 12). Indeed, as DB-tree traits all the sequences with the same manner (adds 1 to 
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the concerned nods in the tree), it will take much time to the new habits to become 

frequents, which explains the important support time for habits change in Figure 57.    

 

Figure 58: Error evolution in CVFDT algorithm 

In Table 12 CVFDT behaves better than DB-tree, but its global accuracy still 

considered as low (60.25 %), back to the fact that theoretically CVFDT needs a massive 

set of examples to start improving its accuracy. The literature has mentioned a threshold 

of 100k examples [169].   

Despite the overall low accuracy, CVFDT seems unaffected by the change of 

habits. The recorded support time for habits change is smaller than DB-tree’s one (Figure 

58). This is justified by the fact that when CFDT detects a concept drift, it starts to build 

an alternate sub-trees using the new habits. These alternate sub-trees will replace the 

original ones when the error in the new sub-tree is less than the original error. The time 

needed to do this substitution is represented by our variable called support time for habits 

change.    

After the experimentation of our approach in terms of precision and support of the 

concept drift, we are going to test in the next section the computational impact of the 

algorithm on the mobile resources.  
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5.3.5. EXPERIMENTATION OF MOBILE RESOURCES USAGE 

This work can be used in any environment (mobile, desktop or Web applications) 

and using any architecture (local or distributed design). In spite of that, we are going to 

test our solution in a mobile environment, principally for these reasons: (i) users 

movements are usually collected incrementally using a mobile device, so, it is more 

consistent to continue predicting incrementally the users’ movements on the same device. 

(ii) Mobile environment requires careful handling of the reduced storage and computing 

capacities. If we prove that our solution is optimal for the mobile environment, it is clear 

that it will be useful for the other environments that have fewer requirements.     

We tested our algorithm using an Android smartphone from Sony (Sony Xperia S) 

with 1 GB of Ram and 1.5 GHz dual-core processor. 

The first test concerns the RAM usage, we added our solution to our precedent 

work presented in Chapter 3 where we recognized incrementally users’ activities. Then we 

compared the set with a well-known GIS solutions “Waze Social GPS Maps & Traffic”, 

one of the best free navigation applications that won the best overall mobile app award at 

the 2013 Mobile World Congress. The reason for such selection is that Waze has a lot in 

common with our approach. In fact it gathers complementary map data and traffic 

information from its users like police traps (can be seen as a POI in our case), and learns 

from users' driving times to provide routing and real-time traffic updates. 

Results in Table 13 that represent the average consumption of mobile’s memory of 

every application for 12 hours show that our solution is not greedy regarding memory 

usage with 40 Mo of RAM usage compared to Waze with 67 Mo. 

Table 13: Comparing our solution to Waze application in terms of memory usage 

 Our solution Waze 

Memory usage 40 Mo 67 Mo 
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The second test concerns the storage capacity usage. We had to compare our 

solution with two algorithms: (i) DB-tree that uses the same tree structure as us, but that 

stores in descending order of support all items in the database; (ii) Apriori algorithm [105] 

that uses a traditional database structure to observe the impact of using a tree structure. 

Apriori is a widely used algorithm for association rules learning that uses a standard 

database design. We tracked the variation of the database size in every solution in function 

of the number of sequences arrived (from 1 to 1 million sequences). In order to get such 

an important number of sequences, we created an algorithm that generated random 

sequences containing between 2 and 20 POIs  using 500 different POIs. Results exposed 

in Figure 59 show how much the use of tree structure is benefic to the size of the database, 

thanks to sharing paths between items in the tree structure, our database had much smaller 

size (367 Mo) than  in a traditional database (1200 Mo).           

 

Figure 59: Database size comparison between our solution and Apriori algorithm  

In the other hand, the maximum size of our tree (367 Mo) that is reached using one 

million sequences represents a size widely acceptable by the requirements of mobile 

environment storage. Note that if we take an average of 2 sequences per day, 1 million 
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sequences represents more than 1388 years, for one user, it is clear that this size in 

unreachable. 

DB-tree had a slightly smaller database (250 Mo for one million sequences) than 

our algorithm, this is justified by the fact that DB-tree does not take into consideration the 

order of items, which means that “home, work, restaurant” and “restaurant, work, home” 

will be stored in the same branches. However, this technique can’t be used when analyzing 

users’ habits, because the order of habits is a very important parameter. Otherwise, it will 

lead to gross errors. 

Though, when comparing our algorithm to DB-tree in the real world, the difference 

will be neglected since the number of sequences will be much lower, for instance, from 

the experiment presented in Figure 59, the average database size for our algorithm will be 

260 Ko/year, for DB-Tree it will be 180 Ko/year. If the two algorithms will continue 

running for 10 years, the databases size will be 2.6 Mo and 1.8 Mo respectively, the 

difference is too small to be considered. 

5.4. CHAPTER CONCLUSION 

In this chapter, we proposed a new algorithm based on the online learning of users’ 

habits to predict users’ next locations taking into account the changes that can occur in 

their routines. Our original contribution includes a new algorithm of online mining 

association rules that support the concept drift. 

Our approach has been experimented in real case studies using both synthetic and 

real data retrieved from Geolife project to test the accuracy of our predicting technique. 

We compared our solution to a set of algorithms like Apriori, CVFDT and FP-growth 

algorithms via several indicators like supporting users’ habit changes and mobile resource 

usage. Results show that our proposal is well positioned compared to its similar, and 



 

181 
 

represents an interesting solution to predict users’ next activities without depleting the 

resources of users’ mobile devices.       

Several promising directions for future works exist. First, if this work is used in a 

big data context, some efforts shall be done to optimize the construction and the research 

process in the tree structure to minimize the response time of our algorithm. Secondly, the 

clustering of users’ profiles represents an interesting research field. In that direction, the 

habits’ tree represents a good structure that summarizes users’ routines, clustering users’ 

profiles basing on their habits will be reduced to the comparison of two trees (habits’ trees). 

Thirdly, this work has to be improved by introducing a temporal dimension to the habits’ 

tree in order to improve our algorithm precision, for example, routines made at weekends 

are different of those made in working days.   
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CHAPTER 6 

HYBRID ACTIVITY RECOGNITION 

6.1. CHAPTER INTRODUCTION  

Activity recognition applications that extract users visited places are supposed to 

operate 24 hours a day, 7 days a week.  Searching for users visited places at every moment 

like done in the majority of related works leads to excessive power consumption that drains 

mobile batteries rapidly. We propose a novel approach that minimizes power consumption 

by reducing the activity calculation. The proposed algorithm learns users’ habits and 

chooses an appropriate time to search for their performed activities. For instance, suppose 

that the user has the habit of going from home to work every morning. Theoretically, there 

is no need to process the user movements every time he goes from home to work since it 

represents useless calculations.  

Moreover, nearly all outdoor activity recognition approaches use a fixed activity’s 

minimum duration threshold that represents the minimum time that the user has to spend 

in the POI (place of interest) to be declared as a visited place. This threshold prevents false 

activity detection like traffic jams. However, previously fixing this threshold will increase 

error probability because when set to a small value, it will increase the number of false 

activities like passing by a POI. On the other hand, setting it to a high value will miss 

detect some activities like buying cigarettes at the convenience store.  

Moreover, human behaviors differ according to a lot of factors like age, sex, health 

status, etc. Consequently, generalizing these solutions to cover a multitude of user profiles 
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may become hopeless when fixing these thresholds. Consequently, we are, to the best of 

our knowledge, the first to propose not only a dynamic approach to learn the activity’s 

minimum duration threshold automatically, but to propose a specific threshold for each 

POI too. Our approach will assign to each POI a minimum duration threshold to be able 

to detect both the short and the long activities. 

In this chapter, we will present an innovative hybrid battery-friendly method that 

aggregates the activity recognition model presented in the Chapter 3 and the prediction 

model presented in the Chapter 5 in order to recognize users’ location activities accurately 

without draining the battery of their phones. The proposed method succeed in detecting 

incrementally users’ visited places without any previously fixed threshold. We will also 

prove that our proposal reduces outstandingly the battery consumption while keeping the 

same high accuracy rate.     

The following sections detail our contribution: Section 2 presents our approach in 

terms of three major components: activity recognition, prediction and verification; Section 

3 describes the experimentations by highlighting two dimensions: accuracy and power 

saving. Finally, the conclusion is summarized in Section 4.  

6.2. LEARNING HUMAN HABITS USING MOBILE PHONES  

We will analyze incrementally users’ mobility to extract their performed activities. 

The main idea of our approach is to minimize the calculation during the analyze process 

by using a mixture of activity recognition and prediction algorithms. 

Our system is divided into three parts; the first part aims to recognize users’ 

activities when they visit places for the first time; the second part is activity prediction 

where we predict the next activity to avoid processing already recognized activities; and 

finally, activity verification which is a post-processing step that aims to verify if the 
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predicted activity is the right one. Suppose that the user has gone from home to work (see 

Figure 60). For the first time when the user visits these locations, we will recognize the 

two POIs linked to the activities staying at home and working in the office using our 

activity recognition model presented later.  

 

 

 

Figure 60: The three parts of our hybrid approach. (A) Home (B) Work. 

The next time that the user will go from Home to Work, our approach will not use 

the activity recognition model since it represents a significant source of power 

consumption. Nevertheless, it will use only the association rules driven from the prediction 

model to estimate the next destination. Meanwhile, all the position points between Home 
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and Work will be stored without any processing until we confirm that the predicted activity 

is that one performed by the user. This verification is achieved by using the verification 

model (see (B) in Figure 60). 

If we confirm that the predicted activity is that one performed by the user we delete 

the recorded position points between Home and Work because the prediction was made 

successfully. Otherwise, we reapply the activity recognition model for the whole recorded 

points to figure out where has the user gone from Home.  

After presenting the general idea of our approach, we are going to detail in the 

following, the three parts of our system.  

6.2.1. ACTIVITY RECOGNITION  

When a new POI is detected, we execute the activity recognition model presented 

in Chapter 3. After that at the end of the day, the daily users visited places are passed to 

the activity prediction model in order to learn the user habit.  

6.2.2. ACTIVITY PREDICTION  

Remember that the prediction model presented in Chapter 5 starts by constructing 

a sequence of POIs that represents the daily users visited places. Each POI in this sequence 

is obtained using the activity recognition model presented in Chapter 3. 

6.2.3. ACTIVITY VERIFICATION 

After predicting the next activity, we need to confirm that the predicted activity is 

that one performed by the user. For this purpose, we introduce a new structure of POIs. A 
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POI is no longer considered as a static entity where the user carry out an activity, but a 

geographic entity that is characterized by a minimum duration 𝑑𝑚𝑖𝑛  that represents the 

minimum duration of an activity, and a distance 𝑟 that represents a ray where the activity 

can be performed. Unlike the related works, we will learn these parameters by adjusting 

them incrementally and dynamically according to a user’s behaviors (see Figure 61). 

 

Figure 61: The 𝒅𝒎𝒊𝒏 and r characteristics of a POI 

Despite that in the real world a POI can contain several activities, related works 

have linked a POI to only one activity, like assigning a mall to shopping, even if it can 

contain a multitude of activities like going to a restaurant and cinema. Thus, our approach 

handles the POIs as geographic areas that may contain several activities. Each activity is 

characterized by temporal edges learned from the user behaviors.  

6.2.3.1. Calculating 𝒅𝒎𝒊𝒏   

Each duration represents a time spent by the user inside or at the surroundings of a 

given POI. It is calculated using the time of check-in and check-out (see Figure 61). 
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In order to calculate the minimum duration threshold 𝑑𝑚𝑖𝑛, we need to understand 

how the user behaves inside this POI. As said previously, a user may perform more than 

one activity at the same place, the 𝑑𝑚𝑖𝑛 calculation starts by regrouping the set of duration 

using Fuzzy C-Means (FCM) [170]. The reason is that this algorithm allows a time 

duration to belong to more than one cluster which solves the problem of values on the 

borderline (see Figure 62).  

 

Figure 62: Activities’ duration clustering inside a POI 

However, FCM requires a fixed number of clusters, in our case we don’t have a 

prior information about the number of activities inside this POI. So, in Equation (31) we 

propose a criterion to calculate incrementally the optimal number of clusters 𝐶𝑁; the 

average deviation of each value from the median 𝑀 of its most probable cluster. When 

more than one cluster is analyzed, the criterion value is the sum of each cluster average.  

𝐶𝑁 =∑
∑ |𝑥𝑖𝑗 −𝑀𝑖|
𝑛𝑖
𝑗=1

𝑛𝑖

𝑁

𝑖=1

 (31) 

N represents the number of clusters, 𝑥𝑖𝑗 is the duration of the activity j in the cluster 

i, 𝑛𝑖 is the number of activities in the cluster i and 𝑀𝑖 is the median of the cluster i.  

The algorithm considers that the optimal clusters number is 𝑁 if the 𝑁+1 clusters' 

criterion value doesn’t improve significantly the one with 𝑁 clusters. We judge that a gain 

in 𝐶 is significant or no if it exceeds a gain threshold 𝐶𝑡ℎ 𝑁+1, see Equation (32). This 

threshold represents the quotient of the last gain on the number of clusters, see Equation 

(33).  
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𝐶𝑁 − 𝐶𝑁+1 > 𝐶𝑡ℎ 𝑁+1 (32) 

𝐶𝑡ℎ 𝑁+1 =
|𝐶𝑁 − 𝐶𝑁−1|

𝑁 + 1
 (33) 

Let the durations in Figure 62 be an example to illustrate this clustering step. 

Suppose that we initially have one cluster {5, , ,9,30,32,120,125,136}. Its median will 

be 30. Given Equation (31), the criterion will be: 𝐶1 = 42,6.  

For two clusters, FCM will construct two clusters {5, , ,9,30,32} and 

{120,125,136}, thus, 𝐶2 =   ,5 +  5,3 = 13.  , we note that 𝐶2 < 𝐶1. In order to know if 

this gain is significant or not, we calculate 𝐶𝑡ℎ 2 by using Equation (33) as follows:  

𝐶𝑡ℎ 2 =
|𝐶1−𝐶0|

2
 = 
|0 − 42,6|

2
 = 21.3 

Using the condition in equation (32), we note that 𝐶1 − 𝐶2 > 𝐶𝑡ℎ 2, so, the new 

criterion 𝐶2 brings a significant gain. Consequently, we increase the number of clusters to 

two. 

For three clusters, FCM will construct the following clusters: {5,7,8,9} {30,32} 

and {120,125,136}, thus, 𝐶3 = 1,25 + 1 + 5,3 =  .55, we note that choosing three 

clusters improved the criterion 𝐶 as 𝐶3 < 𝐶2 and 𝐶2 − 𝐶3 > 𝐶𝑡ℎ 3 .  

In order to know if we stop at three clusters, we have to test the criterion of four 

clusters. Thus, for N=4, FCM will construct {5} {7,8,9} {30,32} and {120,125,136}. 

Consequently, 𝐶4 = 0 + 0. + 0. + 5,3 = 6.  . We note that 𝐶4 < 𝐶3  but this gain is 

not significant as the condition in equation (32) is not verified: 𝐶𝑡ℎ 4 = 
|13,8 − 7,55|

4
= 1.56 

and 𝐶3 − 𝐶4 ≯ 𝐶𝑡ℎ 4. The gain in the criterion 𝐶 is too small for N=4. So, there is no need 

to add another cluster, at this moment, the algorithm stops the clustering and declares that 

the number of clusters is 𝑁 = 3 (see Figure 62).  
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After clustering the durations inside the POI, it’s time to calculate the value of 

𝑑𝑚𝑖𝑛. Remember that our solution is online, which means that 𝑑𝑚𝑖𝑛 can change at every 

new visit to this POI. So, initially 𝑑𝑚𝑖𝑛 takes the value of the smallest value of the first 

cluster, for instance, 𝑑𝑚𝑖𝑛 in Figure 62  is 5 minutes. But at the arrival of a new duration, 

we compare it to 𝑑𝑚𝑖𝑛, if it is higher than 𝑑𝑚𝑖𝑛 we declare that the user has visited this 

POI and we recalculate the criterion 𝐶 to figure out if we have to add a new cluster or not.  

However, if the duration is less than 𝑑𝑚𝑖𝑛, the new duration can be a new 𝑑𝑚𝑖𝑛 or 

an error (the user just passed by the POI without performing an activity there). 

Accordingly, we calculate the criterion 𝐶 for the new clusters including the new duration. 

If  𝐶𝑛𝑒𝑤 is significantly higher than 𝐶𝑜𝑙𝑑  we keep 𝑑𝑚𝑖𝑛 and we conclude that the new 

duration is an error, otherwise, 𝑑𝑚𝑖𝑛 takes the value of the new duration.  

For instance, let us take the previous example presented in Figure 62, if the new 

duration is 1 minute, the new 𝐶3 will be 8.5. We note that new 𝐶3 is higher than the old 

𝐶3 =  .55. Consequently, we assume that the user has not visited the POI. However, if the 

new duration is 4.5 min, the new 𝐶3 will be 7.8 which is not significantly higher than the 

old 𝐶3 =  .55. Thus, we admit that the user has visited the POI, we accept this duration 

as a borderline duration and we put 𝑑𝑚𝑖𝑛  =  4.5.  

6.2.3.2. Calculating 𝒓   

The value r represents a ray where the user has to spend a minimum duration 𝑑𝑚𝑖𝑛 

to declare that the user has visited the POI. Contrary to the similar works that use a fixed 

ray to determine the nature of the user performed activity, our work stands-out by 

proposing a dynamic approach to calculate r. We calculate a specific r for each POI basing 

on the popularity of this POI, which means that when the POI is popular in the user 
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routines, the radius will be stretched until reaching a max value called 𝑟𝑚𝑎𝑥 (see (A) in 

Figure 63). Basing on these rules, the ray r is calculated as follows: 

𝑟 = 𝑠𝑢𝑝𝑝(𝑃𝑂𝐼). 𝑟𝑚𝑎𝑥 (34) 

The value 𝑠𝑢𝑝𝑝(𝑃𝑂𝐼) is the support of the concerned POI in the user Habit’s tree 

HT. It is an indication of how frequently the item-set appears in the user habits (see Figure 

51 in 5.2.2 Habits’ tree update), it is calculated as follows: 

𝑠𝑢𝑝𝑝(𝑃𝑂𝐼) = 𝑛𝑢𝑚𝑏𝑟𝑒 𝑜𝑓 𝑜𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒 𝑜𝑓 𝑃𝑂𝐼 𝑖𝑛 𝐻𝑇 𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠⁄  (35) 

For instance, suppose that the result of Equation (35) is 𝑠𝑢𝑝𝑝(𝑃𝑂𝐼) = 0. 5. Given 

Equation (34), the radius 𝑟 will be 85% of 𝑟𝑚𝑎𝑥. 

As said previously, we calculate a specific r for each POI basing on two 

parameters: the popularity of this POI calculated by the 𝑠𝑢𝑝𝑝(𝑃𝑂𝐼) value and 

the 𝑟𝑚𝑎𝑥 that represents the maximum area that this POI can reach. By definition, the area 

dedicated to a POI cannot intersect another POI’s area. As such, 𝑟𝑚𝑎𝑥 will be stretched as 

long as there is no other POIs in the neighborhoods. In other terms, the maximum ray of 

our POI 𝑟𝑚𝑎𝑥 is calculated in function of the surroundings of the POI. If there is no other 

POI in the neighborhood, the 𝑟𝑚𝑎𝑥 will be stretched to cover a wider area, and vice versa. 

Basing on these conclusions, we calculate 𝑟𝑚𝑎𝑥 by using Voronoi diagram [171]. 

It is a diagram that aims to partition a plane with n points (in our case POIs) into convex 

polygons such that each polygon contains exactly one generating point (POI) and every 

point in a given polygon is closer to its generating point (POI) than to any other. Thus, 

𝑟𝑚𝑎𝑥 represents the distance between the POI and his closer Voronoi border (see Voronoi 

border in Figure 63 B). 
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Figure 63: An example of  POIs’ rays calculation. (A) relation between 𝒓 and 𝒓𝒎𝒂𝒙 (B) calculating 

𝒓𝒎𝒂𝒙 by using Voronoi diagram. 

Unlike the other solutions [89], [95], [96], our approach calculates on every new 

POI arrival a new 𝑟 according to the POI’s popularity in the user’s habits. As such, the 

most visited places will have wider rays than the others.  
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The radius is used in the testing step to test if the prediction was right or not. A 

wider radius let detecting the performed activity rapidly since as soon as the user enters 

the radius of the POI, we start calculating his dwell time inside this area, when it exceeds 

𝑑𝑚𝑖𝑛 we declare that the user has truly visited this place (this will be discussed deeper in 

the next section). By enlarging 𝑟, we aim to speed up the testing process in order to 

decrease the power consumption. 

Let us take the example presented in Figure 63 B, the user’s popular places such 

as Home and Work have wider radius than the less visited places like Cemeteries. For 

Home and Work, the algorithm will take a small time to declare that the user has visited 

these places. This is justified by the fact that as soon as the user approaches these POIs 

(entering the large POI areas), there is a high probability that he will visit them. Hence, we 

anticipate that the user will achieve an activity in these places despite the fact that he has 

not reached them yet. On the opposite, the algorithm will wait until the user reaches 

physically the unpopular POIs such as the Cemetery to declare that he visits them. The 

main reason is that as these POIs are unpopular, the probability that the user will visit them 

is small.         

6.2.3.3. Testing Process 

Remember that the verification process is designed to figure out if our prediction 

was right and correct it when needed by re-running the activity recognition model. The 

prediction error can fall under two cases: the user didn’t go to the predicted place and the 

user has gone to the predicted place but he performed other activities meanwhile. To detect 

these errors we introduce two types of tests:   trajectory duration test and activity duration 

test. 
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Figure 64: Testing process in the activity verification step  

In Figure 64, we present our testing process for the activity verification step. The 

first test is to compare the duration of the user trajectory and the trajectory’s max duration 

between the two POIs (the source POI and the predicted POI) to test if the user has gone 

to the estimated location. If the user’s trajectory duration exceeds the max durations we 

can say that the user has probably gone somewhere else, because he spent more time than 

usual to reach the predicted POI. Consequently, we reapply the activity recognition model 

because our prediction was probably wrong.     

The second test compares the duration of the activity. If the duration of the user’s 

staying in the POI’s perimeter, defined by 𝑟, is less than 𝑑𝑚𝑖𝑛 we can conclude that the 

user just passed by the area.  

Activity 

recognition

Activity 
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Algorithm 11: The overall algorithm of our hybrid approach 

Input:  user positions; 

Output: the activity of the person; 

1: If (HT contains current POI) 

2:      Next POI = Prediction POI 

3:      Wait until position inside POI 

4:      Activity verification (next POI )   

5: Else 

6:      Activity recognition until next POI 

7: End  

8:      Update HT 

9:      Cluster durations inside POI 

10:      Calculate 𝑑𝑚𝑖𝑛 

11:      Delete position records 

 

Algorithm 12: Activity verification (POI) 

Input: a POI; 

1: If ( trajectory duration < Max trajectory durations) 

2:      If dwell time in r   < 𝑑𝑚𝑖𝑛  

3:      Calculate the new criterion 𝐶 

4:           If (new  𝐶 ≫  old 𝐶 ) 

5:           Activity recognition from the previous POI 

6:           Else  

7:           𝑑𝑚𝑖𝑛 = duration in r 

8:           End  

9:      Else 

10:           //Predicted activity is true   

11:      End 

12: Else  

13:      Activity recognition from the previous POI 

14: End  



 

195 
 

6.2.3.4. Examples of Activity Verification 

To illustrate how our approach operates, we will give the following example of one 

user’s mobility during four days. Suppose that user’s habits include going to four 

destinations like presented in Figure 65 and his daily routines as described in Table 14. 

 

Figure 65: An example of a user mobility 

Table 14: A user mobility description for four days. 

Day Source Destination Trip duration  

(minutes) 

Stay Duration  

(minutes) 

Day 1 A B 21 20 

Day 2 
A B 23 30 

B C 12 10 

Day 3 A D 11 4 

Day 4 A C 41 23 

  

In day one, the user has gone from A to B, at this moment we don’t have any prior 

information about the user’s habits, so, our algorithm starts by applying the activity 

recognition model for the whole position records between A and B. When done, the 

algorithm updates the user’s habit tree HT to add the sequence (A-B) and records the 

duration in the activity verification model in order to calculate the 𝑑𝑚𝑖𝑛. 

In day two, the user has gone from A to B and from B to C. So, when he goes out 

from A, the algorithm checks in the prediction model if there are any predictions starting 

A
B

C

D
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from A, the model finds B as next destination. Consequently, the algorithm records the 

position points starting from A until figuring out if the user has really gone to B. After 23 

minutes, the algorithm detects that the user has entered in the perimeter r of the POI B, so, 

it starts calculating the user’s duration of stay in B. The verification model compares the 

duration of stay = 30 min with 𝑑𝑚𝑖𝑛 = 20 min. Since the new duration > 𝑑𝑚𝑖𝑛, the 

algorithm declares that the user has really visited the POI B, so, it deletes the position 

records between A and B and updates the habit’s tree HT. For the segment B to C, the 

algorithm achieves the same process as day one, it puts 𝑑𝑚𝑖𝑛 = 10 for the POI C and 

updates HT, HT will contain A-B-C with the number of occurrences 2-2-1 respectively. 

In day three, the user goes from A to D. When he goes out from A, the algorithm 

checks HT and predicts B as next destination, after that it uses the prediction model to 

check for the veracity of this prediction. At this step, even if the algorithm does not use 

any recognition model, but it continues to record the position points. After 23 minutes of 

recording, which represents the maximum trip duration between A and B, the algorithm 

notes that the user has not yet entered the B area. Consequently, it reapply the activity 

recognition model for the whole position records starting from A, and figures out that the 

user has gone to the place D. Next, the algorithm deletes the position records, sets 𝑑𝑚𝑖𝑛 of 

D to 4 minutes and updates HT to contain the sequences A-B-C and A-D with the number 

of occurrences 3-2-1 and 3-1 respectively.  

In day four, the user has gone from A directly to C. Using the prediction model, 

the algorithm will predict B as next destination. During the trip, the verification model 

detects that the user’s duration of stay in B is less than 𝑑𝑚𝑖𝑛. Consequently, it understands 

that the user has just passed the area of B and did not achieve any activity there. So, the 

algorithm reapply the activity recognition model to find where the user is going. The model 

finds that the user has gone to C, so it sets 𝑑𝑚𝑖𝑛 of C = 41 min, it deletes the position 
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records between A and C and updates HT that will contain the sequences: A-B-C, A-D 

and A-C with the number of occurrences: 4-2-1, 4-1 and 4-1 respectively.         

6.3. EXPERIMENTAL EVALUATION  

We validate our proposal by comparing the four following solutions:  

 Our hybrid solution  

 Our old solution: using only the activity recognition model without any prediction.   

 CB-SMoT approach  

 LifeMap application  

We will re-conduct the same experimentation done in Chapter 3 to test is our hybrid 

approach improves the battery consumption. As such,  we will test the accuracy of our 

approach using the Family Coordination dataset [131] by comparing it with two solutions. 

A first solution where we apply only our activity recognition model for every POI. The 

second solution is CB-SMoT method described in [111]. Then, we will test our approach’s 

ability to save battery life by comparing our solution to LifeMap application described in 

[135].  

6.3.1. FAMILY COORDINATION TEST 

We used the family coordination dataset [131] that was already introduced in 

section 3.3.1. We compared our solution to our old solution where we apply only our 

activity recognition model during all the experimentation process without using any 

prediction. 

The two versions of our approach were deployed using Huawei P7 android phone. 

We have installed both solutions, the family coordination dataset and a SpatiaLite 
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database. This geographic database contains the geographic entities of Pittsburgh City 

needed in the spatial recognition process. Note that, as said previously, this first part of the 

experimentation is dedicated to test our approach in terms of accuracy. Consequently we 

suppose that the phone’s battery is full charged during all the processes principally because 

we don’t have access to the battery’s life data in the family coordination dataset. The 

ability to save the phone’s battery will be presented in the second part.      

Results presented in Table 15 represent the comparison of our approach to our old 

solution, we have tested 10525 activity gathered from the activities of the 24 members of 

families.  

Correct activities represent the number of activities recognized successfully, 

missed activities represent the number of activities that the users did but the algorithms 

have failed to recognize, false activities represent the number of meaningless discovered 

activities like recognizing the stop of a car in a traffic jam as going to gas stations. The 

accuracy and the error are calculated using the Equation (36) and Equation (37) 

respectively. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝐶𝑜𝑟𝑟𝑒𝑐𝑡

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑠𝑡𝑒𝑑 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑖𝑒𝑠
 (36) 

𝐸𝑟𝑟𝑜𝑟       =
𝑚𝑖𝑠𝑠𝑒𝑑 + 𝑓𝑎𝑙𝑠𝑒

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑠𝑡𝑒𝑑 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑖𝑒𝑠
 

(37) 

Table 15: Comparison of our hybrid approach to our old Activity recognition model  

 Our hybrid solution Activity recognition  model 

Tested activities 10525 10525 

Correct  8052 8313 

Missed 1830 1812 

False 644 578 

Accuracy 76,5% 78% 

Error 23,5% 22% 
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Our hybrid method has shown similar results to our old approach (using the activity 

recognition model all the time) in terms of accuracy and error rates, 76.5%, 78% and 

23.5%, 22% respectively. This is justified by the fact that our hybrid approach has the 

ability to recognize the errors generated by the predictions, and to correct them by 

reapplying the activity recognition model. Consequently, the hybrid approach acts like if 

we have applied the activity recognition model all the time, but with much less power 

consumption. Indeed, in order to confirm this point, we have tracked the phone’s memory 

usage for each method for 12 hours, and we have added the results of Waze [141] and CB-

SMoT [111] presented earlier in section 3.3.1. Results presented in Table 16 represent the 

average RAM usage of each application. 

                       Table 16: Comparing our hybrid solution to our old solution, CB-SMoT and Waze 

application in terms of memory usage 

 Our Hybrid solution Our old solution CB-SMoT Waze 

RAM usage 
(Mega Octets) 

19 35 38 67 

    Our hybrid solution shows a promising RAM usage rate that is better than the 

other solutions. It is clear that the hybrid method has proven itself in terms of saving the 

RAM usage, but, is it the same case for the battery’s life? We are going to answer this 

question by going further in the experimentation of our battery-saving technique in the 

following test.      

6.3.2. LIFE MAP TEST 

A this step, we used the LifeMap dataset [135] that we have already introduced in 

section 3.3.2. We used the LifeMap dataset to test our battery-friendly approach. To do so, 

we developed an android application that is fed from LifeMap dataset. The main idea is to 

make it out as if the users had moved holding our application in their phones; the 
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application recuperates the GPS coordinates one by one and processes each point using 

our online approach. We then compare the battery consumption of our application with 

that of LifeMap application. The test scenario is the same as described in section 3.3.2. 

Actually, we added our hybrid approach to the experiment presented in section 3.3.2.2 and 

we compared our hybrid solution to LifeMap and our old solution.   

The total number of recorded hours of battery status in LifeMap dataset is 48900 

hours noted from the mobility of 68 persons. However, some of these traces don’t reflect 

a user’s mobility in the real world, since some users in LifeMap experiment did not have 

a repetitive behavior during the experiment (several visits of the same POI). Consequently, 

we have chosen 5 users that had the most regular mobility to reflect fairly the real world 

situation. 

 

Figure 66: Results comparison between LifeMap (A) and our hybrid solution (B) for 72 hours of 

activity recognition. 

The total number of hours experimented from these 5 users is near 2900 hour. We 

have used five smartphones to record the power consumption of our hybrid approach for 

each user and compare it to LifeMap results. Due to insufficient space, we present in 

Figure 66 the tracking of one user’s battery life for 72 hours using LifeMap and our hybrid 
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solution. However, the results derived from the 2900 total hours will be presented in Table 

17 and Figure 67.  

Our approach shows an interesting battery saving capacity. We notice from Figure 

66 that our approach needed only 3 to 4 battery recharges contrariwise LifeMap that 

needed more than 10 recharges for 72 hours.    

However, the number of recharges is not an efficient indicator that quantifies the 

power consumption, since, like noticed in Figure 66, users tend to recharge partially their 

phones. Therefore, we have introduced a new indicator to quantify the power consumption 

called 𝑃𝐶. We put 𝑃𝐶 =  𝑇𝑟 𝑇𝑑⁄ , where 𝑇𝑟 is the global battery recharging time and 𝑇𝑑 is 

the global battery discharging time. Note that we exclude the time when the battery was 

full but still under recharge because it can falsify the results presented in Table 17. 

Table 17: PC and accuracy (calculated using equation (25)) comparisons between our hybrid 

solution, our activity recognition model and LifeMap application 

 Our hybrid 

solution 

Our activity 

recognition model 

LifeMap 

𝑃𝐶 9.4% 15.9 % 16.7 % 

Accuracy 76.5% 77 %  73% 

The PC comparison between our hybrid approach and LifeMap presented in Table 

17 confirmed that our solution saves battery life by about 45% while keeping a better 

accuracy than LifeMap’s one (73%) and the same accuracy as if we applied the activity 

recognition model continuously (77%). This is justified by the fact that our hybrid 

approach has the ability to recognize the errors generated by the predictions, and to correct 

them by reapplying the activity recognition model. Consequently, our hybrid approach 

acts like if we have applied the activity recognition model all the time, but with much less 

power consumption. To go deeper in the analysis of the 𝑃𝐶 indicator, we tracked in Figure 

67, the average daily PC value of the 5 users for 23 days. 



 

202 
 

 

Figure 67: The average daily PC value of the 5 users, comparison between our hybrid solution, our 

activity recognition model and LifeMap for 23 days. 

We notice that the 𝑃𝐶 value of LifeMap and our old solution are stable contrariwise 

our hybrid solution that starts from a value of 17% to fill under the 7%. This is justified by 

the fact that our solution consumes more power in the first times of the experimentation 

because it applies the activity recognition model frequently in a perspective of learning the 

user’s habits. When done, the approach will consume less power because it will refer each 

time to the prediction model. We believe that, in the long term, when a user’s habits are 

well learned, the PC value of our approach will be stabilized under 7% , which will lead 

to about 60 % of power saving.      

6.4. CHAPTER CONCLUSION  

In this chapter, we proposed an improvement of the model presented in Chapter 3. 

We presented a new battery-saving technique for extracting incrementally important 

geographical locations from users’ movements. We learned users’ habits to reduce the 

computational complexity of our approach, the proposed approach is divided into three 

parts; the first part aims to recognize users’ activities when they visit places for the first 

time, the second part is activity prediction where we predict the next activity to avoid 
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processing already recognized activities, and finally, activity verification which is a post-

processing step that aims to verify if the predicted activity is the right one. 

Our approach has been deeply experimented using two real datasets to test the 

accuracy and the ability to save batteries of our approach. These tests demonstrate that our 

proposal is capable of reducing the battery consumption up to 60% while maintaining the 

same accuracy as the similar solutions. This solution constitutes a promising technique 

capable of online recognizing a person’s activities without depleting the phone resources. 

We believe that this approach will represent a strong support for several mobile location-

aware applications, in several fields, ranging from traffic management to advertisement 

and social studies.
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CHAPTER 7 

GENERAL CONCLUSION 

This thesis research project presented in the six previous chapters has proposed 

original solutions to the challenges arising from using smartphones in the field of outdoor 

activity recognition. We have seen how ubiquitous and powerful smartphones have 

become in the last decades. We have seen that using them to recognize users outdoor 

activities allowed to take a step forward for the activity recognition field, principally, 

because smartphones are everywhere while being able to see, hear and sense their 

environment. However, the limited battery life of mobile phones represents a major 

obstacle for context detection, because the embedded sensors in mobile phones represent 

a significant source of power consumption. Hence, excessive power consumption may 

become a major obstacle to broader acceptance context-aware mobile applications, no 

matter how useful the service may be. Unfortunately, the limited battery capacity of mobile 

phones has not had the full intention of the research community. The majority of related 

works, as seen in Chapter 2, are basing their efficiency factors on the accuracy of their 

models while neglecting the model impact on the phone resources. In order to report a 

method as most suitable for activity recognition on mobile phones, it is important to 

consider the trade-off between accuracy and resource consumption. As such, we focused 

this thesis on filling the gap between the accurate activity recognition service and the wise 

use of the mobile resources.     
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 To address these problems and the limits of related works, we have proposed, 

through this thesis an online battery-aware activity recognition system that let extracting 

semantically and incrementally important geographical locations from users’ moves and 

switch them to meaningful human activities. Our approach operates entirely on mobile 

phones without using the Internet or predefined geographic databases. 

Our approach has been deeply experimented using a range of real datasets to test 

the accuracy and the ability to save batteries of approach. These tests demonstrate that our 

proposal is capable of reducing the battery consumption up to 60% while maintaining the 

same accuracy as the similar solutions. This solution constitutes a promising technique 

capable of online recognizing a person’s activities without depleting the phone resources. 

We believe that this approach will represent a strong support for several mobile location-

aware applications, in several fields, ranging from traffic management to social studies 

and healthcare. Applications that operates 24 hours a day, 7 days a week. Applications in 

which the battery consumption matters.  

7.1. REALIZATION OF THE OBJECTIVES 

The first phase aimed to gain knowledge of the targeted area of research by 

conducting a review of the literature on the problem of activity recognition in general. The 

first part has allowed having an overview of the field of online activity recognition, 

particularly in an applicative context of mobile environment. In Chapter 2, we reviewed 

the most important approaches regarding human outdoor activity recognition. We have 

discussed the advantages and disadvantages of each model in the optic of discovering what 

would be needed for this thesis project. We brought some common understandings 

concerning the principal notions of outdoor activity recognition like trajectories, semantic 

enrichment of trajectories, sensing techniques, inference techniques...etc. We have divided 
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the related works into two types; location systems that determine the user's activity in terms 

of location and motional systems that recognize activities in terms of motion state. As our 

work fits more in the category of location systems, we have developed this section into 

two types; desktop systems that require the use of computers for the heaviest tasks like the 

classification, and mobile systems that try to achieve all the recognition processes in the 

mobile phone. We have also explored the existing works that predict users’ next 

destinations from their historic patterns, and we have highlighted some important battery-

aware works since we aim proposing battery-friendly solutions throughout all the models 

that we will develop either for the recognition or the predictive systems.     

The second phase consisted of elaborating a complete solution of activity 

recognition based on smartphones. This part was elaborated in the form of four layers as 

described above. The first layer included an online activity recognition model that 

recognizes users visited places incrementally and without using the Internet, a model that 

is aware of the user behavior and the limited phone resources. This layer was presented in 

Chapter 3. The second layer was to adapt the first layer to smart cities by adding a 

supplementary spatial exploration model that is designed to operate in future cities, this 

layer is presented in Chapter 4. In the third layer presented in Chapter 5, we propose an 

online algorithm that learns users’ habits and predict their next activities carrying the 

change that can occur in their habits. The last layer presented in Chapter 6 consolidates all 

the previous layers to propose a hybrid system, a system that switches between Activity 

recognition and prediction in order to reduce the phone battery consumption efficiently.    

The third and fourth phases are dedicated to the implementation and the validation of 

our approach. Both of them are divided on each of the four previous chapters. The validation 

of the four layers was presented in sections 3.3, 4.4, 0 and 6.3 respectively. These tests 

demonstrate that our proposal is capable of inferring users’ outdoor activities while 
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modulating the utilization of their mobile resources. Furthermore, our approach reduces 

the battery consumption up to 60% while maintaining the same high accuracy.  Among 

other things, this final phase of the research allowed us to identify the strengths and 

weaknesses of each part and of the overall online solution. In addition, we were able to 

identify interesting improvement for the future that we will discuss later in this chapter. 

7.2. REVIEW OF THE DEVELOPED MODEL  

The model of activity recognition described in this thesis proposes several 

interesting innovations in relation to the scientific literature. First, the majority of existing 

solutions are based on supervised learning where they require a training dataset to 

previously train their model. However, as users' profiles may differ in several ways, the 

training dataset may become unrepresentative, thus, not effective in the real world. 

Moreover, supervised algorithms are facing a major problem linked to the new situations 

that don’t exist in the training dataset. Our approach it is completely unsupervised, that is 

to say that we don’t need any centralized training data source. Our approach is ready to 

use without any background knowledge of the human behavior, it can operate on the first 

moment of deployment on the user phone. 

The majority of related works are based on the classification of historical records 

of people’s trajectories using non-incremental data mining algorithms. These methods fail 

in their ability to instantly detect the user performed activities. As such, they cannot be 

used to fields such as assistance in which we need a real-time access to people’s state. 

Research on offline activity recognition has been reviewed in several earlier studies in 

detail. However, work done on online activity recognition is still in its infancy and is yet 

to be reviewed. Our work is completely online that let detecting incrementally users’ 
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activities without the massive use of historical records. This point let preserving the phone 

resources.  

The third contribution continued in the direction of online learning where we 

proposed a new version of online K-means that is designed for streaming services on 

mobile phones (presented in section 3.2.1). We proposed a novel self-adaptive clustering 

approach that adjusts the computational complexity of the algorithm according to the 

remaining battery level. The goal is to prevent the massive draining of the mobile resources 

in order to capture users’ movements for the longest time possible. Our mining method 

proposes a temporal data window characterized by a variable size in function of a person’s 

travel behavior and his phones’ remaining resources. 

Our fourth contribution concerns the type of the recognized activities. As described 

in Chapter 2, a big part of related works has focused recognizing users’ outdoor activities 

on detecting stops in their trajectories. Unfortunately, these works fail to detect activities 

that needs a movement to be executed such as shopping and running in a park. We 

demonstrate that the novel approach that we propose, succeeds to recognize both stationary 

and activities with movements.  

As presented in Chapter 4, the outdoor activity recognition systems need a spatial 

analysis of background geographic data in other to obtain a semantic information about 

the performed activity. However, in future cities (smart cities), the geographic data can 

change frequently.  As such, we proposed in the same chapter a new spatial exploration 

technique in smart cities based on a distributed users’ collaboration. This technique aims 

to discard using the predefined geographic databases that can be very expensive to get and 

very difficult to update in smart cities, future cities where information can change every 

hour and every day. The proposed service called NomaBlue is disconnected from the 

Internet, it can operate in any indoor/outdoor area and it doesn’t require any pre-defined 
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geographic databases. This system is used for this thesis to feed our activity recognition 

model in terms of cities geographic data. However, it can be used in several other fields 

such as: geospatial data collection, marketing and navigation. 

After recognizing users’ activities in smart cities, we proposed an incremental 

approach to predict their next activities. Our sixth contribution includes a new algorithm 

for online prediction of users’ next visited locations that not only learns incrementally the 

users’ habits, but also detects and supports the drifts in their patterns. We proposed a new 

algorithm of online association rules mining that supports the concept drift. 

Our last contribution includes a novel hybrid approach that combines activity 

recognition and prediction algorithms in order to online recognize users’ outdoor activities 

without draining the mobile resources. Our approach minimizes activity computations by 

wisely reducing the search frequency of activities.  

7.3. KNOWN LIMITATIONS OF THE PROPOSED MODEL 

Despite the success of the model proposed in this thesis, we believe that it has some 

limitations. First, we recognize the user activity depending on his neighborhood, i.e., when 

we detect that he is probably doing some activity, we check for his surrounded geographic 

entities to figure out what is he doing. For instance, if we find that the user is near a mall, 

we use the taxonomy presented in section 3.2.3 to figure out that the user is doing 

shopping. However, in the real world, this process is very complicated because the user 

may perform several activities inside these POIs, for instance, a mall can contain cinemas, 

restaurants and a set of shops. We tried in section 6.2.3.1 to answer this problem by 

clustering the user dwell times inside the POI, which means that we succeed to recognize 

that the user is doing different activity types inside the mall basing on his dwell time there 

(we detect a multitude of dwell time clusters). However, we don’t have any semantic 
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information about the detailed activity, i.e. whether he is in the cinema, the restaurant or 

doing shopping. 

The second limitation is that the association of a geographic entity with an activity 

is made on distances, which means that when we detect that the user is doing an activity,  

we choose the nearest geographic entity to the user and we adopt that it is the visited place. 

However, in big cities where the urban architecture is very dense, this method may fail 

because there are a lot of probable geographic entities that can be the visited place. In this, 

case, relying solely on the distances is probably not effective.  

7.4. PROSPECTS AND FUTURE WORKS 

Although the online activity model that we developed possesses its downsides, we 

are very optimistic about its future. This thesis project has laid a foundation on an emerging 

field of research that should provide a lot of challenges to the community for many years 

to come. In this section, we discuss the future work on online recognition of users’ 

activities by using smartphones.  

First, the enhancement of spatial recognition process with the introduction of 

probability to assign a cluster to a geographic entity. This probability approach can take 

advantage of previously recognized activities. For example a person doing tourist activities 

all day has more probability to finish his day in a restaurant or in a hotel than in other 

places.  

The second enhancement that can be applied to our inferring process is users’ 

profiling. In fact movement's pattern of individuals varies between young and old, healthy 

and sick, male and female. The implementation of such rules will improve the accuracy of 

our activity recognition process. 
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As presented earlier, our system encounters difficulties to obtain information about 

the exact activity performed inside the POI. This issue can be answered by proposing 

another layer that is specialized in detecting fine grained indoor movements, this can be 

used by Wi-Fi triangulation [172], PDR technique [173] or even by using Bluetooth 

beacons [174] as described in Chapter 4. For instance, when we detect that the user is 

inside a mall, we can check for the nearby Bluetooth signals to calculate his exact location 

inside the POI, after that, if we detect that he is near the cinema for instance, we can assume 

that he is watching a movie.      

In the prediction part of our approach some efforts shall be done to optimize the 

construction and the research process in the tree structure to minimize the response time 

of our algorithm. Secondly, the clustering of users’ profiles represents an interesting 

research field. In that direction, the habits’ tree represents a good structure that summarizes 

users’ routines. Clustering users’ profiles basing on their habits will be reduced to the 

comparison of two trees (habits’ trees). Which means that it will be possible to regroup 

users inside a community basing on their mobility patterns. The solution will be based on 

comparing their habits tree that we proposed in section 3.2. This profile clustering is useful 

for several fields such as smart traffic monitoring and collaborative transportation. Thirdly, 

prediction part of our system has to be improved by introducing a temporal dimension to 

the habits’ tree in order to improve our algorithm precision, for example, routines made at 

weekends are different of those made in working days. 

7.5. PERSONAL ASSESSMENT ON THIS RESEARCH 

In conclusion, I would like to make a brief personal assessment of my initiation 

to the world of research. The journey made throughout this project was quite a hard 

and continuous work. However, it was very rewarding, worthy of all these short nights 
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for which I traded hours of sleep for acquisition new precious knowledge in the 

targeted areas of this thesis. This experience allowed me to develop important new 

skills such as a rigorous research methodology and communication skills. This 

rewarding experience also allowed me to make few contributions to the scientific 

community in my field of research that I presented at the occasion of notorious 

international conferences [50]–[52], [55], [57] and journals [53], [54], [56], [58]. After 

such a positive introduction to research, I only look toward beginning a career as a 

researcher and pushing the limit of science in new territories. My last words go to all 

the persons that supported me, one way or another, intentionally or not, in my quest to 

obtain an expertise, new skills set and priceless knowledge. 
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APPENDIX 

The world is in the midst of a unique and irreversible process of demographic 

transition that will result in older populations everywhere. Developed nations are simply 

not working quickly enough to cope with a population graying faster than ever before. By 

the year 2050, for the first time in history, seniors older than 60 will outstrip children 

younger than 15 [175]. This demographic transition will unfortunately increase chronic 

diseases afflicting the elderly, new challenges linked to supporting them are already 

appearing in the horizons. Alzheimer's disease is currently ranked as the sixth leading 

cause of death for older people in the United States, [176]. In Canada, an estimated 

564,000 people were living with dementia in 2016 [177]. Alzheimer is the most common 

form of dementia caused by an irreversible, progressive brain disorder that slowly destroys 

memory and thinking skills, and eventually the ability to carry out the simplest tasks, 

causing the loss of their autonomy and hence, their ability to take care of themselves. 

Therefore, at a certain stage in the evolution of the disease, these people must be assisted 

continuously for the rest of their lives. Health authorities have deployed some mechanisms 

to support these persons, they are attended at all times by a health professional or a 

caregiver. As a result, these persons are often placed in a specialized center thus reducing 

their quality of life and generating significant costs to the healthcare system. With the 

increasing numbers of elderly people, these mechanisms certainly need to be substituted 

by smarter and cheaper solutions that keep elderly autonomy and relieve the healthcare 

system.  

 



 

215 
 

Recent advances in information technology and geo-tracking techniques represent 

promising opportunities that can address the problems discussed above. Assistive 

technologies promote greater independence by enabling users to perform tasks that they 

were formerly unable to accomplish by proposing smart systems that replace as much as 

possible health professionals and caregivers [178]. To do so, these systems require 

continuous information on the individual’s condition obtained by enhancing their 

environment using a variety of sensors (e.g. global positioning system, electromagnetic 

contacts, motion detectors, touch pad, radio-frequency identification tags, etc.) while 

ensuring to limit their intrusion in order to help the patients to perform their routines 

without invading their privacy. The LIARA laboratory (Laboratoire d’Intelligence 

Ambiante pour la Reconnaissance d’Activités) where this work has been conducted is 

specialized in human cognitive assistance. As such this work will be used in this direction. 

   Human living is based on a set of social interactions that require that the 

individual goes outside, so it is crucial to adapt these techniques to open urban 

environments, taking into account  the different geographic constraints that may challenge 

the monitoring of users’ outdoor routines (shopping, going to restaurants, jogging…etc.).    

Assistance process is seen as a succession of three important phases.  First, it is 

necessary to develop an efficient system, capable of inferring exactly the nature of the 

outdoor activity performed by the patient using user-friendly solutions. This step is 

followed by an interrogation step where the system wonders if the user is doing something 

wrong, and finally, supporting users when anomalies are detected. For instance, assuming 

that we have some beforehand knowledge about the daily destinations of Alzheimer’s 

patients. The mobile-based activity recognition system that we proposed is used to detect 

every anomaly in their behavior by comparing the planned and real performed activities 

or by detecting stress situations, if an error is detected, the assistance processes will be 
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launched, like reminders, suggesting a new destination or back home roads, see Figure 68. 

The activity prediction that we proposed is used to predict the user next activity when an 

error is detected, for instance because the user has forgotten his next destination. The 

message type used when aiding users must be chosen carefully in order to stimulate the 

brain reactivity of the individual so that he corrects himself. When continuous support is 

provided to an Alzheimer patient, the disease degeneration is decelerated and the patient 

can remain independent longer [179].  

 

Figure 68: Using our approach to assist people surfing from Alzheimer’s disease 

?
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