
Utah State University Utah State University

DigitalCommons@USU DigitalCommons@USU

All Graduate Theses and Dissertations Graduate Studies

5-2017

Evaluation of Flux Correction on Three-dimensional Strand Grids Evaluation of Flux Correction on Three-dimensional Strand Grids

with an Overset Cartesian Grid with an Overset Cartesian Grid

Dalon G. Work
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/etd

 Part of the Aerospace Engineering Commons, and the Mechanical Engineering Commons

Recommended Citation Recommended Citation
Work, Dalon G., "Evaluation of Flux Correction on Three-dimensional Strand Grids with an Overset
Cartesian Grid" (2017). All Graduate Theses and Dissertations. 6425.
https://digitalcommons.usu.edu/etd/6425

This Dissertation is brought to you for free and open
access by the Graduate Studies at
DigitalCommons@USU. It has been accepted for
inclusion in All Graduate Theses and Dissertations by an
authorized administrator of DigitalCommons@USU. For
more information, please contact
digitalcommons@usu.edu.

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/etd
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/etd?utm_source=digitalcommons.usu.edu%2Fetd%2F6425&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/218?utm_source=digitalcommons.usu.edu%2Fetd%2F6425&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=digitalcommons.usu.edu%2Fetd%2F6425&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/etd/6425?utm_source=digitalcommons.usu.edu%2Fetd%2F6425&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/

EVALUATION OF FLUX CORRECTION ON THREE-DIMENSIONAL STRAND

GRIDS WITH AN OVERSET CARTESIAN GRID

by

Dalon G. Work

A dissertation submitted in partial fulfillment
of the requirements for the degree

of

DOCTOR OF PHILOSOPHY

in

Mechanical Engineering

Approved:

Doug Hunsaker, Ph.D. Robert Spall, Ph.D.
Major Professor Committee Member

Barton Smith, Ph.D. Tadd Truscott, Ph.D.
Committee Member Committee Member

Michael Johnson, Ph.D. Mark R. McLellan, Ph.D.
Committee Member Vice President for Research and

Dean of the School of Graduate Studies

UTAH STATE UNIVERSITY
Logan, Utah

2017

ii

Copyright c© Dalon G. Work 2017

All Rights Reserved

iii

ABSTRACT

Evaluation of Flux Correction on Three-dimensional Strand Grids with an Overset

Cartesian Grid

by

Dalon G. Work, Doctor of Philosophy

Utah State University, 2017

Major Professor: Doug Hunsaker, Ph.D.
Department: Mechanical and Aerospace Engineering

The high-order flux correction method on strand grids is evaluated in an overset context,

using a Cartesian grid to accurately resolve the wake of the bodies of interest. The flow in

the strand grids is solved using the high-order flux correction method in the surface direction

and high-order summation-by-parts operators in the strand direction. The off-body flow is

solved using high-order summation-by-parts operators. The two meshes are coupled using

an implicit hole-cutting method and interpolation at the interface. Fundamental studies are

considered which demonstrate the effectiveness of high-order methods in solving practical

flows of interest.

(105 pages)

iv

PUBLIC ABSTRACT

Evaluation of Flux Correction on Three-dimensional Strand Grids with an Overset

Cartesian Grid

Dalon G. Work

Simulations of fluid flows over complex geometries are typically solved using a solu-

tion technique known as the overset meshing method. The geometry is meshed using grid

types appropriate to the local geometry in a patchwork fashion, rather than meshing the

entire geometry with one type of mesh. The strand-Cartesian approach is a simplification

of this process. While high-order accurate solvers on Cartesian grids are simple to imple-

ment, strand grids are usually restricted to second-order accuracy, resulting in poor quality

solutions. Flux correction is a high-order accurate solution method, specifically designed for

use on strand grids. The flux correction method on strand grids is evaluated in conjunction

with an overset Cartesian grid. Fundamental studies are considered which demonstrate the

effectiveness of high-order methods in solving practical flows of interest.

v

For my wife.
Let’s never do this again. :-)
For my God, whose grace has given me a good life.

vi

ACKNOWLEDGMENTS

This work is supported by the Computational Research and Engineering for Acquisition

Tools and Environments (CREATE) Program, which is sponsored by the U.S. Department

of Defense HPC Modernization Program Office, by the Army Research Office Fluid Dynam-

ics Program (grant no. W911NF-12-1-0008), and by the Office of Naval Research Sea-Based

Aviation Program (grant no. N000141310827).

A huge thank you to Dr. Aaron Katz, for teaching me so much about Computational

Fluid Dynamics and giving me the freedom to explore. Another huge thank you to Dr. Doug

Hunsaker, who took over as my advisor with the departure of Dr. Katz. His support and

positive outlook has kept me going to the finish.

Another huge thank you to my co-workers Ted Giblette and Yushi Yanagita, who helped

me with so much to get to this point. I would not have been able to finish this without

their support. I should probably take them out to lunch sometime. The support of my wife,

parents, family, and friends has been invaluable. There are so many people that have helped

me in some way during this time, that there is not space enough to list them all. I’ll do my

best to personally thank everyone.

Last of all, the Lord Jesus Christ has been the foundation of my life through this jour-

ney. His continued guidance and grace reminds me to focus on that which is most important:

the people around me.

Dalon G. Work

vii

CONTENTS

Page

ABSTRACT . iii

PUBLIC ABSTRACT . iv

ACKNOWLEDGMENTS . vi

LIST OF FIGURES . ix

ACRONYMS . xii

1 INTRODUCTION . 1

2 LITERATURE REVIEW . 6
2.1 Strand Grids . 6
2.2 Flux Correction . 8
2.3 Overset Methods . 11

2.3.1 Implicit Hole Cutting . 14
2.3.2 Parallel Considerations . 16

3 FLUX CORRECTION ON STRAND GRIDS . 18
3.1 Equations of Motion . 18
3.2 Truncation Error and Solution Error . 19
3.3 Flux Correction in One Dimension . 21

3.3.1 Traditional Galerkin . 21
3.3.2 Flux-Corrected Galerkin . 23

3.4 Flux Correction on an Unstructured, Triangular Mesh 24
3.4.1 Gradient Approximation . 26
3.4.2 Viscous Terms . 27
3.4.3 Source Terms . 28

3.5 Flux Correction on Three-Dimensional Strand Grids 29
3.6 Solution Techniques . 31

3.6.1 Strand-Implicit Solution Method . 32
3.6.2 Explicit Runge-Kutta Pseudo-time Stepping 34
3.6.3 Implicit Physical Time Stepping . 34
3.6.4 Multigrid . 35

3.7 Numerical Approximation of Element Mappings 35
3.8 Computation of (r, s) Gradient . 36

4 CARTESIAN OFF-BODY AND ADAPTIVE MESH REFINEMENT 37
4.1 Adaptive Mesh Refinement . 39

5 STRAND–CARTESIAN DOMAIN CONNECTIVITY . 41
5.1 Strand Donor Cells for Cartesian Nodes . 42

viii

6 COMPUTATIONAL RESULTS . 45
6.1 Method of Manufactured Solutions . 45
6.2 Inviscid Sphere . 48
6.3 Steady Laminar Sphere . 50
6.4 Unsteady Laminar Flow over a Sphere . 52
6.5 Isentropic Vortex Propagation . 57
6.6 Summary of Computational Results . 62

7 CONCLUSIONS AND FUTURE WORK . 64

REFERENCES . 66

APPENDICES . 75
A Summation-by-Parts Operators . 76
B Strand Stack Mappings . 79

B.1 Interpolation and Derivatives in a Strand Stack 80
C Locating the Closest Strand Node with an Octree 84
D Testing a Strand Cell using Newton’s Method 87
E Unsteady Laminar Sphere Fourier Transforms 91

ix

LIST OF FIGURES

Figure Page

1.1 Strand grid definitions and an example of strand grids in an overset simulation 4

1.2 Plot of the vorticity inside a trailing vortex of a rotor blade. The plot starts
at the rotor tip, and travels through the strand grid into the Cartesian grid.
(Courtesy of Andrew Wissink [12]) . 5

2.1 A strand grid before and after pointing vector smoothing 7

2.2 Example of an overset mesh with a pair of airfoils and their O-grids. Hole
nodes are indicated with open circles, while solid circles indicate fringe nodes.
The Cartesian background grid is not depicted for clarity. 12

2.3 Example of an overset mesh with a pair of airfoils and their O-grids. Solid
circles indicate fringe nodes, chosen through the implicit hole cutting method.
The Cartesian background grid is not depicted for clarity 15

2.4 Example of an overset mesh with a pair of airfoils and their O-grids. The
“implicit” mesh resulting from the implicit hole cutting mesh. The Cartesian
background grid is not depicted for clarity 15

2.5 Data flow charts for performing basic implicit hole cutting in a distributed
computing environment. Sender/Receiver pairs are determined via the block
overlap matrix. When the global mesh is known to each process, complex-
ity of the algorithm and the amount of communication is significantly less,
increasing the scalability of the domain connectivity 17

3.1 Sample one-dimensional node-centered finite-volume grid 21

3.2 Node-centered stencil on a two-dimensional unstructured triangular grid.
Also shown is the median-dual volume surrounding node 0 (dashed lines) . 25

3.3 Reference triangle used in this work. Also depicted are second- and third-
order triangles. Red dashed lines indicate the median-dual control volumes . 27

3.4 Decomposition of a cubic element into three quadratic elements 29

3.5 Mapping of a strand stack to computational space 31

4.1 Adaptive Cartesian Grid Hierarchy . 38

x

5.1 Flowchart for the locating the strand donor cell for a Cartesian node 43

6.1 Verification of Cartesian solver using MMS 46

6.2 X-momentum error and order of accuracy studies using the Method of Man-
ufactured Solutions . 47

6.3 Slices of the strand and Cartesian MMS solution, showing solution error in
the density . 47

6.4 Coarsest overset mesh with pressure contours of the inviscid flow solution . 49

6.5 Results from the grid refinement study using an incompressible, inviscid so-
lution . 50

6.6 Overset mesh used for laminar sphere test cases 51

6.7 Low Reynolds number laminar sphere results from the overset mesh compared
against results from Tong [19] using only a strand grid. The strand grid was
tested using second-order FV (Strand) and high-order flux correction (Strand
FC). Results are also compared against experimental and computational data 53

6.8 Meshes used for the unsteady laminar sphere cases 54

6.9 Unsteady laminar sphere results from the overset mesh compared against the
industry software Star-CCM+ and the experimental data of Sakamoto [86].
The strand grid was tested using a second-order solver (Strand) and flux
correction (Strand FC) . 56

6.10 Power spectrums of shedding sphere at Re = 400 57

6.11 Power spectrums of shedding sphere at Re = 600 57

6.12 Q=20 contour of wake behind sphere at Re=600 58

6.13 Isentropic vortex solution and mesh for the overset case. The Cartesian grid
was solved third-order, and flux correction was used on the strand grid. The
contour shown is Q = 0.1 . 61

6.14 Isentropic vortex solution and mesh for the Cartesian-only case, which was
solved using a third-order solver. The contour shown is Q = 0.1 61

6.15 Vorticity magnitude, plotted along the x-axis at various times 63

6.16 Maximum vorticity on the x-axis, plotted as a function of time. The dashed
lines indicate when the vortex should be entering/leaving the strand grid
based on the x-velocity . 63

xi

B.1 Reference triangle used in this work. Also depicted are second- and third-
order triangles. Red dashed lines indicate the median-dual control volumes . 80

B.2 C++ code for computing the tensor product and any order derivatives in a
strand stack. This function uses the Eigen linear algebra library [95] 83

C.1 Depiction of octree subdivision procedure and resulting tree [96] 84

C.2 C++ code for computing the octant a point is located in inside of an octree
node. The vec3 type is an array of size 3 85

D.1 Flowchart for the Newton’s method . 88

E.1 Star-CCM+ . 91

E.2 Overset mesh with second-order solver in the strand grid 92

E.3 Overset mesh with flux correction solver in the strand grid 92

E.4 Strand grid only with flux correction solver 93

xii

ACRONYMS

AMR automated mesh refinement

BDF backward difference

CFD computational fluid dynamics

CFL Courant-Friedrichs-Lewy condition

FAS full approximate storage

FC flux-correction

FD finite difference

FV finite volume

LUSGS lower-upper symmetric Gauss-Seidel

MMS method of manufactured solutions

MPI Message Passing Interface

PDE partial differential equation

RANS Reynolds-averaged Navier-Stokes

RMS root-mean-squared

SA Spalart-Allmaras

SAT simultaneous-approximation terms

SBP summation-by-parts

SLIP symmetric limited positive

SPMD single process multiple data

SSDC self-satisfying domain connectivity

SST shear stress transport

CHAPTER 1

INTRODUCTION

Computational fluid dynamics (CFD) is a mature and useful tool for solving fluid dy-

namics problems in industry. The multitude of commercial and open source products that

are available is a testament to the development of this field. Many product suites offer

a wide-array of solver strategies, turbulence models, automated meshing capabilities, and

multi-physics capabilities. These offerings are generally second-order accurate in space and

time, which is adequate for many situations. Some of the most complicated flows are those

involving multiple bodies in relative motion with each other, such as a full simulation of a

helicopter landing on a ship at sea. This situation is considered to be a vortex-dominated

flow, since most of the flow is determined by the tip vortices produced by the rotor blades.

This situation combines the most complicated parts of CFD into a single simulation, includ-

ing: turbulence modeling, shock capturing, vortex resolution, low- and high- Mach number

regions, boundary layer resolution, multiple bodies, and relative motion. The simulation

can be further complicated by the coupling of a structural code to determine the bending

moments and motion of the rotor blades.

In solving vortex-dominated flows, established CFD practices produce too much nu-

merical dissipation, which causes the strength of the tip vortices to weaken in an unphysical

manner. Recent advances in turbulence modeling, including large-eddy simulation and di-

rect numerical simulation, have also been shown to require reduced numerical dissipation.

Accuracy could be maintained by refinement of the mesh, but eventually the mesh be-

comes too large for current hardware to handle. Methods with a higher order of accuracy

(third or greater) are required to obtain realistic answers without excessive grid refinement.

On Cartesian grids, high-order accuracy can be easily achieved through the application of

higher-order Finite Difference (FD) methods or quadratic interpolation for Finite Volume

(FV) methods.

2

Cartesian grids, however, are limited in the geometries they can be used to solve,

because most geometries are not axis-aligned. This necessitates the use of unstructured

grids which can handle complex geometries. Unfortunately, in general, high-order accurate

methods on unstructured grids are not yet at a production level, despite much research at

the academic level [1]. These methods have not yet reached production-scale levels due to

three major barriers:

1. High-order methods are fundamentally different from the traditional low-order meth-

ods currently in use today. Implementation would require a huge investment in time

and resources to write large portions of the software from scratch.

2. High-order methods tend to be less stable, requiring restrictive time steps and more

computation time, not to mention user frustration when the software fails to work.

3. High-order methods typically require complicated and tailored schemes for handling

shocks or high-gradient regions, or special cases which require preconditioning. De-

termining the best way for high-order methods to handle this is an active area of

research.

Another important aspect of CFD is generating a quality mesh. While automated

unstructured meshing is available, this feature typically requires much input from the user,

especially in unsteady multibody situations. Creating a high-quality grid for complex flows

can take meshing experts days or even weeks. Without increasing mesh automation, the

percentage of time spent on meshing relative to solving will continue to increase.

Typically, a rotorcraft simulation is solved using an overset methodology, which com-

bines the meshing capabilities of unstructured grids with the efficient solutions of a Carte-

sian grid. The region close to a solid body (the near-body) is meshed using an unstructured

or body-fitted grid. The near-body grid is completely enclosed by a Cartesian grid, which

covers the whole domain. The unstructured grid is used to efficiently resolve the viscous

boundary layer, while the Cartesian grid propagates important wake features. Thus, the

entire domain is accurately resolved without excessive degrees of freedom, and the bulk of

3

the flow is solved using efficient Cartesian grids. Meshing in this way is especially attractive

when problems involve multiple bodies with relative motion to each other. Rather than cre-

ate a single mesh that may not be able to accommodate all the bodies in an accurate way,

each body can be meshed separately, without regard to the location of other bodies in the

flow. An example of this can be seen in figure 1.1b. The price to pay for these advantages is

in interfacing the multiple grids so all the grids form a single cohesive solution. This problem

is known as the “domain connectivity” problem. With extremely large meshes, solving the

domain connectivity problem can be difficult to implement in a scalable fashion on parallel

hardware.

The strand-Cartesian approach has shown great potential to alleviate many of these

difficulties [2–5]. Strand and Cartesian grids allow the possibility of automatic volume grid

generation while enhancing scalability of the domain connectivity problem and the potential

for high-order accuracy in the near-body mesh. Near solid bodies, the strand approach

automatically generates a prismatic mesh along “strands.” Strands emanate from pointing

vectors determined from the surface tessellation, as shown in figure 1.1a. This near-body

mesh is used to resolve viscous boundary layers and other physical effects occurring close

to the body. Away from solid bodies, adaptive Cartesian grids resolve wake features with

efficient high-order algorithms, as shown in figure 1.1b. The mesh generation process is

robust and automatic, making the technique easily extensible to moving-body problems,

for which the grid can be automatically regenerated at each time step. The two grids

communicate through implicit overset interpolation [6–8]. This is simplified by the compact

nature of the strand-Cartesian system. A typical three-dimensional strand-Cartesian grid

system may be stored on all processors in a parallel computation, creating self-satisfying

domain connectivity and reducing the time required for inter-grid communication [3,9,10].

Previous work has shown the viability of the strand-Cartesian approach, using second-

order solvers in the strand grid, and high-order solvers in the Cartesian grid [3,4,10]. Origi-

nally, an unstructured solver was used in the strand grid, but this did not take advantage of

the structure inherent in the strand grid. A custom second-order solver was then presented

4

wall spacing

{

clipping index

pointing vector

surface mesh

1D node dist.

(a) A strand projecting from a trian-
gular surface element

(b) A strand-Cartesian overset grid on a TRAM
rotor

Fig. 1.1: Strand grid definitions and an example of strand grids in an overset simulation

by Katz [11], with improved results. Even with the strand-specific solver, the strand mesh

was unable to sustain vortex structures created at the solid bodies due to the high numer-

ical dissipation of the second-order solution methods. This is shown in figure 1.2, which

shows the vorticity of a rotortip vortex as it travels away from the tip into the freestream.

Inside the strand grid, the vorticity decreases sharply, while the high-order Cartesian grid

maintains the strength of the vortex.

This issue led to development of a strand-grid-specific high-order solution method,

termed flux correction. Flux correction is a novel method of obtaining third- to fourth-

order accuracy on strand grids. It was originally proposed by Katz and Sankaran [13] for

use on two-dimensional unstructured grids. A second-order node-centered Galerkin finite-

volume method is used as a starting point, to which truncation error canceling terms are

added, increasing the order of accuracy. Theoretically, this means that an established second-

order finite-volume code could be easily modified and “upgraded” to be higher-order. The

method requires no additional flux quadrature or second derivatives, and requires minimal

computational overhead beyond second-order schemes. Following this, flux correction was

extended to include viscous terms by Pincock and Katz [14], which was then combined with

summation-by-parts (SBP) operators by Katz and Work for use on strand grids [15].

Previous work by Tong [16–19], Thorne [20], and Yanagita [21] have demonstrated the

5

Fig. 1.2: Plot of the vorticity inside a trailing vortex of a rotor blade. The plot starts at the
rotor tip, and travels through the strand grid into the Cartesian grid. (Courtesy of Andrew
Wissink [12])

viability of the high-order flux correction method on strand grids. These references show

high-order accuracy with multiple turbulence models, transsonic flow, and incompressible

flow. Each of these showed that flux correction provides better accuracy with minimal

computational overhead, and little modification to established second-order finite-volume

practices. However, inaccuracies in the results revealed that strand grids need to be used

in an overset context, as they do not resolve wake regions well [16, 22]. This work details

the development of a third-order Cartesian solver and accompanying domain connectivity.

The Cartesian solver is developed separately from the strand solver, while the domain

connectivity is written in a third software package. Thus, both the Cartesian and strand

solvers can be used separately if necessary. For overset applications, the domain connectivity

library is used to tie the two solvers together. The solvers and the library are written

using a Single Process Multiple Data (SPMD) parallel paradigm, implemented with the

Message Passing Interface (MPI) in C++. The flux correction method on strand grids is then

demonstrated on simple geometries, and results are used to determine how flux correction

responds to the presence of the overset Cartesian grid. Flux correction is evaluated on

accuracy, convergence, and computational time.

6

CHAPTER 2

LITERATURE REVIEW

2.1 Strand Grids

The strand-grid methodology, first introduced by Meakin [3], is a novel approach to

overset grid methods. Instead of using body-fitted or unstructured grids, a prismatic vol-

umetric near-body grid is formed from an unstructured surface tessellation by extending

straight lines (strands) in the normal direction away from solid bodies. This is demonstrated

in figure 1.1a. Each strand contains the same nodal spacing along its length, with adjacent

strands connected to form the prismatic grid around the body. The base node on the surface

is termed the “root” of the strand, while the other end is the “tip”. A strand consists of

three distinct regions: the root node (node 0), the field nodes, and the fringe nodes. The

root and field nodes are used to solve the flow. The fringe nodes are used for the domain

connectivity, and receive interpolated values from the Cartesian grid. The division between

field and fringe nodes is demarcated by the “clipping index,” which indicates the last node

to be used for solution. Generally, a progressive nodal spacing is used along the strand, in

order to effectively capture the boundary layer around the solid body.

The advantages to this particular mesh formulation are many, especially when viewed

in a parallel context. By using a progressive spacing along the strands, the tips of the

strands provide a reasonable “interface” spacing for a block-structured AMR Cartesian

grid to refine to. The refinement of the Cartesian grid around the strand grid can be made

fully automatic. Since strand grids are based solely on the surface geometry, the entire

volumetric meshing process can be made fully automatic. Due to the structure in the strand

direction, it is possible to create efficient solution algorithms [13]. Finally, because of the

one-dimensional spacing along the strands, the entire in-memory description of the strand

grid is essentially collapsed from a three-dimensional to a two-dimensional description. Any

7

necessary volumetric geometry can be easily computed on the fly. This is significant, because

this allows all processors in a parallel computation to retain in memory a view of the

global mesh, thus simplifying the domain connectivity problem by reducing the amount

of needed communication between processors. Meakin [3] terms this ideal situation “self-

satisfying domain connectivity” (SSDC) (See Section 2.3.2 for more information). Efficient

and automatic connectivity methods can also be developed to connect strand-to-strand

and strand-to-Cartesian grids, reducing the time spent in domain connectivity [10]. This

becomes even more important in unsteady moving body problems, where the connectivity

must be reestablished at every timestep.

If the surface is smooth, strand grids provide adequate coverage of the immediate vol-

ume surrounding a surface. However, strand grids are extremely sensitive to discontinuities

in the surface mesh from which they are generated. In concave regions, the strands can

potentially overlap, while in convex regions, the volume coverage is extremely poor. Both of

these situations are illustrated in figure 2.1a. To address this issue, an iterative smoothing

procedure is used to “bend” the strands, forming a more uniform mesh. This smoothing

procedure works well for convex corners, but does not always prevent self-intersections in

concave geometries. In this case, the clipping index is used to clip the tip of the strands,

preventing the intersections. In these clipped regions, the Cartesian grid is refined to fully

cover the domain.

The initial tests of strand-grid capabilities were performed using NSU3D [23, 24], a

second-order unstructured solver, which was coupled with a fifth-order inviscid-only Carte-

(a) Unsmoothed strand grid
(b) Smoothed strand grid

Fig. 2.1: A strand grid before and after pointing vector smoothing

8

sian solver in the HELIOS [25, 26] framework. The strand-Cartesian hybrid was able to

produce accurate results for various test cases, including laminar flow over a sphere, flow

over circular and square cylinders, turbulent flow over a NACA 0015 finite wing, a V-22

TRAM rotor in hover, and a DLR-F6 Wing-body Transport [2,3]. These test cases showed

accurate results compared to experimental values and validated unstructured solvers.

However, these tests showed a severe sensitivity of NSU3D to the amount of pointing

vector smoothing used in the strand grid. The smoothing introduced skewness into the grid,

which affected the accuracy of the solution. The shedding frequency of a square cylinder

at Re = 250 was used by Katz [2] to quantify the effect of strand smoothing on solution

accuracy. With no smoothing, the coverage of the corner regions was poor, yet unexpectedly

provided decent results. Extreme convergence of the smoothing operation resulted in worse

results, incorrectly predicting a chaotic shedding behavior. The best results were found when

the procedure was only converged to a small degree, striking a balance between orthogonality

of the strands to the surface and volume grid coverage of the domain.

By utilizing the structure inherent in the strands, a robust and efficient second-order

cell-centered strand solver was developed by Katz [2,13]. This solver was developed specif-

ically to handle the high-aspect-ratio cells generated by the strand grid, and exhibited im-

proved convergence over NSU3D. The solution itself is based on implicit line Gauss-Seidel

sweeps, with a fully non-linear agglomeration multigrid. The strand solver was found by

Work [27] to be much more tolerant to the grid skewness caused by the smoothing pro-

cedure. Work also tested an alternative meshing procedure, which consisted of emanating

multiple strands from a single location to improve the grid resolution. This multi-strand

approach was found to suffer from accuracy and convergence issues. Research into a new

meshing option, entitled strand shortening, is ongoing [28].

2.2 Flux Correction

Results from the rotorcraft simulations showed that the second-order accuracy of the

near-body unstructured mesh severely limited the accuracy of the tip vortices [12]. (See

figure 1.2.) This drove the effort to develop a high-order strand-specific solver. Katz and

9

Sankaran [13, 29] developed a third-order unstructured method for the Euler equations

called flux correction. The method is based on a second-order node-centered finite-volume

Galerkin method. The method required minimum changes to an already established code

base, and does not require flux quadratures, second derivatives, or quadratic reconstruction

techniques. The only requirement is gradients of the fluxes that are at a minimum, second-

order accurate. Tests showed that the method converged at the same rate as the second-

order method, and increased the required walltime by only 50%. The accuracy of flux

correction was tested with a grid refinement study, which evaluated the drag coefficient as it

approached the mathematical limit of zero, with flux correction showing an order of accuracy

improvement over the second-order Galerkin method. Flux correction was successfully used

to compute a shocked flow over an airfoil with no modification to the parent codebase. The

flux correction method was soon extended to include viscous fluxes by Pincock and Katz [30].

In order for the same procedure to work with viscous terms, it was found that third-order

accurate gradients had to be used. Through the method of manufactured solutions (MMS)

and grid refinement studies, the viscous terms were found to converge in a fourth-order

manner.

Katz and Work [31] modified the flux correction method to work on three-dimensional

strand grids, creating an efficient and high-order solver which took advantage of the available

structure in the strand. They accomplished this by viewing the strand grid as layers of

prismatic cells. Each layer is solved individually as a two-dimensional unstructured problem

using flux correction. These solutions along the strand are then coupled together using

summation-by-parts (SBP) operators. A zero pressure gradient flat plate boundary layer test

showed improved accuracy over the traditional second-order finite-volume method. As seen

in previous tests, the flux correction convergence rate was similar to that of the finite-volume

solver’s convergence, with only a 50% increase in walltime. The flux correction method on

strands also showed improvement in predicting the shedding behavior of a circular cylinder

at low Reynolds numbers.

10

The negative Spalart-Allmaras (SA) [32,33] turbulence model was studied by Tong [16]

in the context of flux correction. Results from two-dimensional grid refinement studies,

including a zero pressure gradient flat plate and a bump-in-a-channel, showed that flux

correction gave extremely accurate results on much coarser meshes than those employed

by other established software packages. A grid refinement study using MMS demonstrated

fourth-order accuracy with the fully coupled RANS-SA equations. Tong [17] next extended

the SA turbulence model to three dimensions, followed by an implementation of the Menter-

SST k-ω turbulence model [19]. This turbulence model is typically not used with high-order

methods, due to oscillation of the turbulence variable ω and convergence issues. Tong was

able to modify several limiting techniques which allowed for stable high-order solutions

using flux correction and the Menter-SST k-ω turbulence model. A following paper [34]

demonstrated the ability of flux correction to stably and accurately capture shocks through

the implementation of the common SLIP limiter. This limiter was originally developed for

unstructured finite-volume methods, and was easily added to the flux-correction method,

providing stable high-order accuracy in the presence of shocks. Thorne [20] subsequently

added preconditioning to flux correction, allowing the solution of incompressible and low-

Mach number flows for arbitrary equations of state. Tong [18] followed up on this work,

demonstrating high-order solutions of submersibles in water using both the SA and SST

turbulence models. These results are significant because each of the schemes used were

traditional finite-volume schemes which required little modification to implement with flux

correction on strand grids.

All of the results presented in the above references were extremely consistent in their

findings. First, MMS grid refinement studies showed the flux correction method to be third-

to fourth-order accurate for all equations of state used. Second, convergence rates were

identical or similar to the second-order Galerkin FV method that flux correction is based

on, while flux correction on strand grids in three dimensions took approximately 30% longer

in walltime. Third, the results clearly show that flux correction gives more accurate results

than the Galerkin FV method on which it is based. In some cases, the difference in accuracy

11

was substantial. Fourth, all results showed an obvious need for the Cartesian mesh to assist

the strand mesh in resolving wake features. The purpose of this work is to couple the high-

order near-body strand mesh with a high-order off-body Cartesian mesh, and demonstrate

the viability of the strand-Cartesian methodology.

2.3 Overset Methods

When a flow involves multiple bodies which are moving relative to each other, meshing

the domain becomes an extremely difficult and complicated problem. If an unstructured

mesh is used, then it must be regenerated and possibly modified by hand for each timestep.

In lieu of a single mesh type, a composite mesh formed from multiple overlapping grids

can be formed. This type of mesh is shown in Figure 2.2. Unstructured or curvilinear grids

are extended a short distance from the bodies, while a structured grid is placed in the

background, filling the rest of the domain. This approach was first introduced by Steger [6],

and simplifies the meshing process by using small, simple grid components. The flexibility

of this method has led to the development of several open-source and commercial software

packages which employ overset methods [23–26,35–40].

The difficulty introduced by this method is in coordinating the individual grids to work

together as a single cohesive mesh, and is termed the domain connectivity problem. Each

node in a grid is given one of three designations: a normal node, a fringe node, or a hole

node. Normal nodes have no overlapping grids, and are used to compute the flow solution

normally. Fringe nodes exist wherever the boundary of one grid component overlaps another

grid, and receive their value from an overlapping grid. Any node which is contained inside a

solid body or is located deep inside an overlapping grid (and therefore is not a fringe node)

becomes a hole node. The solution at hole nodes is not updated, and therefore has no effect

on the flow.

The first step in the domain connectivity process is determining fringe and hole nodes,

which is called the “hole cutting” problem. Many approaches have been developed to solve

the hole cutting problem. These include brute force search methods, Cartesian bucketing

methods (and the quadtree/octree/alternating digital tree derivatives), inverse hole maps,

12

Fig. 2.2: Example of an overset mesh with a pair of airfoils and their O-grids. Hole nodes
are indicated with open circles, while solid circles indicate fringe nodes. The Cartesian
background grid is not depicted for clarity.

numerous different inside/outside tests, analytic shape cutting, X-Ray methods, and direct

cut methods [41–44]. For more information on the advantages and disadvantages of these

hole cutting techniques see the chapter by Meakin [45]. Each one typically requires a great

deal of user interaction and special logic to deal with various extreme cases. Once hole

points are correctly identified, the fringe nodes are identified by their proximity to the hole.

The second step is to determine, for each fringe node, a viable donor cell in another grid

from which to receive interpolated solution values. When multiple grids overlap in a single

region and multiple viable donor cells could be used, the question becomes more vague:

Which donor cell will be best? This question is often left to the user, who must define which

grids take priority.

13

Locating a viable donor cell uses various approximate methods to generate an initial

guess for the cell which contains a given point. These approximate methods include alter-

nating digital tree methods or stencil walking, where the results from the last node found

are used as an initial guess for the current node. Using this initial guess, a gradient search

method is used to locate that point within the cell. If the gradient search moves out of the

cell, the gradient search indicates a direction to move in the grid, and thus indicates the

next cell to try. Once the gradient search converges, a suitable donor cell has been identified.

The cells/nodes used to interpolate can then be marked as such.

The third step is to define the interpolation stencils. The interpolation stencils used are

typically second-order interpolations (bi- or tri-linear), defined using Lagrange or B-spline

interpolations. Recent research, however, has shown that when using high-order solution

methods, high-order interpolations are necessary to maintain the global order of accu-

racy [46–48]. Research has also shown that standard interpolations are not conservative,

meaning they do not satisfy the conservation equations being solved [49]. This is espe-

cially important with high-gradient solutions and solutions with propagating shock waves.

Meakin [50], however, argues that no amount of conservation will produce more accurate

solutions, and that the most important factor in interpolation of values from one grid to

another is that the average grid spacings of the two grids be approximately the same at the

point of interpolation.

For completeness, it is mentioned that care must be taken to handle two pathological

situations: orphan nodes, in which there are not enough nodes in a donating grid to in-

terpolate to a fringe node on a receiving grid (making the fringe node an orphan with no

solution), and coupled donor relationships, in which two fringe nodes which live on separate

grids would be used to interpolate values to each other. Solving the orphan node problem

can be difficult, and typically requires user intervention. The coupled donor node problem

is easily fixed through the use of implicit interpolation, which forms a linear system of

equations to determine the correct values of the fringe nodes.

14

2.3.1 Implicit Hole Cutting

In 2003, Lee and Baeder introduced a new hole cutting method, termed “implicit hole

cutting” [8, 51]. They argue that explicit identification of holes in grids is unnecessary. If

instead, the fringe nodes are identified, and that fringe is thick enough, it produces a wall

of interpolated values which separate the interior flow from the exterior flow.

Implicit hole cutting redefines the first two steps of the traditional domain connectivity

algorithm. Instead of identifying holes in grids, followed by fringe nodes, the method iden-

tifies possible donor cells for all nodes in a grid. If no viable donors are found, the node is

assumed to be in a region of no overlap, and is marked as a normal node. If viable donors are

found, the best quality donor is selected, and the node is marked as a fringe node. The cell

quality is a user selected metric, and is typically the cell volume. In this case, a smaller cell

volume is regarded as “better”, because it is assumed the smaller cell has a more accurate

answer. However, arguments for other metrics can be made.

Of course, testing every point in every grid against every other grid would be a time-

consuming task. This is simplified by generating an “overlap” boolean matrix, which is a

symmetric n× n matrix, where n is the number of grids in the overset mesh. For any pair

of grids (i, j), the corresponding entry in the matrix will be 0 if they do not overlap, and

1 if they do. Thus, a grid j need only be searched for donor cells if the (i, j) entry equals

1, thus keeping the donor search cost from ballooning. For details on the generation of this

matrix, see Lee [8].

Redefining the domain connectivity in this way avoids a whole host of problems related

to hole cutting, especially with very complex geometry. This is because, with implicit hole

cutting, the grids take precedence over the geometry. The grids, to some extent, smooth out

the complicated features of the geometry, thus easing the domain connectivity problem. An

example of the implicit hole cutting method is shown in figure 2.3 and figure 2.4.

Note that with this methodology, no nodes are marked as hole nodes. This means that

nodes which are actually contained inside solid bodies (and would have been marked as hole

nodes with a traditional domain connectivity method) are still used in the computations.

15

Fig. 2.3: Example of an overset mesh with a pair of airfoils and their O-grids. Solid cir-
cles indicate fringe nodes, chosen through the implicit hole cutting method. The Cartesian
background grid is not depicted for clarity

Fig. 2.4: Example of an overset mesh with a pair of airfoils and their O-grids. The “implicit”
mesh resulting from the implicit hole cutting mesh. The Cartesian background grid is not
depicted for clarity

16

Any computed value at these nodes is obviously non-physical. This may appear problematic,

but as long as these “implicit hole” nodes are surrounded by a sufficiently thick band of

fringe nodes, they will not impact the physical solution on the exterior of the solid body.

2.3.2 Parallel Considerations

The overset algorithms, as detailed above, have been described in a sequential manner,

without regard to implementation in a parallel manner. When solving large, complicated

geometries, an overset mesh can consist of hundreds of grids, each of which could contain

thousands to millions of cells. Such a large mesh would not fit in the memory of a single pro-

cessor, which complicates the domain connectivity problem. Landmann and Montagnac [52]

published a general algorithm for performing implicit hole cutting in a distributed environ-

ment, which is summarized in figure 2.5a. However, if the global mesh is known to each

process, the algorithm becomes much simpler, with far less inter-process communication,

resulting in a more scalable algorithm, as shown in figure 2.5b.

This is one of the main advantages of using strand grids. By collapsing the memory

requirements from volume grids to surface grids, the global mesh description, even for very

large problems, can fit in the memory of a single processor, resulting in self-satisfying domain

connectivity.

17

Process i

R
em

o
te P

ro
cesses

Local nodes which could have remote donor cells

For each remote node, search for local donor cells

Pick best donor cells for local nodes

Remote nodes which could have local donor cells

All possible donor cells for local nodes

Remote donor cells for local nodes

Local donor cells for remote nodes

Possible local donor cells for remote nodes

(a) Global mesh is not known to each process

Process i

R
em

o
te P

ro
cesses

Local nodes which could have remote donor cells

For each local node, search for donor cells

Pick best donor cells for local nodes

All possible donor cells for local nodes

Remote donor cells for local nodes

Local donor cells for remote nodes

(b) Global mesh is known to each process

Fig. 2.5: Data flow charts for performing basic implicit hole cutting in a distributed comput-
ing environment. Sender/Receiver pairs are determined via the block overlap matrix. When
the global mesh is known to each process, complexity of the algorithm and the amount of
communication is significantly less, increasing the scalability of the domain connectivity

18

CHAPTER 3

FLUX CORRECTION ON STRAND GRIDS

Flux Correction is a novel high-order method for solving conservation equations on

general unstructured two-dimensional grids. At its core, flux correction is derived by taking

an existing numerical method, performing a truncation error analysis of the numerical

method, and identifying where the limiting order of error comes from. Following this, a

higher-order version of the method can be derived by adding truncation error-canceling

terms, thus improving the overall order of accuracy. In this chapter, flux correction, as

it has been developed, is described. The chapter starts with a brief description of the

conservation equations which are solved in this work. The explanation of flux correction

starts with a brief foray into the difference between solution error and truncation error, and

the relationship between them. This is followed by a simple one-dimensional description

of flux correction, and then moves on to detail the implementation of flux correction on a

two-dimensional triangular unstructured grid. From this foundation, the extension of flux

correction to three-dimensional strand grids is made, with details of solution techniques

used for solving the Navier-Stokes equations.

3.1 Equations of Motion

The Navier-Stokes equations can be written in a conservative vector format (using

Einstein notation) as

∂Q

∂t
+
∂Fj
∂xj
−
∂F vj
∂xj

= S (3.1)

19

where Q is the vector of conserved variables, Fj = (F,G,H) is the inviscid fluxes, and

F vj = (F v, Gv, Hv) is the viscous fluxes. The variables Q, Fj , and F vj are defined as:

Q =


ρ

ρui

ρe

 , Fj =


ρuj

ρuiuj + pδij

ρhuj

 , F vj =


0

σij

σijui − qj

 (3.2)

Here, ρ is the density, uj is the jth component of the fluid velocity, p is the pressure, e is

the total energy per unit mass, h ≡ e + p
ρ is the total enthalpy per unit mass, σij is the

deviatoric stress tensor, and qj is the jth component of the heat flux vector coefficient. The

deviatoric stress tensor is defined as

σij = 2µ

(
Sij −

1

3

∂uk
∂xk

δij

)
(3.3)

where µ is the dynamic viscosity, and Sij is the strain rate tensor, defined as

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(3.4)

The heat flux vector is obtained with Fourier’s Law,

qj = −cp
(µ

Pr

) ∂T
∂xj

(3.5)

where T is the temperature, cp is the specific heat, and Pr is the Prandtl number. In

addition, Sutherland’s Law is used to related dynamic viscosity and temperature, and the

ideal gas equation of state is used. In this work, equation 3.1 is solved on both the near-body

strand grid and the off-body Cartesian grid.

3.2 Truncation Error and Solution Error

Truncation error arises from the discretization of a continuous differential equation,

and is distinct from the solution error, which is defined as the difference between the true

20

solution and the discretized solution. The relationship between the two types of error is

difficult to determine, but it can be shown that a relationship does exist.

Consider a general conservation law:

∂Q

∂t
+∇ · F = 0 (3.6)

where Q represents the vector of conserved variables and F is the flux. For a linear flux,

the discretization of equation 3.6 becomes

D
{
Qh
}

= B (3.7)

where D is the discretization operator, and B incorporates the boundary conditions. The

discrete solution Qh exactly satisfies this algebraic system of equations. If the exact solution

Qe is substituted into the left-hand side of equation 3.7, an error term must be added to

the right-hand side:

D {Qe} = B + Et (3.8)

where Et is the truncation error. The solution error, Es is, by definition, the exact solution

minus the discrete solution, or Es = Qe − Qh. Rearranging equations 3.7 and 3.8 and

substituting into the solution error definition yields

D {Es} = Et (3.9)

From this we find that the truncation error and the solution error are related through the

discretization operator. This can be viewed as the truncation error driving the solution

error. The order of accuracy of the truncation and solution error are distinct. In general,

there does not appear to be any way to prove the order of the solution error from the

truncation error. Numerical observations have shown that the order of the solution error is

never lower than the order of the truncation error.

21

3.3 Flux Correction in One Dimension

The node-centered grid in figure 3.1 is used to discretize the following hyperbolic dif-

ferential equation:

∂Q

∂t
+
∂F

∂x
= S(x) (3.10)

where S(x) is an arbitrary source term. Using the following definitions,

∆xi =
1

2

(
∆xi−1/2 + ∆xi+1/2

)
(3.11a)

∆xi+1/2 = xi+1 − xi (3.11b)

∆xi−1/2 = xi − xi−1 (3.11c)

the discretization of this equation in a Galerkin fashion leads to a discretized flux derivative

at node i:

∂F

∂x

∣∣∣∣
i

≈ 1

∆xi

(
F hi+1/2 − F

h
i−1/2

)
(3.12)

F hi±1/2 are numerical fluxes computed at the respective cell faces. The source term discretiza-

tion is given by:

Shi =
2

3
Si +

1

6∆xi

(
Si−1∆xi−1/2 + Si+1∆xi+1/2

)
(3.13)

3.3.1 Traditional Galerkin

In order to proceed, it is necessary to determine the numerical fluxes at the faces i±1/2.

In the traditional method, this is performed using

F hi+1/2 =
1

2

(
F hi+1 + F hi

)
−Dh

i+1/2 (3.14a)

Dh
i+1/2 =

1

2

∣∣∣Ah(QRi+1/2, Q
L
i+1/2)

∣∣∣ [QRi+1/2 −Q
L
i+1/2

]
(3.14b)

ii− 1 i+ 1

i− 1/2 i+ 1/2

Fig. 3.1: Sample one-dimensional node-centered finite-volume grid

22

The dissipation term, shown in equation 3.14b, is added to enforce upwinding, making the

method numerically stable. The flux jacobian is defined as A = ∂F
∂Q and is a function of the

reconstructed state QR and QL at the face. The solution states at the face QR and QL are

extrapolated using a truncated Taylor series

QLi+1/2 = Qhi +
1

2
∆xi+1/2

∂Qh

∂x

∣∣∣∣h
i

(3.15a)

QRi+1/2 = Qhi+1 −
1

2
∆xi+1/2

∂Qh

∂x

∣∣∣∣h
i+1

(3.15b)

Computation of the gradient is assumed to approximate the true gradient to some order of

accuracy O(hp). Substituting equation 3.14 into equation 3.12, the flux derivative at node

i becomes:

∂F

∂x

∣∣∣∣
i

≈ 1

2∆xi

(
F hi+1 − F hi−1

)
− 1

2∆xi

(
Dh
i+1/2 −D

h
i−1/2

)
(3.16)

The method is now in a form that is convenient to determining the truncation error, the

details of which can be found in other work, and are summarized here [11]. By representing

the exact solution for QR, QL, Fi±1/2, and Si±1 with Taylor series expansions centered at

node i, it can be shown that the truncation error of the traditional Galerkin method is

ε =
(
∆xi+1/2 −∆xi−1/2

)(1

2

∂2F

∂x2

∣∣∣∣
i

− 1

3

∂S

∂x

∣∣∣∣
i

)
− 1

48∆xi

(
∆x3

i+1/2

∣∣Ai+1/2

∣∣−∆x3
i−1/2

∣∣Ai−1/2

∣∣) ∂3Q

∂x3

∣∣∣∣
i

+O
(
h3
)

+O (hp)

(3.17)

The limiting order comes from the first term, which is O(h1), and the last term, which is

O(hp). The former originates in the central difference approximation of the flux and source

terms, while the latter comes from the p-order approximation of the gradient of the solution

variable. It can be shown that the solution order of accuracy for the Galerkin method is

second-order on arbitrary grids [11]

23

3.3.2 Flux-Corrected Galerkin

Having identified the location of the limiting truncation error terms, a new definition

of the fluxes is formulated to raise the order of the truncation error, and therefore, the solu-

tion error. Instead of using the traditional definition given in equation 3.14a, the following

definition is used:

F hi+1/2 =
1

2

(
FLi+1/2 + FRi+1/2

)
−Dh

i+1/2 (3.18a)

F hi−1/2 =
1

2

(
FLi−1/2 + FRi−1/2

)
−Dh

i+1/2 (3.18b)

where Dh
i+1/2 is the same as equation 3.14b. Notice here that the flux is now being recon-

structed to the midway point, and is done in a similar fashion as the solution variable Q:

FLi+1/2 = F hi +
1

2
∆xi+1/2

∂F h

∂x

∣∣∣∣h
i

(3.19a)

FRi+1/2 = F hi+1 −
1

2
∆xi+1/2

∂F h

∂x

∣∣∣∣h
i+1

(3.19b)

The truncation error of equation 3.19 is dependent on the order of the gradient approxi-

mation, and not on the Taylor series truncation. The only step remaining is to determine

an appropriate method of estimating the gradient at xi+1/2 and xi−1/2. In one dimension a

compact second-order method can be derived from Taylor series as:

∂Qh

∂x

∣∣∣∣h
i

=
∆x2

i−1/2Q
h
i+1 −∆x2

i+1/2Q
h
i−1 +

(
∆x2

i+1/2 −∆x2
i−1/2

)
Qhi

∆xi+1/2∆xi−1/2

(
∆xi+1/2 + ∆xi−1/2

) (3.20)

The truncation error of the flux-corrected method is found to be

ε = − 1

24∆xi

(
∆x3

i+1/2 + ∆x3
i−1/2

) ∂3F

∂x3

∣∣∣∣
i

+O(h3) +O(hp) (3.21)

The order of each term is O(h2), O(h3) and O(hp). The only limiting factor is the order

of the gradient computations. As long as the gradient is second-order accurate, then the

24

truncation error will also be second-order accurate. The solution error is found through

experimentation to be third-order on arbitrary grids [11].

A major advantage to the flux correction method is that it can be rewritten in terms

of the traditional flux definition from equation 3.14a, and defined as a correction to the

traditional flux, shown here:

F hi+1/2 =
1

2

(
F hi + F hi+1

)
−Dh

i+1/2︸ ︷︷ ︸
Traditional flux

− 1

4
∆xi+1/2

(
∂F h

∂x

∣∣∣∣h
i+1

− ∂F h

∂x

∣∣∣∣h
i

)
︸ ︷︷ ︸

Correction

(3.22)

This is important because it means that an already established code could be “upgraded”

simply by adding in a single subroutine which computes the correction to the flux definition.

3.4 Flux Correction on an Unstructured, Triangular Mesh

The two-dimensional formulation is determined in a similar fashion to the 1D case. The

hyperbolic equation in 2D is given as:

∂Q

∂t
+∇ · F = 0 (3.23)

A triangulation around node 0 is shown in figure 3.2. Also depicted is the median-dual

volume surrounding node 0, which is formed by connecting the centroids of the triangu-

lar elements with the midpoint of the lines bounding the triangle. An approximation of

the median-dual volume can be made by only connecting the centroids of the triangular

elements.

The divergence of a vector-valued function θ at node 0 is found with

∇h · θh =
1

V0

∑
i

1

2

(
θhi + θh0

)
· n0is0i (3.24)

where n0is0i is the area-weighted normal of the median-dual face located between nodes

0 and i, with s0i being the area of the face [53]. Applying the vector divergence from

25

0

i

i+ 1

i− 1

Fig. 3.2: Node-centered stencil on a two-dimensional unstructured triangular grid. Also
shown is the median-dual volume surrounding node 0 (dashed lines)

equation 3.24 to the flux term of (3.23) results in

∇h · F h =
1

V0

∑
i

F h
0i · n0is0i =

1

V0

∑
i

Fh0is0i (3.25)

This is the starting point for both the traditional and flux correction methods. In the

following, the scalar directed flux F = F ·n will be used, as it simplifies the notation. The

traditional method approximates Fh0i as:

Fh0i =
1

2

(
Fh0 + Fhi

)
−Dh

0i (3.26a)

Dh
0i =

1

2

∣∣∣Ah0i∣∣∣ (QR0i −QL0i) (3.26b)

where A = ∂F
∂Q is the directed flux Jacobian, and QR0i and QL0i are the solution variables

reconstructed to the midpoint of the edges connecting nodes 0 and i, which is

QL0i = Qh0 +
1

2
∆rT0i∇hQh0 (3.27a)

QR0i = Qhi −
1

2
∆rT0i∇hQhi (3.27b)

and ∆r0i is the position vector from node 0 to node i. There are many methods to compute

the gradient of Q, and it can be shown that the truncation error of the complete method

depends on the accuracy of the gradient approximation. The truncation error also depends

26

on the form of the approximation for F h0i. Flux correction changes the definition of the flux

to

Fh0i =
1

2

(
FL0i + FR0i

)
−Dh

0i (3.28)

which uses a reconstructed flux instead of an average flux:

FL0i = Fh0 +
1

2
∆rT0i∇hFh0FR0i = Fhi −

1

2
∆rT0i∇hFhi (3.29a)

This method can be cast into a “correction” of the linear flux, similar to the one-dimensional

case, and used in equation 3.25. The correction is given as:

Fhi+1/2 =
1

2

(
Fhi + Fhi+1

)
−Dh

i+1/2︸ ︷︷ ︸
Traditional Flux

−1

4
∆xi+1/2

(
∂Fh

∂x

∣∣∣∣h
i+1

− ∂Fh

∂x

∣∣∣∣h
i

)
︸ ︷︷ ︸

Correction

(3.30)

Experiments have shown that this method is third-order accurate on arbitrary unstruc-

tured triangular grids [31].

3.4.1 Gradient Approximation

The truncation error analysis above has shown that the accuracy of the gradients has a

direct impact on the accuracy of the numerical method. Specifically, the gradient calculation

must be a minimum of second-order accurate in order to increase the order of the truncation

error.

Katz and Sankaran [11] employed a quadratic least-squares methodology in their orig-

inal paper. However, least-squares methods have been shown to be sensitive to high aspect

ratios and curvature of a mesh. This suggests that they will give erroneous gradients in a

practical viscous mesh needed to resolve boundary layers.

Katz and Pincock [14] developed a new gradient method using element mappings. The

reference triangle used is depicted in figure 3.3a, and is defined in an (r, s) computational

domain. The parent mesh triangles are subdivided into “sub-triangles,” which are formed

by placing nodes at equally spaced intervals inside the parent triangle. Examples of the

27

subdivision are shown in figure 3.3. A Lagrange interpolation polynomial, as a function of

r and s, is applied to the reference triangle.

By estimating gradients in this manner, gradient stencils can be kept compact, pro-

moting stability and solution speed. The subdivided mesh is used for the solution, while the

parent triangles provide gradients at the nodes through the Lagrange polynomials. Since the

Galerkin method is a continuous method, neighboring triangles will have multiple estimates

for the gradients at edge and corner nodes. To make the method consistent, the multiple

values at nodes are Jacobian-averaged:

∂Qh

∂x

∣∣∣∣h
i

=

∑
k∈i Jk

∂Qh

∂x

∣∣∣h
k∑

k∈i Jk
(3.31a)

∂Qh

∂y

∣∣∣∣h
i

=

∑
k∈i Jk

∂Qh

∂y

∣∣∣h
k∑

k∈i Jk
(3.31b)

where k are the various approximations to the gradient at node i. For linear elements, this

reduces to a Green-Gauss procedure.

3.4.2 Viscous Terms

Quadratic gradients lead the inviscid terms to be globally third-order, but viscous terms

stay second-order. Pincock [14] discovered that if cubic gradients are used, then the viscous

(
−1, −1√

3

) (
1, −1√

3

)

(
0, 2√

3

)

r

s

(a) Reference triangle (b) Quadratic (c) Cubic

Fig. 3.3: Reference triangle used in this work. Also depicted are second- and third-order
triangles. Red dashed lines indicate the median-dual control volumes

28

terms jump to fourth-order. Cubic gradients caused the inviscid terms to become unstable

on the boundary. This was resolved by using quadratic gradients on the boundary nodes for

the inviscid terms, while using cubic gradients for the inviscid terms on the interior nodes

and for the viscous terms throughout the domain. To form a quadratic gradient on a cubic

triangle, overlapping quadratic triangles are extracted from the cubic triangle. These are

shown in figure 3.4.

In general, viscous terms require special treatment for them to be stable and accurate.

Positivity and stencil compactness have been shown to be necessary in any viscous dis-

cretization [54]. Pincock [14] investigated the stability of the viscous terms in the method

and found that stability could be achieved by using the same element mappings as the

inviscid terms, without any Jacobian averaging. With no Jacobian-averaging, stencil com-

pactness is preserved, and the viscous terms remain stable. Similar to the inviscid flux, the

viscous flux is defined as:

Fv,h0i =
1

2

(
Fv,L0i + Fv,R0i

)
(3.32)

with left and right corrected fluxes,

Fv,L0i = Fv,h0 +
1

2
∆rT0i∇hF

v,h
0 (3.33a)

Fv,R0i = Fv,h0 − 1

2
∆rT0i∇hF

v,h
i (3.33b)

3.4.3 Source Terms

When present, source terms must also be discretized in a correct manner [55]. This can

include unsteady time terms, turbulent production/destruction terms, or source terms from

the method of manufactured solutions. The traditional Galerkin discretization for source

terms in given as:

Sh0 =
∑
i

1

2
(S0 + Si)V0i (3.34a)

V0i =
1

4
∆r0i · n0is0i (3.34b)

29

1 4

10

6

32

5

8 9

7

5 7

10

6

98

1 3

8

2

65

2 4

9

3

76

Fig. 3.4: Decomposition of a cubic element into three quadratic elements

This discretization can be shown to be second-order for irregular grids and third-order

for regular grids. The traditional source terms, (equation 3.34), are replaced with a flux

correction approximation,

Sh0 =
∑
i

1

2

(
SL + SR

)
0i
V0i (3.35a)

SL0i = S0 −
1

2
∆rT0i∇hS0 −

1

8
∆rT0iH

h(S0)∆r0i (3.35b)

SR0i = Si −
1

2
∆rT0i∇hSi −

1

8
∆rT0iH

h(Si)∆r0i (3.35c)

whereHh(S0) is the Hessian matrix of the source term. The gradient∇S0 must be computed

to the same p order of accuracy as the fluxes, while the Hessian must be computed to O(p−1)

accuracy. To compute the Hessian, the second derivative is taken of the first derivative locally

in each element. Multiple approximations on edge and corner nodes are Jacobian-averaged

using equation 3.31b.

3.5 Flux Correction on Three-Dimensional Strand Grids

In three-dimensions, the Navier-Stokes equations are given by equation 3.1, which will

be solved on a strand grid. Each stack of prismatic cells emanating from the surface is

30

mapped to a standard computational space as shown in figure 3.5. In order to create high-

order derivatives, the triangular base of a stack is divided into equally spaced sub-triangles

in the r-s plane. Quadratic elements are shown in figure 3.5. The distribution of nodes

along the strands is mapped to an equally spaced distribution in the η-direction in the

computational space, where η ∈ [0, 1], with 0 at the root of the strand stack. The equations

of motion are solved on all sub-triangles, with high-order derivatives of r and s computed

using Lagrange mappings. Derivatives of η are computed using high-order summation-by-

parts (SBP) operators.

Equation 3.1 is transformed to the computational space, resulting in

∂Q̂

∂t
+
∂F̂

∂r
+
∂Ĝ

∂s
+
∂Ĥ

∂η
− ∂F̂ v

∂r
− ∂Ĝv

∂s
− ∂Ĥv

∂η
= Ŝ

Q̂ ≡ JQ, Ŝ ≡ JS,

F̂ ≡ J (rxF + ryG+ rzH) , F̂ v ≡ J (rxF
v + ryG

v + rzH
v)

Ĝ ≡ J (sxF + syG+ szH) , F̂ v ≡ J (sxF
v + syG

v + szH
v)

Ĥ ≡ J (ηxF + ηyG+ ηzH) , F̂ v ≡ J (ηxF
v + ηyG

v + ηzH
v)

rx sx ηx

ry sy ηy

rz sz ηz

 =
1

J


yszη − zsyη zryη − yrzη yrzs − zrys

zsxη − xszη xrzη − zrxη zrxs − xrzs

xsyη − tsxη yrxη − xryη xrys − yrxs


J = xη(yrzs − zrys) + yη(zrxs − xrzs) + zη(xrys − yrxs)

(3.36)

Here, J is the Jacobian of the transformation, F̂j and F̂ vj are the transformed inviscid and

viscous fluxes, and partial differentiation is denoted with a subscript.

The high-order discretization method treats each layer in the prism stack individually.

Two-dimensional median-dual volumes are constructed around each node in the r-s plane.

The sub-triangles and median-dual control volumes in a single surface element are shown

as the black solid lines and red dashed lines in figure 3.3 for quadratic and cubic surface

elements, respectively. To retain high-order accuracy, it is necessary to treat the η-derivatives

31

correctly [16]. This is accomplished by moving them to the right-hand side and treating them

as source terms. The physical time derivative is also moved, and a pseudo-time derivative

is added on the left-hand side to employ a semi-implicit time-marching solution [16].

∂Q̂

∂τ
+
∂F̂

∂r
+
∂Ĝ

∂s
− ∂F̂ v

∂r
− ∂Ĝv

∂s
= S̃ (3.37a)

S̃ = Ŝ − ∂Q̂

∂t
− ∂Ĥ

∂η
+
∂Ĥv

∂η
(3.37b)

This reduces the three-dimensional equations to a two-dimensional problem in the r-s plane,

which is discretized using the two-dimensional flux correction (now in the (r, s) plane, in-

stead of the (x, y) plane) as described previously in Section 3.4. Each plane is coupled

through the source term. As long as all terms in S̃ are computed at least to second-order

accuracy, the (r, s) solution will retain its high-order properties. SBP finite-difference op-

erators are used to compute the required η-derivatives, which allow the scheme to retain

high-order accuracy, stability, and discrete conservation in three dimensions [56–61]. Rele-

vant details of the SBP operators are given in Appendix A.

3.6 Solution Techniques

Because flux correction is based on finite-volume methodology, a plethora of mature

solution techniques already exist, including multigrid methods, adaptive pseudo-time step-

r (1)

s (2)

⌘ (3)

1 of 1

American Institute of Aeronautics and Astronautics

r (1)

s (2)

⌘ (3)

1 of 1

American Institute of Aeronautics and Astronautics

r (1)

s (2)

⌘ (3)

1 of 1

American Institute of Aeronautics and Astronautics

}

r (1)

s (2)

⌘ (3)

�⌘ (4)

1 of 1

American Institute of Aeronautics and Astronautics

r (1)

s (2)

⌘ (3)

�⌘ (4)

x (5)

y (6)

z (7)

1 of 1

American Institute of Aeronautics and Astronautics

r (1)

s (2)

⌘ (3)

�⌘ (4)

x (5)

y (6)

z (7)

1 of 1

American Institute of Aeronautics and Astronautics

r (1)

s (2)

⌘ (3)

�⌘ (4)

x (5)

y (6)

z (7)

1 of 1

American Institute of Aeronautics and Astronautics

Fig. 3.5: Mapping of a strand stack to computational space

32

ping, and line-implicit methods. Each node in the strand grid is denoted by an index pair

(n, j): n, which is the surface node index, and j, which is the node along the strand which

emanates from surface node n. The application of flux correction to equation 3.37 at a

strand node (0, j) results in a residual function R̂(0,j), which is defined as

V̂0J(0,j)

∂Q(0,j)

∂τ
+ R̂(0,j) = 0 (3.38a)

R̂(0,j) ≡
∑
i∈0

(
F̂h0i,j − F̂

v,h
0i,j

)
− S̃h(0.j) (3.38b)

where V̂0 is the median-dual volume of node 0 in the (r, s) plane, F̂h0i,j and F̂v,h0i,j are numerical

inviscid and viscous fluxes, computed at the median-dual edges between nodes 0 and i,

and F̂ = ÂrF̂ + ÂsĜ is the area-weighted directed flux in the (r, s) plane. Nodes which

lie on corners or edges will have multiple residual approximations from the neighboring

elements. The residual approximations are simply added together to form the complete

residual approximation for node (0, j).

When running in a distributed computing environment, the mesh is partitioned element-

wise. By computing nodal residuals on an element basis, a simple parallel algorithm can be

used. After computing residuals on local elements, a parallel reduce function is used to sum

all residual contributions on process boundaries. Residuals interior to process boundaries

are implicitly summed as elements are processed.

3.6.1 Strand-Implicit Solution Method

The structure inherent in a strand grid allows for specialized solution techniques. First,

the spacing along the strands allows for the use of finite-difference methods, and second,

the strands themselves are obvious lines in the grid which can be used for a line-implicit

scheme. With the line-implicit scheme, stiffness due to the high-aspect-ratio cells needed

for turbulent boundary layers is relieved, while maintaining simplicity and scalability in the

more isotropic unstructured layers of the grid. The line-implicit method used is a nonlinear

Lower-Upper Symmetric Gauss-Seidel (LUSGS) implicit scheme [1,62–67]. This is combined

33

with an explicit Runge-Kutta method in each unstructured layer of the strand grid [68].

The residual at node (0, j) contains contributions from the other nodes in the unstructured

plane (i, j), and contributions from the nodes along the strand (0, j ± k). Following the

notation of Tong [16], these contributions will be denoted as Q∈0 and Q∈j , respectively.

R(0,j) ≡ R(0,j)(Q∈0, Q∈j) (3.39)

Following the nonlinear LUSGS procedure along strands, contributions along the strand

are treated implicitly in a Gauss-Seidel procedure. Starting at the surface (j = 0), each

unstructured layer is solved with an explicit Runge-Kutta procedure. The next higher layer

is then solved, utilizing the new data from the lower layer in the implicit procedure. This

continues until the end of the strand are reached, at which point the sweep proceeds back

down the strands, During the sweeps, the right-hand side always utilizes the latest available

data, while maintaining only the left-hand side contributions from the current layer. The

result is a block diagonal equation, each line of which reads

V̂0J(0,j)

∂Q(0,j)

∂τ
+D(0,j)∆Q

τ+1 = −R(0,j)(Q
τ
∈0, Q

?
∈j) (3.40)

The Q∈0 terms are treated at the current pseudo-time station, while the Q∈j terms are

treated at the latest available station, ?, and ∆Qτ+1 = Qτ+1 − Qτ . The block diagonal is

given by

D(0,j) =
1

2

(
|B(0,j−1/2)|+ |B(0,j+1/2)|

)
+

∂

∂Q(0,j)
(D2,η(Bη)Q

p) (3.41)

where B = ∂Ĥ
∂Q , D2,η(Bη is a SBP operator of the pure η second derivative, and Qp is the

vector of primitive variables. The second term can also be written as

∂

∂Q(0,j)
(D2,η(Bη)Q

p) =
∂Qp,h,ηη
∂Q(0,j)

(3.42)

where the comma in the subscript indicates differentiation.

34

3.6.2 Explicit Runge-Kutta Pseudo-time Stepping

The update equation is treated with an explicit m-stage Runge-Kutta scheme of Jame-

son [68]

Q0 = Qτ

Qk = Qτ + ∆Qk, k = 1, . . . ,m

Qτ+1 = Qm

(3.43)

where τ is the pseudo-time counter, k is the Runge-Kutta stage counter, and ∆Qk is the kth

stage update. Applying the Runge-Kutta algorithm to the implicit update equation yields

[
V(0,j)

αk∆τ
I +D(0,j)

]
∆Qk = −R(0,j)(Q

k−1
∈0 , Q?∈j) (3.44)

at each node, where αk is the Runge-Kutta coefficient for stage k. The left-hand side has been

mass-lumped for convenience in the pseudo-time update. Before the updates are applied,

they are smoothed in the (r, s) plane with an implicit residual smoothing operation [69].

This is performed with two Jacobi iterations.

3.6.3 Implicit Physical Time Stepping

Unsteady time terms are treated using a k-step backward difference formula (BDF),

which in general assumes the following form:

∂Qh

∂t
=

1

∆t

(
γ1Q

n+1 +
1−k∑
i=0

γiQ
n+i

)
(3.45)

where γi depend on the order of the time derivative, and ∆t is the time step. The iteration

in physical time is defined as n.

Pincock [14] studied two BDF formulations, BDF2 and BDF3. BDF2 is a second-

order method and BDF3 is third-order. While third-order temporal accuracy would be

more desirable, it quickly became unstable, and thus will not be used for this work. The

coefficients for BDF2 are: γ1 = 1/2, γ0 = −2, γ−1 = −1/2.

35

3.6.4 Multigrid

The mesh refining procedure gives a convenient agglomeration to be used in a multigrid

solver. Each coarser level is derived by using a lower-order approximation of the parent

mesh elements. For example, the finest mesh would use fourth-order elements, while the

next two multigrid levels are coarsened to second- and first-order elements, respectively.

Differing solver orders can also be used on the different levels, providing a combination

h and p multigrid. The multigrid used in this work is the standard Full Approximation

Storage (FAS) algorithm of Brandt [70, 71]. Restriction and prolongation operations are

performed by interpolating solutions, residuals, and corrections using the available Lagrange

interpolating polynomials over each element. Using these available interpolations allows

for more accurate transfers then conventional averaging or injection procedures. Multigrid

forcing terms are added on coarse levels in the standard fashion. This methodology was

observed to provide good convergence acceleration for all test cases.

3.7 Numerical Approximation of Element Mappings

The transformation to computational space in equation 3.36 involves the computation

of the appropriate mapping terms for each strand stack. Visbal [72] showed that if the

computation of the mapping terms is not consistent with the numerical method, then the

high-order accuracy will be lost. Tong [19] developed a method for use with flux correction

on strand grids, which is summarized here.

Each of the mapping terms can be placed into “conservative form” by multiplying

by the Jacobian: r̂x ≡ Jrx. The transformation leads to three constraints that must be

discretely satisfied:

(r̂x)r + (ŝx)s + (Jηx)η = 0 (3.46a)

(r̂y)r + (ŝy)s + (Jηy)η = 0 (3.46b)

(r̂z)r + (ŝz)s + (Jηz)η = 0 (3.46c)

Only the first is discussed in detail, as the other two follow a similar method. equation 3.46

36

is discretized in a manner consistent with the flux correction method, including artificial

dissipation and penalty boundary conditions. Each conservative mapping term is computed

locally within each element

r̂x = (ysz)η − (yηz)s (3.47a)

ŝx = (yηz)r − (yrz)η (3.47b)

The following discretization is then used to find ηx at each node:

∑
i∈0

[
1

2

(
r̂Lx + r̂Rx

)
Âr +

1

2

(
ŝLx + ŝRx

)
Âs

]
+ D1,η (MJηx)− 1

2
Dj+1/2 (MJηx) +

1

2
Dj−1/2 (MJηx)− penalty = 0

(3.48)

Dj+1/2 (MJηx) represents artificial dissipation acting onMJηx,M is a source discretization

operator, and “penalty” is a boundary penalty term. Solution for ηx is straightforward.

3.8 Computation of (r, s) Gradient

Moving the η-derivatives into the source term effectively created a two-dimensional

problem in each layer. However, ∇(r,s,η) is a three-dimensional operator, and naively apply-

ing the operator would include contributions from nodes along the strand when computing

r and s derivatives. Mavriplis showed that including out-of-plane nodes potentially corrupts

the gradient estimates for high aspect ratio grids with curvature [73]. Fortunately, strand

contributions to ∇(r,s) are small enough to be neglected, without incurring errors greater

than the order of the mesh elements. The proof of this can be found in the work of Katz [15].

37

CHAPTER 4

CARTESIAN OFF-BODY AND ADAPTIVE MESH REFINEMENT

The Cartesian grid covers the rest of the domain in order to propagate any wake ef-

fects away from the body. The Cartesian mesh is implemented using the SAMRAI [74–76]

framework, which uses a Berger-Collela [77] style multilevel AMR grid hierarchy. SAM-

RAI manages grid construction and data communication on the Cartesian grid hierarchy.

figure 4.1 demonstrates a typical patch-based Cartesian hierarchy. Patches are defined by

the global indices of the cells in the bottom-left and top-right corners of the patch. The

global indices for each level start from the bottom-left corner of the domain. Each patch

runs a single instance of the Cartesian solver. Cartesian grid generation starts with the

coarsest level, which is defined over the whole domain. Finer patch levels are added around

the strand grid and in wake regions, where important flow features will exist. Refinement

around the strand grid is continued until the local Cartesian resolution is approximately

the strand resolution, which is defined as the strand spacing at the local clipping index.

The inviscid flow in the off-body is solved using second and third-order node-centered

SBP finite difference operators that are used in the near-body, while the viscous terms are

solved using a second-order FV method, which is detailed in the dissertation by Nadar-

jah [78]. The equations of motion are solved with an explicit Runge-Kutta method in

pseudo-time, with an implicit second-order Backwards Difference Formula used to inte-

grate the physical time derivative. Due to the hierarchical nature of the Cartesian grid, a

multigrid approach based on the Full Approximate Storage (FAS) algorithm of Brandt [70]

is used to enhance convergence of the Cartesian off-body. In this method, solution variables

and residuals on finer levels are restricted to the coarser levels after each pseudo-time step.

On coarser levels where a finer level exists, a multigrid forcing term is computed and added

to the residual. An iteration on the coarse level results in a corrected solution, which is

prolonged back to the fine grid. This procedure is invoked recursively on all levels [27].

38

Fig. 4.1: Adaptive Cartesian Grid Hierarchy

These methods are standard, but must be modified because of the presence of the near-

body mesh. The implicit hole-cutting strategy uses an iblank integer array to determine

which Cartesian nodes are to be solved. This array follows this convention:

• Normal iblank = 1; no special treatment.

• Receiver iblank = 0; receives its solution values from the strand grid.

• Hole iblank = 0; Cartesian node located inside the solid body; no computation per-

formed.

• Multigrid iblank = -1 Cartesian node with an overlying fine grid; used for multigrid.

Prior to performing the domain connectivity, the iblank array is initialized to Normal.

The nodes which have finer grids on top are then marked as Multigrid. During the domain

connectivity, Multigrid nodes are skipped. If a Normal node is found to be a Receiver node or

a Hole node, it is marked with iblank = 0. The Hole nodes are propagated down through

the Cartesian levels. Following this, a stencil check for all Multigrid nodes is performed.

These nodes must have complete stencils with no Receiver or Hole nodes in the stencil. If

an incomplete stencil is found, these nodes are changed to iblank = 0 because it cannot

serve to compute flow. This procedure does not affect the finest levels, but it does cause

39

the implicit holes on the coarser levels to grow. Consequently, this reduces the multigrid

convergence around the strand-Cartesian interface, but the degradation has not been found

to be significant.

4.1 Adaptive Mesh Refinement

The adaptive mesh refinement in the Cartesian solver is managed with the SAMRAI

library. SAMRAI provides a “tagging” interface, which allows the user to write custom

routines for marking certain cells for refinement. After the tagging is complete, SAMRAI

uses that information to determine where to refine the grid and how to partition the grid

among processes. SAMRAI also provides an interface for defining interpolations between

coarse-fine grids, along with a few concrete implementations of commonly used interpo-

lations. While SAMRAI allows for arbitrary fine-coarse refinement ratios, This work only

used a 2:1 refinement ratio between Cartesian levels.

To minimize user input while still providing a suitable interface spacing, the Cartesian

grid automatically refines around the strand grid. This is accomplished by computing the

∆s spacing at the clipping index of each strand, and then refining the Cartesian grid around

this strand until ∆x of the finest Cartesian level is smaller than ∆s. This ensures that the

interface spacings between the grids are roughly the same. The tagging is extremely efficient,

as determining the Cartesian cell a strand node is contained in is a simple algebraic equation.

Finding and refining around critical flow features is not a trivial task. What appears

obvious to the human eye can be difficult to quantify, especially in determining the location

of vortical structures in the flow. Several different methods for locating vortices can be used,

including the ∆ method, the Q-criterion, the λ2 method, and the S-Ω method [79]. The

method used in this work is the Q-Criterion:

Q =
1

2

(
‖Ω‖2 − ‖S‖2

)
(4.1)

40

where Ω is the rotation rate matrix, S is the strain rate matrix, and ‖A‖2 is the square of

the Frobenius norm, which for an arbitrary real matrix M is

‖M‖ =
√

trace (MMT) (4.2)

Positive values of Q indicate that the rotation of the fluid is larger than the strain, while

negative values are the opposite. By setting a positive threshold value, regions of vorticity

can be found. Computing Q on the Cartesian grid is trivial, and cells where Q is larger

than the designated threshold (Q > 30 for all results presented) are tagged for refinement.

The maximum level of refinement is controlled by a maxLevels parameter. More robust

solutions using Richardson extrapolation to determine the maximum level of refinement are

also possible [80].

41

CHAPTER 5

STRAND–CARTESIAN DOMAIN CONNECTIVITY

The domain connectivity between the strand and Cartesian meshes is based on a donor-

recipient relationship and is accomplished with implicit hole cutting. The donor search is

facilitated by the structure inherent in the strand and Cartesian grids and the ability to

locally search the global mesh.

On the strand grid, identification of recipient nodes is controlled by the local clipping

index. The clipping index for this work is set to 2. For surfaces with concave geometries

though, the clipping index can be set lower to prevent intersections. All strand nodes above

the local clipping index are located in the Cartesian grid index system via

Is = floor

(
xs − x0

∆xl

)
(5.1)

where ∆xl is the spacing for a given level. This gives the global Cartesian cell that the

strand node falls in for that level. A search is then made through the global Cartesian mesh

to determine if that cell exists in the currently defined patches. If the cell does not exist,

then the next lower Cartesian level is used, until a viable Cartesian donor cell is found.

The Cartesian nodes needed to interpolate solution values to this strand node are added

to a global Cartesian donor node list. Because SAMRAI decomposes the domain based on

cells, the nodes on partition boundaries are duplicated across processors. It is possible, then,

for a shared node to be marked as a donor node on one processor and not on another. When

all strand nodes have been matched to a donor Cartesian cell, the global donor node list is

synchronized across processes. Since donor nodes give their values to the strand grid, they

cannot receive interpolated values from the strand grid.

42

5.1 Strand Donor Cells for Cartesian Nodes

Determining strand donor cells for the Cartesian nodes is a much more difficult propo-

sition. Note that the techniques described here are not new. Wissink [10] has presented

efficient techniques for finding donor cells in strand grids, which take advantage of the

structure in the strand grid. This work is an investigation of flux correction on strand grids

in an overset environment, and not an investigation into domain connectivity techniques.

Hence, the methods presented here were chosen for ease of implementation, and are not the

most efficient or scalable methods possible using strand grids.

On each process, an octree is built around the global strand grid. A description of

the octree and the search algorithm can be found in appendix C. The octree is filled with

the strand node’s (j, n) IDs and spatial coordinates. Next, a bounding box in the Cartesian

index space is built around the global strand grid. Each process loops through local Cartesian

nodes which are contained inside the bounding box, and, for each node, runs the algorithm

shown in figure 5.1.

First, the octree is queried for a list of the N closest strand nodes, which are sorted

by distance, from closest to farthest. This list is then looped through, testing each strand

node one at a time. If the strand node is a root node (n = 0), then it is assumed that

the Cartesian node is contained inside a solid body, and it is set to be a Hole node. In

practice, it is helpful to check if n < k, where k is a small fraction of the total number of

strand nodes along a strand. This is because the donor search occasionally has convergence

issues near a surface, where the cells have extremely high aspect ratios. If the strand node

is above the local clipping index, it is assumed that the Cartesian node is not contained

in the strand mesh, and it is rejected as a Receiver node. Otherwise, a list of all the cells

surrounding strand j is pulled, and each one is tested in turn to determine if it contains the

Cartesian node. Due to the use of high-order surface elements and the non-orthogonality of

the strands with the surface geometry, simple cross products or basic inside/outside tests

are not able to accurately determine whether or not a point lies inside of a strand stack.

Instead, an optimization routine based on the strand cell Lagrange mappings is used to

43

Start
Start Get list of N closest

strand nodes

Initialize (j,n) to
closest strand node

Is n above the clipping
index of strand j? End

End

Is n equal to 0? Mark node
as Hole

Clear the list
of tested cells

Initialize c to first cell
surrounding strand j

Add c to the list
of tested cells

Are there anymore
strand nodes to try?

Set (j,n) to next
closest strand node

Error
Error

Initialize r, s, eta

Newton s Method’Newton s Method’

Is the node
inside cell c ?

Make a connection
End

End

Set c to the next cell

Is c in the list
of tested cells?

Are there anymore
cells surrounding cell j?

Yes

No Yes

Yes

Yes

Yes

Yes

No

No

No

No

No

Fig. 5.1: Flowchart for the locating the strand donor cell for a Cartesian node

44

determine whether or not the Cartesian node is contained in a strand stack.

For each strand stack tested, the optimization routine returns true if the Cartesian

node is located inside, or false otherwise. If true, then a connection between the strand cell

and the Cartesian node is made, and the appropriate process is notified of the connection. If

false, the next cell is tested. If all the cells surrounding strand j have been tested, then the

next strand node in the octree-returned list is tested. If all nodes have been tested, then an

error is thrown, as the Cartesian node has not been located in the strand grid. In general,

getting a list of 20 strand nodes from the octree is more than enough to find the donor cell.

During the entire process, a list of tested cells is kept to prevent duplicate tests.

Interpolation from the Cartesian to strand grid is a simple tri-linear interpolation

within the Cartesian cell containing the strand node. Interpolation from the strand to

Cartesian grid is more involved. The (r, s) element Lagrange polynomials form the base of

the interpolation. Since no analytic mapping for η exists, it is approximated at node j with

a one-dimensional Lagrange polynomial:

φ(η) =
N−1∑
j=0

φj`j(η) (5.2)

To interpolate within a strand cell, an outer product of Li(r, s) and `j(η) is taken, resulting

in

φ(r, s, η) =
N−1∑
i=0

p∑
j=0

φijLi(r, s)`j(η) (5.3)

Once the r-s-η location of a Cartesian node is known, equation 5.3 is used to interpolate

solution values to the Cartesian node.

45

CHAPTER 6

COMPUTATIONAL RESULTS

In this chapter, results showcasing a working strand-Cartesian solver are presented.

First, the Method of Manufactured Solutions (MMS) is used to verify the correctness of

the Cartesian code, as well as to explore the accuracy of flux correction when used in an

overset environment. Secondary orders of accuracy are then explored by evaluating the drag

coefficient and pressure error on an inviscid sphere at a low Mach number. Following this,

viscous flow over a sphere at a low Reynolds number using the combined strand-Cartesian

solver is compared against experiment and against previous results with the strand grid

alone. The Reynolds number is then increased into an unsteady shedding regime, where

flux correction is validated against experiment, and against the industry code Star-CCM+.

Finally, the ability of flux correction to maintain the strength of a vortex tube is investigated.

The results presented in this chapter lead to four main conclusions. First, that flux

correction on strand grids does lead to an overall increase of solution accuracy. Second,

that flux correction can provide that accuracy at a reasonable cost. Third, the accuracy of

flux correction is diminished slightly by the overset method. Fourth, the convergence and

stability of flux correction is lowered by the overset method.

6.1 Method of Manufactured Solutions

MMS is a method of verifying that the implementation of a numerical method is free

of coding errors and gives the expected order of accuracy. It was originally described by

Roache [81], and consists of choosing an analytic solution and substituting it into the differ-

ential equation to determine an appropriate source term. This source term is then used in

the numerical method to force the method to converge toward the chosen analytic solution.

A grid refinement study is then used to determine the order of accuracy of the numerical

method. A plot of the exact density function on a Cartesian grid is shown in figure 6.1a.

46

(a) Cartesian density solution

100 200 300
1/h

10-3

10-4

10-5

10-6

10-7

10-8

10-9

10-10RM
S

Er
ro

r
(x

-m
om

en
tu

m
)

2

O(2), inviscid only

3.5

O(3), inviscid only

2

viscous only

(b) Cartesian grid refinement study

Fig. 6.1: Verification of Cartesian solver using MMS

The Cartesian code was independently verified using this method. The strand code

has already been subjected to this test in previous work, with the flux correction method

showing third-order accuracy for the inviscid terms and fourth-order accuracy for the viscous

terms [16]. The Cartesian domain was set to be x, y, z ∈ [0, 1], and the mesh was solved

until the residuals fell below 10−13 on successively refined grids. Refinement was achieved

by splitting the cells in half in each direction. The error was computed using an L2 norm

for each grid. Results for the Cartesian solver are shown in figure 6.1b, showing total error

in the x-momentum equation, plotted against 1
h , where h is the characteristic cell size.

Second-order and third-order accurate SBP operators were examined for the inviscid terms,

while the second-order FV discretization was tested for the viscous terms. Both the viscous

terms and the second-order SBP operators are second-order accurate, while the nominally

third-order accurate SBP operators show an order of 3.5. This is most likely due to the

dissipation operators, which are one order more accurate than the inviscid operators.

In order to better understand the effect of the overset meshing technique, this same

test is run with a combined strand-Cartesian mesh, and solved using the Euler equations.

Both the strand and Cartesian grids were refined systematically, and all cases were run until

all residuals converged to 10−13. The strand grid was solved using flux correction, while the

Cartesian grid was solved with the third-order operators. The mesh and resulting orders of

47

accuracy are shown in figure 6.2. The order for the strand and Cartesian grids are shown

when solved using an overset method, and when solved alone, without the presence of the

other grid. The total RMS error for the x-momentum is shown.

On their own, each grid shows typical asymptotic behavior. The strand grid asymptotes

to third-order, and the Cartesian grid asymptotes to an order of 3.5. Together, however,

more complex behavior appears. Overall, the total solution error increases by orders of

magnitude, while the order of accuracy for both the strand and Cartesian solvers drops to

2.5. This shows that the second-order interpolations do not globally preserve the order of

(a) Strand-Cartesian density solution

100 200 300
1/h

10-2

10-3

10-4

10-5

10-6

10-7

10-8RM
S

Er
ro

r
(x

-m
om

en
tu

m
)

2.5
3

3.5

Cart O(3),Overset
Strand O(3),Overset
Cart O(3)
Strand O(3)

(b) Overset strand-Cartesian solver

Fig. 6.2: X-momentum error and order of accuracy studies using the Method of Manufac-
tured Solutions

(a) Density errors in the finest strand
grid (b) Density errors in the finest Cartesian grid

Fig. 6.3: Slices of the strand and Cartesian MMS solution, showing solution error in the
density

48

accuracy for either the strand or Cartesian solvers. Since the exact solution is known, it

is also possible to view the local error in the final solution. The local error in the density

solution is shown in figure 6.3. The errors in the strand grid are localized toward the tips of

the strand, thus showing the impact of the interpolations there. The errors in the Cartesian

grid are located downstream of the strand grid. This clearly demonstrates the need for

high-order solution methods in any near-body grid. Off-body Cartesian solvers are typically

extremely high-order, yet all that accuracy is for naught if it is given a poor starting point

from an overset mesh.

6.2 Inviscid Sphere

Inviscid, incompressible flow, also known as potential flow, over a body of arbitrary

shape produces zero drag on the body. For this test, the convergence of the drag coefficient

of a sphere is evaluated with a grid refinement study. In particular, three grid refinement

studies are performed. The first two are with the strand grid alone; one solved second-order,

and the other with flux correction. These provide a baseline comparison for the third grid

refinement study, which is combined with the Cartesian grid and run high-order. The Mach

number was set to M=0.15, and the solution initialized to the exact potential solution, with

the freestream flow in the z-direction. The exact solution, defined in spherical coordinates

is

ur = w

[
1−

(a
r

)3
]

cos θ

uθ = −w
[
1 +

1

2

(a
r

)3
]

sin θ

(6.1)

where a is the radius of the sphere. Using this as a starting point, the solution was run until

the force on the sphere converged. For the grid refinement studies, a coarse, medium, and

fine mesh were used. For the stand-alone strand grid cases, these were 64x32, 256x64, and

1024x128, respectively, where the first number indicates the number of fourth-order elements

on the sphere’s surface, and the second number is the number of strand nodes used. The

strands were extended to a length of 10 diameters, and a progressive spacing along the

strand was utilized. The wall spacing was also cut in half with each grid refinement.

49

For the overset case, the three meshes used were 64x18, 256x32, and 1024x64. The

strands were extended to a length of 1.5 diameters. The Cartesian mesh was extended from

(−5,−5,−5) to (5, 5, 5), with a ∆x spacing to match the spacing at the strand tips. An

image of the coarse mesh with pressure contours is shown in figure 6.4. The drag coefficient

and the pressure error on the surface of the sphere are used to evaluate the effect of the

Cartesian grid on the surface of the sphere. The exact solution for the pressure on the

surface of the sphere is given by

CP = 1− 9

4
sin2 θ (6.2)

Using this equation as the exact solution, the root-mean-squared error in the converged

solution on the surface of the sphere can be computed, the results of which are shown in

figure 6.5a. The second-order solver (Strand) starts out strong at 1.5, but slows down to

an order of 0.5. Flux correction (Strand FC) is slightly more accurate, and converges at

a slightly better order of accuracy (1.8). The drag force is shown in figure 6.5b. Both the

second-order and flux correction solvers demonstrate a clear third-order accurate conver-

gence rate on the drag force, with flux correction being slightly more accurate.

The results from the overset meshes show that in this situation, the Cartesian grid

has almost no effect on the solution at the surface of the sphere. This highlights that the

overset approach, in which near-body and off-body regions are separated in differing meshes

and solvers, is valid. This also highlights the importance of using high-order solvers in the

Fig. 6.4: Coarsest overset mesh with pressure contours of the inviscid flow solution

50

10 50 100
1/h

10-4

10-3

10-2

Su
rf

ac
e

Pr
es

su
re

 R
M

S
Er

ro
r

0.5
1.8

Strand
Strand FC
Overset, Strand FC

(a) Pressure RMS Error

10 50 100
1/h

10-2

10-1

100

101

102

D
ra

g
Fo

rc
e

(N
)

33

Strand
Strand FC
Overset, Strand FC

(b) Drag Force Error

Fig. 6.5: Results from the grid refinement study using an incompressible, inviscid solution

near-body, as they will have the most influence on the accuracy on the surface, which is

generally the region of interest in almost any flow simulation.

It was necessary to lower the CFL on both the strand and the Cartesian grid to achieve

a stable solution. It was even necessary to lower the CFL when running flux correction

on the 1024x128 stand-alone strand grid. Even when it was not necessary to lower the

CFL, the flux correction solver took much longer to converge than the second-order solver.

Some of this is attributed to the low Mach number, which causes a decoupling of the

velocity and energy equations in the compressible Navier-Stokes equations. Preconditioning

of the equations would speed convergence, but was not available in the Cartesian solver.

As the solution converged, the drag coefficient converged in an oscillatory manner, with

an exponential decay. The decay rate was much slower with flux correction, and might be

due to the smaller numerical dissipation in the solution, which leads to less damping in

the solution. Presumably, alternative solution techniques are available which could increase

the convergence rate. The poor convergence of the finest flux correction case and the finest

overset case prevented their inclusion in the results.

6.3 Steady Laminar Sphere

Next, we turn to validation cases using steady laminar flow over a sphere at Mach

number of 0.2 over a range of Reynolds numbers. The surface mesh used by the strand

51

grid consisted of 1024 fourth-order triangular elements. The strands were extended to a

length of two diameters, with 32 nodes in the strand direction, the last two of which were

clipped to interface with the Cartesian grid. The Cartesian grid covered the rest of the

domain, which was defined as a rectangular region extending 8 diameters upstream, 14

diameters downstream, and 8 diameters on either side of the sphere. The grid was manually

refined around the strand grid and in the wake region, using three levels of refinement to

approximately match the strand spacing at the clipped index. The full mesh is depicted

in figure 6.6, and consists of approximately 260,000 non-clipped strand nodes and 400,000

non-multigrid and non-hole Cartesian nodes, for a total of approximately 660,000 degrees

of freedom. For each Reynolds number, the solution was run until all residuals fell below

10−6. The Cartesian grid was solved using third-order finite differences, while the strand

solver was tested with the second-order solver (Strand) and the high-order flux correction

solver (Strand FC).

This mesh was used to perform a low Reynolds number sweep at Re=40, 80, 120, 160,

and 200. At each Reynolds number, the separation angle, recirculation length, and upper

center coordinates of the standing ring vortex were compared against computational data

from Magnaudet [82] and Tomboulides [83], and experimental data from Pruppacher [84]

and Tenada [85]. This same experiment was run by Tong [19] using just the strand grid,

which was extended to 20 diameters and used 128 nodes along the strands, which resulted

Fig. 6.6: Overset mesh used for laminar sphere test cases

52

in roughly 1 million nodes total. It is interesting to note that using the overset method, the

total number of nodes was reduced by 34%, without sacrificing accuracy.

The results of this experiment are shown in figure 6.7. Both the overset results from

this work and the results of Tong [19] show good agreement with the computational and ex-

perimental results. Use of the overset Cartesian mesh improved estimates of the separation

angle slightly, while the second-order estimates of recirculation length were greatly improved

by the presence of the Cartesian mesh. The flux correction method appears to overpredict

the recirculation length slightly at the higher Reynolds numbers. For the x-location of the

vortex center, the second-order strand solver again shows an improvement in prediction.

Flux correction has little change from the results of Tong [19]. The second-order method

appears to significantly overpredict the y-locations, while flux correction shows little differ-

ence from using the strand solver by itself. It should be noted that the second-order solver

predicted an unphysical asymmetric solution at Re=200, which accounts for the drastic

change between Re=160 and Re=200 which is seen in figure 6.7d. As the standing vortex

grew with the increased Reynolds number, it moved into the interpolation region between

the two meshes. The interface between the strand and Cartesian grids most likely produced

numerical errors which induced the asymmetric solution. The problem was not noted with

the flux correction method.

The flux correction method for these cases took approximately 15% more iterations

to converge, with only a 23% increase in computation time per iteration (solved on 60

processes). An iteration is defined as an iteration in pseudotime on the strand and Cartesian

solvers, along with the necessary interpolations and transfers between the two grids.

6.4 Unsteady Laminar Flow over a Sphere

The next case evaluates the overset methodology for unsteady flow over a sphere at

M=0.2, with a Reynolds number sweep from 400 to 2000. For each Reynolds number, four

cases were run. The first case was run using the industry software Star-CCM+. Star-CMM+

is a well-established second-order cell-centered finite-volume software, and was available to

use for a baseline comparison. The next two cases both used the strand-Cartesian method-

53

0 100 200
Re

100

120

140

160

180
Overset, Strand
Overset, Strand FC
Tong, Strand
Tong, Strand FC
Pruppacher, et al.
Taneda

(a) Separation Angle

0 100 200
Re

0.0

0.5

1.0

1.5

2.0

s/
D

Overset, Strand
Overset, Strand FC
Tong, Strand
Tong, StrandFC
Taneda
Tomboulides, et al.
Magnaudet, et al.

(b) Recirculation Length

0 100 200
Re

0.5

0.6

0.7

0.8

0.9

1.0

x c

Overset, Strand
Overset, Strand FC
Tong, Strand
Tong, Strand FC
Taneda

(c) Vortex center x-coordinates

0 100 200
Re

0.1

0.2

0.3

0.4

y c

Overset, Strand
Overset, Strand FC
Tong, Strand
Tong, Strand FC
Taneda

(d) Vortex center y-coordinates

Fig. 6.7: Low Reynolds number laminar sphere results from the overset mesh compared
against results from Tong [19] using only a strand grid. The strand grid was tested using
second-order FV (Strand) and high-order flux correction (Strand FC). Results are also
compared against experimental and computational data

54

ology. In both cases, the Cartesian grid automatically refined to the strand grid, and au-

tomatically refined to flow features using the Q-criterion. The Cartesian solver was run

third-order accurate for both cases. The only difference between the two cases was in the

solver used on the strand grid, which were the second-order solver and the third-order flux

correction solver. The fourth case uses just a strand grid with the flux correction solver,

without the Cartesian overset grid. For all four cases, the solution was computed for a total

physical time of 10 seconds, with a physical time step of 0.002 seconds, for a total of 5000

timesteps.

This particular case was used by Tong [19] to evaluate the flux correction method

on strand grids. It is well known that when the flow over a sphere exceeds a Reynolds

number of 480, an irregular mode is reached in which the shedding of hairpin vortical

structures becomes chaotic. Tong [19] found that the second-order strand solver added

enough numerical dissipation that the effective Reynolds number was lowered into a regular

shedding mode, but the flux correction method was able to resolve the irregular shedding.

The Star-CMM+ and strand-Cartesian meshes were constructed to have a similar num-

ber of degrees of freedom. The near-body meshes had a radial distance of one diameter, with

48 prism layers in Star-CCM+ and 48 strand nodes on the strand grid. The Star-CCM+

cases did not use any automated mesh refinement, but the mesh was constructed with a

“wake-refinement” grid, to the same ∆x spacing as the Cartesian grid. Images of the Star-

(a) Star-CCM+ mesh, with wake-refined grid
(b) Overset strand-Cartesian mesh, shown at
t = 10s with AMR

Fig. 6.8: Meshes used for the unsteady laminar sphere cases

55

CCM+ and the strand-Cartesian meshes are shown in figure 6.8. Each physical timestep

was run with 100 pseudosteps or until the residuals fell below 10−6.

For all four cases, the Strouhal number was measured and compared to the extensive

experimental study of Sakamoto and Haniu [86]. The Strouhal number is a nondimensional

frequency, and is defined as

St =
fL

v∞
(6.3)

where f is the dominate frequency, L the characteristic length (diameter in this setup), and

v∞ is the freestream velocity. In their work, the Strouhal number was measured with a hot-

wire probe placed at a distance of 3-4 diameters behind the sphere. Mimicking this setup,

the velocity was recorded for all three cases at xp = (4, 0, 0) in the wake of the sphere. This

location falls in the Cartesian grid, and so provides a test as to how flux correction in the

near-body affects the global flow in the off-body. A power spectrum from a Fourier transform

of the velocity over time reveals the dominant shedding frequency. Occasionally, a high-pass

filter is used to discard lower frequencies. The power spectrums can be found in appendix E,

with the frequencies used for the computation of the Strouhal number shown with a circle.

The first two seconds of data were not used in the computation of the Strouhal number in

order to avoid pollution by the initial transients. The resulting Strouhal computations will

be examined first, followed by a qualitative examination of the results.

The computed Strouhal numbers are shown in figure 6.9. The open circles indicate the

experimental data of Sakamoto. It is obvious that none of the overset methods accurately

predict the Strouhal number. The overset method with flux correction in the strand grid

performed even worse at predicting the Strouhal number than the second-order methods.

To provide some insight to this baffling result, the fourth case, using flux correction with

just a strand grid and no overset Cartesian grid, was run. This results in much better

accuracy than any of the overset methods. From this, it appears that the overset interface

is affecting the temporal accuracy of the solution. It is possible that the overset cases were

not converged enough, as the convergence of the overset cases was worse than the standalone

strand grid case. The overset cases hit the 100 pseudostep limit, while the standalone strand

56

grid cases would hit the residual convergence limit of 10−6. This was seen as minor at the

time, as the overset residuals always ended at approximately 3× 10−6. A test case was run

at Re=2000 which allowed for full convergence of the residuls below 10−6. This showed a

slight improvement in the computed Strouhal number, but it was not considered significant

enough to rerun all Reynolds numbers.

The poor showing from flux correction is unfortunate, but all is not lost. A closer look

at the power spectrums at Re=400 and Re=600, shown in figure 6.10 and figure 6.11, re-

veals that flux correction is the only method that predicts the correct shedding mode. When

Re=400, the second-order methods predict an unsteady shedding pattern, while flux correc-

tion obtains a clear periodic shedding frequency. When Re=600, the situation is reversed,

with flux correction correctly predicting an aperiodic shedding, and the second-order meth-

ods predicting a periodic shedding. The correct prediction of the shedding modes is verified

by consulting the work of Sakamoto [86].

Lastly, examination of the wake at Re = 600 for the overset cases and the standalone

strand grid in figure 6.12 shows clearly resolved vortices (using the Q-Criterion at Q=20)

in the Cartesian grid. This is a significant improvement over using the strand grid by itself.

0 500 1000 1500 2000 2500
Re

0.00

0.05

0.10

0.15

0.20

0.25

St

Sakamoto
Star-CCM+
Strand,Overset
Strand FC,Overset
test
Strand FC

Fig. 6.9: Unsteady laminar sphere results from the overset mesh compared against the
industry software Star-CCM+ and the experimental data of Sakamoto [86]. The strand grid
was tested using a second-order solver (Strand) and flux correction (Strand FC)

57

0 10 20 30 40 50
Hz

Ar
bi

tr
ar

y

(a) Star-CCM+

0 10 20 30 40 50
Hz

Ar
bi

tr
ar

y

(b) Overset, second-order

0 10 20 30 40 50
Hz

Ar
bi

tr
ar

y

(c) Overset, flux correction

Fig. 6.10: Power spectrums of shedding sphere at Re = 400

0 10 20 30 40 50
Hz

Ar
bi

tr
ar

y

(a) Star-CCM+

0 10 20 30 40 50
Hz

Ar
bi

tr
ar

y

(b) Overset, second-order

0 10 20 30 40 50
Hz

Ar
bi

tr
ar

y

(c) Overset, flux correction

Fig. 6.11: Power spectrums of shedding sphere at Re = 600

6.5 Isentropic Vortex Propagation

The development of flux correction on strand grids was driven by the inability of a

traditional second-order solver to retain the strength of a vortex, which was being generated

by a rotor blade. (See figure 1.2.) In this test case, the ability of flux correction to propagate

a vortex in an overset context is tested. The setup is demonstrated in figure 6.13a. To

generate the strand mesh, a 2× 2 square in the x-y plane was meshed with right triangles.

Each point was randomly perturbed in the x-y plane to prevent any superconvergence of

flux correction. The square was then rotated 45◦ about the z-axis. A cube is formed by

extending the strands to a length of 2. The plane was translated so that the center of the

volume mesh is located at the origin. The plane was meshed with 15 triangles on a side,

for a total of 50 linear triangles. After the fourth-order triangle subdivision procedure, this

amounts to 60 triangles per side, with characteristic mesh length h ≈ 0.033. Sixty strand

nodes were placed along the strands for a strand spacing of ∆s = 0.033. The Cartesian

grid is defined from (−10,−10,−4) to (10, 10, 4), with a base level spacing of ∆x0 = 0.266.

58

(a) Overset, second-order

(b) Overset, third-order

(c) Flux correction, strand grid

Fig. 6.12: Q=20 contour of wake behind sphere at Re=600

59

The automatic refinement was used to refine around the strand grid, creating three more

refinement levels with a spacing of ∆x3 = 0.033, to match the strand grid spacing. Both

the strand and Cartesian grids were initialized to the exact solution, and the Cartesian grid

was automatically refined around the vortex. Note that a large buffer value was used in the

refinement process to ensure the entire vortex was contained in the finest Cartesian level.

The exact solution is a two-dimensional isentropic vortex in the x-y plane, the definition

of which can be found in the work by Shu [87]. This is superimposed on a uniform flow in

the x-direction. The equation is reproduced here.

u = 1 + ∆u, v = 0 + ∆v, w = 0

Rgas = P = 1, T = 1 + ∆T, γ = 1.5

a = 3, ε = 5, r =
√
x2 + y2

∆u = −ay ε

2π
exp

(
1

2

(
1− a2r2

))
∆v = ax

ε

2π
exp

(
1

2

(
1− a2r2

))
∆T = −(γ − 1) ε2

8γπ2
exp

(
1− a2r2

)

(6.4)

Here, u, v, and w, are the x, y, and z velocities, respectively. The universal gas constant is

denoted withRgas, γ is the ratio of specific heats, P is the pressure, and T is the temperature.

The value 1
a defines the radius of maximum velocity in the vortex, and ε is the strength of

the vortex. The Cartesian solver boundaries used farfield boundary conditions on the x and

y boundaries, and periodic boundaries on the z boundaries.

A few modifications to the strand solver and the domain connectivity were required

to implement this test case. The clipping index was set to clip only the last node of each

strand. An additional clipping array was added to the strand solver to clip the root nodes,

and the two clipping indices were set to clip the entire strand for strands on the boundary

of the plate. This essentially removed the plate from the computation of the strand grid.

The exact solution for the Euler equations is the propagation of the isentropic vortex

in the x-direction. Two test cases were run with the previously described setup. The first

60

used the second-order solver on the strand grid, while the second used the high-order flux

correction. The Cartesian grid was solved third-order. Each case was initialized to the exact

solution, and then solved in time. A baseline case using just the Cartesian solver alone was

also run. The mesh for this case is shown in figure 6.14a. In order to mimic the strand

setup, an additional level of Cartesian refinement was manually placed at the origin. This

is to determine if refinement in the Cartesian mesh affects the vortex. Each timestep was

solved in pseudotime until the residuals dropped below 10−6. The vortex starts at x = −3

and stepped until t = 6 with ∆t = 0.002, for a total of 3000 timesteps.

The final vortex, after it has passed mostly through the strand grid (or the refined

Cartesian region), is shown in figure 6.13b and figure 6.14b. It is clear that the vortex is not

maintained in the interface region of the strand grid, while the Cartesian-only mesh easily

maintains the structure of the vortex.

This leaves the question as to who is at fault: Flux correction, or the interface? To

answer this question, the vorticity along the x-axis was examined at every timestep. A few

timesteps are shown in figure 6.15, specifically, the initial solution, as the vortex passes

through the front interface, with the vortex inside the strand grid, and as the vortex passes

through the back interface. Also shown in figure 6.16 is the maximum vorticity along the

x-axis, plotted as a function of time. The vertical dashed lines indicate when the center of

the vortex should move from one grid to the other. For a yet unknown reason, the vortex

travels slower than expected, and the vorticity drops significantly at first, only to eventually

level off for all cases. The discrepancies only start to appear as the vortex passes through

the interface.

Consider each figure in turn. As the vortex passes through the first interface, the

vorticity drops, and the overall width of the vortex gets larger. The interaction with the

interface also causes a few anomalies which grow as the vortex passes through the strand

grid, causing the negative vorticity regions to grow. These anomalies are seen in both the

second-order and flux correction solvers, so the growth of these are not due to flux correction.

Then as the vortex passes through the back interface, the vorticity grows and the vortex is

61

(a) Initial condition and mesh setup. (b) Time t = 6 seconds using an overset mesh

Fig. 6.13: Isentropic vortex solution and mesh for the overset case. The Cartesian grid was
solved third-order, and flux correction was used on the strand grid. The contour shown is
Q = 0.1

(a) Initial condition and mesh setup
(b) Time t = 6 seconds using a refined Cartesian
grid

Fig. 6.14: Isentropic vortex solution and mesh for the Cartesian-only case, which was solved
using a third-order solver. The contour shown is Q = 0.1

62

squeezed tighter. Looking at figure 6.16, it can be seen that after the vortex passes through

the first interface, the maximum vorticity stays constant until the vortex passes through the

back interface. This indicates that the numerical errors shown are issues with the overset

interface, and not issues with flux correction itself. The results using just the Cartesian

grid shows the vorticity remaining almost constant after the initial dropoff, showing that a

refinement region with a proper interface does not affect the solution at all.

6.6 Summary of Computational Results

These computational results demonstrate a working strand-Cartesian solver, with the

high-order flux correction solver employed on the strand grid. The MMS cases demonstrated

a decreased global order of accuracy for both flux correction and the Cartesian solver, due

to the interpolations used in the overset grid. The inviscid sphere showed that the accuracy

of near-body steady-state quantities were not significantly affected by the overset paradigm,

but that the convergence to steady-state was. Steady-state low Reynolds number viscous

flow over a sphere shows improved accuracy using the overset mesh, while only using half

the degrees of freedom, demonstrating the effectiveness of applying different grid types and

solvers to different regions. However, when moving to unsteady shedding from a sphere,

that accuracy was lost in the downstream regions of the flow. Further clarification is found

in the advection of an isentropic vortex, which loses integrity upon contact with the overset

interface. These last two cases demonstrate the need for future research on time-accurate

interpolations on the overset interface.

63

4 2 0 2 4

x

1

0

1

2

3

4

5

6
Z

 v
o
rt

ic
it

y
Cartesian Strand Cartesian

Strand
StrandFC
Cartesian

(a) 1. t = 0 seconds

4 2 0 2 4

x

1

0

1

2

3

4

5

6

Z
 v

o
rt

ic
it

y

Cartesian Strand Cartesian

Strand
StrandFC
Cartesian

(b) 2. t = 2.43 seconds

4 2 0 2 4

x

1

0

1

2

3

4

5

6

Z
 v

o
rt

ic
it

y

Cartesian Strand Cartesian

Strand
StrandFC
Cartesian

(c) 3. t = 4.508 seconds

4 2 0 2 4

x

1

0

1

2

3

4

5

6

Z
 v

o
rt

ic
it

y

Cartesian Strand Cartesian

Strand
StrandFC
Cartesian

(d) 4. t = 5.378 seconds

Fig. 6.15: Vorticity magnitude, plotted along the x-axis at various times

0 1 2 3 4 5 6

t

0

1

2

3

4

5

6

M
a
x
 Z

 v
o
rt

ic
it

y

Cartesian Strand Cartesian

Strand
StrandFC
Cartesian

Fig. 6.16: Maximum vorticity on the x-axis, plotted as a function of time. The dashed lines
indicate when the vortex should be entering/leaving the strand grid based on the x-velocity

64

CHAPTER 7

CONCLUSIONS AND FUTURE WORK

The development of strand grids is driven by the need to accurately and efficiently

compute solutions to problems involving multiple moving bodies and problems involving

highly vortical flows (such as those produced by rotorcraft). Strand grids are designed to

capture the formation of boundary layers and vortices close to the surface of the bodies,

while overset Cartesian grids then carry body-generated flow features into the rest of the

domain. Previous work used second-order solvers on the strand grids, with high-order solvers

in the Cartesian grids. The second-order solvers were unable to accurately resolve the strong

wingtip vortices, leading to a global degradation of accuracy. This spurred the development

of the high-order flux correction method, which achieves third-order accuracy for the inviscid

terms, and fourth-order accuracy for the viscous terms on unstructured triangular grids.

Through the use of high-order summation-by-parts operators and a semi-implicit method,

the flux correction method retains accuracy on strand grids, while remaining stable and

convergent, with minimal computational overhead. Previous work with flux correction used

only stand alone strand grids, with no overset Cartesian grid.

This work demonstrates a coupled high-order flux correction strand-grid solver with a

high-order Cartesian solver in an overset methodology. The inherent structure in the strand

grid and the Cartesian grid allows the use of unique and simple methods for performing the

necessary domain decomposition and interpolations. Verification of the Cartesian solver was

performed using MMS, showing third-order accuracy for the inviscid terms of the Navier-

Stokes equations. The viscous terms were treated using a second-order finite-volume scheme,

which is also verified using MMS.

The flux correction solver was tested with the overset methodology using several test

cases. The first was a grid refinement study using MMS, which showed a decrease in the order

of accuracy of flux correction from O(3) to O(2.5). The order of accuracy was diminished

65

by the second-order interpolations. The effect of more robust interpolation methods could

be explored in later work.

The effects of the overset method on the stability and convergence of flux correction

were clearly seen in the second test case, which solved low Mach number inviscid flow over a

sphere. Using the overset method with flux correction adversely affected the convergence to

steady-state, and required a lower CFL to remain stable. The accuracy of the drag coefficient

on the sphere, was not affected by the overset mesh, however.

The next test case was low-Reynolds-number flow over a sphere. These tests showed

that, in general, solutions on the strand grid benefit greatly from the use of the Cartesian

grid in an overset manner. The high-order flux correction method more accurately predicts

characteristics of the recirculation bubble behind the sphere, especially at higher Reynolds

numbers. Unsteady flow over a sphere, over a range of Reynolds numbers, is also tested

using second-order and high-order methods. Comparisons against experiment and the in-

dustry software Star-CCM+ were made. None of the overset methods correctly predicted

the Strouhal number, but flux correction on a stand-alone strand grid performed much bet-

ter. This indicates that the overset method can affect the accuracy of temporal statistics

in the flow. Despite this, flux correction in an overset situation still predicted the correct

shedding mode. The Cartesian mesh also allowed for the resolution of the wake, which has

not been possible up to this point with strand grids alone.

Flux correction is more accurate locally in the strand grids than the traditional second-

order methods on which it is based. This is shown in the MMS test cases, the inviscid sphere

cases, and the low-Reynolds-number steady-sphere cases. However, that improvement in the

order of accuracy is not maintained in the presence of an overset Cartesian grid. Also, as

seen in the Strouhal number of the unsteady sphere cases, that improvement in accuracy

does not propagate well into the rest of the domain. The convergence of flux correction

was seen to be affected dramatically by the behavior of the solver to which is was coupled.

Intuitively, this makes sense, but it does call into question the traditional overset mindset.

This mindset is that different grid types and solvers can be used in conjunction, without

66

regard for the other solvers being used. Additionally, the stability of the flux correction

method was occasionally adversely affected. The CFL had to be lowered in order to force a

stable computation.

The two previous points indicate that in order to assure a stable, globally high-order

accurate, and convergent solution, a rigorous framework is needed to develop high-order

overset methods. High-order methods in general have been the subject of much research

for the past decade, and have made great strides in becoming industry-ready. However, the

preceding results indicate that there is still work to be done before high-order methods can

be used in a traditional overset simulation. A good starting point could be the Simultane-

ous Approximation Terms used in a multiblock mesh for SBP operators [88]. These allow

the joining of two different meshes at an interface, and are provably stable and globally

accurate. Another important aspect to consider is correctly designing high-order methods

for use on moving meshes, which if done incorrectly, can degrade the method to a low-order

method [72].

Computationally, flux correction still provides high-order accuracy with minimal com-

putational effort. Currently, the flux correction implementation only increases the walltime

per pseudostep by about 25%. It is believed that reworking the solution algorithm would

allow for an even smaller time increase. Using the overset method also allowed for a sig-

nificant decrease in the number of nodes, without sacrificing accuracy. This is because the

most complex portion of the flow (the flow near the body) is accurately resolved with flux

correction, and the rest is efficiently resolved with the Cartesian grid.

Flux correction on strand grids has now reached full maturity with its integration into a

complete overset strand-Cartesian framework. The flux correction strand solver is now ready

for integration into a production-level code, such as that fielded by the CREATE program.

To make the combined solver fully high-order, research into conservative and high-order

interpolation schemes must be performed. Modification of the flux correction method to

allow for moving grids would allow the method to finally realize the goal of quickly and

accurately predicting flow solutions over full ship-aircraft and aircraft-aircraft interactions.

67

REFERENCES

[1] Wang, Z. J., “High-order Methods for the Euler and Navier–Stokes Equations on Un-
structured Grids,” Progress in Aerospace Sciences, Vol. 43, 2007, pp. 1–41.

[2] Katz, A., Wissink, A., Sankaran, V., Meakin, R., and Sitaraman, J., “Application
of Strand Meshes to Complex Aerodynamic Flow Fields,” Journal of Computational
Physics, Vol. 230, 2011, pp. 6512–6530.

[3] Meakin, R., Wissink, A., Chan, W., Pandya, S., and Sitaraman, J., “On Strand Grids
for Complex Flows,” AIAA 18th Computational Fluid Dynamics Conference, No. AIAA
2007-3834, 2007.

[4] Wissink, A., Katz, A., Chan, W., and Meakin, R., “Validation of the Strand Grid
Approach,” AIAA 19th Computational Fluid Dynamics Conference, No. AIAA 2009-
3792, 2009.

[5] Wissink, A., Potsdam, M., Sankaran, V., Sitaraman, J., Yang, Z., and Mavriplis, D.,
“A Coupled Unstructured Adaptive Cartesian CFD approach for Hover Prediction,”
Tech. rep., American Helicopter Society 66th Annual Forum, Phoenix, AZ, 2010.

[6] Steger, J., Dougherty, F., and Benek, J., “A Chimera Grid Scheme,” Advances in Grid
Generation, Houston, TX, June 20-22 1983.

[7] Benek, J. A., Steger, J. L., and Dougherty, F. C., “A Flexible Grid Embedding Tech-
nique with Application to the Euler Equations,” AIAA 6th Computational Fluid Dy-
namics Conference, No. AIAA Paper 1983-1944, Danvers, MA, 1983.

[8] Lee, Y. L. and Baeder, J., “Implicit Hole Cutting: A New Approach to Overset Grid
Connectivity,” AIAA 16th Computational Fluid Dynamics Conference, No. AIAA Pa-
per 2003–4128, Orlando, FL, 2003.

[9] Sitaraman, J., Floros, M., Wissink, A., and Potsdam, M., “Parallel Domain Connec-
tivity Algorithm for Unsteady Flow Computational using Overlapping and Adaptive
Grids,” Journal of Computational Physics, Vol. 229, 2008, pp. 4703–4723.

[10] Wissink, A., Katz, A., and Sitaraman, J., “PICASSO: A Meshing Infrastructure for
Strand-Cartesian CFD Solvers,” 30th AIAA Applied Aerodynamics Conference, No.
2012-2916, 2012.

[11] Katz, A. and Sankaran, V., “An Efficient Correction Method to Obtain a Formally
Third-order Accurate Flow Solver for Node-Centered Unstructured Grids,” Journal of
Scientific Computing , Vol. 51, No. 2, 2012, pp. 375–393.

[12] Wissink, A., Sitaraman, J., and Katz, A., “Development of a High-Order Strand Solver
for Helios,” 12th Symposium on Overset Grids and Solution Technology , Georgia In-
stitute of Technology, Oct 2014.

68

[13] Katz, A. and Wissink, A., “Efficient Solution Methods for Strand Grid Applications,”
30th AIAA Applied Aerodynamics Conference, No. AIAA 2012-2779, 2012.

[14] Pincock, B. and Katz, A., “High-Order Flux Correction for Viscous Flows on Arbitrary
Unstructured Grids,” Journal of Scientific Computing , Vol. 61, No. 2, 2014, pp. 454–
476.

[15] Katz, A. and Work, D., “High-order flux correction/finite difference schemes for strand
grids,” Journal of Computational Physics, Vol. 282, 2015, pp. 360 – 380.

[16] Tong, O., Katz, A., and Yanagita, Y., “Verification and Validation of a High-Order
Strand Grid Method for Two-Dimensional Turbulent Flows,” Computers & Fluids,
2017.

[17] Tong, O., Blakely, C., Schaap, R., and Katz, A., “Assessment of a Two-Equation Tur-
bulence Model in the High-Order Flux Correction Scheme,” 54th AIAA Aerospace
Sciences Meeting , 2016.

[18] Tong, O. and Katz, A., “An Assessment of Various Turbulence Models for Precondi-
tioned High-Order Solutions of Flow Around Submersibles,” 46th AIAA Fluid Dynam-
ics Conference, 2016.

[19] Tong, O., Katz, A., Yanagita, Y., Casey, A., and Schaap, R., “High-Order Methods for
Turbulent Flows on Three-Dimensional Strand Grids,” Journal of Scientific Comput-
ing , Vol. 67, No. 1, April 2016, pp. 84–102.

[20] Thorne, J., Katz, A., Tong, O., Yanagita, Y., Tamaki, Y., and Delaney, K., “High-order
Strand Grid Methods for Low-speed and Incompressible Flows,” International Journal
for Numerical Methods in Fluids, 2016.

[21] Yanagita, Y., Tong, O., and Katz, A., “Critical Evaluation of Turbulence Model with
the Flux Correction Method on Strand Grids,” 54th AIAA Aerospace Sciences Meeting ,
No. AIAA 2016-1360, 2016.

[22] Work, D., Tong, O., Workman, R., and Katz, A., “Strand Grid Solution Procedures for
Sharp Corners,” 51st AIAA Aerospace Sciences Meeting , No. AIAA 2013-800, 2013.

[23] Mavriplis, D. and Venkatakrishnan, V., “A Unified Multigrid Solver for the Navier-
Stokes Equations on Mixed Element Meshes,” International Journal of Computational
Fluid Dynamics, Vol. 8, No. 4, 1997, pp. 247–263.

[24] Mavriplis, D. J., Aftosmis, M. J., and Berger, M., “High Resolution Aerospace Applica-
tions Using the NASA Columbia Supercomputer,” Proceedings of the 2005 ACM/IEEE
Conference on Supercomputing , SC ’05, IEEE Computer Society, Washington, DC,
USA, 2005.

[25] Wissink, A., Sitaraman, J., Sankaran, V., Mavriplis, D., and Pulliam, T., “A Multi-
Code Python-Based Infrastructure for Overset CFD with Adaptive Cartesian Grids,”
Aerospace Sciences Meetings, American Institute of Aeronautics and Astronautics, Jan.
2008.

69

[26] Sitaraman, J., Katz, A., Jayaraman, B., Wissink, A., and Sankaran, V., “Evaluation
of a Multi-Solver Paradigm for CFD Using Unstructured and Structured Adaptive
Cartesian Grids,” Aerospace Sciences Meetings, American Institute of Aeronautics and
Astronautics, Jan. 2008, pp. –.

[27] Work, D., Tong, O., Workman, R., Katz, A., and Wissink, A., “Strand-Grid-Solution
Procedures for Sharp Corners,” AIAA Journal , Vol. 52, No. 7, 2014, pp. 1528–1541.

[28] Tong, O., Yanagita, Y., and Katz, A. J., “Asymptotic Geometry Representation for
Complex Configurations,” 54th AIAA Aerospace Sciences Meeting , American Institute
of Aeronautics and Astronautics, Jan. 2016.

[29] Katz, A. and Sankaran, V., “Mesh Quality Effects on the Accuracy of CFD Solutions
on Unstructured Meshes,” Journal of Computational Physics, Vol. 230, No. 20, 2011,
pp. 7670 – 7686.

[30] Pincock, B. and Katz, A., “High-order Flux Correction for Viscous Flows on Arbi-
trary Unstructured Grids,” 21st AIAA Computational Fluid Dynamics Conference,
The American Institute of Aeronautics and Astronautics, June 2013.

[31] Katz, A. and Work, D., “High-order Flux Correction/Finite Difference Schemes for
Strand Grids,” AIAA 52nd Aerospace Sciences Meeting , No. AIAA 2014-0937, AIAA,
Jan. 2014.

[32] Spalart, P. and Allmaras, S., “A One-Equation Turbulence Model for Aerodynamic
Flows,” Recherche Aerospatiale, Vol. 1, 1994, pp. 5–21.

[33] Allmaras, S., Johnson, F., and Spalart, P., “Modifications and Clarifications for the
Implementation of the Spalart–Allmaras Turbulence Model,” 7th International COn-
ference on Computational Fluid Dynamics, 2012.

[34] Tong, O., Yanagita, Y., Schaap, R., Harris, S., and Katz, A., “High-Order Strand
Grid Methods for Shock Turbulence Interaction,” 22nd AIAA Computational Fluid
Dynamics Conference, 2015.

[35] Buning, P. G., Jespersen, D., Pulliam, T. H., Chan, W., Slotnick, J. P., Krist, S., and
Renze, K. J., “Overflow user’s manual,” NASA Langley Research Center , Vol. 1, 1998.

[36] Rogers, S. E., Suhs, N. E., and Dietz, W. E., “PEGASUS 5: An Automated Preproces-
sor for Overset-Grid Computational Fluid Dynamics,” AIAA Journal , Vol. 41, No. 6,
June 2003, pp. 1037–1045.

[37] Noack, R., Boger, D., Kunz, R. e., and Carrica, P., “Suggar++: An Improved Gen-
eral Overset Grid Assembly Capability,” 19th AIAA Computational Fluid Dynamics,
AIAA, June 2009.

[38] Noack, R., “DiRTlib: A Library to Add an Overset Capability to Your Flow Solver,”
Fluid Dynamics and Co-located Conferences, American Institute of Aeronautics and
Astronautics, June 2005.

70

[39] Noack, R., “SUGGAR: A General Capability for Moving Body Overset Grid Assembly,”
Fluid Dynamics and Co-located Conferences, American Institute of Aeronautics and
Astronautics, June 2005.

[40] Chan, W., “Developments in Strategies and Software Tools for Overset Structured Grid
Generation and Connectivity,” Fluid Dynamics and Co-located Conferences, American
Institute of Aeronautics and Astronautics, June 2011.

[41] Meakin, R., “A New Method for Establishing Intergrid Communication Among Sys-
tems of Overset Grids,” 10th Computational Fluid Dynamics Conference, 1991.

[42] Meakin, R., “Object X-Rays for Cutting Holes in Composite Overset Structured
Grids,” 15th AIAA Computational Fluid Dynamics Conference, 2001.

[43] Kim, N. and Chan, W., “Automation of Hole-Cutting for Overset Grids Using the
X-rays Approach,” 20th AIAA Computational Fluid Dynamics Conference, 2011.

[44] Noack, R. W., “A Direct Cut Approach for Overset Hole Cutting,” 18th AIAA Com-
putational Fluid Dynamics Conference, 2007.

[45] Meakin, R. L., Handbook of Grid Generation, chap. 11, Composite Overset Structured
Grids, CRC Press, 1999.

[46] Tam, C. and Hu, F., “An Optimized Multi-Dimensional Interpolation Scheme for
Computational Aeroacoustics Applications Using Overset Grid,” Aeroacoustics Con-
ferences, American Institute of Aeronautics and Astronautics, May 2004, pp. –.

[47] Sherer, S. E. and Scott, J. N., “High-Order Compact Finite-Difference Methods on
General Overset Grids,” Journal of Computational Physics, Vol. 210, No. 2, 2005,
pp. 459 – 496.

[48] Lee, K. R., Park, J. H., and Kim, K. H., “High-Order Interpolation Method for Overset
Grid Based on Finite Volume Method,” AIAA Journal , Vol. 49, No. 7, July 2011,
pp. 1387–1398.

[49] Chesshire, G. and Henshaw, W. D., “A Scheme for Conservative Interpolation on Over-
lapping Grids,” SIAM Journal on Scientific Computing , Vol. 15, No. 4, July 1994,
pp. 819–845.

[50] Meakin, R., “On the Spatial and Temporal Accuracy of Overset Grid Methods for
Moving Body Problems,” 12th Applied Aerodynamics Conference, 1994.

[51] Lee, Y. and Baeder, J. D., “High-Order Overset Method for Blade Vortex Interaction,”
40th AIAA Aerospace Sciences Meeting & Exhibit , 2002.

[52] Landmann, B. and Montagnac, M., “A Highly Automated Parallel Chimera Method for
Overset Grids Based on the Implicit Hole Cutting Technique,” International Journal
for Numerical Methods in Fluids, Vol. 66, No. 6, 6 2011, pp. 778–804.

[53] Barth, T., “Numerical Aspects of Computing High Reynolds Number Flows on Un-
structured Meshes,” 29th Aerospace Sciences Meeting , AIAA, 1991.

71

[54] Haselbacher, A., Grid-transparent Numerical Method for Compressible Viscous Flows
on Mixed Unstructured Grids, Ph.D. thesis, Loughborough University, 1999.

[55] Thorne, J. and Katz, A., “Source Term Discretization Effects on the Accuracy of Finite
Volume Schemes,” 53rd AIAA Aerospace Sciences Meeting , 2015.

[56] Carpenter, M., Gottlieb, D., and Abarbenel, S., “The Stability of Numerical Boundary
Treatments for Compact High-Order Finite-Difference Schemes,” Journal of Compu-
tational Physics, Vol. 108, No. 2, 1993, pp. 272–295.

[57] Fernández, D. C. D. R. and Zingg, D., “High-Order Compact-Stencil Summation-by-
Parts Operators for the Second Derivative with Variable Coefficients,” 7th Interna-
tional Conference on Computational Fluid Dynamics (ICCFD7), No. Technical Report
ICCFD7-2803, Big Island, HI, 2012.

[58] Kreiss, H. and Scherer, G., “Finite Element and Finite Difference Methods for Hy-
perbolic Partial Differential Equations,” Mathematical Aspects of Finite Elements in
Partial Differential Equations, edited by C. D. Boor, Academic Press, MA, 1974.

[59] Mattsson, K., “Summation by Parts Operators for Finite Difference Approximations
of Second-Derivatives with Variable Coefficients,” Journal of Scientific Computing ,
Vol. 51, 2012, pp. 650–682.

[60] Strand, B., “Summation by Parts for Finite Difference Approximation for d/dx,” Jour-
nal of Computational Physics, Vol. 110, 1994, pp. 47–67.

[61] Diener, P., Dorband, E., Schnetter, E., and Tiglio, M., “Optimized High-Order Deriva-
tive and Dissipation Operators Satisfying Summation by Parts, and Applications in
Three-Dimensional Multi-Block Evolutions,” Journal of Scientific Computing , Vol. 32,
2007, pp. 109–145.

[62] Yoon, S. and Jameson, A., “Lower-Upper Symmetric-Gauss-Seidel Method for the Eu-
ler and Navier-Stokes Equations,” AIAA Journal , Vol. 26, No. 9, September 1988,
pp. 1025–1026.

[63] Rieger, H. and Jameson, A., “Solution of Steady Three-Dimensional Compressible Eu-
ler and Navier-Stokes Equations by An Implicit LU Scheme,” AIAA 26th Aerospace
Sciences Meeting , 1988.

[64] Chen, R. F. and Wang, Z. J., “Fast, Block Lower-Upper Symmetric Gauss-Seidel
Scheme for Arbitrary Grids,” AIAA Journal , Vol. 38, No. 12, December 2000, pp. 2238–
2245.

[65] Jameson, A. and Caughey, D. A., “How Many Steps are Required to Solve the Euler
Equations of Steady, Compressible Flow: In Search of a Fast Solution Algorithm,”
AIAA 15th Computational Fluid Dynamics Conference, 2001.

[66] Caughey, D. A. and Jameson, A., “Fast Preconditioned Multigrid Solution of the Euler
and Navier-Stokes Equations for Steady, Compressible Flows,” International Journal
for Numerical Methods in Fluids, 2003.

72

[67] Pletcher, R. H., Tannehill, J. C., and Anderson, D. A., Computational Fluid Mechanics
and Heat Transfer , chap. 9, CRC Press, 3rd ed., 2013, pp. 610–613.

[68] Mavriplis, D. J. and Jameson, A., “Multigrid Solution of the Two-Dimensional Eu-
ler Equations on Unstructured Triangular Meshes,” AIAA 25th Aerospace Sciences
Meeting , 1987.

[69] Jameson, A. and Mavriplis, D., “Finite Volume Solution of the Two-Dimensional Euler
Equations on a Regular Triangular Mesh,” AIAA Journal , Vol. 24, No. 4, April 1986,
pp. 611–618.

[70] Brandt, A., “Multi-Level Adaptive Solutions to Boundary-Value Problems,” Mathe-
matics of Computation, Vol. 31, No. 138, 1977, pp. 333–390.

[71] Pletcher, R. H., Tannehill, J. C., and Anderson, D. A., Computational Fluid Mechanics
and Heat Transfer , chap. 4, CRC Press, 3rd ed., 2013, pp. 173–174.

[72] Visbal, M. R. and Gaitonde, D. V., “On the Use of Higher-Order Finite-Difference
Schemes on Curvilinear and Deforming Meshes,” Journal of Computational Physics,
Vol. 181, No. 1, 2002, pp. 155–185.

[73] Mavriplis, D., “Revisiting the Least-Squares Procedure for Gradient Reconstruction on
Unstructured Meshes,” 16th AIAA Computational Fluid Dynamics Conference, 2003.

[74] Hornung, R. D. and Kohn, S. R., “Managing Complex Data and Geometry in Parallel
Structured AMR Applications,” Engineering with Computers, Vol. 22, No. 3, 2006,
pp. 181–195.

[75] Hornung, R. D. and Kohn, S. R., “Managing Application Complexity in the SAMRAI
Object-Oriented Framework,” Concurrency and Computation: Practice and Experi-
ence, Vol. 14, 2002, pp. 347–368.

[76] Wissink, A. M., Hornung, R. D., Kohn, S. R., Smith, S., and Elliott, N., “Large Scale
Parallel Structured AME Calculations Using the SAMRAI Framework,” Proceedings
of SC01 , November 2001.

[77] Berger, M. J. and Colella, P., “Local Adaptive Mesh Refinement for Shock Hydrody-
namics,” Journal of Computational Physics, Vol. 82, 1989.

[78] Nadarajah, S. K., The Discrete Adjoint Approach to Aerodynamic Shape Optimization,
Ph.D. thesis, Stanford University, 2003.

[79] Kamkar, S. J., Jameson, A., and Wissink, A. M., “Automated Grid Refinement Using
Feature Detection,” 47th AIAA Aerospace Sciences Meeting , 2009.

[80] Kamkar, S. J. and Wissink, A. M., “An Automated Adaptive Mesh Refinement Scheme
for Unsteady Aerodynamic Wakes,” 50th AIAA Aerospace Sciences Meeting , 2012.

[81] Roache, P. J., “Code Verification by the Method of Manufactured Solutions,” Journal
of Fluids Engineering , Vol. 124, 2001, pp. 4–10.

73

[82] Magnaudet, J., Riviero, M., and Fabre, J., “Accelerated Flows Past a Sphere Or Spher-
ical Bubble, Part 1: Steady Streaming Flow,” Journal of Fluid Mechanics, Vol. 284,
1995, pp. 97–135.

[83] Tomboulides, A., Orszag, S., and Karniadakis, G., “Direct and Large Eddy Simulations
of Axisymmetric Wakes,” 31st Aerospace Sciences Meeting , No. AIAA Paper 93-0546,
Reno, NV, 1993.

[84] Pruppacher, H., Clair, B. L., and Hamielec, A., “Some Relations Between Drag and
Flow Pattern of Viscous Flow Past a Sphere and Cylinder at Low and Intermediate
Reynolds Numbers,” Journal of Fluid Mechanics, Vol. 44, 1970, pp. 781–791.

[85] Tenada, S., “Experimental Investigation of Wake Behind a Sphere at Low Reynolds
Numbers,” Journal of the Physical Society of Japan, Vol. 11, 1956, pp. 1104–1108.

[86] Sakamoto, H. and Haniu, H., “A Study on Vortex Shedding From Spheres in a Unifrom
Flow,” Journal of Fluids Engineering , Vol. 112, No. 4, 1990, pp. 386–392.

[87] Shu, C.-W., “Essentially Non-Oscillatory and Weighted Essentially Non-Oscillatory
Schemes for hyperbolic Conservation Laws,” NASA ICASE Report NASA/CR-97-
206253, Institute for Computer Applications in Science and Engineering, November
1997.

[88] Hicken, J. E. and Zingg, D. W., “Parallel Newton-Krylov Solver for the Euler Equa-
tions Discretized Using Simultaneous-Approximation Terms,” AIAA Journal , Vol. 46,
No. 11, November 2008.

[89] Carpenter, M. H., Gottlieb, D., and Abarbanel, S., “Time-Stable Boundary Conditions
for Finite-Difference Schemes Solving Hyperbolic Systems: Methodology and Applica-
tion to High-Order Compact Schemes,” Journal of Computational Physics, Vol. 111,
No. 2, 1994, pp. 220 – 236.

[90] Fernández, D. C. D. R., Hicken, J. E., and Zingg, D. W., “Review of Summation-by-
Parts Operators with Simultaneous Approximation Terms for the Numerical Solution of
Partial Differential Equations,” Computers & Fluids, Vol. 95, May 2014, pp. 171–196.

[91] Nordström, J. and Svärd, M., “Well-Posed Boundary Conditions for the Navier–Stokes
Equations,” SIAM Journal on Numerical Analysis, Vol. 43, No. 3, 2005, pp. 1231–1255.

[92] Svärd, M., “On Coordinate Transformations for Summation-by-Parts Operators,”
Journal of Scientific Computing , Vol. 20, No. 1, 2004, pp. 29–42.

[93] Svärd, M., Carpenter, M. H., and Nordström, J., “A Stable High-Order Finite Dif-
ference Scheme for the Compressible Navier–Stokes Equations, Far-Field Boundary
Conditions,” Journal of Computational Physics, Vol. 225, No. 1, 2007, pp. 1020–1038.

[94] Svärd, M. and Nordström, J., “A Stable High-Order Finite Difference Scheme for the
Compressible Navier–Stokes Equations: No-Slip Wall Boundary Conditions,” Journal
of Computational Physics, Vol. 227, No. 10, 2008, pp. 4805–4824.

[95] Guennebaud, G., Jacob, B., et al., “Eigen v3,” http://eigen.tuxfamily.org, 2010.

74

[96] WhiteTimberwolf, “Wikimedia Image,” http://commons.wikimedia.org/wiki/File:Octree2.svg,
2010.

[97] Hjaltason, G. R. and Samet, H., “Ranking in Spatial Databases,” Proceedings of the
4th Symposium on Spatial Databases, 1995.

75

APPENDICES

76

APPENDIX A

Summation-by-Parts Operators

Summation-by-Parts operators are specialized finite difference stencils, which have been

derived to ensure conservation and stability while maintaining high-order accuracy. They

also provide a framework for the implementation of penalty boundary conditions, through

the use of Simultaneous Approximation Terms [89]. Together, the full method is termed

SBP:SAT.

In this brief discussion, the notation employed by Fernandez [90] will be followed.

Vectors are denoted with lowercase bold fonts, x, and matrices use uppercase sans-serif

fonts, M. Uppercase script letters U denote continuous functions on a specified domain

X ∈ [α, β]. Lowercase bold fonts u denote the restriction of those functions onto a grid. For

example, the restriction of U onto the grid x is given by:

u = [U(x0), . . . ,U(xN)]T (A.1)

In general, the operators used have three different order of accuracy associated with them:

the accuracy on the interior of the domain (a), the accuracy on the boundary of the domain

(b), and the global accuracy (c). A given discrete operator is then denoted by D
(a,b,c)
i , where

i denotes that this is an operator for the i-th derivative. For the second derivative with

variable coefficients, the dependence of the operator on those coefficients is made explicit

with D
(a,b,c)
2 (B), where B is a diagonal matrix with the variable coefficients along its diagonal.

For a one-dimensional grid with N nodes, D is a coefficient matrix of size N ×N .

SBP operators are constructed to satisfy a discrete version of the integration-by-parts

equation, ∫ β

α
V dU
dX

dX = UV|βα −
∫ β

α
U dV
dX

dX (A.2)

Well-posed boundary conditions can be formulated for the solution of PDEs through the

77

use of this equation. SBP operators are constructed on a grid of N nodes. The summation-

by-parts equation is written as:

vTHD1u = vTEu− uTHD1v (A.3)

where E = diag [−1, 0, · · · , 0, 1], and H is a diagonal or block diagonal norm. The derivation

of a given SBP operator starts by specifying an interior stencil (generally a high-order

centered-difference stencil), and a norm, and then solving a system of equations to determine

appropriate boundary stencils, such that conservation, accuracy, and stability properties are

satisfied.

In this work, only SBP operators derived from a diagonal norm are considered because

they are provably stable in a multidimensional context [91, 92]. Katz and Work [15] tested

multiple operators, and showed that using D
(6,3,4)
1 and D

(6,3,5)
2 operators gave the best results

for flux correction on strand grids. A second-order method can be recovered through the

use of D2,1,2
1 and D2,1,2

2 operators. These operators are based on those of Mattsson [59] and

Fernandez and Zingg [57]. Artificial dissipation is added with operators based on those by

Diener [61]. The dissipation operators are chosen to be have order one greater than the

order of the inviscid operators.

Applying the D1 operator to the inviscid fluxes ∂Ĥ
∂η is straightforward. Second deriva-

tives with variable coefficients and mixed derivatives, as is the case with the Navier-Stokes

equations, is more complicated. The viscous flux can be decomposed as

Ĥv = Br
∂Qp

∂r
+ Bs

∂Qp

∂s
+ Bη

∂Qp

∂η
(A.4)

where Qp is the vector of primitive variables

Qp =

[
u v w T

]T
(A.5)

78

The B matrices can be found in previous work by Katz [15]. The derivative of Ĥv with

respect to η can then be found by

∂Ĥv

∂η
≈ D1

[
Br
(
∂Qp

∂r

)h
+ Bs

(
∂Qp

∂s

)h]
+ D2 [Bη (Qp)] (A.6)

The partial derivatives with respect to r and s are computed using the Lagrange polynomial

mappings, with no averaging on element boundaries.

Boundary conditions are implemented via penalty terms, which are based on the well-

posedness of the Navier-Stokes equations [91]. By definition, the root of a strand lies on a

solid surface, while the strand tips coincide with far field boundary conditions. Derivations

for both of these can be found in the works of Svärd [93,94]. The penalty terms lead to strict

time stability of the method, as well as improved convergence of the numerical method over

traditional boundary condition implementations.

79

APPENDIX B

Strand Stack Mappings

A generic two-dimensional p-order polynomial in r and s with coefficients αj,k can be

written as:

P (r, s) =

p∑
j=0

p−j∑
k=0

αjkr
jsk (B.1)

A generic one-dimensional n-order polynomial in η with coefficients βq can be written as:

P (η) =
n∑
q=0

βqη
q (B.2)

The mapping between (x, y, z) and (r, s, η) is performed using Lagrange polynomials. Also

known as shape functions, a set of N polynomials is defined over a set of N discrete points

with known values. Interpolations can then be performed within the set. The complete

interpolation function is given by

φ(η) =

N−1∑
n=0

φn`n(η) (B.3a)

φ(r, s) =
N−1∑
i=0

φiLi(r, s) (B.3b)

for one and two dimensions, respectively. The φn, φi values are known values of φ at the

points n, i. The Lagrange coefficients can be found by enforcing the property

`n(xm) = 0

`n(xn) = 1

(B.4)

For example, for a one-dimensional second-order interpolation, three points are required.

Each polynomial has three coefficients, which are represented as βnq. Applying the above

80

property results in the linear system


1 η0 η2

0

1 η1 η2
1

1 η2 η2
2




β00 β10 β20

β01 β11 β21

β02 β12 β22

 =


1 0 0

0 1 0

0 0 1

 (B.5)

Solution of this system gives the Lagrange coefficients. The two-dimensional case is similar.

Final interpolation of φ(η), in matrix form, is

φ(η) =

[
1 η η2

]

β00 β10 β20

β01 β11 β21

β02 β12 β22




φ0

φ1

φ2

 (B.6)

B.1 Interpolation and Derivatives in a Strand Stack

Application of equation B.3b to the reference triangle shown in figure B.1a allows us to

map an arbitrary triangle in R3 to the reference triangle in the computational space (r, s).

This mapping is the same for all triangles in the strand grid. Derivatives of φ in the triangle

(
−1, −1√

3

) (
1, −1√

3

)

(
0, 2√

3

)

r

s

(a) Reference triangle (b) Quadratic (c) Cubic

Fig. B.1: Reference triangle used in this work. Also depicted are second- and third-order
triangles. Red dashed lines indicate the median-dual control volumes

81

are determined by

∂φ

∂r
(r, s) =

N−1∑
i=0

φi
∂

∂r
(Li) (B.7a)

∂Li
∂r

=

p∑
j=0

p−j∑
k=0

jαjkr
j−1sk (B.7b)

The derivatives in (r, s) can be changed to derivatives in x using the inverse Jacobian

mapping terms

∂φ

∂x
=
∂φ

∂r

∂r

∂x
+
∂φ

∂s

∂s

∂x
(B.8)

Derivatives in y and z are similar. Along the strands, no analytic mapping exists to change

the nodal strand spacing to a uniform spacing in η. Therefore it is approximated using the

one-dimensional Lagrange polynomials in the region of interest. It should be noted that

polynomials constructed in this manner are only valid in a small region of eta.

A full three-dimensional interpolation function inside a strand cell with N points and

using M strand nodes can be formed by using an outer product of the two Lagrange poly-

nomials

φ(r, s, η) =
N−1∑
i=0

M−1∑
n=0

φinLi(r, s)`n(η) (B.9)

A matrix formulation with a second-order (6 node) triangle and using 3 strand layers looks

like

A =


1 r0 s0 r2

0 rs0 s2
0

...
...

...
...

...
...

1 r5 s5 r2
5 rs5 s2

5

 (B.10a)

[I] =


[A] [A]η0 [A]η2

0

[A] [A]η1 [A]η2
1

[A] [A]η2 [A]η2
2



 γ

 (B.10b)

82

where the α and β coefficients have been combined into γ coefficients.

For the domain connectivity, the first and second-derivatives of equation B.9 are needed.

A simple templated C++ function can be written to compute the (r, s, η) vector for any

order derivatives, mixed or pure. This function is shown in figure B.2.

83

// This helper template computes a pseudo -factorial

// n is the number of derivatives

// i is the loop index

template <int n> int sf(int i);

template <> int sf <0>(int i) { return 1; }

template <int n> int sf(int i) { return i*sf <n-1>(i-1); }

// dr, ds, de are the number of derivatives

// in each dimension. 0 is no derivatives ,

// 1 is the first derivative , etc.

template <int dr ,int ds ,int de >

Eigen:: RowVectorXd compute_rse_vector(double r,

double s,

double e)

{

int ip ,jp ,kp ,ic ,jc ,kc;

// N is the number of nodes in the triangle

// M is the number of nodes in the strand direction

// p is the order of the triangle

Eigen :: RowVectorXd rse(N*M);

for (int k=0; k<M; k++) {

for (int i=0; i<=p; i++) {

for (int j=0; j<=p-i; j++) {

ip = max(0,i-dr);

jp = max(0,j-ds);

kp = max(0,k-de);

ic = sf <dr >(i);

jc = sf <ds >(j);

kc = sf <de >(k);

rse(q) = ic*jc*kc*pow(r,ip)*pow(s,jp)*pow(e,kp);

q++;

}

}

}

return rse;

}

Fig. B.2: C++ code for computing the tensor product and any order derivatives in a strand
stack. This function uses the Eigen linear algebra library [95]

84

APPENDIX C

Locating the Closest Strand Node with an Octree

An octree is the simplest kind of three-dimensional spatial partitioning tree, allowing

for fast nearest-neighbor searches and other spatial queries. The two-dimensional variant is

known as a quadtree. They are used extensively in games (such as Minecraft) for efficiently

storing terrain data in huge virtual environments. In this work, a basic octree is utilized to

efficiently determine the closest strand node to a given Cartesian node. The recursive tree

structure is visualized in figure C.1.

Each node in an octree is classified as either a root node or a leaf node. A root node

has exactly eight children, one for each octant of the root node. These children can be

leaf or root nodes. A leaf node does not have any children, but does contain the data of

interest. Each leaf node can hold N points of data before it is split into eight children and

is converted into a root node. Each node of the octree is defined by an origin, oi, and a

half-spacing around the origin, ∆xi, where subscript i is used in tensor notation.

The first step is to build the octree. The initial root node is specified to be large enough

to cover the entire strand grid. The location of each strand node is computed in turn. The

location, along with the (j, n) index of the strand node, is inserted into the octree. The

algorithm is recursive in nature, and is depicted in algorithm 1.

Fig. C.1: Depiction of octree subdivision procedure and resulting tree [96]

85

The octant can be easily found with bitwise operations. An example code is shown in

figure C.2. Once the octree is built, it can then be used to identify the nearest strand node

to any point in space. For this work, the algorithm developed by Hjaltason [97] is used,

as it provides not just the closest node, but a sorted list of the closest N strand nodes.

The method uses a prioirity queue to maintain a list of objects, sorted by distance, with

the closest elements on the top of the queue. The algorithm is iterative in nature, and is

detailed in algorithm 2. The elements of the queue are not just the closest strand nodes,

but also the closest octree nodes. As the search progresses down the tree, the distance to

each octant is computed and then added to the priority queue. The octant which contains

the search point has its distance set to 0. This will place it on the top of the queue, moving

the search further down the tree. Once a leaf node is reached, the distance to each strand

node in that leaf node is computed and added to the priority queue. As strand nodes are

encountered in the queue, they are popped off and added to a list of return values.

int getOctant(const vec3& loc)

{

int oct = 0;

if (loc [0] >= origin [0]) oct |= 4;

if (loc [1] >= origin [1]) oct |= 2;

if (loc [2] >= origin [2]) oct |= 1;

return oct;

}

Fig. C.2: C++ code for computing the octant a point is located in inside of an octree node.
The vec3 type is an array of size 3

86

Algorithm 1 Algorithm for building the octree from strand node data

function InsertStrandNode(OctreeNode,StrandNode)
if OctreeNode is not a Leaf Node then

Determine octant containing StrandNode
InsertStrandNode(children[octant],StrandNode)

else
if n = N then

Allocate children[8]
for all old ← old strand nodes do

Determine octant containing old
InsertStrandNode(children[octant],old)

end for
Determine octant oct containing s
InsertStrandNode(children[octant],StrandNode)

else
Append strand node to data
n← n+ 1

end if
end if

end function

Algorithm 2 Algorithm for locating the closest N strand nodes

function GetNearestStrandNodes(location,N)
Values ← Empty List
Add root of octree to priority queue
while Priority queue is not empty do

Q ← Pop top element from priority queue
if Q is Strand Node then

Add Q to Values
if Size of Values == N then

return Values
end if

else
if Q is a leaf node then

Compute distance to all strand nodes and add to queue
else

Compute distance to all children octants and add to queue
end if

end if
end while
Error: Empty queue

end function

87

APPENDIX D

Testing a Strand Cell using Newton’s Method

A Newton’s method is employed for determining if a Cartesian node is inside of a given

strand stack. If it is, then as a result, the (r, s, η) location in the strand cell is returned.

figure D.1 is a flowchart for the algorithm used in this work.

The Newton’s method is used to minimize the distance squared function d2(r, s, η),

where (using Einstein notation) di = xCi − xi(r, s, η), xCi is the location of the Cartesian

node, and xi(r, s, η) is the location in space using strand cell interpolations. The squared

distance function is used as it is a smooth function in space, with the same minimum as the

distance function. The Newton minimization equation for a function of a vector of variables

r is

rn+1 = rn −H(f(rn))−1∇f(rn), (D.1)

where k is the iteration counter. Thus, it is necessary to compute the gradient and Hessian

of the squared distance function. Both are derived here.

∂d2

∂rj
=
∂didi
∂rj

= 2di
∂di
∂rj

, (D.2a)

∂di
∂rj

= −∂xi
∂rj

= − ∂

∂rj

(∑∑
xiL(r, s)`(η)

)
, (D.2b)

where the derivatives of the Lagrange polynomials are computed as described in Appendix B.

The Hessian is

∂

∂rk

(
∂d2

∂rj

)
=

∂

∂rk

(
2di

∂di
∂rj

)
= 2

[
di

∂2di
∂rk∂rj

+
∂di
∂rk

∂di
∂rj

]
, (D.3a)

∂2di
∂rk∂rj

= − ∂2xi
∂rk∂rj

= − ∂2

∂rk∂rj

(∑∑
xiL(r, s)`(η)

)
. (D.3b)

While the basic procedure is simple, important corner cases greatly increased the com-

plexity. These corner cases were, no pun intended, when the Cartesian node landed directly

88

Start
Start r, s, eta initialized

depth = 0

Compute distance

Has convergence
criterion been met?

Compute new
r, s, eta

Is eta below 0
or above the

clipping index of
strand j?

Return False
Return False

Is (r,s) inside the
reference triangle?

Return True
Return True

depth = depth+1

Find the closest
boundary point on the

reference triangle

Is the closest point on
the reference triangle
a corner or an edge?

Set (r,s) to corner valueCompute distance

Has distance
converged?

Newton's Method
on face

Newton's Method
on face

Is eta below 0
or above the

clipping index of
strand j?

Return False
Return False

Is t inside the
reference triangle?

Set t to corner value

Initialize t

Error
Error

Has distance
converged?

Return False
Return False

Yes

No

Yes

No

Yes

No

Yes

No

Corner

Edge

Yes

No

Yes

No

Fig. D.1: Flowchart for the Newton’s method

89

on, or extremely close to, a corner or face of the strand stack. In these cases, the Newton’s

method could incorrectly claim that the node did not land inside any strand stack, due to

roundoff error. To address this issue, the Newton’s method was allowed to converge com-

pletely, no matter whether the node was inside or outside of the strand stack. Technically,

the Lagrange polynomials are not valid outside the strand stack, but since it is outside,

accuracy of the method does not matter. One exception to this was if η ever went below 0

or above the clipping index of strand j, it was immediately rejected. r and s, however, were

not tested until convergence.

Once convergence is reached, the location is tested to see if it lies inside or outside the

reference triangle. Each edge of the reference triangle can be represented by an equation.

These equations, starting at the bottom edge and moving counterclockwise, are

s1 = − 1√
3

(D.4a)

s2 =
2√
3
− 3√

3
r (D.4b)

s3 =
2√
3

+
3√
3
r (D.4c)

Determining whether the converged solution (r?, s?) lies outside these equations is a

matter of plugging r? into each edge equation and comparing s and s?. If any of those

tests are false, then the node lies outside the reference triangle. However, to account for

the corner cases, another step must be used. Extending the edges to infinity separates the

(r, s) plane into seven differing regions: The inside, three corner regions, and three edge

regions. If two of the tests are false, then the node lies in a corner region. If only one is

false, then it lies in an edge region. The next step is to locate the closest boundary point on

the triangle. If the node lies in a corner region, then the closest point is the corner. r? and

s? are set to the corner values, and the distance is evaluated to determine if the Cartesian

node lies on the corner. If the closest point is an edge, then an initial guess is determined

and a two-dimensional Newton’s method in t and η is used to find the closest point on the

face.

90

The edge is parameterized so that r and s are functions of t, with 0 ≤ t ≤ 2. The

functions are

r = r0 + tδr (D.5a)

s = s0 + tδs (D.5b)

where r0, s0, δr, and δs are dependent on the edge being tested. The gradient of d2 on the

face is

∂d2

∂t
=
∂didi
∂t

= 2di
∂di
∂t

= 2di

(
∂di
∂r

δr +
∂di
∂s

δs

)
=
∂d2

∂r
δr +

∂d2

∂s
δs (D.6a)

∂d2

∂η
=
∂d2

∂η
(D.6b)

and the 2× 2 Hessian is

Htt = Hrrδr
2 + 2Hrsδrδs+Hssδs

2 + 2

(
∂di
∂t

)2

(D.7a)

Htη = Hηt = Hrηδr +Hsηδs+ 2
∂di
∂η

∂di
∂t

(D.7b)

Hηη = Hηη, (D.7c)

where the Hessian subscripts indicate elements in the original 3× 3 Hessian, and

∂di
∂t

=
∂di
∂r

δr +
∂di
∂s

δs (D.8)

Once the Newton’s method converges to the minimum t is tested to see if it lies between 0

and 2, and the minimum distance is tested to determine if the Cartesian node lies directly

on the face. The corner cases of Cartesian nodes lying on strand or cell boundaries are

handled in this manner, with good results.

91

APPENDIX E

Unsteady Laminar Sphere Fourier Transforms

This appendix contains the power spectrums of the velocity probes for the unsteady

laminar sphere cases. The probe was placed at (4, 0, 0), 3.5 diameters behind the edge of

the sphere. The largest peak was used as the dominant shedding frequency. Occasionally,

a high-pass filter was used to discard extraneous lower frequencies. The frequencies used

to compute the Strouhal numbers are marked with a circle. The power spectrums for Star-

CCM+ are shown in figure E.2, for the overset mesh in figure E.3, and the strand grid alone

in figure E.4.

0 10 20 30 40 50
Hz

Ar
bi

tr
ar

y

(a) Re = 400

0 10 20 30 40 50
Hz

Ar
bi

tr
ar

y

(b) Re = 600

0 10 20 30 40 50
Hz

Ar
bi

tr
ar

y

(c) Re = 1000

0 10 20 30 40 50
Hz

Ar
bi

tr
ar

y

(d) Re = 2000

Fig. E.1: Star-CCM+

92

0 10 20 30 40 50
Hz

Ar
bi

tr
ar

y

(a) Re = 400

0 10 20 30 40 50
Hz

Ar
bi

tr
ar

y

(b) Re = 600

0 10 20 30 40 50
Hz

Ar
bi

tr
ar

y

(c) Re = 1000

0 10 20 30 40 50
Hz

Ar
bi

tr
ar

y

(d) Re = 2000

Fig. E.2: Overset mesh with second-order solver in the strand grid

0 10 20 30 40 50
Hz

Ar
bi

tr
ar

y

(a) Re = 400

0 10 20 30 40 50
Hz

Ar
bi

tr
ar

y

(b) Re = 600

0 10 20 30 40 50
Hz

Ar
bi

tr
ar

y

(c) Re = 1000

0 10 20 30 40 50
Hz

Ar
bi

tr
ar

y

(d) Re = 2000

Fig. E.3: Overset mesh with flux correction solver in the strand grid

93

0 10 20 30 40 50
Hz

Ar
bi

tr
ar

y

(a) Re = 400

0 10 20 30 40 50
Hz

Ar
bi

tr
ar

y

(b) Re = 600

0 10 20 30 40 50
Hz

Ar
bi

tr
ar

y

(c) Re = 1000

0 10 20 30 40 50
Hz

Ar
bi

tr
ar

y

(d) Re = 2000

Fig. E.4: Strand grid only with flux correction solver

	Evaluation of Flux Correction on Three-dimensional Strand Grids with an Overset Cartesian Grid
	Recommended Citation

	ABSTRACT
	PUBLIC ABSTRACT
	ACKNOWLEDGMENTS
	LIST OF FIGURES
	ACRONYMS
	INTRODUCTION
	LITERATURE REVIEW
	 Strand Grids
	Flux Correction
	 Overset Methods
	Implicit Hole Cutting
	Parallel Considerations

	FLUX CORRECTION ON STRAND GRIDS
	Equations of Motion
	Truncation Error and Solution Error
	Flux Correction in One Dimension
	Traditional Galerkin
	Flux-Corrected Galerkin

	Flux Correction on an Unstructured, Triangular Mesh
	Gradient Approximation
	Viscous Terms
	Source Terms

	Flux Correction on Three-Dimensional Strand Grids
	Solution Techniques
	Strand-Implicit Solution Method
	Explicit Runge-Kutta Pseudo-time Stepping
	Implicit Physical Time Stepping
	Multigrid

	Numerical Approximation of Element Mappings
	Computation of (r,s) Gradient

	CARTESIAN OFF-BODY AND ADAPTIVE MESH REFINEMENT
	Adaptive Mesh Refinement

	STRAND–CARTESIAN DOMAIN CONNECTIVITY
	Strand Donor Cells for Cartesian Nodes

	COMPUTATIONAL RESULTS
	Method of Manufactured Solutions
	Inviscid Sphere
	Steady Laminar Sphere
	Unsteady Laminar Flow over a Sphere
	Isentropic Vortex Propagation
	Summary of Computational Results

	CONCLUSIONS AND FUTURE WORK
	REFERENCES
	APPENDICES
	A Summation-by-Parts Operators
	B Strand Stack Mappings
	Interpolation and Derivatives in a Strand Stack

	C Locating the Closest Strand Node with an Octree
	D Testing a Strand Cell using Newton's Method
	E Unsteady Laminar Sphere Fourier Transforms

