
Utah State University Utah State University 

DigitalCommons@USU DigitalCommons@USU 

All Graduate Theses and Dissertations Graduate Studies 

5-1988 

A New Approach to Forest Site Quality Modeling A New Approach to Forest Site Quality Modeling 

David L. Verbyla 
Utah State University 

Follow this and additional works at: https://digitalcommons.usu.edu/etd 

 Part of the Ecology and Evolutionary Biology Commons 

Recommended Citation Recommended Citation 
Verbyla, David L., "A New Approach to Forest Site Quality Modeling" (1988). All Graduate Theses and 
Dissertations. 6418. 
https://digitalcommons.usu.edu/etd/6418 

This Dissertation is brought to you for free and open 
access by the Graduate Studies at 
DigitalCommons@USU. It has been accepted for 
inclusion in All Graduate Theses and Dissertations by an 
authorized administrator of DigitalCommons@USU. For 
more information, please contact 
digitalcommons@usu.edu. 

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/etd
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/etd?utm_source=digitalcommons.usu.edu%2Fetd%2F6418&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/14?utm_source=digitalcommons.usu.edu%2Fetd%2F6418&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/etd/6418?utm_source=digitalcommons.usu.edu%2Fetd%2F6418&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/


, i r 

A NEW APPROACH TO FOREST SITE QUALITY MODELING 

by 

David L. Verbyla 

A dissertation submitted in partial fulfillment 
of the requirements for the degree 

Approved: 

Major Professor 

Committee Member 

Committee Member 

of 

DOCTOR OF PHILOSOPHY 

in 

Forest Resources 

Committee Member 

Committee Member 

Dean of Graduate Studies 

UTAH STATE UNIVERSITY 
Logan, Utah 

1988 



i i 

ACKNOWLEDGEMENTS 

I want to thank the members of my committee, Drs. Richard 

Fisher, John Hanks, Dave Roberts, H. Charles Romesburg, and Neil 

West for their advise and their hours of review of this 

dissertation. This study was partially funded by the USDA Forest 

Service. 

I thank Richard Fisher, Paul Mohai, H. Charles Romesburg for 

providing me with the oppurtunity to teach various courses. 

Various people hired me for computer work during my stay at 

Utah State University. I thank Dennis Austin, Fred Baker, Steve 

Daniels, Bill Gartner, George Hart, Jim Long, Paul Mohai, H. 

Charles Romesburg for this support. 



i ii 

TABLE OF CONTENTS 

Page 

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii 

LIST OF TABLES........................ ..... ................ v 

LIST OF FIGURES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi 

ABSTRACT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii 

Chapter 

I. GENERAL INTRODUCTION ........... ... .............. . 1 

II. POTENTIAL PREDICTION BIAS IN REGRESSION AND 
DISCRIMINANT ANALYSIS 

INTRODUCTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 
MULTIPLE REGRESSION ... .. ............ .... .......... 4 
DISCRIMIANT ANALYSIS .............................. 11 
RESAMPLING TO ASSESS PREDICTION BIAS .............. 13 
CONCLUSIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 

III. CLASSIFICATION TREES: A NEW DISCRIMINATION TOOL 

INTRODUCTION ...................................... 18 
LINEAR DISCRIMINANT ANALYSIS ...................... 18 
CLASSIFICATION TREES ............ ..... ............. 22 
ADVANTAGES OF CLASSIFICATION TREES ... .. ........... 25 

IV. A NEW APPROACH TO SITE QUALITY MODELING 

INTRODUCTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 7 
METHODS ........................................... 27 
RESULTS AND DISCUSSION ............................ 34 
CONCLUSIONS ............. . .. ..... .................. 41 

V. PONDEROSA PINE HABITAT TYPES AS AN INDICATOR OF 
SITE QUALITY IN THE DIXIE NATIONAL FOREST, UTAH 

INTRODUCTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 
METHODS ........................................... 42 
RESULTS . ............ . ............................. 45 
CONCLUSIONS ....................................... 50 

VI. EFFECT OF ASPECT ON PONDEROSA PINE HEIGHT AND 
DIAMETER GROWTH 

INTRODUCTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 
METHODS ........................................... 53 
RESULTS AND DISCUSSION ............................ 54 
CONCLUSIONS ....................................... 58 



iv 

VII. GENERAL SUMMARY AND CONCLUSIONS ................... 59 

LITERATURE CITED ........................................... 63 

APPENDIX I Listing of Sample Cases ......................... 73 

APPENDIX II Study Area Plot Locations ...................... 96 

VITA ....................................................... 111 



LIST OF TABLES 

Table 

2.1 Comparison of site index regression 
models developed with measured and 

v 

Page 

random data sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 

2.2 Comparison of R2 values from regression 
models developed with measured and 
random data sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 

2.3 Discriminant analysis classification 
results of random data ..................... . ...... 12 

3.1 Discriminant analysis based on cases 
presented in Figure 3.2 and additional 
random uniform predictor variables . . .. . ...... . .. . . 21 

3.2 Classification tree analysis based on 
cases presented in Figure 3.2 and 
additional random uniform variables .... . ... . . . . . .. 25 

4.1 Description of habitat types in the study area 
from Youngblood and Mauk (1985) . . ... . . . ........... 30 

4.2 Candidate predictor variables from sample cases ... 32 

4.3 Multiple regression model developed 
with random plots...... . . . . .. . . ... . . . ..... . . . . . . . . 34 

5 . 1 Ponderosa pine habitat types sampled .............. 44 

5.2 Random plot sr 25 (meters) descriptive 
statistics by habitat type . .. . ... . . . .............. 46 

6.1 Student T-test of mean site index 100 and mean 
10 year diameter increment by aspect group ........ 56 



vi 

LIST OF FIGURES 

Figure Page 

3.1 Linear discriminant function developed 
with 60 hypothetical sample cases ................ 19 

3.2 Classification tree developed on 
60 hypothetical sample cases ..................... 23 

4.1 Predicted site index from regression developed 
with random plots vs. observed site index 
from all plots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 

4.2 Linear discriminant function developed with plots 
having high site potential habitat types ......... 37 

4.3 Classification tree developed with plots having 
high site potential habitat types ................ 38 

4.4 Distribution of cases missclassified by 
classification tree .............................. 39 

5.1 Distribution of random ponderosa pine 
site index 25 among PIPO habitat types ........ 47 

5.2 Distribution of prime ponderosa pine 
site index 25 by habitat type ................. 49 

6.1 Potential solar radiation on 30 percent slopes 
at 38 degrees north latitude ..................... 55 



vii 

ABSTRACT 

Multiple regression and discriminant analysis procedures are 

commonly used to develop forest site quality models. 'When they 

contain many independent variables relative to sample size, these 

models may be subject to predicton bias. Fit statistics such as 

R2 in regression and classification tables in discriminant 

analysis show the apparent model accuracy but this may be a 

biased estimate of the model's actual accuracy. Sample splitting 

methods such as cross-validation and the bootstrap can be used to 

get an unbiased actual accuracy estimate. 

A discriminant procedure called classification tree analysis 

uses cross-validation to build the classifier with the greatest 

estimated actual accuracy. Because cross-validation is used in 

model development, the model is less likely to be over-fit with 

insignificant variables when compared with stepwise linear 

discriminant analysis. 

Classification tree analysis and linear discriminant 

analysis were used to develop models that discriminate prime vs. 

nonprime ponderosa pine (Pinns ponderosa) sites. Prime sites are 

defined as having site index 25 greater than 7.6 meters; nonprime 

sites have site index 25 less than 7.6 meters. Forest habitat 

type, percent sand content, and soil pH were incorporated in both 

models. The cross-valiation estimate of classification tree 

actual accuracy was 88 percent. A random bootstrap estimate of 

the linear discriminant function actual accuracy was 80 percent. 
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A multiple regression model developed with random plots revealed 

little useful information and was biased when applied to prime 

site plots. The conventional regression approach using random 

plots may be misleading if one is interested in identifying 

relatively rare prime sites . 

Forest habitat types within the ponderosa pine series in 

southern Utah were examined as site quality indicators. The site 

index range within any one habitat type was broad. However, the 

best ponderosa pine sites consistently occurred in only Pinu~ 

EE_nderosa/~ercus gambelii, and Pinus ponderosa/Symphoricarpos 

oreoP!!.ilus habitat types; or in habitat types within the 

Pseudotsuga menziesii or Abies concolor series. Therefore 

forest habitat type when used with other site variables may be 

useful in predicting prime sites. 

The effect of aspect at the upper elevational limit of 

ponderosa pine was examined by comparing mean site index and mean 

initial 10 year diameter increment on southerly and northerly 

slopes from two cinder cones. Southerly aspects on both cinder 

cones had greater mean diameter increment. Southerly aspects on 

the highest elevation cinder cone had the greatest mean site 

index. There was no significant difference in mean site index on 

the lower elevation cinder cone. Optimal aspect for height and 

diameter growth may differ due to l)the effect of density on 

diameter increment; and/or 2)available soil water limiting height 

growth during the spring and ambient temperature/solar radiation 

limiting diameter growth in late summer. Optimal aspect for 
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forest production is not constant but varies with tree species, 

elevation, latitude, and other factors affecting site 

microclimate. 
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CHAPTER I 

GENERAL INTRODUCTION 

One objective in site quality research is to predict tree 

growth potential based on site properties. The typical approach 

is to measure soil, topographic and vegetation variables from 

randomly selected plots. Multiple regression procedures are then 

employed to develop a model based on some subset of the potential 

predictor variables measured. Hundreds of studies have been 

published using this approach (see reviews by Carmean (197 5), 

Hagglund (1981), Grey (1983)). This dissertation demonstrates 

weaknesses in this conventional approach and offers a more 

rational and simple approach for developing site quality models. 

Chapter 2 demonstrates that models developed by some statistical 

procedures may have prediction bias. Models may appear to 

predict well with the sample cases used for model development. 

However, models with prediction bias will predict with less than 

expected accuracy when applied to new sample cases. Cross­

validation and the bootstrap are recommended to researchers as 

methods to estimate prediction bias. 

Stepwise regression and discriminant analysis procedures may 

have prediction bias because they tend to include too many 

predictor variables in the model (Flack and Chang (198 7), 

Freedman (1983), Lovell (1983) ). A new method, classification 

and regression trees (Breiman et al. 1984), uses cross-validation 

during model development to minimize model overfitting with too 
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many predictor variables. This method is discussed in chapter 3. 

A classification tree discriminating prime vs. nonprime 

ponderosa pine sites in soutern Utah is presented in chapter 4. 

Since silvicultural decisions often involve only the best sites, 

models that discriminate prime sites may be more useful than 

models developed to predict site index over a random sample of 

sites . Relationships that occur over a random sample of sites 

may not be important on prime sites. A multiple regression model 

developed with randomly selected plots is compared with models 

developed to discriminate prime sites. 

Chapter 5 examines the potential of habitat types as site 

quality indicators. Past studies have shown mean site index to 

be significantly different among habitat types from different 

series. However, few studies have examined within-series habitat 

types as site quality indicators. 

Most site quality studies include aspect in regression 

models as cosine transformation such that the northeast aspect is 

optimal. It is generally believed that northerly aspects in the 

northern hemisphere have greatest forest production because of 

greater available soil moisture and more favorable temperatures. 

However, the optimal aspect may vary with season and therefore 

may differ for spring height growth versus summer diameter 

growth. Chapter 6 examines whether mean diameter and height 

growth are the greatest on the same aspect. 

The following chapters were written for submission as 



journal articles and therefore can be read independently. 

Because of this, some material is redundant among chapters. 
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CHAPTER II 

POTENTIAL PREDICTION BIAS IN REGRESSION 

AND DISCRIMINANT ANALYSIS 

INTRODUCTION 

4 

Many site quality studies have used multivariate statistical 

procedures to develop models that appear accurate. Goodness-of­

fit statistics such as coefficient of determination (R 2 ) in 

regression or classification tables in discriminant function 

analysis are typically reported as an assessment of model 

accuracy. The purpose of this chapter is to show that this 

approach may be misleading due to prediction bias. I will 

demonstrate why prediction bias can occur in common statistical 

models and how prediction bias can be estimated. 

MULTIPLE REGRESSION 

A multiple regression model can always be perfectly fitted 

through N data points by using N-1 independent variables in the 

model. Therefore a multiple regression model containing many 

independent variables relative to the sample size will always 

have a good fit through the data . However, such a model may be 

subject to J2.!:ediction £ia!; that is the apparent predictive 

ability based on data used to fit the model may be much greater 

than the model's actual predictive ability with independent data 

(Neter and Wasserman 1974). This can lead to erroneous 

conclusions about the biological significance of the independent 
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variables in the model. 

For example, Corns and Pluth (1984) reported an increase in 

R2 value from .58 to .91 with the addition of vegetation 

variables to a white spruce (Picea glauca) site index regression 

model. Based on this increase in R2 value the authors concluded: 

"Results of this study indicate that vegetational attributes used 

in addition to soil and site properties as independent variables 

in tree growth predictions can account for significant amounts of 

the variability in western Alberta lodgepole pine and white 

spruce MAI (mean annual increment) and SI (site index)." This 

may be true. However, the white spruce nine-independent variable 

regression model was based on only 30 stands. Because of the 

large number of independent variables relative to the sample 

size such a model may be subject to positive prediction bias. 

To illustrate this prediction bias potential, stepwise 

regression was run on a data set of thirty cases to develop a 

nine-independent variable model. All variables were uniformly 

independently randomly distributed within two times the standard 

deviation for each variable reported by Corns and Pluth (1984) 

(Table 2.1) . This resulted in a highly significant equation 

(P< . 01) with an R2 value of .74 . The R2 value for the equation 

increased from .55 to .74 with the inclusion of the random 

"vegetational" variables into the model. This could lead to the 

erroneous conclusion that vegetational variables are important as 

predictor variables, when actually they were only random "noise" 
; 
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being added to an over-fitted model. 



7 

TABLE 2.1. Comparison of site index regression models developed 
with measureda and randomb data sets 

Independent 
variable 

Elevation (m) 

Slope angle(%) 

Slope aspect 

Log thickness organic horizon 

Hue B horizon 

Value B horizon 

Croma B horizon 

Drainage class 

Log hydraulic conductivity (cm/day) 

Stone volume (%) 

1/log litter cover 

Canopy cover (%) 

Deadfall cover (%) 

Ledum groenlandicum cover (%) 

Rosa acicularis cover (%) 

Calamagrostis canadensis cover(%) 

Cornus canadensis cover (%) 

Regeneration density (stems/ha) 

R2 
F -value 22.75** 

Coefficient 
Real data Random 

-0.004** -0.007* 

0.92 

0.58 

2.32* 

9.67* 

-1.11** 

-1.64** 

-1.97* 

0.77** 

0.91 

0.90** 

-0.45 

-0.65 

-4.59** 

0.07 

-0.21 

-0. 75** 

0.39 

0.74 
6.38** 

aTable 4, p . 20 (Corns and Pluth 1984) . 
bRandom data generated with VAX-11 FORTRAN-77 V3.0 RAN function; 

data generated within mean~ 2 times standard deviation 
of each variable as reported by Corns and Pluth (1984). 

*P < 0.05 **P < 0.01 
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R2 can be computed as follows: 

Unadjusted R2- 1 - SSE/SST [2.1] 

Where SSE is the sum of squares error and SST is the sum of 

squares total. For a given response set, SST remains constant and 

SSE can never decrease. Therefore, the R2 value often increases 

when independent variables are added to the model. The adjusted 

R2 corrects for this bias (Zar 1974) and should be reported 

instead of R2 . The adjusted R2 can be computed as follows: 

Adjusted R2- 1 - [ (n-1)/(n-p-l)]SSE/SST [2.2] 

Where n is the number of sample cases and pis the number of 

predictor variables in the model. 

Forward inclusion stepwise procedures are often used to 

avoid the prediction bias potential associated with many model 

predictor variables relative to sample size. In stepwise 

regression, independent variables are entered into the model, one 

by one, on the basis of some statistical criteria (usually the 

largest F-value). The objective is to isolate a subset of 

available predictor variables that will yield the "best" model 

with relatively few independent variables. 

However, with stepwise regression there may exist many 

possible combinations of independent variables that could 

conceivably make up the final model. Because of this, the usual 

F-statistics and R2 value generated from the stepwise regression 

procedure are biased (Rencher and Pun 1978, Berk 1978, Diehr and 

Hoflin 1974, Pope and Webster 1972, Draper et !!l:.. 1971). This 
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can also lead to prediction bias if many predictor variables 

are tested by the stepwise procedure. For example, Page (1976) 

used stepwise multiple regression on 103 independent variables to 

predict site index of balsam fir (~bies bals~~ea) and black 

spruce (Picea mariana in Newfoundland. The stepwise procedure 

selected the "best" subset of eight independent variables for 

each regression equation. Because there were so many different 

combinations of predictor variables there is a high chance that 

one of the combinations will fit the sample data well but predict 

poorly when tested on new data. Table 2.2 compares results from 

Page's stepwise regression models with stepwise regression of 103 

uniform random variables. All predictor and response variables 

used in the stepwise regressions were independent random uniform 

integers varying from 1 to 100. The R2 values from the stepwise 

regression of random numbers were higher than the actual site 

index equations for half of the models. Because of the high 

potential of prediction bias in these models, predictor variables 

selected by the stepwise procedure can be biologically 

ins;gnificant. 



TABLE 2.2. Comparison of R2 values from regrestion models 
developed with measureda and random data sets 

Regression 
model 

Avalon Peninsula: 

Fir---well drained 
sites (48 plots) 

Fir---poorly drained 
sites (27 plots) 

Spruce---well drained 
sites (25 plots) 

Spruce---poorly drained 
sites (SO plots) 

Western Newfoundland: 

Fir---well drained 
sites (59 plots) 

Fir---poorly drained 
sites (16 plots) 

Spruce---well drained 
sites (34 plots) 

Spruce---poorly drained 
sites (41 plots) 

R2 values 
Real data Random data 

0.70 0.74 

0.94 0.88 

0.91 0.93 

0.71 0.61 

0.60 0.59 

0.94 0.99 

0.86 0.87 

0.77 0.73 

arable 2 p. 136 (Page 1976). 
bRandom data generated with VAX-11 FORTRAN-77 V3.0 RAN function; 

data for all variables randomly uniformly distributed between 
1 and 100. 

10 



DISCRIMINANT ANALYSIS 

One objective of discriminant analysis is to weight and 

combine independent variables in a linear function which predicts 

class membership. Although the mathematics of discriminant 

analysis differs from regression, prediction bias can still 

result due to a large number of independent variables relative to 

sample size and/or many combinations of independent variables 

possible with stepwise discriminant analysis. For example, Tom 

and Miller (1979,1980) reported a 97 percent classification 

accuracy in predicting site index class by using discriminant 

analysis on LANDSAT-1 data and ancillary map variables. However, 

the model contained 19 independent variables and was based on a 

sample size of only 37 plots. To illustrate the potential 

11 

prediction bias of such a model, discriminant analysis was run 

on 19 independent random uniform variables from a sample of 37 

cases. This resulted in a classification accuracy of 94.6 

percent (Table 2.3). Thus it seems likely that even though the 

discriminant functions predicted sample site index class well, 

the predictive power of the functions when applied to new data 

would be lower due to prediction bias. 
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TABLE 2.3. Discriminant analysis classification results of randoma 
data 

Predicted group membership 

Group 1 

Group 2 

Group 3 

Group 4 

Group 5 

Group 6 

Group 7 

Group 8 

Group 9 

Actual 
membership 

1 

9 

3 

8 

3 

3 

6 

1 

3 

1 2 

1 0 

0 7 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

Group number 

3 4 5 6 

0 0 0 0 

1 0 0 0 

3 0 0 0 

0 8 0 0 

0 0 3 0 

0 0 0 3 

0 0 0 0 

0 0 0 0 

0 0 0 0 

Overall classification accuracy 94.6 percent 
(35 out of 37 plots correctly classified) 

7 

0 

1 

0 

0 

0 

0 

6 

0 

0 

8 9 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

1 0 

0 3 

aRandom numbers generated with VAX-11 FORTRAN-77 V3.0 RAN 
function; numbers were random uniform integers between 1 and 100. 
Group membership was randomly assigned independent of predictor 
variables. 
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RESAMPLING TO ASSESS PREDICTION BIAS 

One obvious way to assess prediction bias is to randomly 

divide the sample cases into two groups. The first group is then 

used for model development and the second group is used for model 

validation. This approach is called 2-fold cross-validation. It 

has several weaknesses. Since only half the sample cases are 

used in model development, model degrees of freedom are reduced 

by half. This will cause a decrease in model statistical 

significance. Also the estimates of model coefficients will not 

be as precise and therefore may be unreliable. The estimate of 

prediction bias may also not be very precise. 

These weaknesses can be minimized by di vi ding the sample 

cases into many groups. Therefore N-fold cross-validation (where 

N is the number of sample cases) is often used in model 

validation. Prediction bias can be assessed with N-fold cross-

validation as follows: 

1) Delete the !th sample case (!initially is 1). 

2) Develop the predictive model with the remaining 

sample cases. 

3) Run the model on the excluded case. Model accuracy 

is estimated as this predicted value minus the actual 

value of the excluded sample case. 

4) Return the excluded sample case and increment i by 

one. 

Continue steps 1) through 4) until all sample cases have 
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been excluded once from model development. The cross -validation 

estimate of model accuracy is the mean of the accuracy estimates 

from step 3). Prediction bias can then be estimated as the 

original apparent accuracy of the model minus the cross -

validation estimate of model accuracy. 

Cross-validation has been used by forestry researchers 

(Frank~! al. 1984, Harding et al . 1985). Recently a better 

resampling procedure called the bootstrap (Efron 1983) has been 

developed . The bootstrap method is better because it gives a 

less variable prediction bias estimate than cross-validation 
.J 

(Efron 1982,1983). The bootstrap also seems to be better than 

cross - validation when a complicated prediction model is used 

(Gong 1986). 

Since the bootstrap (to my knowledge) has not been used by 

forestry researchers to estimate prediction bias, I will 

illustrate the procedure. Suppose a forester must decide which 

of the stands he is managing should receive fertilization. He 

randomly samples some stands and develops a discriminant function 

that predicts from two predictor variables fertilizer response or 

nonresponse. The discriminant function accurately predicts the 

responsive sample stands, but how accurate will it be in 

classifying the remaining population of stands? 

I simulated this problem with a computer by generating a 

population of 3000 cases. Half of the population was generated 

as fertilizer responsive stands and the other half as non-

responsive. Five normally distributed predictor variables with 
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means of 10, 20, 30, 40 and 50 and standard deviations of 10 were 

randomly assigned to each population case. Therefore there was 

no difference in terms of the predictor variables between the 

response and nonresponse population groups. A random sample of 

30 was then drawn from the population and linear discriminant 

analysis was conducted. The function correctly classified 20 of 

the 30 sample cases. Prediction bias of the function was 

estimated by the following double bootstrap procedure. 

1) Select a bootstrap sample (X*) of 10 cases randomly and 

with replacement from the original sample. 

2) Construct a linear discriminant function with the 

bootstrap sample. 

3) Estimate prediction bias (Pbiasl) as the proportion of 

bootstrapped cases correctly classified minus the 

proportion of original sample cases correctly classified 

by the bootstrap discriminant function. 

4) Pbiasl is slightly biased. This bias can be adjusted 

for by bootstrapping the first bootstrap sample (Efron 1983). 

Select the second bootstrap sample (X**) of 10 cases 

randomly and with replacement from the first bootstrapped 

sample (X*). 

S) Construct a linear discriminant function with X**· 

6) Estimate Pbias 2 as the proportion of cases from X** 

correctly classified minus the proportion of cases 

from X* correctly classified by the X** discriminant 



function. 

Steps 1) through 6) are repeated a large (NBOOT-200) 

number of times. The bootstrapped estimate of prediction bias 

is as follows: 

(2*Pbias 1 - Pbias 2 )/NBOOT [2.3) 

16 

The bootstrapped estimate of prediction bias was .18 . The 

sample apparent accuracy of the function was 66 percent, 

therefore the bootstrap estimate of actual accuracy is 66 - 18 -

48 percent. Since there was no difference between the 

population's two response groups in terms of the predictor 

variables, the function's true accuracy was 50 percent. In most 

research applications, a model's true accuracy will be unknown 

(since the population is not measured) and therefore must be 

estimated. 

The bootstrap estimate of regression prediction bias is 

similar to that of discriminant analysis except that difference 

between the actual and predicted dependent variable value is 

bootstrapped rather than discrimination of group membership. 

CONCLUSIONS 

1) Users of predictive models should realize that there 

is a cost of prediction bias potential associated 

with including or examining many predictor variables 

in model building. 

2) Model prediction bias can be estimated without 

measuring new data. The bootstrap is currently the 
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best procedure for estimating model prediction bias. 



CHAPTER III 

CLASSIFICATION TREES: A NEW DISCRIMINATION TOOL 

INTRODUCTION 

Prediction of class membership is a common objective in site 

quality research. Linear discriminant analysis has been the 

predominant method used in past site class studies (Gasana and 

Lowenstein 1984, Harding et al . 1985, Turvey et al. 1986). A 

class discrimination method, called classification trees, has 

been recently developed (Breiman ~! ~l:.. 1984). The purpose of 

this chapter is to introduce this discrimination tool and to show 

that classification trees may perform better that linear 

discriminant analysis under certain conditions. 

LINEAR DISCRIMINANT ANALYSIS 

One objective of discriminant analysis is to weight and 

linearly combine selected predictor variables so that sample 

classes are separated by a linear boundary that maximizes the 

ratio of between-class to within-class variances. A hypothetical 

example is presented in Figure 3.1. All points to the right of 

the boundary are predicted to belong to vegetation class A, and 

all points to the left of the boundary are predicted to belong to 

vegetation class B. Two-class discriminant analysis can be 

viewed as analogous to linear regression with a (0,1) dummy 

dependent variable (Huberty 1972). 

18 
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Figure 3.1. Linear discriminant function developed with 
60 hypothetical sample cases . 
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Linear discriminant analysis has several limitations. 

Distorted effects can result if the assumption of equal 

covariance structure is not met (Huberty 1975, Williams 1983). 

Since the method maximizes the between-class to within-class 

variance ratio, outlier sample cases can drastically affect the 

results. These outliers are difficult to detect in the 

multivariate sample space (Harner and Whitmore 1980). Because of 

this sensitivity to outliers, discriminant function coefficients 

may be unstable when sample sizes are small (Morrison 1984). 

Because of these limitations, statistically significant 

predictor variables in discriminant analysis may be meaningless 

(Williams 1983, Cavallaro et al 1980). To demonstrate this, 

random predictor variables were added to the sample cases 

displayed in Figure 3.1. Then linear discriminant analysis was 

run using the SPSSX statistical package (SPSS Inc. 1983). 

Despite a very strong bivariate relationship, random variables 

were included in the model by the discriminant analysis (Table 

3.1). Because of this sensitivity to random noise, discriminant 

analysis results can be misleading if the sample size is small 

relative to the number of predictor variables tested. 
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Table 3.1. Discriminant analysisa based on cases presente% in 
Figure 3.1 and additional random uniform predictor variables . 

Variables 
selected 

Elevation 
Radiation 
Random variable#5 

Elevation 
Radiation 
Random variable#5 

Elevation 
Radiation 
Random variable#5 

Radiation 
Elevation 
Random variable#27 
Random variable#32 
Random variable#l 
Random variable#l2 

Number of candidate 
predictor variables 

5 

10 

25 

50 

aSPSSX discriminant analysis using the following options: 
Stepwise, Method-Wilk' s lambda, Pin-0.05, Pout-0.05, 
Priors-size. 
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bRandom variables generated with VAX-11 FORTRAN-77 V3.0 RAN 
function; values random uniform integers distributed from Oto 99. 



CLASSIFICATION TREES 

Classification trees discriminate by sequentially selecting 

the predictor variable that best partitions sample cases into the 

purest class memberships. The computer program CART 

(classification and regression trees; California Statistical 

Software 1985) first determines the best discriminant boundary 

value for each predictor variable. Consider the hypothetical 

example in Figure 3.2. In this case the values would be 32.5 for 

"percent stone content" and 40.0 for "soil depth". Next, the 

program selects the predictor variable that best splits the 

sample cases into the purest class memberships. In this case a 

split at "percent stone content" of 32.5 would result in 49 cases 

correctly classified. A split at soil depth of 40 cm would 

result in 44 cases correctly classified. Therefore the variable 

"percent stone content" is chosen as the first predictor variable 

in the model. This process of selecting variables is continued 

until the number of cases remaining unclassified is less than 

five, or until all candidate predictor variables have been used. 

The classification tree at this time is likely to contain 

many predictor variables. Therefore the tree is likely to 

classify sample cases well but would classify new cases with less 

than apparent accuracy. The CART program corrects for this 

overfitting of the model by pruning the classification tree . 

Ten-fold cross-validation is used to estimate the actual 

classification accuracy of the tree at each step as follows: 

22 
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Figure 3.2. Cla:ssification tree developed on 60 
hypothetical sample cases. 

~ .. 
o"' 
~~ 
u°' _L 

f.lz 
0:0 

.. ~ .. 
IC .... ., 

~~ Zie,; u ... !!.., :iZ! s~ .. s 11:IC 

"'"' 
.... 

~% .. 
OWi 

!!ti!j .. 
~ 

~ .. .. o.., 
., .. :i ~~ -wiu a~ ~!:lo 

~Ii 
ICO 
A.Z 

~ 
;;;; 

~ 
.., 
::I 

;;;; ii: 
"O .... 
c .., I 

::I :z: Cl) ii: 0 
C> .... :z: 
Cl) 

_J • • 

• • 0 
2 

• • • • • • 0 
GO 

• • • • • • • • • • • • • • • • • • ~ i:!: 
• • 0.. 

Lu • • • a 

• ...J 

• • • 05 
.... V) 

• • • • • • • 0 
N 

• 

0 0 
0 0 0 0 0 0 0 2 0 Ot GO ,... ... Ill .... ..., N 

lN3lNO:> 3NOlS lN3:>~3d 



1) Ten subsamples are selected randomly without 

replacement from the original sample. 

2) The ~th subsample(~ is initially 1) is excluded 

and the classification tree is developed on the 

remaining nine subsamples. 

3) Classification actual accuracy is then estimated 

by classifying the excluded subsample cases. 

Since these cases were not used to develop the 

classifier, they will give a better estimate of 

the classifier's actual accuracy than would cases 

used in developing the model. 

4) The excluded subsample is included for classifica­

tion tree development and the next subsample is 

excluded for validation of the developed 

classifier. 

5) Repeat steps 1) through 4) until all subsamples 

have been sequentially excluded for classification 

accuracy estimation. The cross-validated estimate 

of classification accuracy is then the mean of the 

accuracy estimates from step 3. 

Cross-validation yields classification accuracy estimates 

for the tree at each pruning step. Typically, a large tree with 

too many predictor variables has a low estimated classification 

accuracy because it uses spurious relations that are artifacts of 

the sample. On the other hand, a small tree with few variables 

may have a low estimated classification accuracy if it does not 
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use all important predictor variables. Therefore, the CART 

program chooses the tree size with the highest cross-validated 

accuracy estimate. 

ADVANTAGES OF CLASSIFICATION TREES 

Because CART uses cross-validation during the pruning 

process, insignificant predictor variables are less likely to be 

included in the final model. To illustrate this, I added random 

predictor variables to the sample cases displayed in Figure 3.2. 

Only the original predictor variables were chosen by the CART 

program, even when 100 random candidate predictor variables were 

added (Table 3.2). 

TABLE 3.2. Classification tree analysis based on cases presented in 
Figure 3.2 and additional random uniform variables.a 

Variables 
selected 

Percent stone 
Soil depth 

Percent stone 
Soil depth 

Percent stone 
Soil depth 

Percent stone 
Soil depth 

Percent stone 
Soil depth 

Number of candidate 
predictor variables 

5 

10 

25 

50 

100 

bRandom variables generated with VAX-11 FORTRAN-77 V3.0 RAN 
function; values random uniform integers distributed from Oto 99. 



Outlier sample cases are a potential problem with most least 

squares procedures. Classification trees are robust with respect 

to outliers because each sample case carries the same weight in 

classifier development. Classification trees are nonparametric 

and can use nominal, ordinal, interval and ratio-scaled predictor 

variables. They can be understood by anyone familiar with 

dichotomous keys. 

Missing predictor variables are commonly handled in 

discriminant analsysis by either deleting cases with missing 

values or by substituting mean values for missing values. CART 

handles missing values by keeping surrogate splits based on other 

predictor variables. If a predictor variable is missing for a 

sample case, CART uses the best available (nonmissing) surrogate 

split. Breiman et al. (1984) have found classification tree 

accuracy loss due to missing values to be slight if predictor 

variables are highly correlated, and therefore good surrogate 

splits are available. 

Empirical medical studies have found classification trees to 

predict as well as discriminant analysis (Goldman ~! al. 

1982, Dillman and Koziol 1983, Gilpin et ~l:.. 1983). Neither 

method is best under all conditions. Discriminant analysis 

performs well when linear combinantions of predictor variables 

are important (as in Figure 3.1) . Classification trees perform 

well when threshold values are important in predicting class 

membership . 

26 
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CHAPTER IV 

A NEW APPROACH TO SITE QUALITY MODELING 

INTRODUCTION 

The typical soil-site quality study involves multiple 

regression with site properites measured from randomly located 

plots. Hundreds of studies have used this approach (see reviews 

by Carmean 1975, Hagglund 1981, Grey 1983). However, most 

statistically significant regression models developed using 

random selected plots reveal relationships that may be important 

only in the range of poor to good sites. Because of this, the 

conventional approach may be misleading in indentifying site 

properties associated with the best sites. The purpose of this 

chapter is to contrast the conventional regression approach with 

a new approach that discriminates prime vs. nonprime sites. 

METHODS 

Seventy-five 0.10 hectare plots were randomly established 

within the ponderosa pine (Pinu~ :e.onderosa) zone in the Dixie 

National Forest, Utah (see Appendix II maps). Site properties 

from these plots were used to develop a conventional site index 

regression model. In addition, forty-four 0 .10 hectare plots were 

randomly established on the best ponderosa pine sites (according 

to Dixie National Forest silvicul turists) so that models 

discriminating prime sites could be developed and compared with 
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the regession model developed from randomly selected plots. 

Prime sites are defined as sites having site index base age 25 

years (SI 25 ) of greater than 7 .6 meters (25 feet). 

Within each plot, the tree with best initial 25 -year 

diameter growth (based on increment cores) was selected as a site 

tree. Site trees had no observable top-damage, had healthy 

appearing crowns, and a past history of regular radial growth to 

at least 25 years at breast height. sr 25 was measured by taking 

increment cores about 25 whorls above breast height until the 

location corresponding to 25 years less than breast height age 

was found. Site index was then measured to the nearest .10 meter 

with a steel tape. 

A soil pit was dug under the site tree crown and soil 

samples were taken from the 10 to 20, 20 to 30, 40 to 50, and 60 

to 70 depth zones in the soil profile. Soil samples were placed 

in a cooler and frozen within 10 days of sampling. Frozen soils 

were later oven-dried at 60° C and sieved to 2 mm. Samples were 

then analyzed in the following manner: pH by glass electrode in a 

1: 1 paste, percent organic carbon by the Walkley-Black method 

(Nelson and Sommers 1982), Bray-Kurtz extractable phosphorus 

(Olsen and Sommers 1982), mineralizable nitrogen (Powers 1980) 

determined colorimetrically (Keeny and Nelson 1982), and percent 

sand, silt, clay by the hydrometer method (Bouyoucos 1962). 

Elevation at each plot was estimated to the nearest 30 meter 

with a topographic map. Slope was measured with a relaskop and 

recorded to the nearest percent. Aspect was recorded and later 
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transformed with a cosine function (Gaiser 1951) . Potential July 

1 solar radiation was estimated as a function of slope and aspect 

(Swift 1976) . Habitat type was determined by using keys and 

descriptions presented in Youngblood and Mauk (1985) . Habitat 

l1iP1 -111''1 
types were grouped into two classes: low site potential 

t:,r( .... m~;1+---
<P1Po/ARPA, PIPO/ARNO, PIPO/PUTR) and high site potential 

(PIPO/QUGA, PIPO/SYOR, PSME, and ABCO habitat types) (Table 4.1). 



Table 4.1. Description of habitat types in the study area 
from Youngblood and Mauk (1985). 

Habitat 
type 

Dominant understory 
species 

Low Site Potential Habitat Types 

Typical site 

30 

PI PO/ARPA ~rctost~h,ylo~ E]!tula 
Juniperus scopulorum 
Purshia tridentata 

Shallow limestone 
soils; 

PIPO/ARNO 

PIPO/PUTR 

Artemesia nova 
Chrysothamnus viscidiflorus 
Juniperus scopulorum 
Tetradymia canescens 

Purshia tridentata 
Artemesia tridentata 
Quercus gambelii 

south and west 
facing slopes 

Deep sandy 
plains at low 
elevations 

Shallow basalt 
or sandstone 
slopes 

High Site Potential Habitat Types 

PIPO/QUGA Quercus gambelii 
Amelanchier alnifolia 
Symphoricarpos oreophilus 
Rosa woodsii 
Carex geyeri 

PIPO/SYOR Symphoricarpos oreophilus 
Berberis repens 
Populus tremuloides 

PSME series Symphoricarpos oreophilus 
Berberis repens 
Juniperus communis 

ABCO series Symphoricarpos oreophilus 
Berberis repens 
Populus tremuloides 

Wide variety of 
sites; most 
common on 
non-limestone 
soils 

Moist benches; 
north and east 
facing slopes 

Cool slopes 
above PIPO 
series 

Cool slopes 
and benches 
above PIPO 
series 
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Foward stepwise regression (SPSS Inc. 1983; F-statistic 

probability to enter< 0.10) was used to develop a site index 

model with the measurements from randomly selected plots . Linear 

discriminant function analysis and classification tree analysis 

were used to discriminate prime sites from non-prime sites. From 

a previous study (see Chapter V) prime sites were expected to 

occur only in the high potential habitat group. Therefore plots 

with low site potential habitat types (PIPO/ARPA, PIPO/ARNO, and 

PIPO/PUTR) were excluded from the prime site discrimination. 

Potential predictor variables for regression and discrimination 

models are listed in Table 4.2. 
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Table 4 . 2. Candidate predictor variables from sample cases. 
----------------------- -------------------------------------
------------------------------------------------------------

Potential Prime site plots Non-prime plots 
predictor 
variables Mean S.D. N Mean S . D. N 
---------
Elevation (m) 2489 67 45 2445 86 75 

Potential solar 
radiati~n 
(cal/cm /day) 972 22 45 965 51 75 

Slope (%) 9.6 6.8 45 9.4 11.1 75 

Organic matter (%) 
at 15 cm 2.5 0.9 45 3.5 1. 3 75 
at 25 cm 1. 7 0.8 45 2.9 1.4 70 
at 45 cm 1.1 0.7 45 2.2 1. 3 66 
at 65 cm 1.0 0.6 39 1. 8 1.1 50 

Extractable p (ppm) 
at 15 cm 105 52 45 31 45 75 
at 25 cm 93 56 45 25 42 70 
at 45 cm 91 61 45 17 36 66 
at 65 cm 87 70 39 12 30 49 

Mineralizable N (ppm) 
at 15 cm 8.8 11. 6 45 11.5 5.6 75 
at 25 cm 5.5 6.0 45 8.2 4.0 70 
at 45 cm 4.2 4.0 45 5.6 2.7 66 
at 65 cm 3.8 4.2 39 4.5 1. 7 49 

Soil pH 
at 15 cm 6.2 0.4 45 7.3 0.7 75 
at 25 cm 6.3 0.5 45 7.4 0.7 70 
at 45 cm 6.4 0.5 45 7.5 1.1 66 
at 65 cm 6.5 0.6 39 7.7 0.7 49 

Sand (%) 
at 15 cm 49 10 45 31 15 75 
at 25 cm 48 11 45 32 13 70 
at 45 cm 47 9 45 33 13 66 
at 65 cm 47 10 39 30 12 49 
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Table 4.2 (continued). 

Potential Prime site plots Non-prime plots 
predictor 
variables Mean S.D. N Mean S.D. N 
---------
Silt (%) 

at 15 cm 25 6 45 33 8 75 
at 25 cm 24 6 45 30 7 70 
at 45 cm 20 5 45 28 8 66 
at 65 cm 20 5 39 29 7 49 

Clay (%) 
at 15 cm 25 7 45 36 10 75 
at 25 cm 28 8 45 37 11 70 
at 45 cm 33 9 45 39 11 66 
at 65 cm 34 9 39 40 9 49 

Habitat type 
(0,1 dummy) 1.0 0 45 0.5 0 . 5 75 
------------------------------------------------------------
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RESULTS AND DISCUSSION 

Three variables were selected by the stepwise regress ion 

procedure (Table 4.3). The weak linear relationship revealed by 

the regression occurred only in the site range the model was 

developed fromf (poor to average sites). When the regression 

model was applied to nonprime and prime site sample cases it 

consistently underestimated site index of prime site cases 

(Figure 4.1). Therefore extrapolation beyond the range of sites 

sampled was misleading. Significant regression predictor 

variables from randomly selected samples may not be important if 

one is interested in identifying si p e factors associated with 

relatively rare prime sites. 

Table 4.3. Multiple regression model developed with random 
plots. 

Variable Coefficient Significance 
-------- ----------- ------------

Habitat type 1.4 < 0.01 

Silt (15cm) -0.04 0.02 

Slope percent -0.02 0.07 

Regression 
constant 6.07 < 0.00 

Adjusted R2-0.29 Standard e , ror of estimate-3.5 
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Figure 4.1. Predicted site index from regression developed 
with nonprime plots vs. observed site index 
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Both linear discriminant and ~lassification tree analyses 

discriminated prime sites as a function of sand percent and pH 

(Figures 4.2, 4.3). Both classi lfiers had high apparent 

classification accuracy: the clas ~ification tree correctly 

classified 71 of 77 sample cases (92 percent) while the linear 

discriminant function correctly classified 66 of 77 sample cases 

(85 percent) . The actual acuracy of the classification tree was 

estimated with 10-fold cross-validation (Breiman et al. 1984) to 

be 88 percent. The actual accuracy of the linear discrimant 

function was estimated to be 80 percent by using the random 

bootstrap (Efron 1982). 

Model reliability was also be assessed by examining 

misclassified sample cases. The cases misclassified by the 

classification tree tended to occ p r near the pr i me site -

nonprime site boundary of 7.6 meters (25 feet) site index (Figure 

4.4). 
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Figure 4.3. Classification tree developed with plots having high potential habit-at types. 
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Figure 4.4. Distribution of cases misclassified by 
classification tree. 
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Prime sites were associated with high potential habitat 

types that had a high percent sand content. Frequent 

short duration thunderstorms in the study area are common 

throughout the summer. Therefore, deep sandy sites may have more 

available water for root extraction due to high infiltration and 

low runoff during these storms. Also these sites may have more 

rapid root extraction of water due to high hydraulic 

conductivity. Williams ~.f. ~.!..:.. (1963) found the best ponderosa 

pine sites to have the highest hydraulic conductivity in the Zuni 

Mountains, New Mexico. 

A low pH associated with prime sites seems to be consistent 

with past studies. Zinke (1958) found the ponderosa pine site 

index to be the greatest at pH's of 6.0 to 6 . 5 in northwestern 

California. Howell (1932) found water culture ponderosa pine 

seedling height and root growth to be best at pH 4.0. 

Soil pH could affect many biological and chemical properties 

of soil that influence tree growth. For example, in this study 

extractable phosphorus and pH at 15 cm were negatively correlated 

(Pearson's r--0.68, P<0.001). 

Many of the potential predictor variables were correlated 

and therefore were not included in the model even though they 

may be useful predictors. For example, percent sand and percent 

clay at 15 cm were strongly correlated (r-0.89, P<0 . 001). 

Therefore, once percent sand at 15 cm is included in the 

discriminant model, percent clay explains little of the remaining 

variation and is excluded. 
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CONCLUSIONS 

1) A regression model developed over a range of poor to 

good sites was biased when applied to prime sites. 

Models may be misleading if extrapolated 

beyond the site range within which they were 

developed. 

2) Classification tree and linear discriminant analysis 

accurately discriminated prime sites. Prime 

sites were associated with high site potential 

habitat types that had high percent sand content and 

low soil pH. 



CHAPTER V 

PONDEROSA PINE HABITAT TYPES AS AN INDICATOR OF SITE 

QUALITY IN THE DIXIE NATIONAL FOREST, UTAH 

INTRODUCTION 

42 

The USDA Forest Service habitat type land classification 

system (Pfister and Arno 1980) has been shown to be useful in 

predicting tree growth potential (Roe 1967, Monserud 1984, 

Mathiasen et al. 1986). These studies examined differences in 

mean tree growth across habitat type series (a series is a 

collection of habitat types having the same dominant by the 

dominant tree species at climax). To my knowledge, no studies 

have examined within-series habitat types as indicators of site 

production potential. The objective of this study is to examine 

site index among five habitat types within the Pinu~ E.2_nderos~ 

series. 

METHODS 

Site index base age 25 years (SI 25 ) was measured for 172 

dominant ponderosa pine (Pinu~ E.Onderosa) trees from randomly 

established 0.10 hectare plots within the ponderosa pine zone of 

the Dixie National Forest in southern Utah (Appendix II). SI 25 

was chosen rather than site index base age 100 years because many 

stands in the study area were 25 to 75 years old. Height growth 

differences due to site differences usually begin early. For 
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example, Oliver (1972) found that a six-year height intercept in 

ponderosa pine seedlings accounted for 81 percent of the 

variation in sr 100 . The tree with best initial 25-year diameter 

growth (based on increment cores) within each plot was selected 

as a site tree. Site trees had no observable top damage, had 

-

heal thy appearing crowns and a past history of regular radial 

growth to at least 25 years at breast height. sr 25 was measured 

by taking increment cores in the area 25 whorls above breast 

height until the location corresponding to 25 years less than 

breast height age was found. Site index was then measured to the 

nearest .10 meter with a steel tape. 

Habitat type was determined by using keys and descriptions 

published by Youngblood and Mauk (1985). Five habitat types 

within the ponderosa pine series were sampled (Table 5.1). 

Unclassified plots or those not in the ponderosa pine series were 

excluded from the analysis. To avoid bias in habitat type 

identification, habitat type was determined before site index was 

measured. 
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Table 5.1. Ponderosa pine habitat types sampled. 

Habitat 
type 

PI PO/ARPA 

PI PO/ARNO 

PIPO/PUTR 

PIPO/QUGA 

PIPO/SYOR 

Dominant understory 
species 

Arctost~hYlo~ E_!tula 
Juniperus scopulorum 
Purshia tridentata 

Artemesia nova 
Chrysothamnus viscidiflorus 
Juniperus scopulorum 
Tetradymia canescens 

Purshia tridentata 
Artemesia tridentata 
Quercus gambelii 

Quercus gambelii 
Amelanchier alnifolia 
Symphoricarpos oreophilus 
Rosa woodsii 
Carex geyeri 

Symphoricarpos oreophilus 
Berberis repens 
Populus tremuloides 

Typical site 

Shallow limestone 
soils; 
south and west 
facing slopes 

Deep sandy 
plains at low 
elevations 

Shallow basalt 
or sandstone 
slopes 

Wide variety of 
sites; most 
common on 
non-limestone 
soils 

Moist benches; 
north and east 
facing slopes 
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RESULTS 

Site index variances differed significantly among habitat 

types (Bartlett F-max test, P < 0.01). Therefore a rank-order 

nonparametric test was used instead of analysis of variance in 

testing the null hypothesis that mean site index was the same 

among habitat types. Mean site index differed significantly 

among the five habitat types (Kruskal-Wallis test, P < 0.0001). 

However, there was considerable site index variation among the 

five habitat types (Fig. 5.1, Table 5.2). Because of this 

variation, no habitat type contained consistently good sites or 

consistently poor sites. 

There are several possible reasons for the wide site index 

variation within a habitat type. A given habitat type may 

reflect a wide range of site conditions. For example, PIPO/SYOR 

is considered a moist, cool habitat type within the ponderosa 

pine series. However, this habitat type can range from steep 

slopes with at least 35 percent exposed rock to level bottoms 

with deep loam soils (Youngblood and Mauk 1985). 

Vegetation composition on some sites may be affected by 

factors such as seed source prior to disturbance, time elapsed 

since last disturbance, and type of disturbance. For example, 

shrub species characteristic of the PIPO/ARPA habitat type 

(Ceanothus and Arctostaphylos) tend to germinate rapidly and re-

sprout following surface fires (Daubenmire 1959). Purshia 

tridentata usually does not resprout and may be re-establishPn by 
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rodents caching Purshi~ seeds after a fire disturbance (West 

1968, Sherman and Chilcote 1972). Therefore the habitat type of 

a given site may not be entirely dependent on environmental 

conditions; it may also depend on site history and chance. 

Table 5.2. Random plot sr 25 (meters) descriptive 
statistics by habitat type. 

Habitat type Mean Standard deviation Sample size 
------------ ------------------ -----------

PI PO/ARPA 3.6 0.96 31 

PIPO/ARNO 4.8 1.09 31 

PIPO/PUTR 4.7 0.84 30 

PIPO/QUGA 5.6 1.41 57 

PIPO/SYOR 5.9 1.07 23 



Figure 5.1. Distribution of random ponderosa pine sr 25 
among PIPO habitat types. 
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Although there was considerable site index variation within 

habitat types, the best sites occurred only in the PIPO/QUGA and 

PIPO/SYOR habitat types. Therefore habitat types are useful when 

used in conjunction with additional site factors in identifying 

prime sites (see chapter IV). 

In a related study (chapter IV), I sampled the best 

ponderosa pine sites (according to Dixie National Forest 

silviculturalists) within the Dixie National Forest. Forty-four 

0.10 hectare plots were randomly established within these prime 

site areas and sr 25 at each plot was measured from the dominant 

ponderosa pine with the best initial 25-year diameter increment. 

Random plots within these areas were always identified as 

PIPO/QUGA, PIPO/SYOR or habitat types within the Douglas-fir 

(Psuedotsu~ menziesii) or white fir (Abies concolor) series 

(Figure 5. 2). 



Figure 5.2. Distribution of prime ponderosa pine SI25 
by habitat type. 
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CONCLUSIONS 

1 . The best ponderosa pine sites sampled consistently 

occurred in PIPO/QUGA, PIPO/SYOR, PSME or ABCO habitat 

types. 

2. The range of s1 25 within any one habitat type 

was broad. Therefore habitat type should not be used 

alone in predicting the best ponderosa pine sites. 

However, habitat type when used with other site 

variables is useful in predicting prime sites. 

so 



CHAPTER VI 

EFFECT OF ASPECT ON PONDEROSA PINE 

HEIGHT AND DIAMETER GROWTH 

INTRODUCTION 
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Site quality studies have generally transformed aspect 

azimuth using a cosine function (see reviews by Carmean 1975, 

Hagglund 1981). This transformation produces a maximum at the 

northeast and a minimum at the southwest aspect. Empirical 

studies in the eastern United States have found south and west 

facing slopes to be least productive, and north and east facing 

slopes to be most productive (Trimble and Weitzman 1956, Lee and 

Sypolt 1974, Auchmoody and Smith 1979, Tajchman and Wiant 1983, 

Hicks and Frank 1984). It is believed that northerly aspects in 

the northern hemisphere have greatest forest production because 

of greater available soil moisture (Werling and Tajchman 1984), 

more rapid nutrient cycling (Hicks and Frank 1984), and more 

favorable ambient and soil temperatures (Lee and Sypolt 1974). 

Optimal aspect for forest production may be the aspect 

receiving maximum solar radiation subject to available water and 

optimal temperature constraints. Therefore optimal aspect may not 

always be northerly. For example, at extreme northerly latitudes 

in the northern hemisphere, southerly aspects appear to have the 

best black spruce (Picea mariana) sites (Lowry 1975). 
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Roise and Betters (1981) theorized that the optimal aspect 

for tree growth varies with elevation. They showed that aspen 

(P£E_ulus tremuloides) occurs more frequently on north-facing 

slopes at low elevations and on south-facing slopes at high 

elevations . However, to my knowledge this relationship has not 

been empirically examined for individual tree growth . Running 

(1984) used computer simulation to show in theory that south 

slopes may produce higher seasonal photosynthesis than north 

slopes when energy, rather than water, becomes the factor limiting 

physiological activity. The first objective of this chapter is 

to determine whether ponderosa pine (Pinu~ £Onderosa) at its 

upper e levational limit exhibits greatest growth on southerly 

slopes . 

Optimal aspect may also vary depending upon the measurement 

of tree growth used. Stage (1976) found the optimal aspect for 

western white pine (Pinu~ !!!2_nticol!) site index to be nor the as t 

and the optimal aspect for individual basal area growth to be 

southwest . Greater diameter growth on southwest slopes may have 

been due to a lower tree density. However, diameter growth may be 

greatest on southerly slopes early in the life of a stand when 

density has minimal effect on individual diameter growth. The 

second objective of this chapter is to examine mean initial 10-

year diameter increment and mean site index on various aspects to 

determine whether the greatest mean site index and diameter 

increment occur on the same aspect . 
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METHODS 

Two cinder cones, Bowers Knoll and Henrie Knoll, on the 

Cedar City District, Dixie National Forest were chosen as study 

sites (see Appendix II maps). Both sites are free of topographic 

shading, have uniform parent material, and are in the upper 

elevational limit of ponderosa pine. Bowers Knoll ranges in 

elevation from 2530 to 2604 meters; Henrie Knoll ranges from 2710 

to 2821 meters above sea level. 

Dominant and codominant ponderosa pine Q.!_nu!. E.£.!!derosa) 

were sampled at mid-slope as site trees. Site trees had no 

observable top damage, had healthy appearing crowns, and a past 

history of unsuppressed radial growth. Each site tree was 

increment cored at breast height (1.4 m above ground level) to 

determine total breast height age and initial 10-year diameter 

growth increment. Tree height was measured indirectly with a 

relaskop and computed after measuring slope distance to the site 

tree (Long and Mohai 1986). Site index at base age 100 years was 

computed using procedures described by Fisher (1980). Slope 

aspect was determined with a hand compass as either north, 

northeast, east, southeast, south , southwest, west, or northwest. 

Aspects were grouped for analysis into northerly aspects (north, 

northeast, northwest) and southerly aspects (south,southeast, 

southwest). 
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RESULTS AND DISCUSSION 

Mean initial ten-year diameter increment was significantly 

greater on southerly slopes (Table 6.1). Mean site index was 

significantly greater on southerly slopes at Henrie Knoll; no 

significant difference was observed from B?wers Knoll samples. 

Greater individual initial diameter growth on southerly 

slopes might be due to a lower tree density. Diameter growth was 

measured for the first ten years at breast height to minimize 

this density effect. Greater mean diameter growth on southerly 

slopes might be due to an extended diameter growing season. 

Ponderosa pine diameter growth usually coincides with the rainy 

late summer period on the Colorado plateau and stops once a 

minimum ambient temperature occurs (Mace and Wagle 1964). At the 

upper elevational limit, ponderosa pine diameter growth on 

northerly slopes may be slower due to lower ambient temperatures 

as the season progresses when compared with southerly slopes 

(Figure 6.1). 
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Figure 6.1. Potential solar radiation on 30 percent slopes 
at 38 degrees north latitude. 
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Table 6.1. Student T-test of mean site index 100 and mean 
10 year diameter increment by aspect group. 

Site Index (m) 

Bowers Knoll 

Henrie Knoll 

Northerly 
Aspects 

N Mean S.D. 

26 18 . 9 2.5 

20 17.1 2.0 

10 year diameter N Mean S.D. 
increment(cm) 

Bowers Knoll 26 2.7 0.6 

Henrie Knoll 20 2.1 0.5 

Southerly 
Aspects 

N Mean S.D. 

22 19 . 0 1. 7 

18 18.7 1. 2 

N Mean S.D. 

22 3.4 0.6 

18 3.0 0.6 

P-value 

0.95 

0.008 

P-value 

<0 . 001 

<0.001 
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Soil moisture has a strong influence on height growth in 

pines (Perala 1985). This may be especially true on the Colorado 

Plateau because May and June are usually droughty. Pearson (1918) 

found a strong correlation between precipitation in April/May and 

ponderosa pine height growth in northern Arizona. Northerly 

slopes during the height growth period may be the more favorable 

sites due to a slower spring snowmelt and therefore greater 

available soil water during height growth. This may be why 

maximum site index is often reported for northerly aspects, except 

at extreme upper elevational limits (such as Bowers Knoll) where 

low temperatures rather than low soil moisture may be limiting. 

Stage (1976) found southerly aspects to be superior for 

individual basal area growth. This may be due to less individual 

tree competition on the lower density southerly slopes. It may 

also be due to differences in radiation loading as the diameter 

season progresses allowing for greater diameter growth and a 

longer diameter growing season on southerly slopes. Further 

research with controls on density is needed to determine whether 

optimal aspects for diameter and height growth differ. 

Aspect is often used in digital terrain models to predict 

site index (Ferguson 1981, Fox et al. 1985). These models may be 

misleading if applied to areas with different elevations or 

latitudes. For example, a digital terrain model developed to 

predict aspen production in Colorado as a function of 

slope,aspect, elevation and parent material may predict poorly 

when applied to aspen stands in Alaska. 



CONCLUSIONS 

1. The optimal aspect for ponderosa pine growth was not 

constant but changes with elevation. At low elevations 

north-facing slopes have relatively better sites. The 

highest elevation site studied had greatest mean site 

index and mean diameter increment on southerly slopes. 

58 

2. Height growth and diameter growth occur at different 

times of the year. Maximum diameter growth at a species 

upper elevational limit may occur on warmer aspects due 

to higher ambient temperatures during diameter growth 

and an extended growing season. Diameter growth was 

significantly greater on southerly slopes witin the two 

upper elevation zones studied. 

__3. Maximum height growth below a species upper elevational 

limit may occur on northerly aspects that have the 

highest soil moisture content during the height growth 

period in the spring. Height growth was significantly 

greater on southerly slopes only on the highest 

elevation zone studied. 

-
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CHAPTER VII 

GENERAL SUMMARY AND CONCLUSIONS 

The conventional site quality approach is to use multiple 

regression procedures with data from randomly selected plots to 

develop a model that predicts site index as a function of 

soil,topographic and vegetation properties. This approach is 

poor if many candidate predictor variables are available relative 

to sample size because the resulting model is likely to contain 

biologically insignificant predictor variables. Such a model is 

misleading and may perform poorly if validated with new 

independent data. 

Another problem with the conventional approach is that 

relationships revealed by models developed with randomly selected 

plots may not hold for relatively rare prime sites . Since 

intensive silviculture often is only economical on prime sites, 

models that discriminate prime vs. nonprime sites may be more 

useful. 

A new approach is presented using classification tree 

analysis and lin J ar discriminant function analysis to 

discriminate prime vs. nonprime ponderosa pine sites. 

Classification tree analysis uses cross-validation to develop a 

model with the best estimated actual accuracy. Both 

the classification tree and linear discriminant function 

predicted prime and nonprime sites as a function of habitat type, 

percent sand, and soil pH. Cross-validation was used to e s t i ,Pate 
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the actual classification tree accuracy as 88 percent. The 

random bootstrap was used to estimate the linear discriminant 

function classification accuracy as 80 percent . A multiple 

regression model was developed with the nonprime site plots and 

was biased when applied to prime site plot data. 

Forest habitat types within the ponderosa pine series were 

examined as site quality indicators . The range within any one 

habitat was broad. However, the best ponderosa pine sites 

consistently occurred in only Pi~~ ponderosa/Quercus gambelii 

and Pinus ponderosa/Symphoricarpos oreophilus habitat types, or 

within the Pseudotsu~ menziesii and Abies concolor series. 

Therefore forest habitat type when used with other site variables 

may be useful in predicting prime sites. 

The effect of aspect at the upper elevational limit of 

ponderosa pine was examined by comparing mean site index and 

mean initial 10-year diameter increment on southerly and 

northerly slopes from two cinder cones. Southerly aspects had on 

both cinder cones had greater mean diameter increment. Southerly 

aspects on the highest elevation cinder cone had the greatest 

mean site index . There was no significant difference in mean 

site index on the lower elevation cinder cone. The effect of 

aspect is often assumed to be constant in most site quality 

models. Optimal growth probably varies with elevation, latitude, 

and species . The optimal aspect may be the aspect receiving 

maximum solar radiation subject to available water and optimal 

temperature constraints. 
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RECOMMENDATIONS FOR FURTHER RESEARCH 

Most forest site quality models use relatively easily 

measured variables that correlate with measured tree growth. For 

example, sand percent is correlated with tree growth presumably 

because it affects available soil water. Soil pH is correlated 

with tree growth presumably because it affects nutrient 

availability. Such models are fine for planning purposes. 

However, they are weak in explaining processes that affect site 

quality. 

Austin et al. (1984) have argued that more biologically 

relevant variables need to be developed or measured. For 

example, slope and transformed aspect are often included in plant 

distribution models. These variables are associated with the 

amount of solar radiation a site receives. However, site 

potential solar radiation can be calculated as a function of 

slope, aspect and latitude (Swift 1976). A potential radiation 

index may be more biologically relevant than slope and 

transformed aspect since it more closely reflects a factor (solar 

radiation) affecting plant growth. Austin (1984) has found the 

potential radiation index to be a better predictor of plant 

species distributions than simple measures of slope and aspect. 

The potential solar radiation index would probably also be a 

better predictor variable than slope and aspect in forest site 

quality models. 

Many processes affecting site quality are dynamic. Yet most 

variables used in site quality models are static measurements 

taken at one time during the growing season. Also many soil 
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measurements are taken in the laboratory on disturbed soil 

samples rather than in the field on relatively undisturbed 

samples. New measurement techniques need to be developed that 

can be used on-site, with minimum soil disturbance, and can be 

monitored throughout the growing season. For example, the resin 

bag method (Binkley and Matson 1983) can be used with intact soil 

cores for assessing soil nitrogen availability, nitrogen 

mineralization, and nitrification (DiStefano and Gholz 1986). 

Such a field technique is valuable because patterns of nitrogen 

availability and loss rather than a static meausure of available 

nitrogen may be important. Similar field techniques need to be 

developed to measure available soil water and other nutrients. 

Practical site quality models that use easily measured 

variables will continue to be valuable. In addition, models 

using measured dynamic site factors such as nutrient and water 

availability need to be developed to improve our understanding of 

processes affecting site quality. 
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