
Utah State University Utah State University

DigitalCommons@USU DigitalCommons@USU

All Graduate Plan B and other Reports Graduate Studies

8-2017

Tree-based Regression for Interval-valued Data Tree-based Regression for Interval-valued Data

Chih-Ching Yeh

Follow this and additional works at: https://digitalcommons.usu.edu/gradreports

 Part of the Statistical Methodology Commons

Recommended Citation Recommended Citation
Yeh, Chih-Ching, "Tree-based Regression for Interval-valued Data" (2017). All Graduate Plan B and other
Reports. 1010.
https://digitalcommons.usu.edu/gradreports/1010

This Report is brought to you for free and open access by
the Graduate Studies at DigitalCommons@USU. It has
been accepted for inclusion in All Graduate Plan B and
other Reports by an authorized administrator of
DigitalCommons@USU. For more information, please
contact digitalcommons@usu.edu.

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/gradreports
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/gradreports?utm_source=digitalcommons.usu.edu%2Fgradreports%2F1010&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/213?utm_source=digitalcommons.usu.edu%2Fgradreports%2F1010&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/gradreports/1010?utm_source=digitalcommons.usu.edu%2Fgradreports%2F1010&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/

Tree-based Regression for Interval-valued Data

A Project Presented to the
Department of Mathematics and Statistics

Utah State University

In Partial Fulfillment
of the Requirements for the Degree

Master of Statistics

Utah State University

by

Chih-Ching Yeh
June 2017

Approved:

Yan Sun Adele Cutler
Major Professor Committee Member

John Stevens
Committee Member

1

summary

Regression methods for interval-valued data have been increasingly studied
in recent years. As most of the existing works focus on linear models,
it is important to note that many problems in practice are nonlinear in
nature and therefore development of nonlinear regression tools for interval-
valued data is crucial. In this project, we propose a tree-based regression
method for interval-valued data, which is well applicable to both linear and
nonlinear problems. Unlike linear regression models that usually require
additional constraints to ensure positivity of the predicted interval length,
the proposed method estimates the regression function in a nonparametric
way, so the predicted length is naturally positive without any constraints.
A simulation study is conducted that compares our method to popular
existing regression models for interval-valued data under both linear and
nonlinear settings. Furthermore, a real data example is presented where we
apply our method to analyze price range data of the Dow Jones Industrial
Average index and its component stocks.

Keywords and phrases: random forests; nonparametric; regression tree; ker-
nel regression; nonlinearity; prediction accuracy

AMS Classification: 62G08; 62J05

JEL Classification:

1. Introduction

Regression with interval-valued data has been attracting increasing interest among
researchers. There are various models built upon set arithmetic, which typically
view interval-valued data as realizations of one-dimensional random sets (Diamond
(1990), Korner and Näther (1998), Gil et al. (2002), Gil et al. (2007), González-
Rodŕıguez et al. (2007), Blanco et al. (2011), Cattaneo and Wiencierz (2012)).
Separately, there are also plentiful models developed under symbolic data analysis
(SDA) that treat an interval as a bivariate vector (Carvalho et al. (2004), Bil-
lard (2007), Lima Neto and Carvalho (2008), Lima Neto and Carvalho (2010)).
A detailed review of these models will be given in Section 2. Generally speaking,
models from both domains have their distinct advantages and disadvantages, but
they all share the common drawback of being too restrictive. In other words, all of
these models are rigid to some degree due to the constraints they need to impose on
their parameters. This is rooted in the fundamental fact that the space of intervals
KC(R) as a metric space is not linear (see Appendix A). In addition, many data
in practice are nonlinear, for which linear models are insufficient. Motivated by all
of these, we propose to study regression of interval-valued data by nonparametric
approaches. Without any distribution assumption, nonparametric methods usually
do not require additional constraints and therefore are more flexible. Furthermore,

2

they can take care of both linearity and nonlinearity. Particularly in this project,
we propose a tree-based regression method based on random forests.

Random forests (Breiman (2001)) are ensembles of classification or regression
trees created using bootstrap samples of the training data and random feature se-
lection in tree induction. The method is among the most popular algorithms and
widely used in data science and machine learning in appreciation of its high predic-
tion performance. Unlike other ensemble methods, random forests involve additional
randomness by selecting a random subset of the predictor variables at each splitting
node, which makes it robust to overfitting and high-dimensionality. For classifica-
tion, the prediction is made by the majority vote from all the trees. For regression,
the prediction is instead determined by the average of the tree predictions. For
interval-valued data, comparing to other regression methods, random forests auto-
matically overcome the difficulty of mathematical coherence, i.e., the predicted in-
terval range/radius must be nonnegative, due to their nonparametric nature. Thus,
it is expected to perform better, especially when data do not fulfill the restrictions
of other regression methods. Furthermore, the fact that random forests can deal
with both linearity and nonlinearity makes them more flexible methods.

The rest of the project is organized as follows. Section 2 provides a review of
major (linear and nonlinear) regression methods for interval-valued data in the lit-
erature, where in particular an extension of the kernel method for nonlinear interval
regression is discussed. Section 3 describes random forests as classical methods of
classification and regression in machine learning, and proposes their interval-valued
adaptation. Results of a systematic simulation study that compares random forest
regression to typical existing methods are reported in Section 4, and real data ap-
plications are presented in Section 5. Section 6 concludes with remarks for future
research. Preliminaries of random sets theory are deferred to the Appendix.

Throughout the project, we denote by [x] ∈ KC(R) a bounded closed interval,
whose lower and upper bounds are denoted by xL and xU , respectively. Alter-
natively, [x] can also be represented by its center and radius, denoted by xC and
xR, respectively. A random interval which takes values in KC(R) is denoted by

[X]. Bolded letters denote vectors. For example, [x] = [[x1], · · · , [xp]]T denotes a
p-dimensional hyper interval, and its random version is denoted by [X]. There are
various metrics defined for the space KC(R) (see Appendix A), which usually can
be used for the same model with the choice up to the user. We adopt a unifying
notation d(·, ·) for all of the metrics.

2. Review of Regression Methods

2.1. Linear regression

Linear regression for interval-valued data has been extensively studied in the past
decades. Existing models have been developed mainly in the two domains of random

3

sets and symbolic data analysis (SDA). In the framework of random sets, an interval
is viewed as a compact convex set in the one-dimensional real space R, and the linear
relationships between intervals are modeled according to set arithmetic. Separately,
the aim of SDA is to extend classical data analysis techniques to nontraditional data
formats, such as lists, intervals, histograms and distributions. In this framework,
linear regression is often developed by fitting separate point-valued models to the
center and radius (or the lower and upper bounds), essentially treating an interval
as a bivariate vector. In the following, we briefly review major models from both
domains.

The foundation of linear regression in the random sets framework is the lin-
ear structure in the space KC(Rd) defined by the Minkowski addition and scalar
multiplication, i.e.

A+B = {a+ b : a ∈ A, b ∈ B} ,
λA = {λa : a ∈ A} ,
A,B ∈ KC , λ ∈ R.

For [x], [y] ∈ KC(R), this means

[x] + [y] = [xL + yL, xU + yU], (2.1)

λ[x] =

[λxL, λxU], λ ≥ 0,

[λxU , λxL], λ < 0.

(2.2)

Although different researchers may have different notation and degrees of restrictions
(Gil et al. (2001), Gil et al. (2002), Gil et al. (2007), González-Rodŕıguez et al.
(2007), Sinova et al. (2012)), linear regression models in KC(R) generally have the
form

[Y] = a[X] + [E], (2.3)

where a ∈ R and [E] is an interval-valued random error with a fixed expectation
E ([E]) = [b] ∈ KC(R). Here the addition and multiplication are in the sense of (2.1)
and (2.2), respectively. It follows that

[̂Y] = E ([Y] | [X]) = a[X] + [b], (2.4)

Equivalently, the equation (2.4) can be written in terms of the center and radius as

Ŷ C = aXC + bC , (2.5)

Ŷ R = |a|XR + bR. (2.6)

This leads to the following equation that shows linearity in KC :

d
(

[̂Y1], [̂Y2]
)

= |a|d ([X1], [X2]) . (2.7)

4

That is, a constant change in the metric of [X] results in a constant change in the
metric of [Y]. This reveals the essence of model (2.3) as an analogous result of the
fundamental property of classical linear regression. However, such a property has
to be achieved at the price of reduced model flexibility from practical point of view.
Notice from (2.5)-(2.6) that the slopes for the center and radius equations must have
the same absolute value. This reduction of flexibility is the price we pay to achieve
linearity in KC .

The multivariate extension of model (2.3) is given as

[Y] =

p∑
i=1

ai[Xi] + [E], (2.8)

or equivalently, in the center-radius form

Y C =

p∑
i=1

aiX
C
i + EC , (2.9)

Y R =

p∑
i=1

|ai|XR
i + ER, (2.10)

where ai ∈ R, i = 1, · · · , p, and EC , ER are random variables with E(EC) = bC ∈ R
and E(ER) = bR > 0. Estimation of the model parameters is generally performed
by the least squares method that minimizes the mean squared errors with respect
to the metric in KC(R). Assuming observing a sample of size n, the least squares
estimates are given by

{
â1, · · · , âp; [̂b]

}
= arg min

 1

n

n∑
j=1

d2

(
[yj],

p∑
i=1

ai[xij] + [b]

) , (2.11)

subject to the constraint bR > 0.
In the separate framework of SDA, interval linear regression has been studied

mainly by treating the intervals as bivariate vectors. Models belonging to this
category typically specify separate linear equations for the center and radius (or
upper and lower bound), respectively. For example, the MinMax method by Billard
and Diday (2002) has the model equations

Y L = βL0 +

p∑
i=1

βLi X
L
i + ε1, βLi ∈ R, i = 0, · · · , p,

Y U = βU0 +

p∑
i=1

βUi X
U
i + ε2, βUi ∈ R, i = 0, · · · , p.

5

Alternatively, Lima Neto and Carvalho (2008) proposed the Center and Range
Method (CRM) as

Y C = βC0 +

p∑
i=1

βCi X
C
i + ε1, βCi ∈ R, i = 0, · · · , p,

Y R = βR0 +

p∑
i=1

βRi X
R
i + ε2, βRi ∈ R. i = 0, · · · , p.

Here, both ε1 and ε2 are zero-mean random errors. There is no interval structure
between them. Obviously, without any constraint, these two methods suffer from
the problem of mathematical coherence, i.e., the predicted upper bound may be
smaller than the lower bound, or the predicted radius may be negative. This leads
to the proposal of the Constrained Center and Range Method (CCRM) (Lima Neto
and Carvalho (2010)), which takes the same form of CRM, with the additional

constraints βR0 , β
R
1 ≥ 0 to ensure the nonnegativity of Ŷ R. There have been fur-

ther developments based on this type of modeling. For examples, Domingues et
al. (2010) considered a parametric inferential method in replacement of the least
squares to deal with the issue of outliers, and Lima Neto et al. (2011) proposed
a generalized linear model to allow for additional model flexibility. Although the
bivariate representation of an interval could result in loss of geometric information
and less interpretability (e.g., the linearity property (2.7) does not hold anymore),
this type of models generally has improved flexibility, and therefore are preferred in
some practical situations.

There is an intrinsic difficulty for linear regression with interval-valued data,
because KC(R) is not a linear space (see, e.g., Sun (2016) for a detailed discussion).
More specifically, although the Minkowski addition and scalar multiplication define
a linear structure in KC(R), there is no inverse element of addition. This results in
the biggest problem for most models to impose non-negative constraints. Techni-
cally, such constraints usually mean that underestimation is more heavily penalized
than overestimation, leading to biased estimators. They also introduce significant
computational complication, making it difficult to draw inferences.

2.2. Kernel method for nonlinear regression

Although linear regression is often preferred for its simplicity, there are many
situations in practice where nonlinearity does exist and linear methods alone are not
sufficient to tackle those problems. Therefore, developing nonlinear regression meth-
ods for interval-valued data is important. However, compared to linear regression,
there are very few papers in the literature where nonlinear regression is rigorously
studied. Among those, we are particularly interested in the kernel approach (Jeon
et al. (2015)). It is essentially an extension of the multivariate kernel density

6

estimator to interval-valued data. The main purpose of the method is to estimate
the multivariate density function based on interval-valued data. Nevertheless, it
can also be used to perform nonlinear regression in an indirect way. After a brief
review of the kernel approach proposed in Jeon et al. (2015), we will discuss an
immediate extension of this method to directly address nonlinear regression with
interval-valued data.

The classical multivariate kernel density estimator has the form

f̂(x) =
1

n

n∑
j=1

Kh (x− xj) /h,

whereKh(·) is a multivariate kernel function, x = [x1, · · · , xp]T denotes a p-dimensional
vector, and h is the bandwidth parameter. There is a range of popularly used ker-
nel functions, including uniform, triangular, Epanechnikov, and Gaussian. The
bandwidth parameter h controls the smoothness of the estimated density function:
smaller values of h can reflect more local structures resulting in a wiggly function,
while larger values of h make the function smoother but with possible loss of local
details. In Jeon et al. (2015), the interval-valued observation is viewed as a his-
togram, to which a kernel distribution is fitted. Precisely, their proposed density
estimator is defined as

f̂(x) =
1

n

n∑
j=1

φ
(
x|µ̂j , Σ̂j

)
, x ∈ Rp, (2.12)

where φ(·|µ,Σ) is the multivariate Gaussian kernel (i.e., multivariate normal den-
sity). For the jth interval observation, the correponding mean µ̂j and covariance

Σ̂j are estimated from the data with a unique set of weights. In the regression
setting with outcome variable Y and predictor variables Xi, i = 1, · · · , p (for which
interval-valued data is observed), one computes the conditional density of Y given
X = [X1, · · · , Xp]

T as

f̂Y |X(y|x) =
f̂Y,X(y,x)

f̂X(x)
, x ∈ Rp, y ∈ R. (2.13)

The drawback of this method is that, although it makes good use of the interval-
valued data, it does not develop an interval-valued model. Namely, the densities
(2.12) and (2.13) estimated from the interval-valued data are still in the point-valued
context. Consequently, prediction for the interval-valued output is somewhat less
straightforward. For example, Jeon et al. (2015) proposed a rather complicated
prediction method, of which the key is to calculate the conditional cumulative dis-
tribution function

P (Y ≤ y|xL ≤X ≤ xU)

7

based on the estimated conditional density f̂ . Then, the center is predicted as the
conditional expectation, and the lower and upper bounds are predicted by the q̂thL
and q̂thU quantiles of the conditional distribution, respectively. The values of q̂L and
q̂U are estimated by the relative positions of xL and xU in the sample.

In fact, in a regression context, it is more natural to directly estimate the condi-
tional mean as a function of the input variables, without the need of the conditional
density. For example, we may consider using the kernel approach to estimate the
following two regression function for the center and radius, respectively,

mC
(
xCi , x

R
i

)
= E

(
Y C |XC

i = xCi , X
R
i = xRi

)
, (2.14)

mR
(
xCi , x

R
i

)
= E

(
Y R|XC

i = xCi , X
R
i = xRi

)
. (2.15)

It is in a similar spirit to CCRM, except that we add the radii and centers of the
predictor intervals in both the center and radius equations, to make the model more
flexible. The kernel estimators for the regression functions at [X] = [x∗] are

m̂C ([x∗]) =

∑n
j=1K

(
d(x∗,xj)

h

)
Y C
j∑n

j=1K
(
d(x∗,xj)

h

) , (2.16)

m̂R ([x∗]) =

∑n
j=1K

(
d(x∗,xj)

h

)
Y R
j∑n

j=1K
(
d(x∗,xj)

h

) , (2.17)

where d(x∗,xj) is the generalized distance between two p-dimensional hyper inter-
vals defined by

d2(x∗,xj) =

p∑
i=1

{[
(x∗i)

C − xCi,j
]2

+
[
(x∗i)

R − xRi,j
]2}

.

As for the kernel density estimator, here K(·) is a kernel function and h is the band-
width parameter. As we can see from (2.16)-(2.17), the kernel regression function
is essentially a weighted average, so the predicted radius m̂R(·) is automatically
positive without any constraints.

3. Random Forest Regression for Interval-valued Data

As we discussed previously, linear regression for interval-valued data suffers from
the intrinsic problem that KC(R) is not a linear space. Consequently, linear models
typically have to impose non-negativity constraints. For example, model (2.9)-(2.10)
needs to have a positive expectation for ER. In CCRM, all of the coefficients in the
radius equation βRi , i = 0, 1, · · · , p, are constrained to be nonnegative. Therefore,

8

much of classical linear regression theory, such as least squares, does not apply. In-
stead, a constrained optimization algorithm is needed, making inference difficult. In
the preceding section, we discussed the possibility of kernel regression for interval-
valued data. Given its nonparametric nature, it has the advantage of solving the
problem of mathematical coherence automatically. Furthermore, it can handle non-
linearity. However, the kernel method suffers from the curse of dimensionality, i.e.,
when the number of predictors gets large, the method tends to be slow and inaccu-
rate (e.g., Linton and Nielsen (1995)). In addition, the performance of the kernel
method depends heavily on the choice of the kernel function and the bandwidth pa-
rameter, so tuning is a big issue. In order to address these drawbacks of the kernel
method, while still keeping its advantages, we propose a random forests regression
for interval-valued data.

The random forest algorithm is an ensemble method developed by Leo Breiman
(Breiman (2001)). A random forest is an ensemble of a collection of trees. Before the
introduction of random forests, ensembles had already attracted lots of attention, as
they were observed to achieve much more accurate predictions than individual trees.
Many authors contributed various techniques for constructing ensembles. Among
these, popular examples include Bagging (Breiman (1996)), Adaboost (Freund and
Schapire (1996)), and Randomization (Dietterich (2000)). In Bagging, each tree
is constructed from a bootstrap sample drawn with replacement from the training
data. The original version of Adaboost resamples observations with weights that are
successively adjusted to give higher weight to “difficult” observations. Randomiza-
tion generates an ensemble by randomizing the interval decisions made by the base
algorithm. After the ensembles are constructed, the majority vote of the individual
classifiers is taken for classification and the average is taken for regression. It is
well understood that averaging results in variance reduction, and reducing the cor-
relation between individual classifiers further enhances the variance gains (Breiman
(2001)). Motivated by this principle, random forests injects another layer of ran-
domness by changing the structure of each tree. Instead of optimizing the response
by evaluating all the predictors, as is done with single-tree methods or bagging, a
subset of the predictors, drawn at random independently for each node in each tree,
is employed. This strategy turns out to perform very well and is robust against
overfitting.

One of the main advantages random forests have over other estimation methods
is that they are fully non-parametric, including the effects of the predictors and
response variables. So they well handle the issues of nonlinearity and mathematical
coherence. Precisely, because the radius is predicted essentially by an average of
the terminal nodes, which contain all positive elements, i.e., radii of the observed
intervals, the prediction is automatically positive without any constraints. Situa-
tions where there are as many or more predictor variables than observations may
also be problematic for traditional methods, but random forests tackle the issue of

9

dimensionality automatically, largely due the use of decision trees as the base learn-
ers (a building block for an ensemble process). Like all tree-based methods, random
forests automatically fit interactions without the interacting predictors needing to
be specified a priori. Finally and importantly, the random forests algorithm only
has three tuning parameters: the size of the subset at each node, the number of trees
in the forest, and the depth of the trees, which makes it conveniently applicable in
practice. In fact, the number of trees can be chosen as large as desired without risk
and for classification, the trees can be grown to the deepest possible depth. The
results are not particularly sensitive even to the size of the subset at each node
(Breiman (2001)), so tuning is relatively straightforward.

For random forests regression with interval-valued data, we propose the same
regression equations (2.14)-(2.15) as in the kernel method. For completeness, we
describe the basic random forests regression algorithm in the following. Readers are
referred to Liaw and Wiener (2002)) for more details.

1. For each of the N desired regression trees, draw a bootstrap sample from the
original data.

2. For each bootstrap sample, grow a tree as described in steps 3 and 4.

3. At each node, select p/3 predictor variables and find all possible splits on
these predictors. The “best split” is determined by minimizing the residual
sum of squares over all splits.

4. Continue splitting until each node has no less than 5 observations. Once a
node reaches this criterion, the node is said to be a terminal node.

5. To make a prediction for a new observation, drop the observation down each
of the N trees and average the predictions.

6. The prediction accuracy is further enhanced by using the data not in the
bootstrap as the test data. The estimate of the error rate is acquired by
aggregating this out-of-bag (OOB) predictions, and is called the OOB estimate
of error rate.

4. Simulation

In this section, we examine the empirical performance of random forest regression
and compare it to CCRM and kernel estimator. For these purposes, we simulate
four settings of linear and three settings of non-linear data. For each setting, three
datasets with n = 500, 1000 and 2000 rectangles are generated. Of each dataset,
10% is used as the training set and the remaining 90% is used as the test set. For
example, the dataset of size n = 500 is split into a training set and test set with n
= 50 and 450, respectively. The models are fit to the training sets, and then the
prediction errors are computed on the test sets. The predictive accuracy is measured
by three popularly used criteria: coefficient of determination (R2), mean squared
error (MSE) and mean absolute error (MAE). The process is repeated for each

10

0 2 4 6 8 10

0
5

10
15

20
25

[X]

[Y
]

Figure 1: Plot of a simulated data set from setting 1. The gray rectangles denote the interval-valued
data, and the yellow dots are the corresponding centers (same for figures 2-6 in the following).

setting/sample size combination 100 times independently, and the average results
are reported in tables 1-4. All of our analysis is performed in R. The random forests
algorithm is implemented using the randomForest package, and the kernel regression
and CCRM are implemented using the packages np and iRegression, respectively.
Details of our simulation settings are described below.

• Setting 1: Linear model (2.5)-(2.6) with r > 0. The center of the predictor
interval XC is generated from N(5, 22), and the radius XR is generated from
U(0.5, 1.5), both independently. The center and radius of the response interval
are determined by the equations

Y C
i = 2XC

i + 5 + εCi ,

Y R
i = 2XR

i + εRi ,

where εCi ∼ N(0, 22) and εRi ∼ N(0.5, 0.32), i = 1, · · · , n. A simulated data
set of n = 200 from setting 1 is shown in figure 1.

• Setting 2: Linear model (2.5)-(2.6) with r < 0. The center of the predic-
tor interval XC is generated from U(0, 20), and the radius XR is generated
from U(10, 11), both independently. The center and radius of the response
interval follow the same equations as in Setting 1, but εCi ∼ N(0, 52) and
εRi ∼ N(−15, 0.52), i = 1, · · · , n. A simulated data set of n = 200 from setting
2 is shown in figure 2.

• Setting 3: Linear center and radius relationships. The center and radius of the
predictor interval are independently generated from N(5, 52) and U(10, 15),

11

−10 0 10 20 30

0
10

20
30

40
50

[X]

[Y
]

Figure 2: Plot of a simulated data set from setting 2.

respectively. The response intervals are generated according to the equations

Y C
i = 10XC

i + 20XR
i + η + εCi ,

Y R
i = 2XR

i + θ + εRi ,

where η ∼ U(0, 4), εCi ∼ N(−5, σ2), σ ∼ U(3, 4) and n
50θ ∼ U(0, 2), εRi ∼

N(−15, 12), i = 1, · · · , n. A simulated data set of n = 200 from setting 3 is
shown in figure 3.

• Setting 4: Close-to-linear center and radius relationships. The center and
radius of the predictor interval are independently generated from N(5, 0.92)
and N(5, 102), respectively. The response intervals are determined by

Y C
i = 0.22eX

C
i + εCi ,

Y R
i = Φ(XR

i ; 2, 2) + εRi ,

where Φ(·;µ, σ) is the CDF (cumulative distribution function) of N(µ, σ2),
and the random errors are generated by εCi ∼ N(0, σ2C), σ2C ∼ U(15, 20),
εRi ∼ N(1, σ2R), σ2R ∼ U(0, 1), i = 1, · · · , n. A simulated data set of n = 200
from setting 4 is shown in figure 4.

• Setting 5: Nonlinear center relationship and linear radius relationship. The
center and radius of the predictor interval are independently generated from
N(5, 22) and U(0.5, 1.5), respectively. The center and radius of the response
interval follow the equations

Y C
i = 6 + 4 sin

(
0.25πXC

i

)
+ εCi ,

Y R
i = XR

i + 0.5 + εRi ,

12

−20 −10 0 10 20 30

20
0

25
0

30
0

35
0

40
0

[X]

[Y
]

Figure 3: Plot of a simulated data set from setting 3.

−30 −20 −10 0 10 20 30

0
50

10
0

15
0

[X]

[Y
]

Figure 4: Plot of a simulated data set from setting 4.

13

−2 0 2 4 6 8 10

0
2

4
6

8
10

12

[X]

[Y
]

Figure 5: Plot of a simulated data set from setting 5.

where εCi ∼ N(0, 0.52) and εRi ∼ N(0, 0.22), i = 1, · · · , n. A simulated data
set of n = 200 from setting 5 is shown in figure 5.

• Setting 6: Nonlinear center and radius relationships. The center and ra-
dius of the predictor interval are independently generated from N(5, 22) and
U(0.25, 0.5), respectively. The response intervals are generated by

Y C
i = 6 + 2XR

i + sin
(
0.253πXC

i

)
+ εCi ,

Y R
i = | − 0.3XC

i X
R
i + 0.5|+ εRi ,

where εCi ∼ N(0, 0.52) and εRi ∼ N(0, 0.12), i = 1, · · · , n. A simulated data
set of n = 200 from setting 6 is shown in figure 6.

• Setting 7: Multivariate nonlinear center and radius relationships with noise
variables. There are a total of 5 predictor intervals. Their centers are generated
by XC

1 ∼ N(5, 32), XC
2 ∼ β(0.5, 0.5), XC

3 ∼ N(10, 3.52), XC
4 ∼ U(0.5, 1.5),

XC
5 ∼ N(8, 3.52), all independently. Define

V1 = u1 + e−0.5γ(3,2)+τ1 ,

V2 = u2 + e−0.5β(1,3)+τ2 ,

where τ1, τ2 ∼ N(0, 0.22) and u1, u2 ∼ U(0, 0.5), all independently. The radii
of the predictor intervals are generated by XR

1 = 2V1
1+V1

, XR
2 = 3V2

1+V2
, XR

3 ∼
N(10, 32), XR

4 ∼ U(2.5, 3.5), XR
5 ∼ β(2, 5), all independently. The center and

14

−2 0 2 4 6 8 10

5
6

7
8

[X]

[Y
]

Figure 6: Plot of a simulated data set from setting 6.

radius of the response interval are determined by the equations

Y C
i = (XC

1i + (XC
1i)

2)(XC
2i + (XC

2i)
2)− (XC

3i + (XC
3i)

2)(XC
4i + (XC

4i)
2)−XC

5i + εCi ,

Y R
i =

(XR
2i)

2

5
+ 0.1XR

3i − 5(XR
1iX

R
4i +XR

5i) + 4 + εRi ,

where εCi ∼ N(0, 12) and εRi ∼ N(−3, 0.152), i = 1, · · · , n.

The predictive accuracies for the center of the linear models (settings 1-4) are
displayed in table 1 and plotted in figures 8 - 11. The performances of both CCRM
and random forests generally improve for all of the four settings as the sample size
increases. In the first two settings where the data show a strong linear association,
random forest regression tree does not have any advantages over CCRM, - in fact,
CCRM performs slightly better than random forests for these two settings. In setting
3, the response center is linearly associated with both the predictor center and radius,
which CCRM is incapable of capturing but random forests can. Therefore, in this
setting, random forest regression yields higher predictive accuracy over CCRM for
the center. For the slightly nonlinear model in setting 4, the random forest regression
outcompetes CCRM, due to its ability to handle nonlinearity.

Table 2 shows the predictive accuracies for the radius of the linear models. As
for the center, the random forest regression is slightly worse than CCRM in setting
1 where the data follow a linear pattern with a strictly positive intercept. However,
for linear models with a negative intercept in setting 2 and 3, CCRM returns poor
predictive accuracy due to its constraint that the intercept must be positive, but
random forests need not have this constraint and therefore perform much better.
Also for the slightly nonlinear model in setting 4, random forests yield much better
predictive accuracy than CCRM.

15

Table 1: Predictive Accuracy for Linear Models: Center (Settings 1-4)

R2 MSE MAE

Setting n CCRM RF CCRM RF CCRM RF

1 50 0.7928 0.7161 4.110 5.650 1.620 1.890

100 0.7954 0.7259 4.050 5.450 1.610 1.860

200 0.7977 0.7278 4.040 5.430 1.600 1.860

2 50 0.8349 0.7868 26.08 33.62 4.080 4.630

100 0.8395 0.7878 25.26 33.45 4.010 4.630

200 0.8410 0.7894 25.16 33.31 4.000 4.610

3 50 0.7309 0.8662 883.6 446.4 25.53 14.81

100 0.7385 0.9276 866.7 241.6 25.35 10.55

200 0.7449 0.9599 854.6 133.9 25.22 7.610

4 50 0.5606 0.7157 1468.4 981.9 24.01 18.46

100 0.5447 0.7650 1474.1 834.4 24.38 17.50

200 0.5798 0.7973 1383.7 661.6 23.52 17.29

16

Table 2: Predictive Accuracy for Linear Models: Radius (Settings 1-4)

R2 MSE MAE

Setting n CCRM RF CCRM RF CCRM RF

1 50 0.7768 0.7095 0.0900 0.1200 0.2400 0.2800

100 0.7829 0.7139 0.0900 0.1200 0.2400 0.2800

200 0.7853 0.7131 0.0900 0.1200 0.2400 0.2800

2 50 0.2671 0.4144 0.4300 0.3400 0.5300 0.4700

100 0.2720 0.4182 0.4300 0.3400 0.5300 0.4700

200 0.2766 0.4178 0.4200 0.3400 0.5200 0.4600

3 50 0.5901 0.8126 3.910 1.790 1.630 1.070

100 0.5905 0.8139 3.970 1.790 1.640 1.070

200 0.5940 0.8144 3.930 1.790 1.630 1.070

4 50 0.5685 0.7434 0.1100 0.0700 0.2700 0.1900

100 0.5982 0.7810 0.1000 0.0600 0.2500 0.1700

200 0.6098 0.7970 0.0900 0.0500 0.2500 0.1600

17

The center and radius results for nonlinear models are shown in table 3 and
table 4, respectively. The predictions against the original data are plotted in fig-
ures 12 and 13. As for the linear models, as the sample size increases, both the
kernel estimator and random forests improve with larger R2s and smaller MSEs
and MAEs. For the models with fewer predictors, such as setting 5 and 6, kernel
estimator has competitive performance compared to random forest regression. For
the multivariate model that has 5 predictors (setting 7), random forest regression
has higher predictive accuracy than the kernel estimator, because the kernel-based
estimator generally suffers from the “curse of dimensionality”. Also, it is worth
noting that, as the number of predictors rises, the kernel estimator rapidly becomes
much more time consuming. For setting 7, the kernel estimator takes 28.12 seconds
to run one simulation (for n = 50, 100, 200 totally), while random forests only take
1.08 seconds. (Shown in figure 7)

Table 3: Predictive Accuracy for Nonparametric Models: Center (Settings 5-7)

R2 MSE MAE

Setting n KE RF KE RF KE RF

5 50 0.6185 0.9030 2.880 0.7300 0.7800 0.5900

100 0.8288 0.9366 1.300 0.4800 0.5600 0.5100

200 0.9010 0.9480 0.7500 0.3900 0.4800 0.4800

6 50 -0.0534 0.2644 0.8100 0.5600 0.7100 0.6000

100 -0.2152 0.3872 0.9200 0.4700 0.6500 0.5400

200 -0.0209 0.4746 0.7800 0.4000 0.5200 0.5000

7 50 0.5679 0.5276 17838 20370 63.76 99.59

100 0.6254 0.6403 15742 15380 55.82 84.88

200 0.6713 0.7340 13982 11410 47.19 71.20

5. Real Data Application

A real dataset is analyzed by the random forest regression to show its applica-
bility. The dataset contains daily [min, max] stock price ranges for three companies,
namely Boeing Aircraft Manufacturing Company (BA), General Electric (GE), and
JPMorgan Chase (JPM), and the Down Jones Industrial Average index (DJIA),

18

Table 4: Predictive Accuracy for Nonlinear Models: Radius (Settings 5-7)

R2 MSE MAE

Setting n KE RF KE RF KE RF

5 50 0.6341 0.5527 0.0400 0.0500 0.1700 0.1900

100 0.6497 0.5610 0.0400 0.0500 0.1700 0.1900

200 0.6608 0.5600 0.0400 0.0500 0.1600 0.1900

6 50 0.3425 0.4546 0.0200 0.0200 0.1000 0.1000

100 0.4764 0.5743 0.0200 0.0100 0.0900 0.0900

200 0.5419 0.6328 0.0100 0.0100 0.0800 0.0800

7 50 0.1321 0.6065 7.430 3.520 1.250 1.410

100 0.1561 0.7033 9.440 2.690 1.230 1.220

200 0.2326 0.7900 6.970 1.900 0.9600 1.000

kernel() RF()

1
2

5
10

20

Expression

T
im

e
(s

ec
on

d)

Figure 7: The Time Consumed for Each Function - Random Forest (RF) and Kernel Estimator
(Kernel). The average time that the random forest function and kernel function for one analysis
consumes is 1.08 and 28.12 seconds.

19

0 2 4 6 8

5
1
0

1
5

2
0

XC

Y
C

0 2 4 6 8

5
1
0

1
5

2
0

XC

Y
C

0.6 0.8 1.0 1.2 1.4

1
.0

1
.5

2
.0

2
.5

XR

Y
R

0.6 0.8 1.0 1.2 1.4

1
.5

2
.0

2
.5

3
.0

3
.5

XR

Y
R

Figure 8: Overlaid plots of predicted centers and radii against the observed values from setting 1.
The left two plots are for random forests and the right two are for CCRM. Observed data from
the test set are represented by black circles and the predicted data are represented by red triangles
(same for figures 9-13 in the following).

0 5 10 15 20

0
1
0

2
0

3
0

4
0

5
0

XC

Y
C

0 5 10 15 20

0
1
0

2
0

3
0

4
0

5
0

XC

Y
C

10.2 10.4 10.6 10.8 11.0

4
.5

5
.0

5
.5

6
.0

6
.5

7
.0

7
.5

XR

Y
R

10.2 10.4 10.6 10.8 11.0

4
.5

5
.0

5
.5

6
.0

6
.5

7
.0

7
.5

XR

Y
R

Figure 9: Overlaid plots of predicted centers and radii against the observed values from setting 2.
The left two plots are for random forests and the right two are for CCRM.

20

−10 −5 0 5 10 15

2
0

0
2

5
0

3
0

0
3

5
0

4
0

0

XC

Y
C

−10 −5 0 5 10 15

2
0

0
2

5
0

3
0

0
3

5
0

4
0

0

XC

Y
C

10 11 12 13 14 15

4
6

8
1
0

1
2

1
4

1
6

XR

Y
R

10 11 12 13 14 15

4
6

8
1
0

1
2

1
4

1
6

XR

Y
R

Figure 10: Overlaid plots of predicted centers and radii against the observed values from setting
3.The left two plots are for random forests and the right two are for CCRM.

3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5

0
5
0

1
0
0

XC

Y
C

3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5

0
5
0

1
0
0

XC

Y
C

−20 −10 0 10 20 30

1
.0

1
.5

2
.0

XR

Y
R

−20 −10 0 10 20 30

1
.0

1
.5

2
.0

XR

Y
R

Figure 11: Overlaid plots of predicted centers and radii against the observed values from setting
4.The left two plots are for random forests and the right two are for CCRM.

21

2 4 6 8 10

2
4

6
8

1
0

XC

Y
C

2 4 6 8 10

2
4

6
8

1
0

XC

Y
C

0.6 0.8 1.0 1.2 1.4

1
.0

1
.5

2
.0

2
.5

XR

Y
R

0.6 0.8 1.0 1.2 1.4

1
.0

1
.5

2
.0

2
.5

XR

Y
R

Figure 12: Overlaid plots of predicted centers and radii against the observed values from setting 5.
The left two plots are for random forests and the right two are for kernel estimator.

0 2 4 6 8

5
.0

5
.5

6
.0

6
.5

7
.0

7
.5

XC

Y
C

0 2 4 6 8

5
.0

5
.5

6
.0

6
.5

7
.0

7
.5

XC

Y
C

0.25 0.30 0.35 0.40 0.45 0.50

0
.0

0
.2

0
.4

0
.6

0
.8

XR

Y
R

0.25 0.30 0.35 0.40 0.45 0.50

0
.0

0
.2

0
.4

0
.6

0
.8

XR

Y
R

Figure 13: Overlaid plots of predicted centers and radii against the observed values from setting 6.
The left two plots are for random forests and the right two are for kernel estimator.

22

8.8 9.0 9.2 9.4 9.6

3.
4

3.
6

3.
8

4.
0

4.
2

4.
4

4.
6

[DJIA]

[B
A

 P
ric

e]

Figure 14: Plot of the Stock Price Interval for BA. The gray rectangles denote the interval-valued
data, and the yellow dots are the corresponding centers.

with 1511 price intervals for each asset from Jan 3, 2006 to Dec 30, 2011. We split
the data into a training set of 1208 (80%) and a test set of 303 (20%) intervals.

DJIA is a stock market index created by Wall Street Journal editor and Dow
Jones & Company co-founder Charles Dow, to show how 30 large, publicly owned,
companies based in the United States have traded during a standard trading session
in the stock market. In our analysis, the DJIA is first used as the sole variable to
predict each of the three individual stocks. As seen in figure 16, JPM (as well as
other stocks) represents a pretty linear relationship with the DJIA index. So CCRM
is first utilized as the baseline model. Then, random forest regressions are built for
the centers and radii of the stocks, using both the center and radius of the DJIA
index as predictors. Predictive accuracies are assessed in terms of the R2, MSE
and MAE on the test sets, and are reported in tables 5 and 6.

Predictive results for JPM price ranges are plotted in figure 19 for illustration.
For the predicted centers of BA, GE and JPM, random forests achieve a consistently
better performance compared to CCRM. As for the radii, CCRM obtains slightly
better accuracy by 0.04 for the R2 of BA due to its relatively strong linear relation-
ship with the DJIA index. For GE and JPM, random forests predict the data more
accurately, compared to CCRM. Based on these results, the DJIA index is capable
of predicting the three stock price ranges, accounting for a variance from 63% to
97% for the center, and from 64% to 82% for the radius, by random forest regression.
The comparisons to CCRM show that random forests generally outperform CCRM
in terms of predictive accuracy.

The three selected stocks, namely BA, GE and JPM, are leading companies
in aviation, manufacturing and financial industries, so these stocks together may
explain a good portion of variability of the DJIA index. In the second part of our

23

8.8 9.0 9.2 9.4 9.6

2.
0

2.
5

3.
0

3.
5

[DJIA]

[G
E

 P
ric

e]

Figure 15: Plot of the Stock Price Interval for GE. The gray rectangles denote the interval-valued
data, and the yellow dots are the corresponding centers.

8.8 9.0 9.2 9.4 9.6

2.
8

3.
0

3.
2

3.
4

3.
6

3.
8

4.
0

[DJIA]

[J
P

M
 P

ric
e]

Figure 16: Plot of the Stock Price Interval for JPM. The gray rectangles denote the interval-valued
data, and the yellow dots are the corresponding centers.

24

9.0 9.1 9.2 9.3 9.4 9.5

3
.6

3
.8

4
.0

4
.2

4
.4

4
.6

DJ IndexC

B
A

C

9.0 9.1 9.2 9.3 9.4 9.5

3
.6

3
.8

4
.0

4
.2

4
.4

4
.6

DJ IndexC

B
A

C

0.01 0.02 0.03 0.04

0
.0

1
0

.0
2

0
.0

3
0

.0
4

0
.0

5

DJ IndexR

B
A

R

0.01 0.02 0.03 0.04

0
.0

1
0

.0
2

0
.0

3
0

.0
4

0
.0

5

DJ IndexR

B
A

R

Figure 17: Overlaid plots of predicted centers and radii against the observed values for BA. Observed
data from the test set are represented by black circles and the predicted data are represented by
red triangles.

25

9.0 9.1 9.2 9.3 9.4 9.5

2
.4

2
.6

2
.8

3
.0

3
.2

3
.4

3
.6

DJ IndexC

G
E

C

9.0 9.1 9.2 9.3 9.4 9.5

2
.4

2
.6

2
.8

3
.0

3
.2

3
.4

3
.6

DJ IndexC

G
E

C

0.01 0.02 0.03 0.04

0
.0

1
0

.0
2

0
.0

3
0

.0
4

DJ IndexR

G
E

R

0.01 0.02 0.03 0.04

0
.0

1
0

.0
2

0
.0

3
0

.0
4

DJ IndexR

G
E

R

Figure 18: Overlaid plots of predicted centers and radii against the observed values for GE. Observed
data from the test set are represented by black circles and the predicted data are represented by
red triangles.

26

9.0 9.1 9.2 9.3 9.4 9.5

3
.2

3
.4

3
.6

3
.8

DJ IndexC

J
P

M
C

9.0 9.1 9.2 9.3 9.4 9.5

3
.2

3
.4

3
.6

3
.8

DJ IndexC

J
P

M
C

0.01 0.02 0.03 0.04

0
.0

0
0
.0

2
0
.0

4
0
.0

6
0
.0

8
0
.1

0

DJ IndexR

J
P

M
R

0.01 0.02 0.03 0.04

0
.0

0
0
.0

2
0
.0

4
0
.0

6
0
.0

8
0
.1

0

DJ IndexR

J
P

M
R

Figure 19: Overlaid plots of predicted centers and radii against the observed values for JPM. Ob-
served data from the test set are represented by black circles and the predicted data are represented
by red triangles.

analysis, we build predictive models for the DJIA based on the three stocks jointly.
The multivariate analysis is run using both random forests and CCRM. As in the
previous part, random forests include both the centers and radii of the stocks as
the predictors for both the center and radius of the DJIA index. As the results
show in table 5 and table 6, for this multivariable analysis, random forests achieve
better performance than CCRM. This is partly due to the extra predictor variables
included in the random forests regression equations. In addition, the ability of
random forests to account for nonlinearity is an advantage over CCRM.

6. Conclusion

We proposed random forest regression for interval-valued data. Its nonparamet-
ric nature automatically ensures mathematical coherence without any constraints,
making it more flexible than most of the existing regression methods such as CCRM.
In addition to linear problems, it also handles nonlinearity very well. As most
nonparametric methods require extensive tuning to achieve optimal performance,
random forests are especially user-friendly in the sense that very little tuning is
needed. Furthermore, they are robust against overfitting and high-dimensionality.
All these advantages of random forest regression make it a potentially very promis-
ing method to be extended to interval-valued data. In this project, we adopted

27

Table 5: Predictive Accuracy for Asset Prices: Center

R2 MSE MAE

CCRM RF CCRM RF CCRM RF

BA 0.8655 0.9005 0.0089 0.0066 0.0806 0.0655

GE 0.5946 0.6259 0.0699 0.0644 0.2353 0.1880

JPM 0.5739 0.6904 0.0109 0.0079 0.0818 0.0655

DJIA Index 0.8682 0.9665 0.0026 0.0007 0.0441 0.0185

Table 6: Predictive Accuracy for Asset Prices: Radius

R2 MSE MAE

CCRM RF CCRM RF CCRM RF

BA 0.6785 0.6357 1.87E-05 2.11E-05 0.0031 0.0032

GE 0.5311 0.7196 7.44E-05 4.45E-05 0.0043 0.0038

JPM 0.6522 0.7150 7.91E-05 6.48E-05 0.0059 0.0054

DJIA Index 0.7708 0.8164 1.08E-05 8.69E-06 0.0021 0.0020

28

bivariate regression. Simulation results confirmed its advantages over CCRM and
the kernel estimator. Future research includes regression with multivariate response,
i.e., center and radius jointly, to account for their potential correlation.

29

Appendix A. Random Sets Preliminaries

Denote by K
(
Rd
)

or K the collection of all non-empty compact subsets of Rd.
The Hausdorff metric

ρH (A,B) = max

(
sup
a∈A

ρ (a,B) , sup
b∈B

ρ (b, A)

)
, ∀A,B ∈ K,

where ρ denotes the Euclidean metric, defines a metric in K
(
Rd
)
. As a metric

space, K
(
Rd
)

is complete and separable (Debreu (1967)). In the space K, a linear
structure can be defined by Minkowski addition and scalar multiplication as

A+B = {a+ b : a ∈ A, b ∈ B} , λA = {λa : a ∈ A} , (A.1)

∀A,B ∈ K and λ ∈ R. However, K
(
Rd
)

is not a linear space (or vector space), as
there is no inverse element of addition.

Let (Ω,L, P) be a probability space. A random compact set is a Borel measurable
function A : Ω → K, K being equipped with the Borel σ-algebra induced by the
Hausdorff metric. If A(ω) is convex almost surely, then A is called a random compact
convex set. (Molchanov (2005), p.21, p.102.) The collection of all compact convex
subsets of Rd is denoted by KC

(
Rd
)

or KC . Much of the random sets theory has
focused on compact convex sets (Artstein and Vitale (1975), Aumann (1965), and
Lyashenko (1982), Lyashenko (1983)). Especially, when d = 1, KC(R) contains all
the non-empty bounded closed intervals in R. A measurable function [X] : Ω →
KC (R) is called a random interval. The expectation of a random compact convex
random set A is defined by the Aumann integral of set-valued function (see Aumann
(1965), Artstein and Vitale (1975)) as

E (A) = {Eξ : ξ ∈ A almost surely} .

In particular, the Aumann expectation of a random interval [X] is given by

E ([X]) = [E
(
XL
)
, E
(
XU
)
]. (A.2)

For each X ∈ K
(
Rd
)
, the function defined on the unit sphere Sd−1:

sX (u) = sup
x∈X
〈u, x〉 , ∀u ∈ Sd−1

is called the support function of X. Let S be the space of support functions of all
non-empty compact convex subsets in KC . Then, S is a Banach space equipped with
the L2 metric

‖sX(u)‖2 =

[∫
Sd−1

|sX(u)|2µ (du)

] 1
2

,

30

where µ is the normalized Lebesgue measure on Sd−1. According to various em-
bedding theorems (Radstrom (1952); Hormander (1954)), KC can be embedded
isometrically into the Banach space C(S) of continuous functions on Sd−1, and S is
the image of KC into C(S). Therefore, δ (X,Y) := ‖sX − sY ‖2, ∀X,Y ∈ KC , defines
an L2 metric on KC . It is well known that ρH and δ are equivalent metrics, but
ρH is less preferred for statistical analysis for several reasons. As an important one,
Eρ2H (X,h(X)) is not minimized at h(X) = E(X). Particularly the δ-metric for an
interval [x] ∈ KC(R) is

‖[x]‖2 = ‖s[x](u)‖2 =
1

2

(
xL
)2

+
1

2

(
xU
)2

=
(
xC
)2

+
(
xR
)2
,

and the δ-distance between two intervals [x], [y] ∈ KC(R) is

δ ([x], [y]) =

[
1

2

(
xL − yL

)2
+

1

2

(
xU − yU

)2] 1
2

=
[(
xC − yC

)2
+
(
xR − yR

)2] 1
2
.

Gil et al. (2001) generalized the δ-distance to the W -distance as

dW ([x], [y]) =

{∫
[0,1]

[
f[x](λ)− f[y](λ)

]2
dW (λ)

} 1
2

, (A.3)

where f[x](λ) = λxU+(1−λ)xL, ∀λ ∈ [0, 1], and W is any non-degenerate symmetric
measure on [0, 1]. The advantage of the W -distance lies in its flexibility to assign
weights to the points in the interval. In particular, this can be interpreted as a
probability distribution for a random point inside the interval. On the other hand,
it can be shown that

d2W ([x], [y]) =
(
xC − yC

)2
+
(
xR − yR

)2 ∫
[0,1]

(2λ− 1)2 dW (λ). (A.4)

Notice that
∫
[0,1] (2λ− 1)2 dW (λ) ∈ [0, 1] is a constant determined by W . So the W -

distance can also be interpreted as choosing a weight for
(
XR − Y R

)2
in calculating

the L2 distance.

31

Appendix B. R Implementation

• makeset: Given the centers and the ranges of X and Y, the function calculates and
returns the endpoints of X and Y intervals.

makeset <- function(Xc, Xr, Yc, Yr) {
set <- data.frame(Xc, Xr, Yc, Yr)
set$xL <- set$Xc - set$Xr
set$xR <- set$Xc + set$Xr
set$yL <- set$Yc - set$Yr
set$yU <- set$Yc + set$Yr
return(set)

}

• recplot: Given a list of datasets with different sample size, the function plots a rectagle
composed of the X intervel and Y interval in gray with a center point of (Xc, Yc) in
orange.

recplot <- function(dataset, AXES = TRUE, p = 1, ...) {

datasetsample <- dataset[sample(nrow(dataset), p * nrow(dataset),
replace = FALSE),]

Generate rectangle
plot(datasetsample$Xc, datasetsample$Yc, col = "orange",

axes = AXES, ylim = c(min(datasetsample$yL) - 0.01, max(v$yU) +
0.01), xlim = c(min(datasetsample$xL) - 0.01, max(datasetsample$xR) +
0.01), pch = 19, ...)

rect(datasetsample$xL, datasetsample$yL, datasetsample$xR,
datasetsample$yU, density = 0, col = "grey50", ...)

}

• RFLoop: Apply randomforest function to a list of datasets with different sample size.
RFLoop <- function(formula, datalist, ...) {

RFlist <- lapply(1:length(datalist), function(i) {
randomForest(formula, data = datalist[[i]][[1]], ntree = 1000,

...)
})
names(RFlist) <- names(datalist)
return(RFlist)

}

32

• RsquareNON: Calculate the R-squared (coefficient of determination) for the test sets,
using the models trained with the training sets. The predictions are aquired from the
training models.
R2 = 1− SSE

SST
= 1−

∑
(Y c−Ŷ c)2∑
(Y c−Ȳ c)2 .

RsquareNON <- function(set, Cpredmodel, Rpredmodel = NULL){

Replicate set[[i]] if there is only one dataset in the list
if (length(set) != length(Cpredmodel)){

set <- lapply(1: length(Cpredmodel), function(i){
set
})

}

For CCRM
if (all(lapply(Cpredmodel, class)== "ccrm" && is.null(Rpredmodel))){

cat("CCRM", "\n")
Rlist <- lapply(1: length(set), function(i){

setpred <- predsetccrm(set[[i]][[2]], Cpredmodel[[i]])

#R-square for Yc
STc <- (set[[i]][[2]]$Yc - mean(set[[i]][[2]]$Yc))^2
#SSTc <- var(set[[i]]$Yc) * (nrow(set[[i]])-1)
SEc <- (set[[i]][[2]]$Yc - setpred$Yc)^2
Rsqc <- 1 - sum(SEc) / sum(STc)

#R-square for Yr
STr <- (set[[i]][[2]]$Yr - mean(set[[i]][[2]]$Yr))^2
#SSTr <- var(set[[i]]$Yr) * (nrow(set[[i]])-1)
SEr <- (set[[i]][[2]]$Yr - setpred$Yr)^2
Rsqr <- 1 - sum(SEr) / sum(STr)

Rmatrix <- matrix(c(round(Rsqc*100, 2), round(Rsqr*100, 2)), , 2)
colnames(Rmatrix) <- c("center", "radius")
Rmatrix

})
}
For Kernal or RF
else{

cat("Kernal/RF", "\n")
Rlist <- lapply(1:length(set), function(i) {

33

STc <- var(set[[i]][[2]]$Yc) * (nrow(set[[i]][[2]])-1)
SEc <- (set[[i]][[2]]$Yc - predict(Cpredmodel[[i]],

newdata = set[[i]][[2]]))^2
Rsqc <- 1 - sum(SEc) / sum(STc)

R-square for Yr
STr <- var(set[[i]][[2]]$Yr) * (nrow(set[[i]][[2]])-1)
SEr <- (set[[i]][[2]]$Yr - predict(Rpredmodel[[i]],

newdata = set[[i]][[2]]))^2
Rsqr <- 1 - sum(SEr) / sum(STr)

Rmatrix <- matrix(c(round(Rsqc*100, 2), round(Rsqr*100, 2)), , 2)
colnames(Rmatrix) <- c("center", "radius")
Rmatrix

})
}

lapply(Rmatrix, setNames, c("R^2 for c %", "R^2 for r %"))
names(Rlist) <- names(Cpredmodel)
return(Rlist)

}

• Predregplot: The function plots the predicted intervals on top of the originial interva
rectangles.

predregplot <- function(datalist, Cpredmodel, Rpredmodel = NULL, p = 1, ...)
{
#Only draw p*100% of rectangles
par(mfrow = c(1, length(datalist)))

For CCRM
if (all(lapply(Cpredmodel, class)== "ccrm" && is.null(Rpredmodel))){

cat("CCRM", "\n")
lapply(1: length(datalist), function(i){

setpred <- predsetccrm(datalist[[i]], Cpredmodel[[i]])

set.seed(13543)
setpredsample <- setpred[sample(nrow(setpred), p*nrow(setpred),

replace = FALSE),]

recplot(datalist[[i]], p = p , main = "Predicted vs. Actual Data")
mtext(names(datalist)[i])

34

points(datalist[[i]]$Xc, setpred$Yc, col = "blue", bg = TRUE, pch = 24)

rect(setpredsample$xL, setpredsample$yL, setpredsample$xR,
setpredsample$yU, density = 20, col = "blue", angle = -30, ...)

lines(datalist[[i]]$Xc, setpred$Yc, lty = 1, col = "green")
})

}
For Kernal or RF
else{
lapply(1: length(datalist), function(i){

setpred <- makeset(datalist[[i]]$Xc, datalist[[i]]$Xr,
predict(Cpredmodel[[i]]), predict(Rpredmodel[[i]]))

set.seed(13543)
setpredsample <- setpred[sample(nrow(setpred), p*nrow(setpred),

replace = FALSE),]

recplot(datalist[[i]], p = p , main = "Predicted vs. Actual Data")
mtext(names(datalist)[i])
points(setpred$Xc, setpred$Yc, col = "blue", bg = TRUE, pch = 24)

rect(setpredsample$xL, setpredsample$yL, setpredsample$xR,
setpredsample$yU, density = 20, col = "blue", angle = -30, ...)

})
}

on.exit(par(mfrow = c(1, length(datalist))))
}

• predsetccrm: The function generates a dataset with the original centers and ranges
of the predictor (X) and the predicted centers and ranges of the response (Y), using
CCRM models trained with the training sets.

predsetccrm <- function(set, ccrmmodel) {
Yc
coefc <- ccrmmodel$coefficients.C[-1]
varc <- set[names(ccrmmodel$coefficients.C)[-1]]
Yc <- ccrmmodel$coefficients.C[[1]] + coefc %*% t(varc)
Yr Extract variables' names
varnames <- as.character(sapply(strsplit(gsub("\\+", "",

gsub("~", "", as.character(ccrmmodel$call)[3])), " "),

35

function(x) {
x[!x == ""]

}))[-1]

coefr <- ccrmmodel$coefficients.R[-1]
varR <- set[varnames]
Yr <- ccrmmodel$coefficients.R[[1]] + coefr %*% t(varR)

predccrmset <- makeset(setXc, setXr, as.numeric(Yc), as.numeric(Yr))
return(predccrmset)

}

• MAE: Calculate the mean absolute error for the test sets, using the models trained
with the training sets. The predictions are aquired from the training models.
MAE =

∑
|Y c−Ŷ c|
n

.
MAE <- function(set, Cpredmodel, Rpredmodel = NULL) {

Replicate set[[i]] if there is only one dataset in the list
if (length(set) != length(Cpredmodel)) {

set <- lapply(1:length(Cpredmodel), function(i) {
set

})
}

For CCRM
if (all(lapply(Cpredmodel, class) == "ccrm" && is.null(Rpredmodel))) {

cat("CCRM", "\n")
MAElist <- lapply(1:length(set), function(i) {

setpred <- predsetccrm(set[[i]][[2]], Cpredmodel[[i]])

MAE for YC
AEc <- abs(set[[i]][[2]]$Yc - setpred$Yc)
MAEc <- sum(AEc)/nrow(set[[i]][[2]])

MAE for YC
AEr <- abs(set[[i]][[2]]$Yr - setpred$Yr)
MAEr <- sum(AEr)/nrow(set[[i]][[2]])

MAE <- matrix(c(MAEc, MAEr), 1, 2)
colnames(MAE) <- c("center", "radius")
MAE

36

})
} else {

MAElist <- lapply(1:length(set), function(i) {
cat("Kernal/RF", "\n")
MAE for Yc
AEc <- abs(set[[i]][[2]]$Yc - predict(Cpredmodel[[i]],

newdata = set[[i]][[2]]))
MAEc <- sum(AEc)/nrow(set[[i]][[2]])

MAE for Yc
AEr <- abs(set[[i]][[2]]$Yr - predict(Rpredmodel[[i]],

newdata = set[[i]][[2]]))
MAEr <- sum(AEr)/nrow(set[[i]][[2]])

MAE <- matrix(c(MAEc, MAEr), 1, 2)
colnames(MAE) <- c("center", "radius")
MAE

})
}
colnames(MAE) <- c('MAEc', 'MAEr')
names(MAElist) <- names(set)
return(MAElist)

}

• MSE: Calculate the mean squared error for the test sets, using the models trained with
the training sets. The predictions are aquired from the training models.
MSE =

∑
(Y c−Ŷ c)2

n
.

MSE <- function(set, Cpredmodel, Rpredmodel = NULL) {
Replicate set[[i]] if there is only one dataset in the list
if (length(set) != length(Cpredmodel)) {

set <- lapply(1:length(Cpredmodel), function(i) {
set

})
}

For CCRM
if (all(lapply(Cpredmodel, class) == "ccrm" && is.null(Rpredmodel))) {

cat("CCRM", "\n")
MSElist <- lapply(1:length(set), function(i) {

setpred <- predsetccrm(set[[i]][[2]], Cpredmodel[[i]])

37

MSE for YC
SEc <- (set[[i]][[2]]$Yc - setpred$Yc)^2
MSEc <- sum(SEc)/nrow(set[[i]][[2]])

MSE for Yr
SEr <- (set[[i]][[2]]$Yr - setpred$Yr)^2
MSEr <- sum(SEr)/nrow(set[[i]][[2]])

MSE <- matrix(c(MSEc, MSEr), 1, 2)
colnames(MSE) <- c("center", "radius")
MSE

})
} else {

MSElist <- lapply(1:length(set), function(i) {
MSE for Yc
SEc <- (set[[i]][[2]]$Yc - predict(Cpredmodel[[i]],

newdata = set[[i]][[2]]))^2
MSEc <- sum(SEc)/nrow(set[[i]][[2]])

MSE for Yc
SEr <- (set[[i]][[2]]$Yr - predict(Rpredmodel[[i]],

newdata = set[[i]][[2]]))^2
MSEr <- sum(SEr)/nrow(set[[i]][[2]])

MSE <- matrix(c(MSEc, MSEr), 1, 2)
colnames(MSE) <- c("center", "radius")
MSE

})
}
colnames(MAE) <- c('MAEc', 'MAEr')
return(MSElist)

}

• Simulation example: Setting 1
require(randomForest)
require(iRegression)

nvector <- c(50, 100, 200)
totalsize <- nvector/0.1

set.seed(6458)
set1data <- lapply(1:length(nvector), function(i) {

38

Total Dataset

Xc
Xc1 <- rnorm(totalsize[i], 5, 2)

Yc
epsilon1_1 <- rnorm(totalsize[i], 0, 2)
Yc1 <- 2 * Xc1 + 5 + epsilon1_1

Xr
Xr1 <- runif(totalsize[i], 0.5, 1.5)

Yr

epsilon1_2 <- rnorm(totalsize[i], 0.5, 0.3)
Yr1 <- 2 * Xr1 + epsilon1_2

while (any(Yr1 < 0)) {
epsilon1_2 <- rnorm(totalsize[i], 0.5, 0.3)
Yr1 <- 2 * Xr1 + epsilon1_2

}

dataset1 <- makeset(Xc1, Xr1, Yc1, Yr1)

Trainingset
trainingsample <- sample(nrow(dataset1), nvector[i])

training1 <- dataset1[trainingsample,]

Testset
test1 <- dataset1[-trainingsample,]

c(training1, test1)
return(list(training1, test1))

})
names(set1data) <- paste("n =", nvector)

2. Visulization

39

recplot(set1data$`n = 200`[[2]], main = "Simulation Setting 1",
p = 0.3, position = "bottomright")

3. RF
Yc
set.seed(5432)
set1RFc <- RFLoop(Yc ~ Xc, set1data)

Yr
set.seed(458)
set1RFr <- RFLoop(Yr ~ Xr, set1data)

4. CCRM
ccrm1 <- lapply(1:length(set1data), function(i) {

ccrm("Yc ~ Xc", "Yr ~ Xr", data = set1data[[i]][[1]])
})
names(ccrm1) <- names(set1data)

4.1 Generate predicted dataset containing Xc, Xr, Ŷ c and Ŷ r
predset1 <- predsetccrm(set1data$`n = 200`[[2]], ccrm1[[3]])

5. R2

RF
RsquareNON(set1data, set1RFc, set1RFr)

CCRM
RsquareNON(set1data, ccrm1)

• Simulation example: Setting 7
nvector <- c(50, 100, 200)
totalsize <- nvector/0.1

set.seed(55133)
set7data <- lapply(1:length(nvector), function(i) {

Total Dataset

Xc7_1 <- rnorm(totalsize[i], 5, 3)
Xc7_2 <- rbeta(totalsize[i], 0.5, 0.5)
Xc7_3 <- rnorm(totalsize[i], 10, 3.5)
Xc7_4 <- runif(totalsize[i], 0.5, 1.5)
Xc7_5 <- rnorm(totalsize[i], 8, 3.5)

40

U
u1 <- runif(totalsize[i], 0, 0.5)
u2 <- runif(totalsize[i], 0, 0.5)

tao
tao1 <- rnorm(totalsize[i], 0, 0.2)
tao2 <- rnorm(totalsize[i], 0, 0.2)

V
V1 <- u1 + exp(-0.5 * rgamma(totalsize[i], 3, 2) + tao1)
V2 <- u2 + exp(-0.5 * rbeta(totalsize[i], 1, 3) + tao2)

Xr
Xr7_1 <- 2 * V1/(1 + V1)
Xr7_2 <- 3 * V2/(1 + V2)
Xr7_3 <- rnorm(totalsize[i], 10, 3)
Xr7_4 <- runif(totalsize[i], 2.5, 3.5)
Xr7_5 <- rbeta(totalsize[i], 2, 5)

Yc
epsilon7_1 <- rnorm(totalsize[i], 0, 1)
Yc7 <- (Xc7_1 + Xc7_1^2) * (Xc7_2 + Xc7_2^2) - (Xc7_3 + Xc7_3^2) *

(Xc7_4 + Xc7_4^2) - Xc7_5 + epsilon7_1

Yr
epsilon7_2 <- rnorm(totalsize[i], -3, 0.1)
Yr7 <- (Xr7_2)^2/5 + (0.1 * Xr7_3) - 5 * (Xr7_1 * Xr7_4 +

Xr7_5) + 4 + epsilon7_2

while (length(Yr7) != totalsize[i]) {
epsilon7_2_com <- rnorm((totalsize[i] - length(Yr7)),

-3, 0.1)
Yr7 <- c(Yr7, ((Xr7_2)^2/5 + (0.1 * Xr7_3) - 5 * (Xr7_1 *

Xr7_4 + Xr7_5) + 4 + epsilon7_2_com))
Yr7 <- Yr7[which(Yr7 >= 0)]

}
dataset7 <- makeset(Xc7_1, Xr7_1, Yc7, Yr7)
dataset7 <- cbind(dataset7, Xc7_2, Xc7_3, Xc7_4, Xc7_5, Xr7_2,

Xr7_3, Xr7_4, Xr7_5)
Trainingset
trainingsample <- sample(nrow(dataset7), nvector[i])

training7 <- dataset7[trainingsample,]

41

Testset
test7 <- dataset7[-trainingsample,]

c(training7, test7)
return(list(training7, test7))

})
names(set7data) <- paste("n =", nvector)

3. Random Forest

a. Yc ~ Xc_1 + Xc_2 + Xc_3
set.seed(6325)
set7RFc <- RFLoop(Yc ~ Xc + Xc7_2 + Xc7_3 + Xc7_4 + Xc7_5, set7data)

b. Yr ~ Xc_1 + Xc_2
set.seed(6532)
set7RFr <- RFLoop(Yr ~ Xr + Xr7_2 + Xr7_3 + Xr7_4 + Xr7_5, set7data)

4. Kenel Estimator

• Bandwidth selection
Yc
bwYc7k <- lapply(1:length(set7data), function(i) {

npregbw(Yc ~ Xc + Xc7_2 + Xc7_3 + Xc7_4 + Xc7_5, data = set7data[[i]][[1]],
bwmethod = "cv.aic", ckertype = "uniform")

})
names(bwYc7k) <- names(set7kdata)

Yr
bwYr7k <- lapply(1:length(set7data), function(i) {

npregbw(Yr ~ Xr + Xr7_2 + Xr7_3 + Xr7_4 + Xr7_5, data = set7data[[i]][[1]],
bwmethod = "cv.aic", ckertype = "uniform")

})
names(bwYr7k) <- names(set7kdata)

• KE

a. Yc: Kernal Univariate Regression
Local Constant
modelYc.np7k <- lapply(1:length(set7data), function(i) {

npreg(bwYc7k[[i]], data = set7data[[i]][[1]], y.eval = TRUE)

42

})

b. Yr: Kernal Univariate Regression
Local Constant
modelYr.np7k <- lapply(1:length(set7data), function(i) {

npreg(bwYr7k[[i]], data = set7data[[i]][[1]], y.eval = TRUE)
})

5. R2

RF
RsquareNON(set7data, set7RFc, set7RFr)

Kernel
RsquareNON(set7data, modelYc.np7k, modelYr.np7k)

References
[1] Artstein, Z., Vitale, R.A. (1975). A strong law of large numbers for random compact sets.

Annals of Probability, 5, 879–882

[2] Aumann, R.J. (1965). Integrals of set-valued functions. J. Math. Anal. Appl., 12, 1–12.

[3] Billard, L., Diday, E. (2000). Regression analysis for interval-valued data. In Data
Analysis, Classification and Related Methods, Proceedings of the Seventh Conference of
the International Federation of Classification Societies (IFCS’00) (pp. 369–374). Springer,
Belgium.

[4] Billard, L., Diday, E. (2002). Symbolic regression analysis. In Classification, Clustering
and Data Analysis, Proceedings of the Eighth Conference of the International Federation
of Classification Societies (IFCS’02) (pp. 281–288). Springer, Poland.

[5] Billard, L. (2007). Dependencies and variation components of symbolic interval-valued
data. In Selected Contributions in Data Analysis and Classification (pp. 3–12). Springer,
Berlin Heidelberg.

[6] Blanco-Fernández, A., Corral, N., González-Rodríguez, G. (2011). Estimation of a flexible
simple linear model for interval data based on set arithmetic. Computational Statistics
and Data Analysis, 55, 2568–2578.

[7] Blanco-Fernández, A., Colubi, A., González-Rodríguez, G. (2012). Confidence sets in a
linear regression model for interval data. Journal of Statistical Planning and Inference,
142, 1320–1329.

[8] Breiman, L. (1996). Bagging predictors. Machine Learning, 26, 2, 123–140.

[9] Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32.

43

[10] Carvalho, F.A.T., Neto, E.A.L., Tenorio, C.P. (2004). A new method to fit a linear
regression model for interval-valued data. Lecture Notes in Computer Sciences, 3238,
295–306.

[11] Cattaneo, M.E.G.V., Wiencierz, A. (2012). Likelihood-based imprecise regression. Inter-
national Journal of Approximate Reasoning, 53, 1137–1154.

[12] Debreu, G. (1967). Integration of Correspondences. In: Proceedings of the Fifth Berkeley
Symposium on Mathematical Statistics and Probability II, Berkeley, California, 351-372.

[13] Diamond, P. (1990). Least squares fitting of compact set-valued data. J. Math. Anal.
Appl., 147, 531–544.

[14] Dietterich, T. (2000). An experimental comparison of three methods for constructing
ensembles of decision trees: Bagging, boosting and randomization. Machine Learning, 40,
139–157.

[15] Domingues, M.A.O., Souza, R.M.C.R., and Cysneiros, F.J.A. (2010). A robust method
for linear regression of symbolic interval data. Pattern Recognition Letters, 31, 1991–1996.

[16] Freund, Y. and Schapire, R.E. (1996) Experiments with a new boosting algorithm. In
Proceedings of the 13th International Conference on Machine Learning, 148–164.

[17] Gil, M.A., Lopez, M.T., Lubiano, M.A., Montenegro, M. (2001). Regression and correla-
tion analyses of a linear relation between random intervals. Test, 10, 1 183–201.

[18] Gil, M.A., Lubiano, M.A., Montenegro, M., Lopez, M.T. (2002). Least squares fitting
of an affine function and strength of association for interval-valued data. Metrika, 56,
97–111.

[19] Gil, M.A., González-Rodríguez, G., Colubi, A., and Montenegro, M. (2007). Testing
linear independence in linear models with interval-valued data. Computational Statistics
& Data Analysis, 51, 3002–3015.

[20] González-Rodríguez, G., Blanco, A., Corral, N., and Colubi, A. (2007). Least squares
estimation of linear regression models for convex compact random sets. Advances in Data
Analysis and Classification, 1, 67–81.

[21] Hörmander, H. (1954). Sur la fonction d’appui des ensembles convexes dans un espace
localement convexe. Arkiv för Mat, 3, 181–186.

[22] Jeon, Y., Ahn, J., and Park, C. (2015). A nonparametric kernel approach to interval-
valued data analysis. Technometrics, 57, 4, 566–575.

[23] Kendall, D.G. (1974). Foundations of a theory of random sets. In: Stochastic Geometry,
eds. Harding, E.F. and Kendall, D.G., John Wiley & Sons, New York.

[24] Körner, R., Näther, W. (1998). Linear regression with random fuzzy variables: extended
classical estimates, best linear estimates, least squares estimates. Information Sciences,
109, 95–118.

44

[25] Lyashenko, N.N. (1982). Limit theorem for sums of independent compact random subsets
of Euclidean space. Journal of Soviet Mathematics, 20, 2187–2196.

[26] Lyashenko, N.N. (1983). Statistics of random compacts in Euclidean space. Journal of
Soviet Mathematics, 21, 76–92.

[27] Liaw, A. and Wiener, M. (2002). Classification and Regression by randomForest. R
News, 2, 3, 18–22.

[28] Manski, C.F., Tamer, T. (2002). Inference on regressions with interval data on a regressor
or outcome. Econometrica, 70, 519–546.

[29] Matheron, G. (1975) Random Sets and Integral Geometry. John Wiley & Sons, New
York.

[30] Molchanov, I. (2005) Theory of Random Sets. Springer-Verlag, London.

[31] Lima Neto, E.A., Carvalho, F.A.T. (2008). Centre and range method for fitting a linear
regression model to symbolic interval data. Computational Statistics & Data Analysis, 52,
1500–1515.

[32] Lima Neto, E.A., Carvalho, F.A.T. (2010). Constrained linear regression models for
symbolic interval-valued variables. Computational Statistics & Data Analysis, 54, 333–347.

[33] Lima Neto E.A., Cordeiro, G.M. and Carvalho, F.A.T. (2011). Bivariate symbolic
regression models for interval-valued variables. Journal of Statistical Computing and
Simulation, 81, 11, 1727-1744.

[34] Rådström, H. (1952). An embedding theorem for spaces of convex sets. Proc. Amer.
Math. Soc., 3, 165–169.

[35] Seber, G.A.F. (1977). Linear regression analysis. John Wiley & Sons, New York.

[36] Sinova, B., Colubi, A., Gil, M.A., and González-Rodŕiguez, G. (2012). Interval arithmetic-
based simple linear regression between interval data: discussion and sensitivity analysis
on the choice of the metric. Information Sciences, 199, 109–124.

[37] Stoyan, D. (1998). Random sets: models and statistics. International Statistical Review,
66, 1, 1-27.

[38] Sun, Y. and Li, C. (2014). On linear regression for interval-valued data in KC (R).
preprint. arXiv: 1401.1831.

[39] Sun, Y. (2016). Linear regression with interval-valued data. WIREs Computational
Statistics, 8, 54-60.

45

	Tree-based Regression for Interval-valued Data
	Recommended Citation

	2. Review of Regression Methods
	Linear regression

