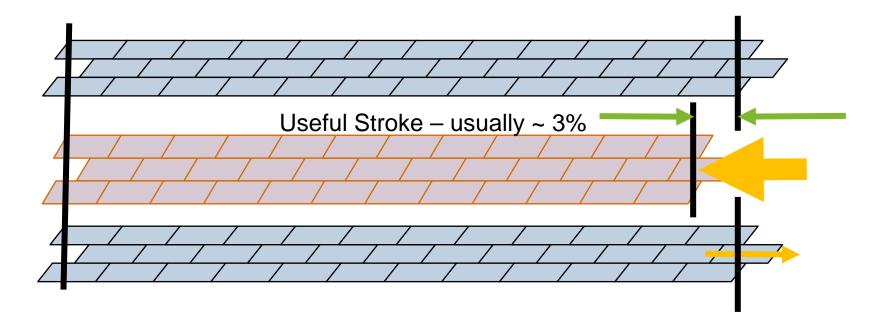
Jerry Fuller Small Satellite Development & Operations The Aerospace Corporation

> Small Satellite Conference, Logan UT., August 5, 2017

> > Approved for public release. OTR 2017-00893

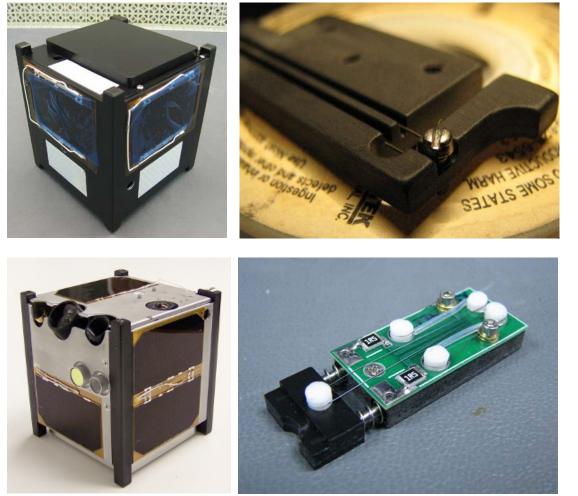
Philosophy


Small spacecraft often suffer from inadequate design analysis, and testing. In choosing a release mechanism method, pick something you can...

- Test easily and repeatedly
- Test with minimal change to spacecraft configuration
- Measure margin

Shape-Memory Alloy (SMA) Wire Actuators should be considered because they can be built into mechanisms that are easily tested many times.

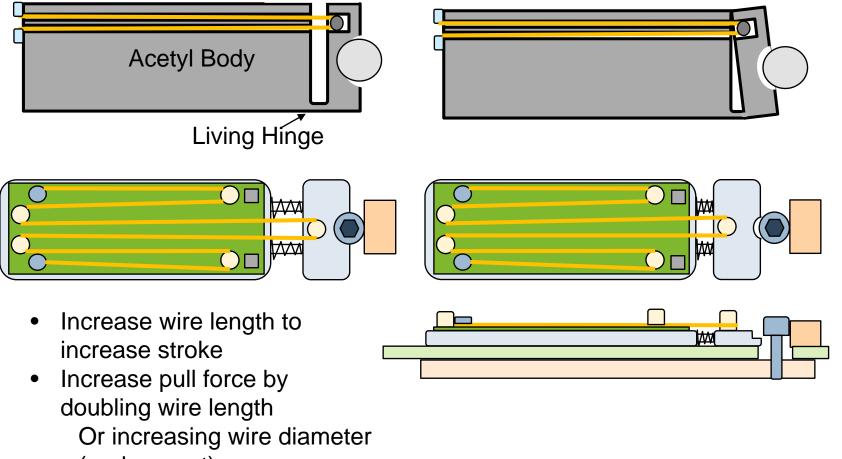
Nitinol SMA Actuator Wire Technology


- Nitinol Actuator Wire usually about a 50/50 mix of Nickel and Titanium
- Application of heat (usually "I²R", resistive heating) changes crystal structure and wire length, producing a force. After cooling, a small force will return the wire to its original length
- Actuator wire can be tuned during manufacturing to different transition temperatures, often around 70 to 100 C

Design Approaches

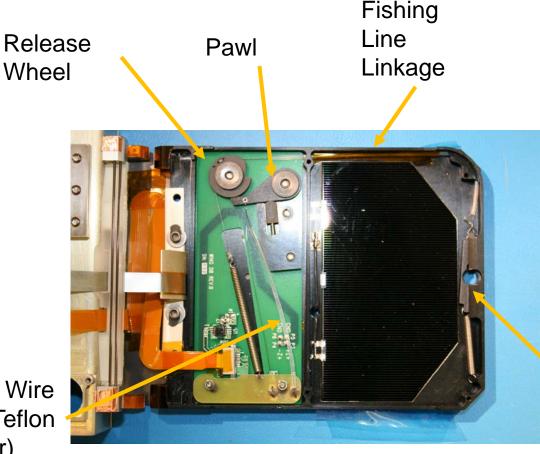
- Direct-Acting
 - Simple just pull a blockage out of the way
 - Low Force (given power usually available)
 - A few volts and a few hundred mA
- Indirect Acting
 - Releases stored energy (spring)
 - Complex motion
 - Higher Forces
 - Lower required currents

AeroCubes 2,3 Balloon Cover Latch Mechanisms


AeroCube 2

- Living Hinge
- SMA Wire doubled back
- Resistance obtained by wire resistivity alone

AeroCube 3

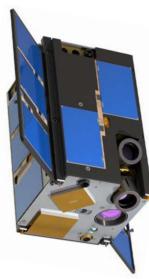

- Sliding assembly
- Serpentine SMA Wire path
- PTFE guides
- Resistance by wire length
 + circuit card-mounted
 chip resistors

Design Approaches, Direct-Acting

(and current)

AeroCube 4 - Indirect-Acting Wing Release, Direct-Acting Drag Device Release

Direct-acting cover latch released AC4's Drag Device

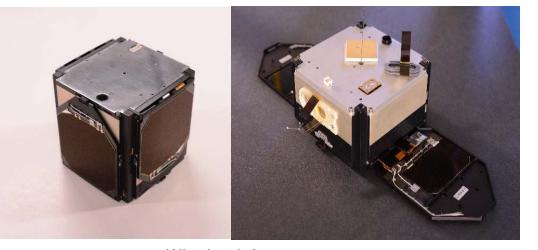

Release Slide

SMA Wire (W/ Teflon cover)

Optical Communication and Sensor Demonstration (OCSD) satellite

Wire Anchors

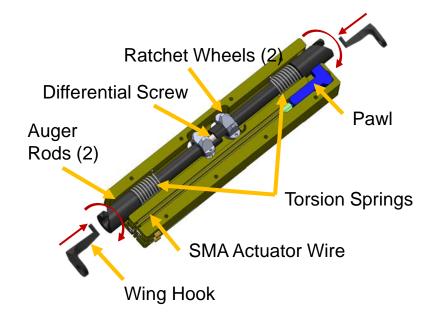
- Many future satellites will use modular, bolt-on SMA Wire Actuators
- Evolved and improved serpentine path
- Better materials




closed

open

AeroCube 6 – Indirect Actuation complex deployment


- SMA Wire restrained a clock spring
- Rotating element simultaneously deployed wings and separated satellites
- Qualification model tested with 80 consecutive deployments

ISARA– Indirect Actuation complex deployment

- SMA Wire restrained a torsion spring mechanism to release a complex reflectarray antenna
- Qualification model tested with 80 consecutive deployments
- Reset time was less than 1 minute
- Problems later emerged with SMA wire damage during vacuum testing as a result of overheating
- Resolution: Temperature was controlled more thoroughly by pulsing current to wire

GOTCHAs

- Wire Overheating in Vacuum
 - Pulsing, PWM, External Resistor,
- Force Margin Walking Wounded
 - Plan to measure and show margin
 - Watch for change in margin over repeated tests
 - Measure SMA Wire resistance before and after tests
- SMA-to-Conductor Interface
 - Screw terminal connection best if possible
 - Multiple passes of SMA wire through crimps
- Hard Stops
 - Avoid energizing the wire while at the end of travel
 - Can "Re-train" the SMA
 - Solder flux causes embrittlement
 - Separate mechanical from electrical connection
 - Consider mechanical crimp connection

Conclusions

- Shape Memory Wire Actuators can be a great alternative to Meltwires/ Burnwires
- Watch out for design "gotchas"
 - Test thoroughly in vacuum
 - Measure SMA Wire resistance before and after tests
 - Show force margin after vacuum testing

Acknowledgements

- United States Air Force Space & Missile System Center Advanced Systems and Development Directorate (SMC/AD)
- Richard Welle
- Brian Hardy
- David Hinkley
- Alex August-Schmidt, Geoff Maul, Jacqueline Tardif, Sean Hutchinson

Shape-Memory Alloy Actuators for Small Satellites Support Information

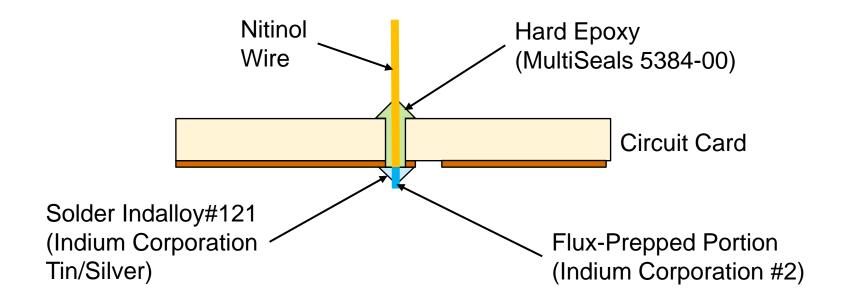
Jerry Fuller

Small Satellite Conference, Logan Ut., August 5, 2017

Types of Actuators

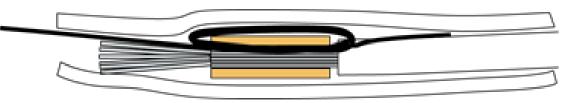
Reset-able Shape Memory Actuators (SMAs) should be considered for small spacecraft applications, especially CubeSats, where ease of testing is important

- One-time Use (usually)
- Test many times (in some cases, over 100)
- Minimal Change to Tested Configuration (just re-stow deployable)
- Simple direct-acting mechanisms OR
- Complex mechanisms with complex or returning motion


SMA Wire Actuators on AeroCube CubeSats

Spacecraft	SMA Wire Actuator	Туре	
AeroCube 2	Drag Balloon Release	Direct	
AeroCube 3	Drag Balloon Release	Direct	
AeroCube 4	Wing Release	Direct	
AeroCube 4	Drag Device Deployment	Direct	
AeroCube 6	Wing Release & 1-U to 1/2 U separation	Indirect	
OCSD	Wing Release	Direct	
OCSD	Star Camera Sun Shade Release	Indirect	
ISARA	Simultaneous Wing Release	Direct	

Electrical Connection – Solder Joint


- Dynalloy recommends crimp mechanical connections
- Nitinol can be successfully soldered BUT
 - Beware of embrittlement from aggressive fluxes
 - Wash immediately and thoroughly
 - We recommend separating mechanical from electrical engagement

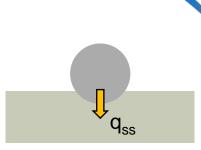
Example below – technique developed for mounting .015" Nitinol antennas

Electrical Connection – Crimp Joint

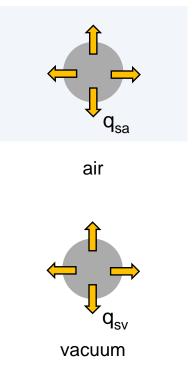
- Multiple loops through the crimp may be needed for to assure good contact
- Soft brass crimp
- strain relief by heatshrink

Shape-Memory Alloy Actuators for Small Satellites OCSD (and more) Wire Anchors Many future satellites will use modular, bolt-on SMA Wire Actuators **Return Spring** Evolved and improved • serpentine path **Better materials** 7075 AI Slide Torlon 4203 Body (bargain Vespel) Torlon 4301 Pulleys (bargain Vespel)

closed



Operation (and Testing) in Vacuum

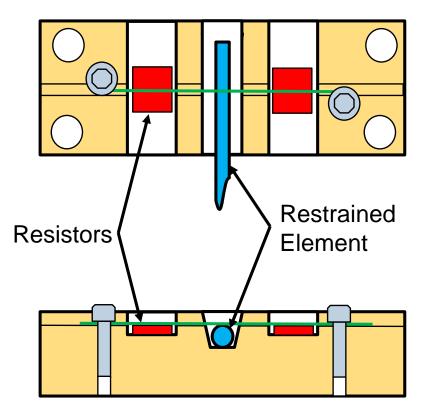

- Wire temperature balances resistive heating with heat dissipation
 - Solid-solid conduction (atmosphere or vacuum)
 - Partially limited by surface area of contact
 - Solid-air conduction/convection (atmosphere only)
 - Solid-vacuum radiation only (vacuum only)
- Very approximately (depending on conditions):

 $q_{ss} \stackrel{\sim}{=} 10 \ x \ q_{sa} \stackrel{\sim}{=} 10 \ x \ q_{sv}$

- With solid contact, q_{ss} is approximately the same whether tested on the ground or operated in space
- Without solid contact, q_{sa} is what you will test in air on the ground while q_{sv} is what you get in space
 - For the same power input, the vacuum case will be substantially hotter than the air case, possibly damaging the wire through overheating

Materials and Resources

Material	Use	
Aluminum, 6061 T6	Structure, retained member, linkage	
Aluminum, 7075, Hard-Anodized	Sliding Latch – interface to retained member	
Brass, Alloy #260/270	Crimps (Nitinol-to-Leadwere)	
Stainless Steel	Fasteners, retaining interface, retained member (bolt)	
Stainless Steel	Bias spring, extension spring, clock spring (energy storage)	
Nitinol (superelastic)	Cantilever bias spring, Antenna Element	
Dynalloy Inc. Flexinol® SMA Actuator Wire	Actuation force	
polyamide-imide (Torlon™ 4203)	Structure, sliding members	
polyamide-imide (Torlon™ 4301)	Sliding members (low-friction)	
Teflon™	Wire post guides, insulating tubing	
Acetyl Copolymer (Delrin™)	Structures	
Polyimide tape (Kapton™)	Insulation, Hinges	
Polyimide tube (Kapton™)	Insulation	
NyTek 1200 CF® Nylon™(printed)	Sliding linkage	
Somos [®] WaterShed XC 11122 (printed)	Guides fixed components, prototypes	


SMA Wire vs Meltwire vs Motors

	Meltwire/Burnwire	SMA Wire Actuator	Motors
Ease of Testing	Re-string each time	Very easy	Very Easy
Break Configuration	Considerable	Minimal	Minimal
Modular	Not usually done – but a good idea	easily modularized	Can be
Cost	Low	Low	higher
Design Time	Low	Medium	high
Reusable mechanisms	Very difficult	Difficult	Easy
Mass and Volume	Very low	Very low	Moderate
Residual Magnetism	Zero	Zero	Depends on motor and shielding

If you must use Meltwires, consider modular, bolt on assemblies

Modularizing Meltwire (or SMA) Actuators:

- Allow testing at component level
- Allow testing en masse
- Give confidence through statistics
- Minimize change to configuration during system testing
- Minimize time to "reset" after actuation test
- Make system testing much more convenient and less expensive

