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ABSTRACT 

 

 

Evaluating Habitat-based Niche Requirements and Potential Recruitment Bottlenecks for  

 

Imperiled Bluehead Sucker (Catostomus discobolus) 

 

by 

 

Bryan C. Maloney, Master of Science 

 

Utah State University, 2017 

 

 

Major Professors: Dr. Phaedra Budy and Dr. Jereme Gaeta 

Department: Watershed Sciences 

 

Changes to riverine ecosystems that alter physical and thermal habitat may cause 

fish recruitment bottlenecks. The Weber River has become highly degraded with many 

dams and diversions altering fish habitat, flow and thermal regimes, and limiting 

movement between reaches. Bluehead suckers (Catostomus discobolus) occupy only 47% 

of their historical range and the genetically-distinct Weber River (northern UT) 

population exhibits characteristics associated with a recruitment bottleneck. My 

objectives were to determine whether spawning and rearing habitat (thermal and 

physical) available in the Weber River may be limiting bluehead sucker recruitment. I 

used reach-based surveys to locate and quantify spawning habitat in the Weber River and 

Ferron Creek (central Utah), a relatively unaltered reference river. I sampled backwaters 

near (< 1 km) spawning reaches for juvenile sucker and surveyed habitat characteristics. I 

conducted laboratory experiments to evaluate juvenile bluehead sucker growth response 

to different temperature and velocity treatments (12-19°C, 0.004-0.18 m/s). In the Weber 

River and Ferron Creek, availability of gravel (4-64 mm), cobble (64-256 mm), and pools 
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(6-26 pools/km) were associated with use by spawning bluehead sucker. In Weber River 

backwaters, juvenile sucker abundance increased significantly with maximum depth (18-

378 sucker; range: 19-87 cm). Laboratory results indicated that juvenile bluehead sucker 

growth was greatest in the cooler temperature and slower velocity treatments. 

Collectively these results suggest spawning habitat is limited by the availability of small, 

rocky substrate and pools and rearing habitat is limited by the availability of deep, slow 

backwaters at the optimal temperature. By evaluating factors that may limit bluehead 

sucker recruitment, this study will provide a template for future restoration efforts 

directed at recovering this imperiled population. 

(90 pages) 
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PUBLIC ABSTRACT 

 

Evaluating Habitat-based Niche Requirements and Potential Recruitment Bottlenecks for  

 

Imperiled Bluehead Sucker (Catostomus discobolus) 

 

Bryan C. Maloney 

 

 

Changes to rivers that alter physical and thermal habitat may cause fish 

population abundance to decline, due to fewer individuals maturing and entering the adult 

population. The Weber River has become highly degraded with many dams and 

diversions altering fish habitat, river volume, velocity, and temperature, and limiting 

movement between reaches. Bluehead suckers (Catostomus discobolus) occupy only 47% 

of their historical range and the genetically-distinct Weber River (northern UT) 

population is declining and contains few young, juvenile fish. My objectives were to 

determine whether spawning and rearing habitat available in the Weber River may be 

limiting bluehead sucker reproductive success and population growth. I used reach-based 

surveys to locate and quantify spawning habitat in the Weber River and Ferron Creek 

(central Utah), a relatively unaltered river for comparison. I sampled slow-water 

backwaters near (< 1 km) spawning reaches for juvenile sucker and surveyed habitat 

characteristics. I conducted laboratory experiments to evaluate the effect different 

temperature and velocity treatments (12-19°C, 0.004-0.18 m/s) have on juvenile bluehead 

sucker growth. In the Weber River and Ferron Creek, reaches with gravel (4-64 mm 

diameter), cobble (64-256 mm diameter), and pools (6-26 pools/km) were used by 

spawning bluehead sucker. In Weber River backwaters, deeper backwaters contained 

significantly more juvenile sucker (18-378 sucker; range: 19-87 cm max depth). 
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Laboratory results indicated that juvenile bluehead sucker growth was greatest in the 

cooler temperature and slower velocity treatments. Collectively these results suggest 

spawning habitat is limited by the availability of small, rocky substrate and pools and 

rearing habitat is limited by the availability of deep, slow backwaters at the optimal 

temperature. By evaluating factors that may limit bluehead sucker population growth, this 

study will provide a template for future restoration efforts directed at recovering this 

imperiled population.  



vii 
 

 

ACKNOWLEDGMENTS 

 

 

I would like to thank the many mentors that guided me through this process, 

particularly Phaedra Budy, Jereme Gaeta, and Gary Thiede.  Phaedra provided fantastic 

guidance for becoming a scientist while being patient with my progress.  Jereme spent 

countless hours improving my ability to think as an ecologist and critically analyze data.  

Gary taught me approximately one million things, ranging from keeping work effective 

and fun in the field to writing reports, permit applications, and multi-tiered emails. 

I would like to sincerely thank the Utah Division of Wildlife Resources (UDWR) 

Northern Region Office and personnel, particularly Paul Thompson, Phil Tuttle, Sam 

McKay, and Chance Broderius, for their prodigious effort surveying large reaches of the 

Weber River for bluehead sucker and collecting juvenile bluehead sucker from the Raft 

River.  I would like to express gratitude to the UDWR Southeastern Region Office and 

personnel, particularly Dan Keller, for assisting with difficult days surveying Ferron 

Creek for bluehead sucker.  I would also like to thank the UDWR Fisheries Experiment 

Station for providing sucker food for the juvenile growth experiments. 

I was assisted by many people at Utah State University (USU) during this study.  I 

enjoyed working with dedicated, hard-working research technicians, Brandon Fair, 

Katelyn Jordan, Thomas Hafen, Tyler Arnold, and Hunter Lucas, in the field and lab.  I 

would also like to thank the Fluvial Habitats Center (FHC) at USU, particularly Joe 

Wheaton, Wally Macfarlane, and Josh Gilbert, for assistance and guidance through this 

study.  Before beginning field work, I worked in collaboration with the FHC to divide the 

Weber River into 300-m reaches and create a map book. 



viii 
 

 

This study was funded by the UDWR, City of Ogden, Davis and Weber Counties 

Canal Company, PacifiCorp, Provo River Water Users Association, Trout Unlimited, 

Weber Basin Water Conservancy District, Weber River Water Users Association, US 

Department of the Interior – Bureau of Reclamation, US Geological Survey – Utah 

Cooperative Fish and Wildlife Research Unit (in kind), and the USU Ecology Center.  

Permitting assistance was provided by Tom Smart (UDWR) and Aaron Olsen of the 

Institutional Animal Care and Use Committee (IACUC) at USU.  This research was 

conducted under State of Utah Certificate of Registration (COR) number 2COLL9563 

and IACUC protocol number 2456. 

My time in Logan would not have been the same without many wonderful friends, 

whether we spent time adventuring, shredding, or at the Owl. 

Bryan C. Maloney    



ix 
 

 

CONTENTS 

 

 

Page 

 

ABSTRACT ....................................................................................................................... iii 

 

PUBLIC ABSTRACT .........................................................................................................v 

 

ACKNOWLEDGMENTS ................................................................................................ vii 

 

LIST OF TABLES ............................................................................................................. xi 

 

LIST OF FIGURES ......................................................................................................... xiii 

 

INTRODUCTION ...............................................................................................................1 

  

 Study Watershed ......................................................................................................5 

 

METHODS ..........................................................................................................................7 

  

 Field and Laboratory Studies ...................................................................................7 

   

  Spatial Extent of Spawning and Non-spawning Locations .................................7 

  Habitat Characteristics Associated with Spawning and Non-spawning  

    Reaches .............................................................................................................9 

  Comparing the Weber River to a Less-degraded River System .......................10 

  Quantifying Physical Characteristics and Rearing Suckers in Backwaters ......11 

  Bluehead Sucker Growth Experiment ...............................................................12 

  

 Statistical Analyses ................................................................................................15 

 

  Associated Spawning Habitat ...........................................................................15 

  Rearing Habitat .................................................................................................17 

 

RESULTS ..........................................................................................................................22 

  

 Spawning Habitat in the Weber River ...................................................................22 

Spawning Habitat in Ferron Creek ........................................................................23 

Physical Characteristics and Rearing Suckers in Backwaters ...............................24 

Bluehead Sucker Growth Experiment ...................................................................26 

 

 

 



x 
 

 

DISCUSSION ....................................................................................................................28 

  

 Management Implications ......................................................................................36 

 

REFERENCES ..................................................................................................................38 

 

TABLES AND FIGURES .................................................................................................48 

 

APPENDICES ...................................................................................................................65 

 

  



xi 
 

 

LIST OF TABLES 

 

 

Table Page 

 

1 Experimental treatments by variable (temperature and velocity) used to  

    test hypotheses ....................................................................................................... 48 

 

 2 Experimental treatments by trial, number of bluehead sucker used in each 

treatment, and period of experimental trials conducted during June- 

   October 2016 ..................................................................................................48 

 

 3 A matrix of all possible covariates and their slope parameters for the 

   juvenile sucker backwater use linear mixed model ........................................49 

 

 4 Significant variables included in the final random forest models analyzing 

spawning habitat in the Weber River and Ferron Creek (classification) 

   and rearing sucker backwater use (regression) ...............................................49 

 

 5 Variables added to the juvenile sucker backwater use linear mixed model  

   at each step and their Bayesian information criterion (BIC) value and  

   delta BIC relative to the best model from the previous step ..........................50 

 

 6 Backwater sucker use linear mixed model components and sample size (n), 

random effect parameters with standard deviation (SD), and fixed effect 

coefficient (coef) parameter estimates (est) and standard error (SE) .............50 

 

 7 Juvenile bluehead sucker growth experiment linear mixed model  

   components and sample size (n), random effect parameters with standard 

deviation (SD), and fixed effect coefficient (coef) parameter estimates  

   (est) and standard error (SE) ..........................................................................50 

 

 8 Weber River, UT spawning reach location (UTM zone 12 N coordinates, 

center of reach), abundance of ripe bluehead sucker (BHS) sampled,  

   linear reach distance, channel width, abundance of large woody debris 

(LWD; small, medium, and large), and abundance of LWD jams .................66 

 

 9 Weber River, UT spawning reach geomorphic complexity, number of 

geomorphic units, and percent (%) fines, gravel, cobble, and boulders .........67 

 

 10 Weber River, UT non-spawning reach location (UTM zone 12 N  

   coordinates, center of reach), linear reach distance, channel width,  

   abundance of large woody debris (LWD; small, medium, and large), and 

abundance of LWD jams ................................................................................68 



xii 
 

 

 

 11 Weber River, UT non-spawning reach geomorphic complexity, number of 

geomorphic units, and percent (%) fines, gravel, cobble, and boulders .........69 

 

 12 Ferron Creek, UT spawning (sp) and non-spawning (non) reach location  

   (UTM zone 12 N coordinates, center of reach), abundance of ripe  

   bluehead sucker (BHS) sampled (reported only for spawning reaches),  

   linear reach distance, channel width, abundance of large woody debris 

(LWD; small, medium, and large), and abundance of LWD jams .................70 

 

 13 Ferron Creek, UT spawning (sp) and non-spawning (non) reach  

   geomorphic complexity, number of geomorphic units, and percent (%)  

   fines, gravel, cobble, and boulders .................................................................71 

 

 14 Laboratory experiment results for juvenile bluehead sucker growth  

   (median; g/g/day) in each velocity or temperature (temp) treatment with  

   25th and 75th quartiles and sample size (n) shown ..........................................72 

 

  



xiii 
 

 

LIST OF FIGURES 

 

 

Figure Page 

 

1 A conceptual model displaying how the Weber River, UT has been  

altered from historic conditions, when a robust bluehead sucker  

population existed, indicating the existence of adequate complementary 

spawning and rearing habitats (left) ...............................................................51 

 

2 Map of the Weber River watershed located in northern Utah ..........................52 

 

3 Delta peak annual discharge for two Weber River, UT USGS gages  

plotted across year ..........................................................................................53 

 

 4 Day of year (DOY) of peak annual discharge for two Weber River, UT 

   USGS gages plotted across year .....................................................................54 

 

 5 Length-frequency histogram of the bluehead sucker sub-population 

   inhabiting the Weber River, UT reach between Echo and Wanship  

   Dams (Figure 2) ..............................................................................................55 

 

 6 Map of Ferron Creek, UT extending upstream from Millsite Reservoir ..........56 

 

 7 Habitat variables that differed significantly between spawning and non-

spawning reaches in the Weber River, UT, based on ANOVA  

   (Wilcoxon rank sum test; p < 0.05) ................................................................57 

 

 8 Partial dependence plots for random forest classification of significant  

   habitat characteristics (Table 4) in the Weber River, UT ...............................58 

 

 9 Habitat variables that differed significantly between spawning and non-

spawning reaches in Ferron Creek, UT, based on ANOVA (t-test; p < 

0.05) ................................................................................................................59 

 

 10 Partial dependence plots for random forest classification of significant 

   habitat characteristics (Table 4) in Ferron Creek, UT ....................................60 

 

 11 Partial dependence plots for random forest regression of significant 

   backwater characteristics (Table 4) in the Weber River, UT .........................61 

 

 12 Model results for backwater sampling linear mixed-effects regression............62 

 

 13 Full model juvenile growth predictions plotted across water temperature .......63 



xiv 
 

 

 

 14 Full model juvenile growth predictions plotted across tank discharge (Q; 

m3/s) ................................................................................................................64 

 

 15 Frequency of the three significant habitat characteristics used to classify 

spawning and non-spawning reaches in the Weber River, UT,  

   determined using random forest classification ...............................................73 

 

 16 Frequency of the three significant habitat characteristics used to classify 

spawning and non-spawning reaches in Ferron Creek, UT, determined 

   using random forest classification ..................................................................74 

 

 17 Model fit for the final model evaluating backwater sampling data ..................75 

 

 18 Model fit for the full model evaluating laboratory juvenile growth data ..........76 
 



 

INTRODUCTION 

 

Disturbances such as altered physical and thermal habitat, introductions of non-

native predators and competitors, and anthropogenic resource extraction and emissions 

may induce a shift in community composition and function (Holling 1973; Mooney and 

Cleland 2001; Smol et al. 2005).  Freshwater ecosystems are particularly sensitive to 

anthropogenic disturbances (Dudgeon et al. 2006) with 54% of accessible surface water 

consumed, contaminated, or diverted for human purposes (Postel et al. 1996).  Indeed, 

extinctions of freshwater fauna may exceed the rates of terrestrial faunal extinctions 

fivefold over the next century (Ricciardi and Rasmussen 1999) due to concentrated and 

intense land use near freshwaters (Sala et al. 2000).  High levels of biodiversity exist in 

freshwater ecosystems, as they contain 9.5% of all animal species despite comprising 

only 0.01% of the Earth’s surface (Balian et al. 2008).  Watershed disturbance, water 

resource development, pollution, and biotic factors threaten global riverine biodiversity, 

largely because rivers provide renewable water for human needs (Vorosmarty et al. 

2010).   

The over-allocation of water resources and subsequent degradation of riverine 

ecosystems alters physical and thermal habitat available to freshwater species (Ligon et 

al. 1995).  Water retention and diversion is likely to result in a shift in the biological 

community by altering sediment erosion, transportation, and deposition (Vannote et al. 

1980).  The frequency and magnitude of fragmentation and flow regulation of riverine 

ecosystems negatively affects the majority of large rivers globally (Dynesius and Nilsson 

1994; Nilsson et al. 2005; Vorosmarty et al. 2010).  In the United States, for instance, 
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dams have reduced the frequency and shifted the timing of low and high flow events 

(Magilligan and Nislow 2005).  Dams straighten and stabilize river channels through 

flow regulation and the retention of sediment, diminishing in-channel complexity by 

reducing the processes of braiding and bar formation (Ligon et al. 1995; Graf 2006).  

Dams may also cause significant changes in the thermal regime of riverine ecosystems to 

the energetic detriment of native species.  For example, cool, hypolimnetic releases from 

large dams may reduce water temperatures downstream and top-release dams may 

conversely lead to warmer temperatures downstream (Lessard and Hayes 2003).  

Ecosystem alterations change physical and thermal habitat available to freshwater 

species and, therefore, may cause populations to experience recruitment bottlenecks.  

These bottlenecks occur when limiting factors hinder recruitment success, as determined 

by the number and fecundity of spawning fish and the ability of early life stages to rear to 

maturity (Hilborn and Walters 1992).  These limiting factors may include reduced or 

altered physical habitat (Wahle and Steneck 1991), thermal habitat (Coleman and Fausch 

2007), food availability (Hentschel 1998), or disturbance events (e.g., wildfire; Prior et al. 

2010).  Many fishes experience ontogenetic shifts as they grow, changing the factors that 

influence survival of individuals of different sizes (Brooks and Dodson 1965; Werner and 

Gilliam 1984).  Juvenile and adult life stages may require different management or 

conservation strategies as a result of unique life stages responding to different limiting 

factors. 

Catostomids (suckers) are particularly vulnerable to anthropogenic alterations to 

riverine ecosystems.  Catostomids in North America commonly face threats of habitat 
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degradation, non-native species, migration barriers, and water diversion (Cooke et al. 

2005).  Threats to catostomids and other native fishes are exacerbated by competition 

with society for water in the Intermountain West (Richter et al. 1997), where streamflow 

alterations, particularly diminished minimum and maximum flows due to dams, have 

caused the biological impairment of fish communities (Carlisle et al. 2010).  Threats to 

catostomids may go unnoticed and be exacerbated due to their status as a non-game fish 

of little economic value and social stigmas (Cooke et al. 2005).  In the upper Colorado 

River basin, a well-studied basin in the Intermountain West, reservoir construction and 

subsequent alteration to natural flow regimes has decreased river-channel complexity 

(Van Steeter and Pitlick 1998).  Bluehead Sucker Catostomus discobolus are endemic to 

the Intermountain West, have experienced population range contraction in recent years 

(Budy et al. 2015), and are protected under a conservation agreement to avoid listing 

under the Endangered Species Act.  

Bluehead suckers are native to the Colorado (N. Arizona, W. Colorado, E. Utah, 

SW. Wyoming), Snake (S. Idaho, N. Utah), Bear (N. Utah), and Weber River basins (N. 

Utah; Sigler and Miller 1963), but now occupy only 47% of their historical range (Budy 

et al. 2015).  The bluehead sucker populations from the Weber and Snake River basins 

are genetically distinct from the Colorado River basin population, causing added concern 

for the conservation of these populations (Hopken et al. 2013; Unmack et al. 2014).  The 

Weber River is a unique habitat for bluehead suckers, being a high-gradient alpine river 

draining portions of the Uinta and Wasatch mountain ranges, as opposed to the lower-

gradient desert rivers it inhabits in the Colorado River Basin.  Unfortunately, the Weber 
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River has become highly degraded with dams and diversions altering the hydrologic and 

thermal regimes, potentially leading to a bluehead sucker recruitment bottleneck.  Adult 

bluehead sucker have been observed spawning on gravel (Maddux and Kepner 1988; 

Sublette et al. 1990) and are associated with riffles (Vanicek 1967; Stewart et al. 2005; 

Bower et al. 2008), pools, and locations with cover (Sigler and Miller 1963; Sublette et 

al. 1990; Bower et al. 2008).  Larval and juvenile bluehead suckers, on the other hand, 

have been documented occupying shoreline and backwater habitats (Sigler and Miller 

1963; Vanicek 1967) and with growth related to water temperatures (Robinson and 

Childs 2001).  The variety of complementary habitats adult and rearing bluehead sucker 

are associated with require the in-channel complexity that is often degraded or lost in 

over-allocated rivers (Graf 2006).  Bluehead sucker density is positively associated with 

spring discharge (Propst and Gido 2004), a hydrologic component generally reduced in 

heavily regulated rivers.  Bluehead sucker need suitable spawning substrate (i.e., gravel) 

and habitat (e.g., pools) as well as sufficient slow-water rearing habitat to accommodate 

their full life cycle and allow for successful recruitment (Dunning et al. 1992).   

My overall goal was to identify potential recruitment bottlenecks for the Weber 

River bluehead sucker population (Figure 1).  My specific objectives were to determine 

the habitat characteristics associated with spawning and rearing bluehead sucker and 

evaluate whether the Weber River bluehead sucker population may be limited by 

insufficient spawning habitat, rearing habitat, or both.  To accomplish this, I used a 

multifaceted approach including fish sampling, comparative habitat surveys (e.g., from a 

healthy and degraded system), and microhabitat growth experiments.  This study will 
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evaluate if the Weber River bluehead sucker population may be limited by availability of 

suitable spawning and rearing habitat and provide a template for appropriate restoration 

activities. 

 

Study Watershed 

 

The Weber River watershed is located in northcentral Utah, draining 6,413 km2 

and flowing 201 km primarily northwest from headwaters in the Uinta mountains (3,569 

m above mean sea level; amsl) through the Wasatch mountains and into the Great Salt 

Lake (1,278 m amsl; Figure 2; Webber et al. 2012).  Seven large dams (dam height 

exceeding 19 m) in the watershed have contributed to altering natural hydrologic 

conditions, reducing and shifting the timing of natural peak flow in spring and summer 

(Figures 3 and 4) and maintaining atypically high flow below dams and atypically low 

flow below diversions throughout the irrigation season (approximately May-September).  

Furthermore, large dams such as Echo and Wanship dams, each exceeding 47 m height, 

obstruct connectivity between river reaches and limit bluehead sucker movement, 

documented as great as 15 km downstream and 10 km upstream in the Weber River 

(Webber et al. 2012; this study).  Additionally, channelization of the river for highways, 

railways, and residential areas has exacerbated effects of altered hydrologic conditions by 

reducing slow-velocity, backwater habitats (Webber et al. 2012). 

In addition to physical habitat degradation, a large population of exotic, 

naturalized Brown Trout Salmo trutta is found in the Weber River with densities in some 

areas reaching up to 37 adult fish/km2 (Webber et al. 2012).  Brown trout are piscivorous, 

well adapted to a wide range of global habitats (MacCrimmon and Marshall 1968; Budy 
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et al. 2015), able to outcompete native species occurring sympatrically (McHugh and 

Budy 2005), and are known to prey on naïve native fishes (Garman and Nielsen 1982; 

Marrin and Erman 1982).  This dense population of potential predators and competitors 

poses new challenges for bluehead suckers in the Weber River. 

Historically, bluehead sucker were one of the most abundant fishes in the Weber 

River (Sigler and Sigler 1966); however, current estimates suggest the population 

consists of less than 500 adults spread across 84 river km, split into sub-populations by 

impassable dams (UDWR 2015).  The sub-population in the highest-elevation reach, 

between Echo and Wanship Dams, had experienced a recruitment bottleneck for many 

years and would have likely gone locally extinct due to a lack of natural recruitment if the 

Utah Division of Wildlife Resources (UDWR) had not translocated it (Figure 5).  In 

contrast, sub-populations in the lower-elevation reaches, appear to have experienced 

occasional successful, albeit diminished, reproduction (UDWR 2012; this study). 
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METHODS 

 

 

My research goal was to identify potential habitat-based recruitment bottlenecks 

for bluehead sucker in the Weber River, focusing on spawning and rearing life stages.  I 

located and quantified associated spawning habitat by electroshocking and conducting 

reach-based habitat surveys in both the Weber River and Ferron Creek, a relatively 

unaltered surrogate river.  I compared spawning reaches to non-spawning reaches in each 

river, using ANOVA and random forest classification to determine whether habitat 

associated with spawning bluehead sucker differed significantly from available habitat.  I 

sampled backwaters within and immediately downstream of known spawning reaches in 

the Weber River, and evaluated the relationship between juvenile sucker abundance and 

size of backwaters using linear mixed-effects regression.  To add a mechanistic 

understanding, I conducted laboratory experiments to determine the juvenile bluehead 

sucker growth response to different water temperature and velocity treatments and 

analyzed these data using linear mixed-effects regression. 

 

Field and Laboratory Studies 

 

Spatial extent of spawning and non-spawning locations.—I determined the spatial 

extent of spawning locations by surveying large reaches (approximately 20 km) of the 

Weber River across the contemporary bluehead sucker range.  I conducted raft 

electrofishing surveys during 2015 and 2016 with UDWR biologists in order to locate 

bluehead sucker in spawning condition.  I conducted a two-pass survey of the Weber 

River from the mouth of Weber Canyon to the Ogden River inlet (Figure 2) for bluehead 
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sucker in spawning condition in May and June 2015.  I conducted a three-pass survey of 

the Weber River from the Lost Creek confluence to the town of Morgan, UT for bluehead 

sucker in spawning condition in May 2016.  I assessed spawning condition of all 

bluehead sucker during surveys in each year, as indicated by presence of tubercles, eggs, 

or milt.  I measured each fish (total length and weight), scanned each fish for Passive 

Integrated Transponder (PIT) tags (569 bluehead sucker were previously tagged by 

UDWR in contemporary bluehead sucker range; UDWR, unpublished data), and PIT 

tagged all previously unmarked fish.  I recorded the locations at which bluehead suckers 

were collected with handheld GPS units.  I used UTM locations of fish collected during 

UDWR surveys conducted from 2006-2014 to identify additional bluehead sucker 

spawning locations (UDWR, unpublished data). 

I used geographic information system (GIS; ArcMap) spatial analysis to 

document the locations of bluehead sucker in spawning condition following the 

completion of each spring (May - June) spawning survey.  Sites with two or more adult 

(> 330 mm total length) bluehead suckers, with at least two of those adults sampled in 

spawning condition, constituted the center of an associated spawning reach, hereafter 

referred to simply as a “spawning reach”.  Spawning reaches extended 150 m both up and 

downstream from the center point, for a total reach length of 300 m.  I merged spawning 

reaches if one spawning location occurred within 300 m of another spawning location.   

In addition to spawning reaches, I randomly selected ten “non-spawning” reaches 

throughout the bluehead sucker historic range in which neither I nor the UDWR collected 

any bluehead sucker in spawning condition.  I divided the Weber River sequentially, 
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from Wanship Dam to the Ogden River inlet (Figure 2), into 300-m reaches.  Using 

Google Earth imagery, I preliminarily marked the number of geomorphic units associated 

with bluehead sucker in previous studies, i.e., riffles, pools, and backwaters (Vanicek 

1967; Stewart et al. 2005; Bower et al. 2008), in addition to gravel bars (an important 

source of substrate in riffles), large woody debris (an important source of scour for 

pools), and side channels (an additional measure of complexity), hereafter referred to as 

habitat units, occurring between Wanship Dam and the Ogden River inlet.  The 

abundance of these habitat units marked in each reach (number per 300-m reach) was the 

level of complexity.  Spawning reaches from my 2015 spawning survey contained an 

average of nine habitat units, as seen on Google Earth imagery.  Therefore, I defined nine 

or more habitat units per 300-m reach as a complex reach.  I arbitrarily defined five or 

less habitat units per 300-m reach as a simple reach.  I randomly selected five complex 

and five simple reaches to capture the full range of complexity on the Weber River.  

Habitat characteristics associated with spawning and non-spawning reaches.—I 

quantified habitat characteristics in spawning and non-spawning reaches using reach-

based surveys, in order to determine whether habitat differed significantly between the 

two reach types.  I divided each reach into five transects, equidistantly spaced (e.g., 75 m 

apart for 300-m reaches).  I measured wetted and bankfull channel widths as well as at 

least twenty depths and substrate sizes using a gravelometer across each transect 

(Wolman 1954).  I measured discharge (Marsh-McBirney Flo-Mate™ 2000) and water 

quality (temperature, dissolved oxygen, specific conductivity; YSI 556 MPS) at 

whichever transect appeared to lead to the most accurate discharge measurement (i.e., 
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simplest channel bed).  Within each reach, I classified geomorphic units by stage height 

and shape (concave, convex, or planar) following Wheaton et al. (2015) and measured 

length, width, maximum depth, and twenty depth measurements (evenly dispersed to 

cover the entire feature) for every riffle, pool, backwater, gravel bar, and chute/side 

channel.  Additionally, I estimated large woody debris (LWD) and log jams at different 

size classes (small LWD: 10 - 15 cm diameter, 1 - 3 m length; medium LWD: > 15 - 30 

cm diameter, > 3 - 6 m length; large LWD: > 30 cm diameter, > 6 m length; small log 

jam: ≤ 20 LWD pieces; medium log jam: 21 - 50 LWD pieces; large log jam: > 50 LWD 

pieces; Bouwes et al. 2011). 

Comparing the Weber River to a less-degraded river system.—In order to 

compare habitat use of the Weber River bluehead sucker population to a population 

experiencing more natural and sustainable levels of recruitment, I evaluated associated 

spawning habitat for the bluehead sucker population in Ferron Creek, UT above Millsite 

Reservoir (Figure 6).  Ferron Creek is located in central Utah, draining 626 km2 of the 

Wasatch Plateau (highest elevation = 3400 m amsl), flowing primarily east 25.7 km into 

Millsite Reservoir (1893 m amsl) and an additional 42.7 km into the San Rafael River 

(1629 m amsl).  A population of approximately 7000 bluehead sucker inhabits Ferron 

Creek and Millsite Reservoir (UDWR 2015).  The robust population in Millsite Reservoir 

and Ferron Creek may allow for selection of optimal habitat, as bluehead sucker have 

been negatively associated with near-stream anthropogenic land use (Dauwalter et al. 

2011).  Ferron Creek retains a natural flow regime above Millsite Reservoir and only has 

small dams at higher elevations that spill over annually.  In addition to the natural flow 
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regime, Ferron Creek has few non-native fish above Millsite Reservoir (e.g., Rainbow 

Trout Oncorhynchus mykiss and Cutthroat Trout x rainbow trout hybrids O. clarkii 

pleuriticus x O. mykiss).  Instream habitat in Ferron Creek is similar to the Weber River, 

with similarly high gradient and rocky substrates, although Ferron Creek is narrower and 

shallower.  Ferron Creek provides a good opportunity to evaluate bluehead sucker habitat 

use in a fairly-pristine river system with a robust bluehead sucker population, natural 

flow regime, and relative lack of non-native fishes. 

In July 2016, I collaborated with the UDWR to survey 7.52 km of Ferron Creek 

extending upstream of Millsite Reservoir.  I used a backpack electrofishing unit and 

otherwise followed the same protocol as in the Weber River for processing fish, mapping 

associated spawning locations, defining spawning and non-spawning reaches, and 

measuring habitat characteristics.  I surveyed habitat characteristics in all eleven 

spawning and ten non-spawning reaches.  

  Quantifying physical characteristics and rearing suckers in backwaters.—I 

sampled backwaters near spawning reaches to quantify rearing sucker abundance and 

backwater habitat characteristics.  I sampled all backwaters within and immediately 

downstream (< 1 km from downstream end of spawning reach) of all known bluehead 

sucker spawning reaches located in the Weber River.  I sampled twenty-three backwaters 

in July and August 2015.  I primarily used small-mesh beach seine nets due to their 

perceived efficacy at catching young-of-the-year (age-0) larger than approximately 15 

mm total length (TL).  I seined each backwater with at least three passes when possible.  

However, I used an electrofishing backpack unit to sample three backwaters due to their 
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large width and depth.  I sampled twelve backwaters in July and August 2016 (eleven 

resampled from 2015 and one previously unsampled backwater).  I used a backpack 

electrofishing unit for at least two passes, followed by at least three passes with a seine 

net, for less size bias compared to sampling in 2015.  I sampled to depletion during all 

sampling occasions in both years when possible (i.e., the backwater was not too deep, 

wide, or filled with vegetation/LWD to effectively sample) and removed all ineffective 

sampling occasions from further analyses. 

After sampling each backwater, I enumerated all larval and juvenile sucker, 

considering all juvenile sucker ecologically synonymous due to their likely-similar niche 

requirements at small sizes.  I measured TL of the first fifty randomly-selected 

individuals and identified all larval and juvenile suckers to species (bluehead sucker, 

Utah Sucker C. ardens, and Mountain Sucker C. platyrynchus) when possible.  

Additionally, I enumerated and measured TL of all non-native brown trout sampled in 

each backwater.  I measured the area, depth (maximum depth and twenty depths spaced 

evenly through the full spatial extent of the backwater), and water quality (temperature, 

dissolved oxygen, specific conductivity; YSI 556 MPS) at the center of each backwater.  

In 2016, I also estimated LWD and substrate composition of each backwater sampled, 

using the same protocol as the spawning habitat portion of this study described above for 

LWD but surveying at least twenty-five substrate sizes along transects in a zig-zag 

pattern to cover the full width and length of each backwater.   

Bluehead sucker growth experiment.—I conducted laboratory experiments to 

complement my field studies by determining the juvenile bluehead sucker growth 
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response to different water temperatures and velocities (Table 1).  I tested the hypotheses 

that juvenile growth is optimized in warmer temperature, slower velocity water relative to 

cooler, faster water.  Working cooperatively with the UDWR, I collected 140 juvenile (90 

- 200 mm TL) bluehead sucker from the Raft River (Box Elder County, UT) in spring 

and summer 2016.  The Raft River bluehead sucker population is healthy, dense, and is 

part of the same evolutionarily significant unit as the Weber River population (Hopken et 

al. 2013).  I conducted experiments in the Millville Aquatic Research Facility (MARF), 

Millville, UT.  The experiment was performed in three oval, steel, stream-flow tanks at 

MARF with each slow, medium, or fast-velocity treatment consisting of water velocities 

within the range encountered by juvenile bluehead sucker in the Weber River.  Velocity 

treatments were created with a single 2-horsepower (hp) water pump (medium and fast 

velocity) or three 1/4-hp water pumps (slow velocity) per tank and water 

dispersal/deflector structures (e.g., cinder blocks).  Experimental treatments consisted of 

three water velocities and three water temperatures, cool, tepid, and warm, for a total of 

nine treatments (three velocity x three temperature treatments; Table 1).  I used gates to 

close off experimental chambers (water depth approximately 50 cm, length 

approximately 2 m, width approximately 60 cm) on either end within the oval tanks.  I 

used small substrate (< 90 mm diameter, the size found in the Weber River that would 

not disrupt water flow substantially or become suspended in fast water) to fill the floor of 

each experimental chamber and approximate a more natural environment.  I hung semi-

transparent, black screens around all experimental tanks to minimize stress to fish.          
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To acclimatize experimental fish prior to experimentation, I held all juvenile 

bluehead sucker in round, flow-through holding tanks fed by a steady inflow of aerated 

well water (approximately 10°C).  I layered the bottom of each holding tank with large 

substrate (90 - 128 mm diameter) and surrounded the holding-tank area with semi-

transparent, black screens to reduce stress of all fish prior to experimental trials.  I PIT 

tagged all fish within 1-5 days of arrival at MARF.  I fed all juvenile bluehead sucker ad 

libitum initially with frozen bloodworms (for one week to acclimate to laboratory 

conditions) and later with Skretting© pellet feed formulated for June Sucker Chamistes 

liorus.   

I randomly selected fish for each treatment, measured each fish before and after 

each trial to determine growth, and quantified tank discharge and water temperature.  I 

randomly selected juvenile bluehead sucker for each treatment at the start of each 

experimental trial, five for each treatment in the first round of trials, seven for each 

treatment in the second round of trials, and acclimated fish for at least one day (Table 2).  

I scanned, measured (TL), and weighed (mass, closest 0.01 g) each fish prior to 

experimentation.  I measured discharge at the center of each experimental chamber prior 

to experimental trials and I used tank discharge as a metric of water velocity.  I monitored 

hourly water temperatures during experimental trials with HOBO® temperature loggers 

and fed fish to excess twice daily (approximately 2 tablespoons per feeding) with 

automatic feeders.  Following the experimental trial period (7 – 25 days), I scanned, 

measured, and weighed all fish within one hour of experimental trial start time.  I cleaned 
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all experimental tanks after each trial and returned juvenile bluehead suckers back to the 

holding tanks, keeping approximately the same number of fish in each holding tank.   

 

Statistical Analyses 

 

Associated spawning habitat.—I used analysis of variance (ANOVA) to compare 

habitat characteristics measured in spawning and non-spawning reaches and identify 

significant differences in substrate, depth, LWD, bankfull and wetted channel widths, 

geomorphic complexity, and occurrence (both abundance and relative area) of 

geomorphic units.  To prepare data for analysis, I calculated the area and abundance of 

distinct geomorphic units (i.e., riffles, pools, backwaters, gravel bars, and chutes/side 

channels) in each reach and I categorized substrate as fines (< 4 mm diameter), gravel (4 

- < 64 mm diameter), cobble (64 - < 256 mm diameter), or boulders (≥ 256 mm diameter; 

Wentworth 1922).  I defined geomorphic complexity as the proportion of each reach 

composed of non-planar geomorphic units, i.e., sum of pool, riffle, and chute/side 

channel area divided by the wetted reach area (similar to longitudinal roughness from 

Gooseff et al. 2007).  I standardized geomorphic and LWD habitat metrics by reach 

length (e.g., number of riffles per river km) to account for the greater length of the few 

merged spawning reaches.  I standardized substrate as a proportion of each size class by 

total substrate measurements per reach.  After evaluating the normality and variance of 

the data, I tested normally-distributed data with a t-test (Student 1908) and non-normally-

distributed data with a Mann-Whitney U-test (Mann and Whitney 1947).  I compared 

Weber River spawning and non-spawning reaches, and I separately compared Ferron 

Creek spawning and non-spawning reaches.   
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In addition to an ANOVA, I performed a random forest classification (Breiman 

2001) to evaluate whether select habitat characteristics are significant predictors of 

spawning classification (i.e., spawning or non-spawning reach).  Random forest models 

are non-parametric and are, therefore, not restricted to normally distributed variables.  

Random forest models also require no assumptions of relationships between response and 

predictor variables and are able to handle complex, highly-dimensional data, where 

predictor variables may outnumber observations, all characteristics of these data.  I 

initially included all physical habitat characteristics measured in the field as variables in 

the random forest classification.  I performed a backward stepwise variable selection 

procedure to create the most parsimonious model and assess variable importance relative 

to the full suite of variables included in the model (Guyon and Elisseeff 2003).  Starting 

with all possible predictor variables, I calculated the area under the receiver operating 

characteristic curve (AUC) at each step.  I calculated the mean decrease accuracy (i.e., 

the decrease in classification accuracy from permuting each variable) for each variable at 

each step and removed the variable with the lowest mean decrease accuracy.  I completed 

the backward stepwise variable selection procedure until only one variable remained and 

chose the classification model with the highest AUC as my final model.  To investigate 

robustness of my final model, I performed a sensitivity analysis by completing ten 

iterations at each step and calculating mean AUC for the model and mean decrease 

accuracy for each variable.  I used partial dependence plots to visualize the trends in 

relationships between spawning classification and significant habitat variables.  Partial 

dependence plots indicate the probability the model will classify a reach as a spawning or 



17 
 

 

non-spawning reach across the full range of values of a habitat variable, while using the 

average values for all other variables included in the model.  Interpretation of partial 

dependence plots must be made with caution, as they incorporate complex, 

nonparametric ecological data and should not be used for prediction or prescription.  I 

performed all statistical analyses in the R-Cran statistical package (R Development Core 

Team 2017), using the ‘randomForest’ package (Liaw and Wiener 2002; version 4.6-12) 

for random forest classification and the ‘verification’ package to calculate AUC (NCAR 

2015; version 1.42).  

Rearing habitat.—I used a random forest regression to evaluate whether physical 

and biological characteristics are significant predictors of rearing sucker abundance.  

Using rearing habitat data collected in the field in 2016, I performed a backward stepwise 

variable selection procedure starting with all possible predictor variables (backwater area, 

maximum depth, mean depth, total LWD, brown trout abundance, non-native fish 

abundance, and proportion of total substrate composed of fines, gravel, cobble, and 

boulders) to create the most parsimonious model.  I calculated the increase in node purity 

(the decrease in residual sum of squares for splitting on a variable) for each variable at 

each step and removed the variable with the lowest increase in node purity.  I completed 

the backward stepwise variable selection procedure until the out-of-bag mean square 

error began to increase.  To evaluate the robustness of my final model, I performed a 

sensitivity analysis by completing ten iterations at each step and calculating mean square 

error for the model and increase in node purity for each variable. 
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I evaluated the relationship between the size of backwaters in the field (area and 

depth) and sucker abundance using a linear mixed-effects regression framework.  My 

data were hierarchically structured with repeated measures of backwaters (repeated in 

eleven backwaters in 2015 and 2016) nested within site (backwater) and sites nested 

within year.  I included two biological variables, juvenile sucker and all brown trout 

sampled, and two physical variables, backwater area and maximum depth, at each 

sampling event.  I calculated average depth of each backwater as the mean of the twenty 

evenly-spaced depth measurements.  I calculated volume as average depth multiplied by 

area.  I first evaluated the degree to which each predictor variable was correlated, in order 

to remove highly-correlated variables (i.e., Pearson correlation coefficient > 0.5).  As 

such, I removed backwater volume and average depth due to high correlations to area and 

maximum depth.  I used the Shapiro-Wilk test (Shapiro and Wilk 1965) to evaluate the 

normality of the distribution of each remaining variable (total sucker juveniles sampled, 

maximum depth, area, brown trout sampled).  I loge transformed total number of sucker 

sampled and backwater area, because these two variables differed significantly from a 

population with a normal distribution.  I was unable to transform total brown trout 

sampled to a normally-distributed population using any transformation. 

I took an information theoretics approach to rank models as a function of 

predicting the total number of juvenile suckers in a backwater, the response variable.  I 

performed a forward bidirectional stepwise variable selection procedure (Gelman and 

Hill 2008) starting with the following null (i.e., intercept-only) model: 
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(1)  yi = β0 + β1j[i]k[i] + εj[i]k[i] , for i = 1,…., n observations 

        β1j ~ N(μB1, 𝜎2
B1j), for j = 1, …, J. 

        β1k ~ N(μB1, 𝜎2
B1k), for k = 1, …, K. 

        εj[i]k[i] ~ N(0, 𝜎2
Ɛ) 

 

where, yi is the loge sucker sampled for an observation i, β0 is the intercept and β1j[i]k[i] is 

the random effect of year j and site k across backwater maximum depth, ε is the residual 

error.  β1 for year j and site k follows a normal distribution around the mean of μB1 and a 

variance of 𝜎2
B1.  Model residual error (ε) for year j and site k follows a normal 

distribution around a mean of zero with a variance of 𝜎2
Ɛ.  I used a model selection 

criterion of delta 4 Bayesian information criterion (BIC; Burnham and Anderson 1998).  

At each step, the addition or removal of variables occurred if model BIC decreased by at 

least 4 BIC from the previous step.  I selected random effect structure by maximizing 

restricted maximum likelihood and fixed effect structure by maximizing log-likelihood at 

each step.  Backwater maximum depth, loge–transformed area, brown trout sampled, and 

all potential interactions were the full suite of possible predictor variables (i.e., fixed 

effects).  Interactions were only considered for inclusion if both main effects were 

already included separately in the model.  

The full model, with all possible covariates included, was as follows: 

 

(2)  yi = β0 + βXi + εj[i]k[i] , for i = 1,…., n observations  

        εj[i]k[i] ~ N(0, 𝜎2
Ɛ) 
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where, βXi is a matrix of all possible covariates and coefficients (Table 3). 

 

I evaluated the relationship between juvenile growth and water temperature and 

velocity in laboratory experiments using a linear mixed-effects regression framework.  

Experimental data were hierarchically structured with multiple tanks nested within each 

trial time.  I used a hypothesis-driven approach (Gelman and Hill 2008) to test whether 

water temperature, velocity (measured as tank discharge), and their interaction are 

significant predictors of juvenile bluehead sucker growth.  I calculated growth as grams 

per gram per day (g/g/day), i.e., change in mass (g) divided by mean mass (g) divided by 

duration (days) for each fish in each treatment trial.  I used the Shapiro-Wilk test (Shapiro 

and Wilk 1965) to evaluate the normality of the distribution of the response variable, 

g/g/day.  I square root transformed g/g/day (after adding 0.01) because it differed 

significantly from a population with a normal distribution.  I removed one individual 

from analysis, as it exhibited a strong, negative physiological response to 

experimentation, losing 7.9 g when all other individuals gained 1.0-6.5 g through the 

same trial period.  I included a random effects structure of tank nested within trial period.  

I evaluated significance of predictor variables based on standard error of predicted 

juvenile growth and analyzed full model fit based on residual error (Gelman and Hill 

2008).   

The full juvenile growth model, was as follows: 

(3)  yi = β7g[i]g[h[i]] + β8x4i + β9x5i + β10x4i * x5i + εg[i]g[h[i]] , for i = 1,…., n observations 

               β7g ~ N(μB7, 𝜎2
B7g), for g = 1, …, G. 

               β7g[h] ~ N(μB7, 𝜎2
B7g[h]), for g = 1, …, G, and h = 1, …, H. 
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        εg[i]g[h[i]] ~ N(0, 𝜎2
 Ɛ) 

 

where, yi is the square root transformed g/g/day for an observation i, β7g[i]g[h[i]] is the 

intercept of tank h nested within trial time g, β8 is the slope across water temperature (x4), 

β9 is the slope across water velocity (x5), β10 is the slope across water temperature and 

velocity (x4 * x5), ε is the residual error.  β 7 for trial time g follows a normal distribution 

around the mean of μB7 and a variance of 𝜎2
B7g.  β 7 for tank h nested within trial time g 

follows a normal distribution around the mean of μB7 and a variance of 𝜎2
B7g[h].  Model 

residual error (ε) for trial time g and tank h follows a normal distribution around a mean 

of zero with a variance of 𝜎2
Ɛ.  

I performed all statistical analyses in the R-Cran statistical package (R 

Development Core Team 2017), using the ‘randomForest’ package (Liaw and Wiener 

2002; version 4.6-12) for random forest regression, the ‘lme4’ package (Bates et al. 2015; 

version 1.1-12) for linear regression, and the ‘effects’ package (Fox 2003; version 3.1-2) 

for visualizing standard error around linear mixed model predictions.  
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RESULTS 

 

 

Spawning habitat in the Weber River 
 

In order to evaluate potential bluehead sucker recruitment bottlenecks in the 

Weber River, I located and surveyed fishes in five spawning reaches in 2014 (using 

historical UDWR survey data; unpublished data), ten in 2015, and four in 2016.  I 

surveyed habitat characteristics in eighteen of the nineteen spawning reaches but was 

unable to survey the nineteenth due to land-access issues.  In all, I surveyed 8.93 river km 

and these nineteen spawning reaches represented a total of 5.93 river km or 5.7% of the 

Weber River from Wanship Dam downstream to the Ogden River inlet (Tables 8-11).  In 

total, the UDWR and I collected 122 bluehead sucker in spawning condition from 2014-

2016.   

Spawning habitat was not significantly different from non-spawning habitat in the 

Weber River, aside from abundance of LWD, based on my analysis using ANOVA.  No 

significant differences were observed between spawning and non-spawning reaches when 

comparing the number and proportional area of geomorphic units (pools, riffles, 

backwaters) found in each reach nor the proportion of substrate at any size class (e.g., 

gravel, cobble).  Spawning reaches were not significantly more or less complex than non-

spawning reaches.  However, LWD was significantly more abundant in non-spawning 

reaches, relative to spawning reaches.  Number of LWD jams ranged from 0-3 in non-

spawning reaches and 0-2 in spawning reaches.  Area of LWD jams ranged from 0-275 

m2 in non-spawning reaches and from 0-215 m2 in spawning reaches.  The amount of 

LWD (large size class; > 30 cm diameter, > 6 m length) as well as the number and area of 
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LWD jams occurred in greater abundance in non-spawning reaches than in spawning 

reaches (Wilcoxon rank sum test, p < 0.05; Figure 7).   

Random forest classification supplemented ANOVA results, identifying that the 

availability of cobble, gravel, and riffles were significant predictors of spawning 

classification (final model mean AUC = 0.85; Table 4).  The proportion of cobble and 

gravel demonstrated a positive relationship with spawning reach classification at 

intermediate values; as proportion cobble and gravel increase to approximately 0.3-0.45 

and 0.35-0.5 of the total substrate in the reach respectively, the model was more likely to 

predict classification as a spawning reach (Figures 8 and 15).  The number of riffles per 

reach, however, exhibited a negative relationship with spawning reach classification (i.e., 

as riffle abundance increases, the model was more likely to predict a non-spawning 

reach). 

 

Spawning habitat in Ferron Creek 

 

In order to evaluate bluehead sucker spawning habitat in a relatively unaltered 

stream, I located and surveyed eleven spawning reaches in 7.52 km of Ferron Creek 

during July 2016 spawning surveys.  In all, I surveyed 7.15 river km and these eleven 

spawning reaches represented a total of 4.13 river km or 54.9% of Ferron Creek directly 

upstream from Millsite Reservoir (Tables 12-13).  In total, we collected 136 bluehead 

sucker in 2016, 66 of which were in spawning condition. 

Geomorphic composition and substrate in spawning reaches differed from non-

spawning reaches, as indicated by ANOVA.  Spawning reaches were composed of 

greater geomorphic complexity, more pools, and wider wetted channel widths.  For 
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example, the abundance of pools ranged from 2-11 pools in spawning reaches and 0-5 

pools in non-spawning reaches.  Geomorphic complexity, pool abundance, and mean 

wetted channel width were all greater in spawning reaches than in non-spawning reaches 

(t-test, p < 0.05; Figure 9). 

Random forest classification complemented ANOVA for Ferron Creek, 

identifying that channel width and the availability of fines and gravel were significant 

predictors of spawning classification in the random forest classification (final model 

mean AUC = 0.80; Table 4).  The proportion of fines in a reach demonstrated a negative 

relationship with spawning reach classification (i.e., as fines decrease below 

approximately 0.15 as a proportion of total substrate in the reach, the model was more 

likely to predict classification as a spawning reach; Figures 10 and 16).  The proportion 

of gravel and mean wetted channel width, however, were positively related with 

spawning reach classification (i.e., as these variables increase, the model was more likely 

to predict classification as a spawning reach).  

 

Physical characteristics and rearing suckers in backwaters 

Backwater size and substrate observed in backwaters were significantly related to 

use by rearing suckers.  Backwater area and availability of cobble and fines were 

predictors of rearing sucker abundance in the random forest regression (Table 4).  

Backwater area and proportion of cobble increased with rearing sucker abundance 

(Figure 11).  However, rearing sucker abundance was inversely related to the proportion 

of fines.  In backwaters sampled in 2016 (n = 10), backwater area was correlated with 

maximum depth (Pearson correlation coefficient = 0.58; p-value < 0.10) and average 
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depth (Pearson correlation coefficient = 0.57; p-value < 0.10).  Proportion of fines was 

significantly correlated with proportion of gravel (Pearson correlation coefficient = -0.83; 

p-value < 0.01).  

In order to evaluate the relationship between backwater size and abundance of 

juvenile sucker, I sampled 29 backwaters to depletion through the study period (eighteen 

backwaters in 2015, eleven in 2016).  Total juvenile sucker spp. (bluehead sucker, Utah 

sucker, and mountain sucker) collected ranged from 7-302 per backwater.  Backwaters 

ranged from 19-87 cm maximum depth.  The forward bidirectional variable selection 

procedure identified backwater maximum depth as a significant positive predictor of total 

sucker juvenile abundance (loge; Table 5).  Indeed, models including backwater area 

(loge) or total brown trout sampled performed more poorly than the model containing 

maximum depth as the only predictor variable based on BIC.  My small sample size made 

a nested random effects structure infeasible and necessitated that I include year and site 

as separate random effects in the model.  Varying random effects across backwater 

maximum depth resulted in the best random effect structure.   

Final model predictions were consistent with observed values and residual error 

was homoscedastic across response and predictor variables.  Predicted loge total sucker 

sampled per backwater demonstrated a close relationship to observed loge total sucker 

sampled (Figure 17).  Final model residuals were evenly distributed across both predicted 

loge total sucker sampled and backwater maximum depth.  Residuals of the final model 

ranged from -0.93 to 1.02 and did not differ significantly from a normal distribution 

(Shapiro-Wilk test).   



26 
 

 

The final model was as follows: 

 

(4)  yi = β0 + β1j[i]k[i]x1i + εj[i]k[i] , for i = 1,…., n observations. 

                      β1j ~ N(μβ1 , 𝜎2
β1j), for j=1, …, J. 

                      β1k ~ N(μβ1, 𝜎2
β1k), for k=1, …, K. 

                     εj[i]k[i] ~ N(0, 𝜎2
Ɛ) 

 

where, yi is the loge sucker sampled for an observation i, β0 is the intercept and β1j[i]k[i] is 

the slope of year j and site k across backwater maximum depth (x1), ε is the residual 

error.  β1 for year j and site k followed a normal distribution around the mean of μB1 and a 

variance of 𝜎2
B1.  Model residual error (ε) for year j and site k followed a normal 

distribution around a mean of zero with a variance of 𝜎2
Ɛ. 

 Total sucker sampled (loge) was positively related to backwater maximum depth 

(Table 6; Figure 12).  The predictions of β1 (slope) varied from 4.2 for the grand mean 

model to 4.5 and 3.9 for years 2016 and 2015, respectively, likely because I conducted a 

more thorough sampling in 2016 by electrofishing in addition to seining.   

 

Bluehead sucker growth experiment 

 Experiment treatments of water velocity and temperature were significant 

predictors of juvenile bluehead sucker growth, determined using a linear mixed-effects 

regression framework.  Water velocity and temperature were both negatively related to 

juvenile growth (Tables 7 and 14).  Growth of juvenile bluehead suckers decreased 

weakly with increasing temperature (β8 = -0.0033), with an important interaction between 

temperature and velocity.  Juveniles grew significantly more in the slow velocity 
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treatment, relative to the fast velocity treatment, at cooler temperatures but not at warmer 

temperatures (Figure 13).  Growth of juvenile bluehead suckers decreased with increasing 

velocity (β9 = -1.6), with greater disparity between cooler and warmer temperatures.  

Juvenile growth differed significantly across the range of velocities tested in the 

laboratory in the cool temperature treatment only (Figure 14). 

 Residual error was homoscedastic across response and predictor variables and 

model predictions were consistent with observed values.  Predicted square root 

transformed g/g/day demonstrated a close relationship to observed square root 

transformed g/g/day (Figure 18).  Full model residuals were evenly distributed across 

predicted g/g/day and both response variables, i.e., water velocity and temperature 

experiment treatments.  Residuals of the full model ranged from -0.042 to 0.037 and did 

not differ significantly from a normal distribution (Shapiro-Wilk test).  Predicted juvenile 

growth was consistent with observed growth.   
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DISCUSSION 

 

Native fishes throughout the Intermountain West are imperiled due to 

anthropogenic stressors, and having experienced a rangewide contraction in recent years, 

bluehead sucker are no different.  Bluehead sucker are rarely the focus of research studies 

or management concern, as they are generally perceived as a non-charismatic, non-game 

species (Budy et al. 2015, Laub and Budy 2015). The bluehead sucker population in the 

Weber River appears to have experienced a recruitment bottleneck, and understanding 

why and how has important conservation implications.  My findings suggest the 

availability of suitable spawning and rearing habitat may be a critical limiting factor for 

bluehead sucker recruitment in the Weber River.  I determined that spawning bluehead 

sucker disproportionately use habitats with substrate and geomorphic characteristics that 

are largely depleted in the Weber River, confirmed by a comparison to the more pristine 

Ferron Creek.  In the laboratory, I determined the relationship between juvenile growth 

and water temperatures and velocities.  Together, the field and laboratory portions of this 

study established spawning and rearing habitat characteristics associated with bluehead 

sucker and identified pools, gravel, cobble, and deep, cool, slow-water as being 

important.  The contemporary hydrologic regime of the Weber River has likely 

diminished these associated and optimal habitats identified.  Restoring habitat for the 

critical life stages of spawning and rearing bluehead sucker could eliminate the 

recruitment bottleneck and lead to successful restoration and conservation of the 

population. 
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Field surveys of reaches associated with fecund bluehead sucker revealed 

correlation with particular habitat features.  Substrate composition in the reach was an 

important component of spawning habitat, with spawning bluehead sucker using reaches 

in which cobble and gravel comprised three quarters of total substrate.  Gravel and cobble 

are important to spawners like bluehead sucker, because they allow for burial and 

aeration of fertilized eggs, leading to greater survival of embryos and emergence of 

larvae (e.g., Montgomery et al. 1997; Geist and Dauble 1998).  These results correspond 

with previous studies that have observed bluehead sucker spawning on gravel (Maddux 

and Kepner 1988; Sublette et al. 1990; Otis 1994) and associated fecund adults with use 

of rocky habitats (Vanicek 1967; Stewart et al. 2005; Bower et al. 2008).  In contrast, 

spawning bluehead sucker were associated with less LWD and riffles compared to 

previous studies (e.g., Vanicek 1967; Bower et al. 2008).  However, bluehead sucker are 

likely not selecting spawning habitat for lack of LWD, as LWD can create scour pools 

that may be important habitat for bluehead sucker in spawning condition (Abbe and 

Montgomery 1996).  Rather, the ostensible negative relationship of fecund bluehead 

sucker to LWD abundance may reflect very limited availability of LWD overall due to 

degraded riparian vegetation over large reaches of the Weber River.  Riparian 

communities are often degraded downstream of large dams, due to reductions in flood 

peaks and groundwater levels (Nilsson and Berggren 2000).  

In addition, comparison of bluehead sucker spawning habitat in the Weber River 

and Ferron Creek, a stream in relatively pristine condition and with fewer confounding 

factors, also identified potential limiting habitat characteristics.  Attempting to draw 
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conclusions regarding habitat use versus preference is a major challenge with many 

habitat use studies, as identifying true habitat preference requires the removal or control 

of extraneous factors (e.g., competition, predation; Rosenfeld 2003).  Therefore, I 

compared spawning habitat in both rivers, because bluehead sucker may have the 

opportunity to select more optimal habitat in Ferron Creek, relative to the Weber River.  

The hydrologic and thermal regime and in-stream habitat remain largely unaltered, and 

there are few other non-native and potentially competing or predatory fishes (Holden and 

Stalnaker 1975; Martinez et al. 1994; Stewart et al. 2005).  Spawning bluehead sucker in 

Ferron Creek were associated with reaches containing more pools, larger wetted channel 

widths, more gravel, and less fine substrate.  Use of habitats with more pools and larger 

wetted channel widths by fecund bluehead suckers corroborates the results from other 

studies, where bluehead sucker likely used pools for refuge and feeding (Bower et al. 

2008; Banks 2009).  These habitat characteristics are stream features commonly lost in 

regulated streams due to altered hydrologic conditions and channelization (Gaeuman et 

al. 2005).   

Somewhat unsurprisingly, spawning habitat use in Ferron Creek did not 

completely concur with spawning habitat survey results from the more-degraded Weber 

River.  One similarity was that substrate (gravel, cobble, lack of fines) comprising the 

reach was identified by my models as important in both rivers, with prevalence of small, 

rocky substrates predicting use by fecund bluehead sucker as spawning habitat.  

However, bluehead sucker in Ferron Creek were associated with more complex habitats 

composed of more pools and wider wetted channel widths, as opposed to bluehead sucker 
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in the Weber River.  One important caveat when interpreting these results, however, is 

that partial dependence plots must be read with caution, especially when comparing the 

results from the two rivers.  In addition, partial dependence plots should not be used for 

prediction or direct prescription of restoration actions (i.e., based on finite values on the x 

axis).  Notwithstanding, the collective results from the two rivers suggest that spawning 

habitat, and therefore spawning success (e.g., Soulsby et al. 2001; Grabowski and Isely 

2007), is limited by the availability of pools, gravel, and cobble.  The occurrence of 

pools, gravel, and cobble is likely limited in the Weber River.  Furthermore, the fact that 

spawning bluehead sucker in the Weber River used less complex habitat than in Ferron 

Creek suggests their habitat-based realized niche may be confined due to other biotic 

factors (e.g., Douglas et al. 1991; Shelton et al. 2008).  Bluehead sucker may not use 

optimal in-stream habitat in the highly-altered Weber River, due to the presence of non-

native fishes which represent likely competitors and predators (Martinez et al. 1994; 

Walser et al. 1999).  For instance, sub adult or small adult bluehead sucker may be 

preyed on or harassed by brown trout (Garman and Nielsen 1982; Marrin and Erman 

1982); in this system, brown trout consume fishes up to 300 mm TL (this study; 

unpublished data). 

The results of the rearing habitat component of my study suggest the availability 

of suitable rearing habitat may also be a limiting factor for bluehead sucker recruitment in 

the Weber River.  Loss of slow-water rearing habitat is common in regulated rivers of the 

Intermountain West (e.g., Schmidt et al. 2001; Grams and Schmidt 2002).  In the field, 

deeper backwaters were associated with use by more rearing sucker juveniles, concurring 
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with previous research (Haines and Tyus 1990).  These results indicate that size of 

rearing habitats (i.e., depth, this study) is important to rearing sucker, in addition to the 

availability of these complementary habitats (Sigler and Miller 1963; Vanicek 1967).  

Furthermore, backwaters must contain water at the optimal temperatures in order to 

facilitate growth and survival of juvenile sucker (Robinson and Childs 2001).  Although 

not the focus of this study, I did not detect any association between brown trout and 

rearing sucker habitat use.  Elsewhere, bluehead sucker larvae are common prey items for 

non-native predators (Ruppert et al. 1993; Marsh and Douglas 1997), found in lower 

densities where non-native predators are abundant (Gido and Propst 2012), and possible 

competitors for food resources with non-native fish (Seegert et al. 2014).  However, 

brown trout use of backwater habitats may be too sporadic to detect with sampling events 

conducted once per summer, as herein (e.g., Heggenes 2002).  Interestingly, backwater 

area was highly correlated with maximum depth but not average depth.  This pattern 

indicates that backwaters with high surface area have at least one deep area but may be 

shallower on average than smaller backwaters. 

In the laboratory, juvenile bluehead sucker performed consistently better in slow-

velocity treatments and, somewhat surprisingly, performed well in cool-temperature 

treatments.  My laboratory experiments complemented the field study by evaluating the 

optimal water temperature and velocity for juvenile growth in a controlled setting 

(Kitchell et al. 1977).  Coleman and Fausch (2007) used a similar experimental approach 

to determine larval growth, and later survival, across temperature treatments.  Relative to 

historical conditions, the dams and diversions throughout the main-stem Weber River 
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may diminish slow-water habitat and lead to altered water temperatures downstream due 

to hypolimnetic dam releases, impoundments, and de-watering.  The result that growth 

was greatest in slower velocity treatments is consistent with many studies that associate 

juvenile bluehead sucker with slow-velocity near-shore habitats (e.g., Haines and Tyus 

1990; Robinson et al. 1998).  However, previous research also suggests water 

temperatures of approximately 17.5°C are positively related to juvenile bluehead sucker 

growth (Robinson and Childs 2001).  In contrast, I found a slight negative relationship 

between juvenile growth and water temperature, with an interaction between temperature 

and velocity.  These results are in agreement with the energetic expectation that 

temperature and velocity will have an interactive effect on fish growth (e.g., Hill and 

Grossman 1993).  In addition, juvenile bluehead sucker from the Snake/Bonneville 

evolutionarily significant unit (Hopken et al. 2013), which are genetically distinct enough 

to potentially warrant listing as a unique species (Unmack et al. 2014) or sub species 

(Bangs et al. 2017), may be locally adapted to the cooler water temperatures in the 

extremely alpine Weber and Raft Rivers, as opposed to juveniles from the warmer, more 

desert Colorado River Basin.  The lack of slow-velocity habitat and altered temperature 

regime likely have significant impacts on rearing bluehead sucker growth and therefore, 

survival (Anderson 1988).  This pattern has been documented elsewhere in regulated 

rivers in the Intermountain West (e.g., Marsh 1985; Clarkson and Childs 2000). 

Due to the low densities of bluehead sucker juveniles in the Weber River, I had to 

make some assumptions regarding the ecological equivalence of juveniles of all native 

sucker species in this study.  I counted Utah sucker and mountain sucker juveniles 



34 
 

 

synonymously with bluehead sucker juveniles, due to the lack of bluehead sucker 

juveniles available to sample.  Although they likely have a large degree of niche overlap 

at this small size, this overlap has not been tested empirically.  Utah sucker are much 

more abundant relative to bluehead sucker in the Weber River; their success may be due 

to faster growth rates, subsequent competitive edge, and large adult size.  For instance, 

Utah sucker juveniles could exceed the gape limitation of predatory fishes (e.g., brown 

trout) in a shorter time if they grow more quickly than bluehead sucker (e.g., Jensen et al. 

2008).  Furthermore, larger Utah sucker adults may be able to outcompete bluehead 

sucker for optimal spawning habitat, considering the two fish use similar spawning 

habitat and often hybridize (UDWR 2015; Bangs et al. 2017).  Alternatively, Utah sucker 

may be a more generalist species that is less affected by certain aspects of habitat 

degradation and, therefore, has higher survival rates and reproductive success.  For 

example, it is possible Utah sucker have a slightly different fundamental niche (Laub and 

Budy 2015) and can better utilize contemporary temperatures and velocities, although 

this remains unknown.  Nonetheless, juvenile Utah sucker and bluehead sucker are likely 

extremely similar in juvenile habitat preference (Ross 1986), providing a reasonable 

surrogate to use.  

I faced some additional limitations in study design and implementation resulting 

from low adult densities and other confounding factors.  One limitation is that I could not 

effectively observe spawning behavior and locate precise spawning sites, due to the low 

densities of bluehead sucker adults and size and turbidity of the river, and I therefore 

assumed that presence of bluehead sucker in spawning condition indicated spawning 
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habitat.  I expect bluehead sucker are spawning near their sampling locations (< 150 m) 

and, if not, they are using the habitat we sampled them in during a critical time period.  

Another limitation is that bluehead sucker could not occupy spawning or rearing habitats 

at saturated densities due to the small population size in the Weber River (Rosenfeld and 

Hatfield 2006).  An additional limitation is the abundance and community of non-native 

fishes, which indicates that the Weber River provides suitable habitat for a diverse 

assemblage of fishes potentially confounding bluehead sucker habitat use (Werner et al. 

1983).  However, to address these limitations, I also located and assessed spawning 

habitat in a surrogate river system, Ferron Creek, where bluehead sucker have the 

opportunity to select optimal habitat in a similarly steep, alpine river in absence of non-

native fish.  The comparative results from Ferron Creek, therefore, helps further my 

understanding of unimpaired habitat use by adult, fecund bluehead sucker.  I also 

identified potential recruitment bottlenecks by evaluating juvenile growth in controlled 

microhabitat experiments (similar to Imsland et al. 1996; Jonassen et al. 1999).  

Determining optimal water velocity and temperature for juvenile growth helps to 

elucidate why juvenile recruitment into the sub-adult and adult classes may be low in the 

Weber River (Coleman and Fausch 2007).  My study therefore provides a multifaceted 

approach for studying habitat associations for small, imperiled populations existing in 

degraded systems.  

 

Management Implications 

The results of my study increase our understanding of bluehead sucker niche 

requirements and aid in identifying a population recruitment bottleneck in the Weber 
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River, thus providing critical information to guide future restoration and conservation 

efforts for this population and beyond.  A watershed-scale approach to restoring habitat 

for the bluehead sucker population involves restoring the natural hydrologic regime, or a 

closer approximation (Stanford et al. 1996).  Increasing spring floods will allow the river 

to create and dynamically maintain in-stream habitat critical for spawning and rearing life 

stages (Palmer et al. 2005), as well as promote riparian recruitment and thus LWD 

recruitment into the system (Rood et al. 2003).  An important caveat for restoring natural 

hydrologic conditions is that floodplain connectivity will need to be increased 

beforehand, in order for the river to create and maintain in-stream habitat during flood 

events.  At a more local spatial scale for healthy sucker populations, water extraction 

would need to be limited to quantities that will not deplete and degrade bluehead sucker 

habitat.  Reach-based restoration efforts directed towards bluehead sucker habitat could 

include the addition of gravel and cobble, especially directly downstream of the two large 

mainstem dams (Merz and Setka 2004).  However, effective reach-based restoration 

necessitates the availability of adequate suitable spawning and rearing habitat within 

close proximity, to allow different life stages to use complementary habitats (Dunning et 

al. 1992; Jones et al. 2003).  These efforts may be challenged as salmonids are often the 

focus of a majority of habitat restoration projects, and those approaches may not always 

be successful for catostomids (McManamay et al. 2010).  For instance, scientific 

knowledge and an adaptive management framework are being used to prescribe 

restoration actions directed at native fish populations that include bluehead sucker, in the 

San Rafael River, UT (Laub et al. 2015).  For example, Laub et al. (2015) propose 



37 
 

 

restoration actions such as removing non-native riparian vegetation and facilitating dam-

building activity by beaver to enhance natural river processes, as opposed to the hard-

engineered structures often directed at salmonid habitat restoration.  Proactive 

conservation efforts directed at this bluehead sucker population may prevent listing under 

the Endangered Species Act.  My study provides specific information on potential 

habitat-based limiting factors for the Weber River bluehead sucker population and, if 

translated into management and restoration goals, can help conserve this imperiled 

population.  
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TABLES AND FIGURES 

 

 

TABLE 1.—Experimental treatments by variable (temperature and velocity) used 

to test hypotheses.   

Treatment and variable Target value 

Cool temperature 12 oC 
Tepid temperature 15 oC 
Warm temperature 18 oC 
Slow velocity 0.0 m/s 
Medium velocity 0.1 m/s 
Fast velocity 0.2 m/s 

 

 

 

 

TABLE 2.—Experimental treatments by trial, number of bluehead sucker used in 

each treatment, and period of experimental trials conducted during June-October 2016. 

   Discharge (m3/s, range)  

Trial 
Temperature 

(°C, range) 
 Slow  

(0.0034-0.0080) 
Medium  

(0.021-0.027) 
Fast  

(0.043-0.049) 
Period 
(days) 

 
Trial 

1 

Cool (11.7-12.0)  5 5 5 7 

Tepid (15.2-15.5)  5 5 5 25 

Warm (17.4-17.8)  5 5 5 13 

 
Trial 

2 

Cool (12.0-12.1)  7 7 7 14 

Tepid (15.3-15.5)  7 7 7 14 

Warm (19.0-19.1)  7 7 7 14 
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TABLE 3.—A matrix of all possible covariates and their slope parameters for the 

juvenile sucker backwater use linear mixed model. 

Slope 
parameter Possible covariates 

β1j[i]k[i] max depth (x1) 

β2j[i]k[i] loge area (x2) 

β3j[i]k[i] brown trout (x3) 

β4j[i]k[i] max depth * loge area (x1 * x2) 

β5j[i]k[i] max depth * brown trout (x1 * x3) 

β6j[i]k[i] loge area * brown trout (x2 * x3) 

 

 

TABLE 4.—Significant variables included in the final random forest models 

analyzing spawning habitat in the Weber River and Ferron Creek (classification) and 

rearing sucker backwater use (regression).  Variable importance reported for spawning 

habitat in the Weber River and Ferron Creek is mean decrease accuracy, or the decrease 

in classification accuracy from permuting each variable.  Variable importance reported 

for rearing sucker backwater use is percent increase mean square error, or the decrease in 

regression accuracy from permuting each variable.  All substrate variables were 

standardized as a proportion of the total substrate in the reach or backwater.  Riffle 

abundance was standardized as number of riffles per km.  I surveyed spawning and non-

spawning reaches in the Weber River in June-September 2015 and May-June 2016 and in 

Ferron Creek in July 2016.  I surveyed ten backwaters in the Weber River in August 

2016.     

Analysis Habitat variable Variable importance 

Spawning 
habitat in the 
Weber River 

Cobble 38.0 

Gravel 27.0 

Riffle abundance 24.9 

Spawning 
habitat in 
Ferron Creek 

Mean wetted channel width 9.9 

Fines 8.1 

Gravel 8.1 

Rearing sucker 
backwater use 

Fines 27.9 

Backwater area 26.9 

Cobble 24.7 
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TABLE 5.—Variables added to the juvenile sucker backwater use linear mixed 

model at each step and their Bayesian information criterion (BIC) value and delta BIC 

relative to the best model from the previous step.  Models in step 1 are compared to the 

BIC value of the intercept only model in step 0.  Models in step 2 are compared to the 

BIC value of step 1a.   

Step Variable ΔBIC BIC 

0 intercept only 0 92.9 

1a (+) max depth -4.11 88.8 

1b (+) loge area 1.16 94.0 

1c (+) brown trout 3.32 96.2 

2a (+) loge area 2.00 90.8 

2b (+) brown trout 3.35 92.1 

2c (-) max depth  4.11 92.9 

 

 

 

TABLE 6.—Backwater sucker use linear mixed model components and sample 

size (n), random effect parameters with standard deviation (SD), and fixed effect 

coefficient (coef) parameter estimates (est) and standard error (SE). 

Model details   Random effects  Fixed effects 

Model  
component n   Parameter SD  

Coef 
parameter 

Coef 
Est 

Coef 
SE 

Sample event 28  Residual 0.59  Intercept (β0) 2.1 0.42 

Site 19  Year slope (β1j) 0.54  Max depth (β1) 4.2 0.98 

Year 2   Site slope (β1k) 1.1     
 

 

 

TABLE 7.—Juvenile bluehead sucker growth experiment linear mixed model 

components and sample size (n), random effect parameters with standard deviation (SD), 

and fixed effect coefficient (coef) parameter estimates (est) and standard error (SE). 

Model details   Random effects   Fixed effects 

Model 
component n   Parameter SD   

Coef 
parameter 

Coef 
Est 

Coef 
SE 

Individual 102  Residual 0.016  Intercept (β7) 0.16 0.041 

Trial period 6  Trial (β7g) 0.014  Temp (β8) -0.0033 0.0027 

Tank 3   Tank/trial (β7g[h]) 0.0067   Velocity (β9) -1.6 0.78 

      
Temp * 

Velocity (β10) 
0.082 0.050 
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FIGURE 1.—A conceptual model displaying how the Weber River, UT has been 

altered from historic conditions, when a robust bluehead sucker population existed, 

indicating the existence of adequate complementary spawning and rearing habitats (left).  

However, over-allocation of water and dams have altered natural hydrologic conditions, 

displayed as mean daily discharge across day of year (DOY) for an upstream, “reference” 

site (USGS gage 10128500 near Oakley, UT; above all major dams and diversions) and a 

downstream, “impacted” site (USGS gage 10136500 at Gateway, UT; downstream of 

most major dams and diversions).  Data are displayed as the 50th percentile for the 1920s 

(1921-1930) and 2000s (2006-2015) and DOY of 1 represents January 1 (top center).  

Currently, the Weber River is a more simplified geomorphic channel, in which the 

bluehead sucker population is repressed and at risk of local extinction, possibly due to a 

lack of suitable spawning and rearing habitat (right).  My objective for this study was to 

identify potential habitat-based recruitment bottlenecks.  
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FIGURE 2.—Map of the Weber River watershed located in northern Utah.  The 

Weber River drains the Uinta and Wasatch Mountains and flows primarily northwest into 

the Great Salt Lake.  The contemporary bluehead sucker range extends approximately 

104 river km from Wanship Dam downstream to the Ogden River inlet.   
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FIGURE 3.—Delta peak annual discharge for two Weber River, UT USGS gages 

plotted across year.  Delta peak annual discharge represents peak annual discharge of a 

downstream site (USGS gage 10136500 at Gateway, UT; downstream of most major 

dams and diversions) minus peak annual discharge of an upstream, “reference” site 

(USGS gage 10128500 near Oakley, UT; above all major dams and diversions).  

Polygons represent periods on the main stem Weber River with no very large dams (> 47 

m height; white), one very large dam (Echo Dam; light gray), and two very large dams 

(Echo and Wanship Dams; dark gray).  The solid black line represents linear regression 

of delta peak annual discharge across time (adjusted r2 = 0.10; p < 0.01).  The dashed 

black line represents delta peak annual discharge of zero, at which the peak annual 

discharge is equal at the upstream and downstream sites.   
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FIGURE 4.—Day of year (DOY) of peak annual discharge for two Weber River, 

UT USGS gages plotted across year.  The DOY 130 represents May 10 and the DOY 200 

represents July 19.  (a) USGS gage 10128500 near Oakley, UT, above all major dams and 

diversions; record exists from 1905-2016.  (b) USGS gage 1013200 at Echo, UT, 

downstream of Echo Dam; record exists from 1927-1958 and 1989-2016.  Black lines 

represent generalized additive model (GAM) predictions and gray polygons represent ± 

1.96 standard error around GAM predictions. 
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FIGURE 5.—Length-frequency histogram of the bluehead sucker sub-population 

inhabiting the Weber River, UT reach between Echo and Wanship Dams (Figure 2).  

These data represent all bluehead sucker sampled in this reach in July 2014 (n = 62).  

Only the first encounter was included if fish were sampled multiple times during July 

2014.  
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FIGURE 6.—Map of Ferron Creek, UT extending upstream from Millsite 

Reservoir.  In cooperation with UDWR biologists, I surveyed 7.52 km of Ferron Creek 

(through range of blue and red colored reaches down to reservoir) for bluehead sucker in 

spawning condition in July 2016.  I sampled 137 unique bluehead sucker and located 11 

spawning reaches (blue lines on map).  In addition to surveying habitat characteristics in 

spawning reaches, I additionally surveyed 10 non-spawning reaches for comparison.   
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FIGURE 7.—Habitat variables that differed significantly between spawning and 

non-spawning reaches in the Weber River, UT, based on ANOVA (Wilcoxon rank sum 

test; p < 0.05).  Surveyed in June - September 2015 and May - June 2016.  All values are 

reported per river km.  Dark line indicates median value of data.  Upper and lower edge 

of boxes indicate first and third quartiles of data.  Edge of whiskers indicate smallest and 

largest values of data.  Points outside of boxplots indicate outlier data.    
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FIGURE 8.—Partial dependence plots for random forest classification of 

significant habitat characteristics (Table 4) in the Weber River, UT.  The y-axis displays 

the predicted probability of classifying a reach as a spawning reach with average values 

for all other significant predictor variables.  Greater logit(spawning) values have a more 

positive influence for classification in the model (i.e., when y-axis values are greater, the 

model is more likely to classify a reach as a spawning reach).  Variables displayed per 

km are per river km.     
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FIGURE 9.—Habitat variables that differed significantly between spawning and 

non-spawning reaches in Ferron Creek, UT, based on ANOVA (t-test; p < 0.05).  I 

surveyed eleven spawning reaches and ten non-spawning reaches in July 2016.  Percent 

geomorphic complexity represents proportion of each reach composed of non-planar 

geomorphic units (riffles and pools).  Data are displayed as mean values (points) with 

standard error around the mean. 
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FIGURE 10.—Partial dependence plots for random forest classification of 

significant habitat characteristics (Table 4) in Ferron Creek, UT.  The y-axis displays the 

predicted probability of classifying a reach as a spawning reach with average values for 

all other significant predictor variables.  Greater logit(spawning) values have a more 

positive influence for classification in the model (i.e., when y-axis values are greater, the 

model is more likely to classify a reach as a spawning reach).   
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FIGURE 11.—Partial dependence plots for random forest regression of 

significant backwater characteristics (Table 4) in the Weber River, UT.  The y-axis 

displays the predicted abundance or rearing suckers in a backwater with average values 

for all other significant predictor variables.   
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FIGURE 12.—Model results for backwater sampling linear mixed-effects 

regression.  Loge total sucker sampled are plotted against backwater maximum depth.  

The solid line indicates the grand mean model prediction.  The different points and 

dashed and dotted lines indicate the model predictions for the two years of the study.  The 

fact that more sucker juveniles are sampled in 2016 than in 2015 is likely due to the fact I 

sampled more thoroughly in 2016 (i.e., backpack electrofished in addition to seining).    
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FIGURE 13.—Full model juvenile growth predictions plotted across water 

temperature.  Lines represent model predictions for the mean of each velocity treatment, 

measured as tank discharge (slow, medium, and fast).  Colored polygons represent 

standard error around the prediction for the mean of each velocity treatment.  Juvenile 

growth differed significantly between the slow and fast velocity treatments at cooler 

temperatures but not at warmer temperatures.   
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FIGURE 14.—Full model juvenile growth predictions plotted across tank 

discharge (Q; m3/s).  Colored lines represent model predictions for the mean of each 

temperature treatment (cool, tepid, and warm).  Colored polygons represent standard 

error around the prediction for the mean of each temperature treatment.  Juvenile growth 

differed significantly between slow and fast velocity treatments in the cool temperature 

treatment only.   
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TABLE 8.—Weber River, UT spawning reach location (UTM zone 12 N 

coordinates, center of reach), abundance of ripe bluehead sucker (BHS) sampled, linear 

reach distance, channel width, abundance of large woody debris (LWD; small, medium, 

and large), and abundance of LWD jams.  See Methods section for definitions of LWD 

size classes.  I surveyed spawning reaches in June-September 2015 and May-June 2016. 

Spawning 
reach 
number 

Location  
(UTM); X, Y 

BHS 
sampled;  

ripe 
(total) 

Reach 
length 

(m) 

Channel 
width (m); 

wetted 
(bankfull) 

LWD 
abundance 

(Sm, Md, Lg) 

Number 
of LWD 

jams 
(area; m2) 

297 465779, 4528403 5 (22) 350 16.3 (17.0) 84 (42, 30, 12) 1 (50) 

293 465689, 4529222 11 (35) 400 16.4 (20.5) 57 (20, 20, 17) 1 (9) 

250 459767, 4539623 6 (7) 300 19.9 (22.3) 16 (13, 3, 0) 1 (5) 

234 457260, 4542408 17 (29) 600 18.6 (21.8) 9 (3, 6, 0) 1 (105) 

198 449867, 4544728 11 (16) 300 20.0 (23.1) 13 (7, 5, 1) 0 (0) 

197 449647, 4544896 4 (15) 300 15.4 (18.7) 10 (5, 4, 1) 0 (0) 

190 448684, 4544237 8 (10) 300 20.0 (22.3) 24 (16, 8, 0) 0 (0) 

187 447967, 4544123 2 (3) 300 20.1 (23.2) 20 (14, 6, 0) 0 (0) 

82 428218, 4554561 5 (6) 300 13.0 (23.1) 18 (8, 7, 3) 0 (0) 

54 420914, 4554477 10 (13) 300 15.1 (21.3) 22 (7, 14, 1) 0 (0) 

50 419971, 4554884 3 (5) 300 17.2 (22.4) 43 (36, 6, 1) 1 (25) 

49 419726, 4555127 2 (2) 300 17.4 (21.2) 20 (15, 5, 0) 0 (0) 

37 417022, 4556693 5 (5) 300 14.2 (30.5) 36 (19, 11, 6) 2 (215) 

32 416185, 4557823 9 (10) 300 14.3 (21.2) 23 (18, 3, 2) 1 (36) 

31 416188, 4558204 7 (10) 375 17.0 (24.5) 24 (17, 7, 0) 0 (0) 

26 416788, 4559447 2 (4) 300 17.2 (25.7) 24 (14, 9, 1) 0 (0) 

24 416827, 4560176 5 (10) 300 15.7 (19.8) 33 (24, 9, 0) 0 (0) 

22 416870, 4560789 10 (13) 300 17.9 (28.9) 36 (23, 10, 3) 1 (50) 
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TABLE 9.—Weber River, UT spawning reach geomorphic complexity, number 

of geomorphic units, and percent (%) fines, gravel, cobble, and boulders.  See Methods 

section for definitions of geomorphic complexity and substrate size classes.  I surveyed 

spawning reaches in June-September 2015 and May-June 2016. 

Spawning 
reach 
number 

Geomorphic 
complexity (%) 
(riffles, pools) 

Number of 
geomorphic 

units;  
pools, riffles, 
backwaters 

Fines 
(%) 

Gravel 
(%) 

Cobble 
(%) 

Boulders 
(%) 

297 25.4 (18.3, 7.1) 3, 3, 6 18.9 37.8 38.7 4.5 

293 38.1 (24.4, 13.7) 3, 4, 4 20.2 51.9 25.0 2.9 

250 7.5 (2.3, 5.2) 1, 2, 0 126 42.0 42.0 3.4 

234 0.5 (0.5, 0.0) 0, 1, 1 6.6 62.3 29.2 1.9 

198 10.4 (10.4, 0.0) 0, 2, 0 21.7 39.1 34.8 4.3 

197 7.1 (2.3, 4.8) 1, 1, 0 17.0 34.9 37.7 10.4 

190 6.0 (3.5, 2.5) 1, 2, 0 36.3 17.6 46.1 0.0 

187 8.0 (0.9, 7.1) 1, 1, 0 33.9 30.4 34.8 0.9 

82 27.1 (27.1, 0.0) 0, 3, 1 2.5 49.2 20.8 27.5 

54 10.0 (10.0, 0.0) 0, 2, 0 17.6 46.6 35.1 0.8 

50 13.7 (4.0, 9.7) 2, 1, 0 17.0 30.4 42.0 10.7 

49 19.3 (7.9, 11.4) 1, 1, 0 14.6 28.5 48.8 8.1 

37 11.2 (10.0, 1.1) 1, 2, 2 29.8 52.6 17.5 0.0 

32 13.5 (13.5, 0.0) 0, 4, 2 21.1 52.3 23.9 2.8 

31 24.2 (15.7, 8.5) 4, 3, 1 10.7 41.8 46.7 0.8 

26 11.6 (6.9, 4.7) 1, 1, 0 14.5 37.6 34.2 13.7 

24 27.5 (19.0, 8.5) 2, 2, 0 13.2 50.9 24.6 11.4 

22 42.9 (38.4, 4.5) 2, 2, 1 4.2 45.8 49.2 0.8 
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TABLE 10.—Weber River, UT non-spawning reach location (UTM zone 12 N 

coordinates, center of reach), linear reach distance, channel width, abundance of large 

woody debris (LWD; small, medium, and large), and abundance of LWD jams.  See 

Methods section for definitions of LWD size classes.  I surveyed non-spawning reaches 

in June-July 2015. 

Non-spawning 
reach number 

Location  
(UTM); X, Y 

Reach 
length 

(m) 

Channel 
width (m); 

wetted 
(bankfull) 

LWD 
abundance 

(Sm, Md, Lg) 

Number 
of LWD 

jams 
(area; m2) 

320 467035, 523660 300 14.6 (17.3) 22 (11, 10, 1) 1 (25) 

318 466970, 524090 300 17.1 (24.9) 26 (20, 5, 1) 2 (250) 

317 466890, 524355 300 16.6 (29.0) 32 (25, 4, 3) 1 (75) 

316 466880, 524620 300 19.1 (31.4) 54 (25, 16, 13) 1 (25) 

41 417942, 556340 300 16.3 (57.5) 64 (30, 29, 5) 3 (275) 

34 416460, 557410 300 19.9 (28.2) 27 (15, 7, 5) 1 (50) 

27 416697, 559170 300 15.5 (21.7) 35 (26, 7, 2) 0 (0) 

18 416874, 561770 300 18.6 (22.3) 27 (14, 12, 1) 0 (0) 

13 416885, 563170 300 17.7 (22.6) 41 (21, 17, 3) 1 (50) 

4 416346, 564557 300 15.7 (22.9) 35 (21, 10, 4) 1 (210) 
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TABLE 11.—Weber River, UT non-spawning reach geomorphic complexity, 

number of geomorphic units, and percent (%) fines, gravel, cobble, and boulders.  See 

Methods section for definitions of geomorphic complexity and substrate size classes.  I 

surveyed non-spawning reaches in June-July 2015. 

Non-
spawning 
reach 
number 

Geomorphic 
complexity (%) 
(riffles, pools) 

Number of 
geomorphic 

units;  
pools, riffles, 
backwaters 

Fines 
(%) 

Gravel 
(%) 

Cobble 
(%) 

Boulders 
(%) 

320 8.8 (7.8, 1.0) 1, 2, 4 17.4 28.4 50.5 3.7 

318 19.5 (14.0, 5.4) 2, 3, 3 6.1 32.5 61.4 0.0 

317 25.6 (21.5, 4.0) 1, 4, 1 13.4 22.3 63.4 0.9 

316 31.8 (29.8, 2.0) 1, 5, 1 26.1 18.3 55.7 0.0 

41 20.8 (19.5, 1.3) 1, 3, 3 12.0 35.2 50.0 2.8 

34 16.2 (0.0, 16.2) 2, 0, 0 24.8 23.9 15.6 35.8 

27 21.5 (19.7, 1.8) 1, 4, 0 11.9 33.0 41.3 13.8 

18 12.7 (11.7, 1.0) 1, 1, 0 14.3 55.5 25.2 5.0 

13 17.6 (12.3, 5.4) 1, 2, 0 18.0 55.0 24.3 2.7 

4 16.4 (9.3, 7.1) 4, 4, 2 7.0 64.9 22.8 5.3 
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TABLE 12.—Ferron Creek, UT spawning (sp) and non-spawning (non) reach 

location (UTM zone 12 N coordinates, center of reach), abundance of ripe bluehead 

sucker (BHS) sampled (reported only for spawning reaches), linear reach distance, 

channel width, abundance of large woody debris (LWD; small, medium, and large), and 

abundance of LWD jams.  See Methods section for definitions of LWD size classes.  I 

surveyed reaches in July-August 2016. 

 

Reach 
number 

Location 
(UTM; X, Y) 

BHS 
sampled; 

ripe 
(total) 

Reach 
length 

(m) 

Channel 
width (m); 

wetted 
(bankfull) 

LWD 
abundance 

(Sm, Md, Lg) 

Number 
of LWD 

jams 
(area; m2) 

Sp
aw

n
in

g 
re

ac
h

es
 

11 (sp) 476965, 331716 3 (5) 300 7.4 (12.1) 20 (8, 7, 5) 0 (0) 

10 (sp) 477098, 4331244 3 (3) 300 8.4 (9.4) 5 (2, 2, 1) 0 (0) 

9 (sp) 477234, 4331015 2 (4) 300 8.7 (11.7) 24 (16, 4, 4) 0 (0) 

8 (sp) 477394, 4330798 4 (6) 300 7.7 (12.0) 22 (13, 3, 6) 0 (0) 

7 (sp) 477615, 4330344 2 (2) 300 6.6 (10.3) 8 (5, 2, 1) 0 (0) 

6 (sp) 478480, 4329778 6 (7) 300 7.5 (9.5) 14 (6, 5, 3) 0 (0) 

5 (sp) 478866, 4329421 8 (19) 670 9.0 (11.6) 0 (0, 0, 0) 0 (0) 

4 (sp) 479832, 4328890 2 (3) 300 5.9 (8.0) 12 (10, 2, 0) 1 (5) 

3 (sp) 480088, 4328631 4 (6) 300 7.9 (12.6) 6 (4, 2, 0) 0 (0) 

2 (sp) 480326, 4328501 8 (17) 700 6.8 (9.3) 3 (3, 0, 0) 0 (0) 

1 (sp) 481244, 4328342 10 (13) 360 9.2 (17.1) 4 (3, 0, 1) 0 (0)  

       

N
o

n
-s

p
aw

n
in

g 
re

ac
h

es
 

10 (non) 476946, 4331460 - 270 7.1 (12.6) 7 (0, 1, 6) 0 (0) 

9 (non) 477464, 4330563 - 270 7.5 (12.8) 11 (7, 2, 2) 0 (0) 

8 (non) 477865, 4330192 - 330 5.7 (8.9) 3 (2, 1, 0) 0 (0) 

7 (non) 478090, 4330079 - 330 6.7 (11.2) 17 (10, 5, 2) 0 (0) 

6 (non) 478327, 4330019 - 330 8.3 (11.3) 10 (6, 3, 1) 1 (15) 

5 (non) 479188, 4329231 - 275 7.3 (9.9) 4 (2, 1, 1) 0 (0) 

4 (non) 479446, 4329140 - 275 7.3 (9.8) 4 (2, 1, 1) 0 (0) 

3 (non) 479690, 4329114 - 275 5.2 (9.6) 2 (1, 1, 0) 0 (0) 

2 (non) 480702, 4328191 - 330 5.4 (10.2) 1 (0, 1, 0) 0 (0) 

1 (non) 480927, 4328289 - 330 6.4 (11.2) 1 (0, 0, 1) 0 (0) 
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TABLE 13.—Ferron Creek, UT spawning (sp) and non-spawning (non) reach 

geomorphic complexity, number of geomorphic units, and percent (%) fines, gravel, 

cobble, and boulders.  See Methods section for definitions of geomorphic complexity and 

substrate size classes.  I surveyed reaches in July-August 2016. 
 

Reach 

number 

Geomorphic 

complexity (%) 

(riffles, pools) 

Number of 

geomorphic 

units;  

pools, riffles, 

backwaters 

Fines 

(%) 

Gravel 

(%) 

Cobble 

(%) 

Boulders 

(%) 

Sp
aw

n
in

g 
re

ac
h

es
 

11 (sp) 34.9 (22.9, 12.0) 4, 4, 0 37.0 25.0 36.0 2.0 

10 (sp) 9.4 (1.9, 7.5) 3, 1, 0 25.7 40.6 32.7 1.0 

9 (sp) 23.4 (13.6, 9.9) 4, 2, 1 20.2 40.4 39.4 0.0 

8 (sp) 24.9 (4.3, 20.6) 8, 1, 0 16.3 55.1 28.6 0.0 

7 (sp) 43.9 (7.4, 36.5) 5, 3, 0 16.0 57.0 26.0 1.0 

6 (sp) 8.2 (2.5, 5.8) 2, 1, 0 10.8 47.1 39.2 2.9 

5 (sp) 9.1 (3.5, 5.6) 11, 2, 0 11.0 36.0 47.0 6.0 

4 (sp) 8.1 (5.6, 2.5) 2, 2, 0 9.1 42.4 40.4 8.1 

3 (sp) 4.7 (0.0, 4.7) 2, 0, 0 6.9 48.5 42.6 2.0 

2 (sp) 18.6 (3.8, 14.9) 11, 2, 0 12.0 48.0 33.0 7.0 

1 (sp) 36.4 (26.5, 10.0) 6, 2, 0 14.9 43.6 37.6 4.0  

       

N
o

n
-s

p
aw

n
in

g 
re

ac
h

es
 

10 (non) 12.6 (8.1, 4.5) 2, 2, 0 18.0 36.0 45.0 1.0 

9 (non) 17.3 (8.6, 8.7) 4, 3, 0 17.0 38.0 45.0 0.0 

8 (non) 24.2 (10.9, 13.3) 4, 3, 0 29.7 40.6 29.7 0.0 

7 (non) 15.7 (1.5, 14.2) 5, 2, 0 25.5 40.8 32.7 1.0 

6 (non) 0.0 (0.0, 0.0) 0, 0, 0 13.0 52.0 34.0 1.0 

5 (non) 6.1 (0.0, 6.1) 2, 0, 0 22.2 31.3 34.3 12.1 

4 (non) 9.3 (1.8, 7.4) 2, 2, 0 29.7 39.6 25.7 5.0 

3 (non) 0.6 (0.0, 0.6) 1, 0, 0 31.4 41.9 25.7 1.0 

2 (non) 5.5 (5.5, 0.0) 0, 1, 0 29.8 26.0 32.7 11.5 

1 (non) 4.9 (0.0, 4.9) 1, 0, 0 15.8 39.6 31.7 12.9 
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TABLE 14.—Laboratory experiment results for juvenile bluehead sucker growth 

(median; g/g/day) in each velocity or temperature (temp) treatment with 25th and 75th 

quartiles and sample size (n) shown. 

Treatment Median 25th quartile 75th quartile n 

Slow velocity 0.000233 -0.00125 0.00656 36 

Medium velocity 0.00205 -0.00175 0.00445 35 

Fast velocity -0.00107 -0.00320 0.00181 31 

Cool temp -0.000513 -0.00273 0.00309 35 

Tepid temp 0.00287 0.00142 0.00619 35 

Warm temp -0.00165 -0.00300 -0.000144 32 
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FIGURE 15.—Frequency of the three significant habitat characteristics used to 

classify spawning and non-spawning reaches in the Weber River, UT, determined using 

random forest classification.   
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FIGURE 16.—Frequency of the three significant habitat characteristics used to 

classify spawning and non-spawning reaches in Ferron Creek, UT, determined using 

random forest classification.   
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FIGURE 17.—Model fit for the final model evaluating backwater-sampling data.  

(a) Observed loge total sucker plotted against predicted loge total sucker.  (b) Final model 

residuals plotted predicted loge total sucker.  (c) Final model residuals plotted across 

backwater maximum depth.  (d) Histogram of final model residuals.   
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FIGURE 18.—Model fit for the full model evaluating laboratory juvenile growth 

data.  (a) Observed juvenile growth (g/g/day) plotted against predicted juvenile growth.  

(b) Full model residuals plotted against predicted juvenile growth.  (c) Full model 

residuals plotted across water velocity.  (d) Full model residuals plotted across water 

temperature.   
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