
Utah State University Utah State University

DigitalCommons@USU DigitalCommons@USU

All Graduate Theses and Dissertations Graduate Studies

8-2017

Geometric Facility Location Problems on Uncertain Data Geometric Facility Location Problems on Uncertain Data

Jingru Zhang
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Zhang, Jingru, "Geometric Facility Location Problems on Uncertain Data" (2017). All Graduate Theses and
Dissertations. 6337.
https://digitalcommons.usu.edu/etd/6337

This Dissertation is brought to you for free and open
access by the Graduate Studies at
DigitalCommons@USU. It has been accepted for
inclusion in All Graduate Theses and Dissertations by an
authorized administrator of DigitalCommons@USU. For
more information, please contact
digitalcommons@usu.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@USU

https://core.ac.uk/display/84292926?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/etd
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/etd?utm_source=digitalcommons.usu.edu%2Fetd%2F6337&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.usu.edu%2Fetd%2F6337&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/etd/6337?utm_source=digitalcommons.usu.edu%2Fetd%2F6337&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/

GEOMETRIC FACILITY LOCATION PROBLEMS ON UNCERTAIN DATA

by

Jingru Zhang

A dissertation submitted in partial fulfillment
of the requirements for the degree

of

DOCTOR OF PHILOSOPHY

in

Computer Science

Approved:

Haitao Wang, Ph.D. Minghui Jiang, Ph.D.
Major Professor Committee Member

Curtis Dyreson, Ph.D. Kyumin Lee, Ph.D.
Committee Member Committee Member

Rose Qingyang Hu, Ph.D. Mark R. McLellan, Ph.D.
Committee Member Vice President for Research and

Dean of the School of Graduate Studies

UTAH STATE UNIVERSITY
Logan, Utah

2017

ii

Copyright c© Jingru Zhang 2017

All Rights Reserved

iii

ABSTRACT

Geometric Facility Location Problems on Uncertain Data

by

Jingru Zhang, Doctor of Philosophy

Utah State University, 2017

Major Professor: Haitao Wang, Ph.D.
Department: Computer Science

Facility location, as an important topic in computer science and operations research,

is concerned with placing facilities for “serving” demand points (each representing a

customer) to minimize the (service) cost. In the real world, data is often associated

with uncertainty because of measurement inaccuracy, sampling discrepancy, outdated

data sources, resource limitation, etc. Hence, problems on uncertain data have attracted

much attention.

In this dissertation, we mainly study a classical facility location problem: the k-

center problem and several of its variations, on uncertain points each of which has

multiple locations that follow a probability density function (pdf). We develop efficient

algorithms for solving these problems. Since these problems more or less have certain

geometric flavor, computational geometry techniques are utilized to help develop the

algorithms. In particular, we first study the k-center problem on uncertain points on a

line, which is aimed to find k centers on the line to minimize the maximum expected

distance from all uncertain points to their expected closest centers. We develop efficient

algorithms for both the continuous case where the location of every uncertain point

follows a continuous piecewise-uniform pdf and the discrete case where each uncertain

point has multiple discrete locations each associated with a probability. The time com-

plexities of our algorithms are nearly linear and match those for the same problem on

deterministic points. Then, we consider the one-center problem (i.e., k = 1) on a tree,

where each uncertain point has multiple locations in the tree and we want to compute a

center in the tree to minimize the maximum expected distance from it to all uncertain

iv

points. We solve the problem in linear time by proposing a new algorithmic scheme,

called the refined prune-and-search. Next, we consider the one-dimensional one-center

problem of uncertain points with continuous pdfs, and the one-center problem in the

plane under the rectilinear metric for uncertain points with discrete locations. We solve

both problems in linear time, again by using the refined prune-and-search technique. In

addition, we study the k-center problem on uncertain points in a tree. We present an

efficient algorithm for the problem by proposing a new tree decomposition and develop-

ing several data structures. The tree decomposition and these data structures may be

interesting in their own right. Finally, we consider the line-constrained k-center prob-

lem on deterministic points in the plane where the centers are required to be located

on a given line. Several distance metrics including L1, L2, and L∞ are considered. We

also study the line-constrained k-median and k-means problems in the plane. These

problems have been studied before. Based on geometric observations, we design new al-

gorithms that improve the previous work. The algorithms and techniques we developed

in this dissertation may find other applications as well, in particular, on solving other

related problems on uncertain data.

(177 pages)

v

PUBLIC ABSTRACT

Geometric Facility Location Problems on Uncertain Data

Jingru Zhang

In this dissertation, we study several facility location problems on uncertain data.

We mainly consider the k-center problem and many of its variations. These are classical

problems in computer science and operations research. These problems on deterministic

data have been studied extensively in the literature. We consider them on uncertain

data because data in the real world is often associated with uncertainty due to measure-

ment inaccuracy, sampling discrepancy, outdated data sources, resource limitation, etc.

Although we focus on the theoretical study, the algorithms developed in this dissertation

may find applications in other areas such as data clustering, wireless sensor locations,

object classification, etc.

In our problems, the input consists of uncertain points each of which has multiple

locations following a probability density function (pdf). Specifically, we first study the

k-center problem on uncertain points on a line to compute k centers to minimize the

maximum expected distance from all uncertain points to their expected closest centers.

We consider two cases of the uncertainty: the continuous case and the discrete case. In

the continuous case, the location of every uncertain point follows a continuous piecewise-

uniform pdf, whereas in the discrete case, each uncertain point has multiple discrete

locations each associated with a probability. We then consider the one-center problem

(i.e., k = 1) on a tree, where each uncertain point has multiple discrete locations in the

tree and we want to compute a center in the tree to minimize the maximum expected

distance from it to all uncertain points. Next, we consider the one-dimensional one-

center problem of uncertain points with continuous pdfs, and the one-center problem

in the plane under the rectilinear metric for uncertain points with discrete locations.

In addition, we study the more general k-center problem on uncertain points in a tree.

Finally, we consider the line-constrained k-center problem on deterministic points in the

plane with the constraint that the centers are required to be located on a given line.

vi

Several distance metrics including L1, L2, and L∞ are considered. We also study the

line-constrained k-median and k-means problems in the plane.

Based on interesting problem modeling and observations, we develop efficient algo-

rithms for solving these problems with the help of computational geometry techniques.

Some of our algorithms have time complexities either linear or nearly linear. Others al-

most match those for the same problems on deterministic data or improve the previous

work. The algorithms, data structures, and techniques developed in this dissertation

may be used to solve other related problems as well.

vii

ACKNOWLEDGMENTS

Over the past four and half years I have received support and encouragement from

a number of individuals.

Firstly, I would like to express my sincere gratitude to my advisor Dr. Haitao Wang

for the continuous support of my Ph.D study and related research. His guidance helped

me a lot in my courses, research and writing this thesis. Thank you for the advice,

supports, and willingness that allowed me to pursue research on topics. Thank you for

all of the meetings and discussion over the years that check in on me so that I stayed on

the right path. I could not have imagined having a better advisor and mentor for my

Ph.D study, and this dissertation would truly have never been completed without your

support. Thank you.

Besides my advisor, I would like to thank the rest of my thesis committee: Dr.

Minghui Jiang, Dr. Curtis Dyreson, Dr. Kyumin Lee, Dr. Rose Qinghua Hu and Dr.

Tam Chantem for their insightful comments and constructive suggestions, but also for

questions which encouraged me to widen my research from various perspectives. I also

thank Mr. Shimin Li for inspiring technical discussions. In addition, my sincere thanks

go to the staff in Department of Computer Science for their administrative support. I

am grateful to them.

I wish to express my full thanks to my families, my father, my mother and my

husband. Without their love, support and understanding, I could not have gone through

the doctoral program overseas. Also, thank you for the great comfort during that period

I was suffering from insomnia. You are forever the source of my joy and happiness, and

I have been appreciating that greatly.

Last but not least, thanks to all of my friends. I shall never forget all delightful

moments in my life together with you. Also, I am really grateful to your support as I

have needed a listening ear and met troubles.

This work was sponsored in part by the National Science Foundation through Grant

CCF-1317143.

Jingru Zhang

viii

CONTENTS

Page

ABSTRACT . iii

PUBLIC ABSTRACT . v

ACKNOWLEDGMENTS . vii

LIST OF TABLES . x

LIST OF FIGURES . xi

CHAPTER

1 INTRODUCTION . 1
1.1 Computational Geometry . 1
1.2 Uncertain Data . 2
1.3 Problem Overview . 2
1.4 Outline . 5

2 THE ONE-DIMENSIONAL K-CENTER PROBLEM ON
UNCERTAIN DATA . 6

2.1 Introduction . 6
2.2 Observations . 9
2.3 The Decision k-Center Problem . 14
2.4 The Optimization Problem . 18
2.5 The Discrete k-Center Problem . 22

3 THE ONE-CENTER PROBLEM OF UNCERTAIN POINTS ON
TREE NETWORKS . 26

3.1 Introduction . 26
3.2 Preliminaries . 31
3.3 The Refined Prune-and-Search . 35

4 THE ONE-CENTER PROBLEM OF UNCERTAIN POINTS ON
THE REAL LINE . 53

4.1 Introduction . 53
4.2 Preliminaries . 55
4.3 Compute the Lowest Point v∗ in the Upper Envelope of H 57

5 THE RECTILINEAR CENTER OF UNCERTAIN POINTS IN
THE PLANE . 63

5.1 Introduction . 63
5.2 Observations . 66
5.3 The Decision Algorithm . 71
5.4 Computing the Rectilinear Center . 75

6 THE K-CENTER PROBLEM OF UNCERTAIN POINTS ON
TREE NETWORKS . 82

6.1 Introduction . 82
6.2 Preliminaries . 85
6.3 The Algorithmic Scheme . 86

ix

6.4 A Tree Decomposition and Computing the Medians 91
6.5 The Data Structures A1, A2, and A3 . 100
6.6 The k-Center Problem . 116

7 THE LINE-CONSTRAINED K-MEDIAN, K-MEANS, AND
K-CENTER PROBLEMS IN THE PLANE . 121

7.1 Introduction . 121
7.2 Preliminaries . 125
7.3 The Constrained k-Median . 127
7.4 The Constrained k-Center . 141

8 CONCLUSION AND FUTURE WORK . 150

REFERENCES . 153

CURRICULUM VITAE . 163

x

LIST OF TABLES

Table Page

7.1 Summary of our results, where τ = min{n√k log n, n2O(
√

log k log logn)}. . 122

xi

LIST OF FIGURES

Figure Page

2.1 Illustrating the pdf fi of an uncertain point Pi with m = 8. 7

2.2 Illustrating the intersection of EdL(xp, Pi) and EdR(xp, Pj), where
the intersection is a single point and thus y1 = y2. 19

2.3 Illustrating two intersections of EdR(xp, Pi) and EdR(xp, Pj). 19

3.1 Illustrating three uncertain points P1, P2, P3. 27

3.2 The point x has two split subtrees T1(x) and T2(x). 31

3.3 Illustrating the subtrees T (c), T1, T2, and T (c1), where c is in T2. . . . 37

3.4 Illustrating an example for the center-detecting problem. 41

3.5 Illustrating the tree Th for the case C = 2, where T (V) = {T ′1, . . . T ′8}
are shown with triangles. 45

3.6 Illustrating the three trees: (a) T1, (b) T2, and (c) T ′. 50

4.1 Illustrating the expected distance function Ed(x, Pi) for an uncertain
point Pi with m = 8. 56

5.1 Illustrating the function Edi(x, y) of an uncertain point Pi with
m = 4. 67

5.2 The intersection of Li and Lj is in the first quarter of the intersection
of x = xm and y = ym. 80

6.1 Illustrating the decomposition of T (µ) into four subtrees enclosed
by the (red) dashed cycles. 93

6.2 Illustrating the subtrees T (µ1), T (µ2), and T (y, µ), where y is a
connector of T (µ) = T (µ1) ∪ T (µ2). 95

6.3 Illustrating the definition of qx in the subtree T (µ) with two
connectors y1 and y2. 101

6.4 Illustrating the subtrees T (µ1), T (µ2), and T (y, µ), where y is a
connector of T (µ) = T (µ1) ∪ T (µ2). 106

6.5 Illustrating cij and the two functions Ed(x, Pi) and Ed(x, Pj) as x
changes in the path π(p∗i , p

∗
j). 117

7.1 Illustrating the proof of Lemma 7.2.1. 125

7.2 Illustrating an edge of G from vi to vj 127

xii

7.3 Illustrating the function d(pi, x). 132

7.4 Illustrating the relationship between ε, li(ε) and ri(ε) under the
L2 metric. 144

7.5 Illustrating the relationship between ε, li(ε) and ri(ε) under the
L1 metric . 145

7.6 Illustrating the relationship between ε, li(ε) and ri(ε) under the
L∞ metric. 146

7.7 Illustrating the smallest diamond centered at the x-axis containing
all points . 148

CHAPTER 1

INTRODUCTION

In this dissertation, we propose and study several facility location problems on

uncertain data. In particular, we consider the k-center and k-median problems and many

of their variations. These are classical problems in many areas, such as combinatorial

optimization, operations research, computational geometry, etc. Most of our problems

have geometric flavor and thus computational geometry techniques have been extensively

used to tackle these problems. On the other hand, besides working on input data that

are deterministic or certain, many of our problems involve data that may be uncertain.

In this chapter, we first briefly discuss the topics of computational geometry and

uncertain data because they are closely related to the problems studied in this proposal

as well as the techniques we used to tackle these problems. Then, we give an overview

on the problems we studied in this proposal. Finally, we outline the proposal.

1.1 Computational Geometry

Computational geometry is a branch of computer science concerned with the design,

analysis, and implementation of efficient algorithms for solving problems by exploiting

their geometric structures. Geometric structures are often described in terms of elemen-

tary geometric objects such as points, lines, curves, polygons, polyhedra and surfaces.

Computational geometry techniques and algorithms play a significant role in practical

applications since many geometric problems originate from important applied areas,

e.g., computer-aided design, computer graphics, computer vision, geographic informa-

tion systems, image processing, intelligent transportation systems, medicine, military

operations, pattern recognition, plant and facility layout, robotics, statistics, and very-

large-scale integration design. Computational geometry also has strong connections with

other areas (e.g., graph algorithms, combinatorial optimization, operations research,

etc.), since it not only draws diverse ideas and techniques from these areas, but also

2

offers high-level formulations, general frameworks and paradigms to enrich such areas.

Refer to [1–4] for several great books on computational geometry.

1.2 Uncertain Data

In the real world, data is often associated with uncertainty because of measure-

ment inaccuracy, sampling discrepancy, outdated data sources, resource limitation, etc.

Recently, due to the observation that many real-world measurements are inherently ac-

companied with uncertainty, problems on uncertain data have attracted dramatically

increasing amount of attention. This is especially true due to the wide deployment of

sensor monitoring infrastructure and increasing prevalence of technologies, such as data

integration and cleaning, e.g., [5, 6]. Hence, problems with uncertain data have been

studied extensively, e.g., in the areas of computational geometry and database [5–16].

Two models are commonly used for data uncertainty: the existential model (or

tuple model) [11, 12, 16] and the locational model (or attribute model) [7, 8, 15]. In

the existential model, each uncertain point has a specific location but its existence is

uncertain, following a given probability density function (pdf). In the locational model,

each uncertain point always exists but its location is uncertain and follows a probability

density function (pdf). Several problems studied in this proposal that involve undertain

data belong to the locational model. In fact, from the algorithm design point of view,

the existential model is a special case of the locational model.

1.3 Problem Overview

In this dissertation, we mainly consider several facility location problems, where

the input usually contains points on a line, a tree, or in the plane. The input of these

problems may contain uncertain data seen as demand points each subjected to the loca-

tional model. The goal is to develop efficient algorithms and data structures to compute

the optimal placement of facilities for “serving” these demand points to minimize the

total costs. We briefly introduce these problems below. Note that these facility loca-

tion problems on deterministic or certain data can be considered as special cases of our

problems on uncertain data. The techniques we developed on solving these problems

may have many other applications as well.

3

1.3.1 The One-Dimensional k-Center Problem on Uncertain Data

The one-dimensional k-center problem is a classical geometrical problem that has

been extensively studied on certain (or deterministic) points. In this dissertation, we

study this problem on uncertain points on a real line where each uncertain point is

specified by its probability density function (pdf) which is a piecewise-uniform function

(i.e., a histogram). The goal is to find a set Q of k points on the line to minimize

the maximum expected distance from all uncertain points to their expected closest

points in Q. We present an efficient algorithm for this k-center problem on uncertain

points with the continuous pdf (a piecewise-uniform function). In addition, we give a

better algorithm for the discrete case of this problem where each uncertain point has

the discrete pdf. The running times of our algorithms almost match the current best

algorithms for the same k-center problems on deterministic data. Refer to Chapter 2

for the details on the problem definitions and our results on this topic.

1.3.2 The One-Center Problem of Uncertain Points on Tree Networks

The second problem we study is to compute the center of uncertain points on tree

networks. In this problem, we are given a tree T and n uncertain points each of which has

m possible locations on T associated with probabilities. The goal is to find a point x∗,

i.e, the center, on T such that the maximum expected distance from x∗ to all uncertain

points is minimized. To the best of our knowledge, this problem has not been studied

before, although the same problem on deterministic data has been solved in linear time.

To solve this problem, we develop a refined prune-and-search technique that solves the

problem in linear time, and the result is clearly optimal. Refer to Chapter 3 for the

details on the problem definitions and our results on this topic.

1.3.3 The One-Center of Uncertain Data on the Real Line

The third problem we consider is to compute the center of uncertain points on a

line where each follows a continuous piecewise-uniform pdf. This is actually the special

case with k = 1 of the first problem—the one-dimensional k-center problem on uncertain

data, and can be solved in the super-linear time by the algorithm presented in Chapter 2.

Based on the refined prune-and-search technique, we design an improved algorithm to

4

solve this special case in the linear time, which is optimal. Refer to Chapter 4 for the

details on the problem definitions and our results on this topic.

1.3.4 The Rectilinear Center of Uncertain Points in the Plane

We consider the one-center problem on uncertainty data in the Euclidean space

under the rectilinear or L1 distance metric, where every uncertain point has m possible

locations in the plane associated with probabilities. The goal is to find a point q∗ in

the plane which minimizes the maximum expected rectilinear distance from it to all

uncertain points. Such a point q∗ is called a rectilinear center. We present a linear-time

algorithm that solves the problem. Refer to Chapter 5 for the details on the problem

definitions and our results on this topic.

1.3.5 The k-Center Problem of Uncertain Points on Tree Networks

We study a more general k-center problem of uncertain points in a tree T . To

solve this problem, we first present an algorithm for a coverage problem of uncertain

points on a tree: Given a covering range λ, the problem is to find a minimum number of

points (centers) on T to build facilities for serving (or covering) these uncertain points

in the sense that the expected distance from each uncertain point to at least one center

is no more than λ. This is actually the decision version (or the dual version) of the

k-center problem. We develop an O(|T | + M log2M) time algorithm for this coverage

problem, where M is the total number of all locations of all uncertain points in P (the

uncertain points may have different numbers of locations) and |T | is the total number

of all vertices of the tree T . Using this algorithm as the decision algorithm, we further

solve the k-center problem for the uncertain points on T . Refer to Chapter 6 for the

details on the problem definitions and our results on this topic.

1.3.6 The Line-Constrained k-Median, k-Means, and k-Center Problems in the Plane

The k-median, k-means, and k-center problems on certain points in the plane are

known to be NP-hard [17–19]. We study the line-constrained versions of these problems

where the sought k facilities are required to be on a given line, and the input data

in these problems are all certain. Specifically, we study the line-constrained k-median

5

under L1, L∞, and L2
2 distance measures where the L2

2 distance refers to the square

of the L2 distance. In the constrained k-median problem, the input includes a line L

and n certain points in the plane. The objective is to find a set of k points (medians)

on the given line L to minimize the total sum of the distances from all points to their

closest points in the sought set. In fact, the k-median problem under the L2
2 distance

is the k-means problem. We present efficient algorithms for these problems. The time

complexities of our algorithms for these “1.5-dimensional” problems almost match those

of the current best algorithms for the corresponding one-dimensional problems. We also

study the line-constrained k-center problem which asks for a set Q of k points (centers)

on the line L such that the maximum distance from the input points to their closest

points in Q is minimized. We solve this problem in O(n log n) time under three distance

metrics: L1, L2, and L∞. Then, we consider its unweighted version under L1 and L∞

metrics. We propose a faster way to solve the problem in both metrics in O(n) time. All

these results are optimal. Refer to Chapter 7 for the details on the problem definitions

and our results on this topic.

1.4 Outline

The rest of the dissertation is organized as follows. In Chapter 2, we present our

algorithms for the one-dimensional k-center problem on uncertain data. In Chapter 3,

we discuss our result for computing the center of uncertain points on tree networks. In

Chapter 4, we describe our improvements for solving the one-dimensional one-center on

uncertain data. In Chapter 5, we introduce our approach to compute the rectilinear

center of uncertain points in the plane. In Chapter 6, we solve the coverage problem

for uncertain points on tree networks and then apply it to solve the k-center problem.

In Chapter 7, we present our solutions for the line-constrained k-median, k-means, and

k-center problems in the plane. Finally in Chapter 8, we give a summary of our work

and discuss the possible future research directions.

6

CHAPTER 2

THE ONE-DIMENSIONAL K-CENTER PROBLEM ON UNCERTAIN DATA

In this chapter, we consider the k-center problem on one-dimensional uncertain data

under the locational model. The results in this chapter have been published in [20,21].

2.1 Introduction

Let P = {P1, P2, . . . , Pn} be a set of n uncertain points on the x-axis, where each

uncertain point Pi is specified by its pdf fi: R→ R+∪{0}, which is a piecewise-uniform

function (i.e., a histogram), consisting of at most m+ 1 pieces (e.g., see Fig. 2.1). More

specifically, for each uncertain point Pi, there are m x-coordinates xi1 < xi2 < . . . < xim

and m − 1 nonnegative values yi1, yi2, . . . , yi,m−1 such that fi(x) = yij (yij = 0 is

possible) for xij ≤ x < xi,j+1 with 0 ≤ j ≤ m, and we set xi0 = −∞, xi,m+1 = +∞, and

yi0 = yim = 0. In addition, the uncertain points of P are independent. As discussed

in [7], in practice such a histogram can be used to approximate any pdf with arbitrary

precision.

Note that in some applications each uncertain point has a discrete pdf, that is,

it could appear at one of a few locations, each with a probability. This discrete case

can also be represented by the above histogram model using infinitesimal pieces around

these locations, and thus the histogram model also incorporate the discrete case. In

other words, the discrete case is a special case of our model.

Let L denote the x-axis. For any certain point p ∈ L, we let xp denote its x-

coordinate. The expected distance between p and any uncertain point Pi is defined as

Ed(p, Pi) =

∫ +∞

−∞
fi(x)|x− xp|dx.

Let Q be a set of (certain) points on L, called facilities. For any uncertain point

Pi, we use Ed(Q,Pi) to denote the smallest expected distance from Pi to all points of

Q, i.e., Ed(Q,Pi) = minq∈Q Ed(q, Pi). The facility q with Ed(q, Pi) = Ed(Q,Pi) is called

7

fi(x)

xxi1 xi2 xi3 xi4 xi5 xi6 xi7 xi8

Figure 2.1. Illustrating the pdf fi of an uncertain point Pi with m = 8.

the expected closest facility of Pi in Q, and we also say Pi is “served” by the facility

q or Pi is “assigned” to q. The k-center problem is to find a set Q of k points on L

to minimize the maximum expected distance from the uncertain points of P to their

expected closest facilities in Q, i.e., the value maxPi∈P Ed(Q,Pi).

In a realization, each uncertain point will appear at a deterministic location abiding

by its pdf. We should point out that our problem definitions imply that we always

assign each uncertain point Pi to its expected closest facility and we never change the

assignment in any realization even through the actual location of Pi in a realization may

be closer to a different facility.

For differentiation, we refer to the traditional k-center problem where each point is

given in an exact position as the deterministic version.

In this chapter, we present an algorithm for the uncertain k-center problem and

the running time is O(mn logmn + n log k log n logmn). Further, for the discrete case

where the pdf of each uncertain point of P is discrete, i.e., each uncertain point Pi

has m possible locations, each with a probability, we have a more efficient algorithm

with running time O(mn logmn + n log k log n). In addition, for the discrete case with

k = 1, if the m locations of each uncertain point are given sorted, then we can solve

the one-center problem in O(mn) time. Considering that Θ(mn) is the input size, as

will be seen later, these results almost match those for the corresponding deterministic

k-center problem.

Note that our algorithms can also solve the weighted case where each uncertain

point Pi has a nonnegative weight wi and we consider the weighted expected distance,

i.e., wi · Ed(q, Pi), from Pi to each facility q in Q. To solve the weighted problems

(for both the general and the discrete cases), we only need to change each value yij to

8

wi · yij for 1 ≤ j ≤ m− 1, and then simply apply our algorithms for the corresponding

unweighted problems. The time complexities do not change asymptotically.

2.1.1 Related Work

The deterministic k-center (and k-median) problems are classical problems that

have been extensively studied. It is well-known that the k-center problem is NP-

hard even in the plane [19] and approximation algorithms have been proposed (e.g.,

see [22–24]). Efficient algorithm were also given for some special cases, e.g., the smallest

enclosing circle and its weighed version and discrete version [25–27], the Fermat-Weber

problem [28], k-center on trees [29–31]. Refer to [32] for other variations of facility

location problems. The deterministic k-center in one-dimensional space is solvable in

O(n log n) time [33].

The k-center problems on uncertain data in high-dimensional space have been con-

sidered. For example, approximation algorithms were given in [34] for different problem

models, e.g., the assigned model that is similar to our problem model and the unas-

signed model which was relatively easy because it can be reduced to the corresponding

deterministic problem, as shown in [34]. Other problems on clustering uncertain data

were also studied and heuristic algorithms were proposed [35,36]. Other facility location

problems on uncertain data under various models, e.g., the minmax regret [37–39], have

also been studied (see [40] for a survey).

To the best of our knowledge, the uncertain k-center problem proposed in this

chapter has not been particularly studied before.

2.1.2 Our Approach

For the deterministic one-dimensional k-center problem, there exists an optimal

facility set Q such that the input points served by each facility are consecutive if we

order them from left to right on L; this observation is crucial for designing the algorithms

[30, 33, 41–43]. In our uncertain problem, however, since the input points of P are

uncertain, it is not clear how to “sort” them; consequently, the algorithmic techniques

used before for solving the deterministic problems are not applicable here. Instead, we

use a new approach, as follows.

9

We first solve the decision problem which is to determine whether the minimized

value maxPi∈P Ed(Q,Pi) in the optimal solution is less than or equal to a given value ε,

and if yes, ε is called a feasible value. We solve the decision problem with the following

result: with O(mn) time preprocessing, for any given ε, we can determine whether ε is

a feasible value in O(logm+ n log k) time.

By using the above result for the decision problem, we solve the k-center problem

by using parametric search [43,44]; however, there are some issues that do not allow us

to use the parametric search in [43, 44] directly and we have to make certain modifica-

tions. A useful observation discovered by us is that the expected distance Ed(p, Pi) is a

unimodal function (i.e., first monotonically decreasing and then increasing) as p moves

from left to right on L. These efforts lead to an O(mn logmn+n log k log n logmn) time

algorithm for the k-center problem. Further, by replacing the parametric search scheme

with the randomized quicksort as in [45], we can obtain an expected O(mn logmn +

n log k log n logmn) time randomized algorithm that is relatively practical.

For the discrete case, we reduce the problem to finding a particular vertex in a line

arrangement. By using the arrangement searching technique in [46], we can solve the

discrete case in a faster way, in O(mn logmn + n log k log n) time. If k = 1 and the m

locations of each uncertain point are given sorted, then we can reduce the problem to

a linear programming problem and thus solve the problem in O(mn) time by applying

the linear time algorithm [27].

The rest of the chapter is organized as follows. In Section 2.2, we give some obser-

vations. In Section 2.3, we present our algorithm for the decision problem. In Section

2.4, we solve the k-center problem, which is referred to as the optimization problem.

Section 2.5 presents our algorithm for the discrete case.

2.2 Observations

Consider any uncertain point Pi of P. For any point p, its expected distance to

Pi is Ed(p, Pi) =
∫ +∞
−∞ fi(x)|x − xp|dx. With a little abuse of notation, we also use

Ed(xp, Pi) to denote Ed(p, Pi), but we normally consider Ed(xp, Pi) as a function of xp

for xp ∈ R = (−∞,+∞) as p moves on L.

A function g : R → R is a unimodal function if there exists a value x′ such that

10

g(x) is monotonically decreasing on x ∈ (−∞, x′] and monotonically increasing on x ∈

[x′,+∞), i.e., for any x1 < x2, g(x1) ≥ g(x2) holds if x2 ≤ x′ and g(x1) ≤ g(x2) holds

if x′ ≤ x1.

We assume the m coordinates xi1, . . . , xim of Pi are given sorted. We have the

following lemma, which is crucial to our algorithm.

Lemma 2.2.1. The function Ed(xp, Pi) for xp ∈ R is a unimodal function and can be

explicitly computed in O(m) time. More specifically, Ed(xp, Pi) is a parabola (of constant

complexity) on the interval [xik, xi,k+1) for each 0 ≤ k ≤ m.

Proof. Recall that fi(x) = yij if xij ≤ x < xi,j+1 for any 0 ≤ j ≤ m. To simplify

the notation, for each j with 0 ≤ j ≤ m + 1, we use xj and yj to refer to xij and yij ,

respectively. Then we have

Ed(xp, Pi) =

∫ +∞

−∞
fi(x)|x− xp|dx =

m∑
j=0

∫ xj+1

xj

yj |x− xp|dx.

Consider any fixed point p. Without loss of generality, we assume xk ≤ xp < xk+1

for some k with 0 ≤ k ≤ m. Then we can obtain

Ed(xp, Pi) =

∫ xp

−∞
fi(x)(xp − x)dx+

∫ +∞

xp

fi(x)(x− xp)dx.

Further, we have

∫ xp

−∞
fi(x)(xp − x)dx =

k−1∑
j=0

∫ xj+1

xj

yj(xp − x)dx+

∫ xp

xk

yk(xp − x)dx

=

k−1∑
j=0

yj

[∫ xj+1

xj

xpdx−
∫ xj+1

xj

xdx
]

+ yk

[∫ xp

xk

xpdx−
∫ xp

xk

xdx
]

=

k−1∑
j=0

yj

[
xp(xj+1 − xj)− (x2

j+1 − x2
j)/2

]
+ yk

[
x2
p − xpxk − (x2

p − x2
k)/2

]

=
1

2
yk · x2

p +
[k−1∑
j=0

yj(xj+1 − xj)− ykxk
]
· xp +

1

2

[
ykx

2
k −

k−1∑
j=0

yj(x
2
j+1 − x2

j)
]
.

11

Similarly, we can obtain that
∫ +∞
xp

fi(x)(x− xp)dx is equal to

1

2
yk · x2

p −
[
ykxk+1 +

m∑
j=k+1

yj(xj+1 − xj)
]
· xp +

1

2

[
ykx

2
k+1 +

m∑
j=k+1

yj(x
2
j+1 − x2

j)
]
.

We define a(k) = yk,

b(k) =
k−1∑
j=0

yj(xj+1 − xj)− yk(xk + xk+1)−
m∑

j=k+1

yj(xj+1 − xj),

and

c(k) =
1

2
· [

m∑
j=k+1

yj(x
2
j+1 − x2

j) + yk(x
2
k + x2

k+1)−
k−1∑
j=0

yj(x
2
j+1 − x2

j)].

The discussion above leads to Ed(xp, Pi) = a(k) · x2
p + b(k) · xp + c(k).

An easy observation is that as long as xp ∈ [xk, xk+1), the three values a(k), b(k),

and c(k) are constants, and thus the function Ed(xp, Pi) is a parabola that opens up

due to a(k) = yk ≥ 0 (if yk = 0, then Ed(xp, Pi) is a line, which is considered as a

special parabola). Further, when xp ≤ − b(k)
2a(k) , the function Ed(xp, Pi) is monotonically

decreasing; when xp ≥ − b(k)
2a(k) , Ed(xp, Pi) is monotonically increasing. Therefore, we

have the following three cases.

• If xk ≥ − b(k)
2a(k) , then Ed(xp, Pi) is monotonically increasing on xp ∈ [xk, xk+1).

Now suppose p is located in any place on L with xp ≥ xk+1. Let xk′ ≤ xp < xk′+1

for some k′ with k < k′ ≤ m. Below, we prove that xk′ ≥ − b(k′)
2a(k′) must hold, which

implies that Ed(xp, Pi) is also monotonically increasing on xp ∈ [xk′ , xk′+1).

To simplify the notation, for any 0 ≤ i1 ≤ i2 ≤ m, we define β(i1, i2) =
∑i2

j=i1
yj

(xj+1 − xj). We have

− b(k′)

2a(k′)
=
β(k′ + 1,m)− β(0, k′ − 1) + yk′(xk′ + xk′+1)

2yk′

=
β(k′ + 1,m)− β(0, k′ − 1)

2yk′
+
xk′ + xk′+1

2
.

Hence, to prove xk′ ≥ − b(k′)
2a(k′) , it is sufficient to show that β(0, k′ − 1) ≥ (xk′+1 −

xk′)yk′ + β(k′ + 1,m). Observe that (xk′+1 − xk′)yk′ + β(k′ + 1,m) = β(k′,m).

Therefore, our goal is to show that β(0, k′ − 1) ≥ β(k′,m).

12

Recall that xk ≥ − b(k)
2a(k) . By the similar analysis as above, we can show that

β(0, k− 1) ≥ β(k,m). Since k < k′, it is easy to see that β(0, k′ − 1) ≥ β(0, k− 1)

and β(k′,m) ≤ β(k,m), and thus, we can obtain β(0, k′ − 1) ≥ β(k′,m). Hence,

xk′ ≥ − b(k′)
2a(k′) is proved.

• If xk+1 ≤ − b(k)
2a(k) , Ed(xp, Pi) is monotonically decreasing on xp ∈ [xk, xk+1).

Now suppose p is located in any place on L with xp < xk. Let xk′ ≤ xp < xk′+1

for some k′ with 0 ≤ k′ < k. By using the similar techniques as the above case

(we omit the details), we can show that xk′+1 ≤ − b(k′)
2a(k′) , and thus, Ed(xp, Pi) is

also monotonically decreasing on xp ∈ [xk′ , xk′+1).

• If xk < − b(k)
2a(k) < xk+1, then Ed(xp, Pi) is a unimodal function that achieves the

minimum at xp = − b(k)
2a(k) .

On one hand, suppose p is located in any place on L with xp ≥ xk+1. Let xk′ ≤

xp < xk′+1 for some k′ with k < k′ ≤ m. Below, we prove that xk′ ≥ − b(k′)
2a(k′) must

hold, which implies that Ed(xp, Pi) is monotonically increasing on xp ∈ [xk′ , xk′+1).

To this end, according to the analysis in the above first case, it is sufficient to show

that β(0, k′ − 1) ≥ β(k′,m).

Since xk+1 > − b(k)
2a(k) , we have

xk+1 > −
b(k)

2a(k)
=
β(k + 1,m)− β(0, k − 1)

2yk
+
xk + xk+1

2
,

which is equivalent to β(0, k − 1) + (xk+1 − xk)yk ≥ β(k + 1,m). Observe that

β(0, k − 1) + (xk+1 − xk)yk = β(0, k). Thus, it holds that β(0, k) ≥ β(k + 1,m).

Due to k′ > k (i.e., k′ ≥ k + 1), it follows that β(0, k′ − 1) ≥ β(0, k) and β(k +

1,m) ≥ β(k′,m). Therefore, we obtain β(0, k′ − 1) ≥ β(k′,m). Hence, Ed(xp, Pi)

is monotonically increasing on xp ∈ [xk′ , xk′+1).

On the other hand, suppose p is located in any place on L with xp < xk. Let

xk′ ≤ xp < xk′+1 for some k′ with 0 ≤ k′ < k. By using the similar techniques

as above, we can show that xk′+1 ≤ − b(k′)
2a(k′) , and thus, Ed(xp, Pi) is monotonically

decreasing on xp ∈ [xk′ , xk′+1).

13

As a summary, the above analysis proves the following. (1) Ed(xp, Pi) on x ∈ R

defines a function consists of m+ 1 pieces, and each piece is part of a parabola defined

on the interval [xj , xj+1) for j = 0, 1, . . . ,m. (2) There is at most one interval [xk, xk+1)

such that Ed(xp, Pi) in the interval is neither monotonically increasing nor decreasing

(but is a unimodal function). (3) Suppose [xk, xk+1) is the interval as discussed in the

above (2); then for any interval [xk′ , xk′+1), Ed(xp, Pi) on [xk′ , xk′+1) is monotonically

increasing if k < k′ and monotonically decreasing if k′ < k.

To prove that Ed(xp, Pi) on xp ∈ R is a unimodal function, it is sufficient to show

that Ed(xp, Pi) is continuous on each value xp ∈ R. Clearly, Ed(xp, Pi) is continuous

on each interval xp ∈ [xk, xk+1), it remains to show that Ed(xp, Pi) is continuous on

xp = xk for each k with 1 ≤ k ≤ m (note that since x0 = −∞ and xm+1 = +∞, we do

not need to prove the continuity of Ed(xp, Pi) at these values).

Consider xk for any 1 ≤ k ≤ m. If xp = xk, we have Ed(xk, Pi) = a(k) · x2
k + b(k) ·

xk + c(k). To prove Ed(xp, Pi) is continuous at xp = xk, it sufficient to show that for

xp < xk, limxp→xk Ed(xp, Pi) = Ed(xk, Pi). If xp < xk and xp is arbitrarily close to xk,

then we have xp ∈ [xk−1, xk) and Ed(xp, Pi) = a(k − 1) · x2
p + b(k − 1) · xp + c(k − 1).

Hence, limxp→xk Ed(xp, Pi) = a(k − 1) · x2
k + b(k − 1) · xk + c(k − 1). It can be verified

that a(k) ·x2
k+b(k) ·xk+c(k) = a(k−1) ·x2

k+b(k−1) ·xk+c(k−1) from our definitions

of a(k), b(k), and c(k), and we omit the details.

Therefore, Ed(xp, Pi) on xp ∈ R is a unimodal function.

It remains to show that the function Ed(xp, Pi) can be computed in O(m) time.

To this end, it is sufficient to compute the three values a(k), b(k), and c(k) for all

k = 0, 1, . . . ,m. We first compute a(0), b(0), and c(0), which can be done in O(m) time.

In general, after we compute a(k), b(k), and c(k), it is easy to compute the three values

a(k+1), b(k+1), and c(k+1) in constant time based on a(k), b(k), and c(k). Therefore,

Ed(xp, Pi) can be computed in O(m) time.

The lemma thus follows.

In light of Lemma 2.2.1, we have the following corollary.

Corollary 2.2.2. For each uncertain point Pi, with O(m) time preprocessing, we can

compute the value Ed(xp, Pi) in O(logm) time for any query point p on L.

14

Proof. Again, for each j with 0 ≤ j ≤ m+1, we use xj to refer to xij . As preprocessing,

we first explicitly compute the function Ed(xp, Pi) in O(m) time by Lemma 2.2.1. For

any query point p ∈ L, we first determine the interval [xk, xk+1) that contains xp, which

can be done in O(logm) time by binary search on the list x0, x1, . . . , xm+1. According to

the proof of Lemma 2.2.1, we have computed the three values a(k), b(k), and c(k), such

that Ed(xp, Pi) = a(k)x2
p + b(k)xp + c(k). Hence, we can compute the value Ed(xp, Pi)

in additional constant time.

Consider any uncertain point Pi ∈ P. According to Lemma 2.2.1, there is a point

p ∈ L that minimizes the value Ed(p, Pi) and let pi denote such a point; note that such

a point may not be unique, in which case we let pi denote any such point. We refer to pi

as the centroid of Pi. By Lemma 2.2.1, we can compute the centroids for all uncertain

points of P in O(nm) time.

2.3 The Decision k-Center Problem

In order to solve our k-center problem, we first solve the decision version of the

problem in this section.

Recall that our goal for the k-center problem is to find a set Q of k points such

that maxPi∈P Ed(Q,Pi) is minimized, where Ed(Q,Pi) = minq∈Q Ed(q, Pi). Below, for

any set Q of points on L, let ψ(Q) = maxPi∈P Ed(Q,Pi). Denote by ε∗ the value ψ(Q)

in an optimal solution for the k-center problem.

Given any real value ε, the decision k-center problem is to determine whether there

exist a set Q of k points on L such that ψ(Q) ≤ ε (i.e., determine whether ε∗ ≤ ε), and if

yes, then we say the decision problem is feasible and ε is a feasible value. To distinguish

from the decision problem, we refer to our original k-center problem the optimization

problem. Clearly, ε∗ is the smallest feasible value.

Consider any value ε and any uncertain point Pi ∈ P. Let Q be any set of k points

on L. If Ed(Q,Pi) ≤ ε, then there is at least one point q in Q with Ed(q, Pi) ≤ ε. Let

α(Pi, ε) be the set of points p of L such that Ed(xp, Pi) ≤ ε. A line segment on L is also

called an interval of L. By using Lemma 2.2.1, we obtain the following result.

15

Lemma 2.3.1. For any uncertain point Pi and any value ε, α(Pi, ε) is an interval of L

(α(Pi, ε) = ∅ is possible); with O(m) time preprocessing, we can compute α(Pi, ε) in

O(logm) time for any given ε.

Proof. Since Ed(xp, Pi) is a unimodal function, if the minimum value of Ed(xp, Pi) is

larger than ε, then α(Pi, ε) = ∅. Otherwise, α(Pi, ε) is an interval of L. Specifically, let

pl be the leftmost point of L such that Ed(xpl , Pi) = ε and let pr be the rightmost point

of L such that Ed(xpr , Pi) = ε. Then, α(Pi, ε) is the line segment plpr.

To compute α(Pi, ε), we compute the function Ed(xp, Pi) for xp ∈ R in O(m) time by

Lemma 2.2.1, as preprocessing. Also, we compute the centroid pi of Pi in the processing.

Consider any query value ε. To compute α(Pi, ε), we first check the y-coordinate

of pi, denoted by ypi . If ypi > ε, then α(Pi, ε) = ∅. Otherwise, we find pl and pr, as

follows. Observe that xpl ≤ xpi and xpr ≥ xpi . We first find pl in the following way.

Suppose xik < pi ≤ xi,k+1 for some k with 0 ≤ k. Note that k is already determined

in the preprocessing when we compute pi. For the purpose of searching pl, we temporar-

ily set xi,k+1 = xpi . Since the function Ed(xp, Pi) for xp ∈ (−∞, xpi] is monotonically

decreasing, we can determine the index j such that Ed(xij , Pi) > ε ≥ Ed(xi,j+1,Pj)

in O(logm) time by binary search. Hence, we have xij < xpl ≤ xi,j+1. Since the

function Ed(xp, Pi) for xp ∈ [xij , xi,j+1) is a parabola of constant complexity and the

value Ed(xi,j+1, Pi) is computed in the preprocessing, we can determine pl in additional

constant time. Therefore, we can find pl in O(logm) time.

Similarly, we can also find pr in O(logm) time. Thus, given any ε, we can compute

α(Pi, ε) in O(logm) time.

We say that a point on L covers an interval of L if the interval contains the point.

Let α(P, ε) is the set of all intervals α(Pi, ε) for i = 1 . . . n. We have the following

observation.

Observation 2.3.2. The value ε is a feasible value if and only if there exist a set Q of k

points on L such that each interval of α(P, ε) is covered by at least one point in Q.

By Observation 2.3.2, to determine whether ε is feasible, it is sufficient to solve the

following interval covering problem: determine whether there exist a set Q of k points

on L such that each interval of α(P, ε) is covered by at least one point in Q.

16

To solve the interval covering problem, we can compute the minimum number k∗

of points that can cover all intervals of α(P, ε), and the problem can be solved in O(n)

time by a simple greedy algorithm after the endpoints of all intervals of α(P, ε) are

sorted [47]. Specifically, we scan the sorted endpoints of intervals of α(P, ε) from left to

right until we first encounter a right endpoint of an interval. We add this right endpoint

into Q and removes all intervals that contain this point. This process is repeated until no

intervals remain. However, due to the sorting procedure, the total time for computing

k∗ is O(n log n).

Snoeyink [48] gave an O(n log k∗) time algorithm for computing k∗ without sorting.

If k∗ ≤ k, then we have n log k∗ = O(n log k), which means that we can solve the

interval covering problem in O(n log k) time. However, if k∗ > k, since it is possible

that n log k = o(n log k∗) (e.g., k = O(1) and k∗ = Θ(n)), we cannot bound the time

by O(n log k). To ensure that the interval covering algorithm can still be solved in

O(n log k) time even if k∗ > k, we modify Snoeyink’s algorithm [48] in the following

way.

Observe that to solve the interval covering algorithm, it is sufficient to know whether

k∗ ≥ k holds. Snoeyink’s algorithm finds a set Q of points one by one in O(n log k∗)

time, with k∗ = |Q|. Since the points of Q are computed one by one, when we run the

algorithm, we simply stop the algorithm when there are k + 1 points in the current Q.

In this way, the recursion tree of the algorithm has k + 1 leaves (instead of k∗ leaves)

and thus the running time is O(n log k) according to Lemma 1 in [48].

As a summary, given any ε, we solve the decision k-center as follows. First, we

compute all intervals α(P, ε), in O(n logm) time by Lemma 2.3.1. Then, by modifying

the algorithm in [48] as discussed above, we can solve the interval covering problem in

O(n log k) time. The decision problem is thus solved. The total time is O(n logm +

n log k), after the O(mn) time preprocessing in Lemma 2.3.1 for all uncertain points. By

using fractional cascading [49,50], we further reduce the running time in Lemma 2.3.3.

Lemma 2.3.3. With O(mn) time preprocessing, we can determine whether ε is a feasible

value in O(logm+ n log k) time for any given ε.

17

Proof. To prove the lemma, we show that with O(mn) time preprocessing, we can

compute the intervals of α(P, ε) in O(n+ logm) time for any given ε.

We first do the preprocessing in Lemma 2.3.1 for all uncertain points. Consider

any uncertain point Pi ∈ P. Let pi be the centroid of Pi, which has been computed in

the preprocessing. Given any ε, as discussed in Lemma 2.3.1, if ε is smaller than the

y-coordinate of pi, then α(Pi, ε) = ∅. Below, we assume α(Pi, ε) 6= ∅. Let pl be the left

endpoint of α(Pi, ε) and pr the right endpoint of α(Pi, ε). As in Lemma 2.3.1, xpl ≤ xpi
and xpr ≥ xpi . Let xik < xpi ≤ xi,k+1 for some k with 0 ≤ k ≤ m, and again, k has

been computed in the preprocessing. For the discussion of searching pl, we temporarily

set xi,k+1 = xpi .

As discussed in the proof of Lemma 2.3.1, to find pl, we can first determine j

with 0 ≤ j ≤ k such that Ed(xij , Pi) > ε ≥ Ed(xi,j+1, Pi), and subsequently compute

pl in additional constant time. Finding such an index j can be done in O(logm) by

binary search, as in Lemma 2.3.1, and binary search on all uncertain points together

takes O(n logm) time. To reduce the running time, a key observation is that each binary

search uses the value ε, which allows us to use the fractional cascading technique [49,50],

as follows.

Consider the above problem of searching the index j for pl. We create a sorted lists

Li in descending order: +∞,Ed(xi1, Pi),Ed(xi2, Pi), . . . ,Ed(xi,k+1, Pi),−∞ (recall that

xi,k+1 has been set to xpi temporarily). Hence, the above index j can be found by doing

binary search on the list Li using ε.

Similarly, we can create a sorted list L′i for Pi based on the function Ed(xp, Pi) on

xp ∈ [xpi ,+∞) and use L′i to find pr.

For each uncertain point Pi ∈ P, we create two sorted lists Li and L′i as above.

Given any ε, our goal is to find the interval in each sorted list that contains ε. By

building a fractional cascading structure on the 2n sorted lists in O(mn) time [49, 50],

we can find the intervals containing ε in all sorted lists in overall O(logm+n) time, and

consequently obtain all intervals of α(P, ε) in additional O(n) time.

We summarize our discussion above. As preprocessing, we compute the functions

Ed(xp, Pi) for all uncertain points, in O(mn) time by Lemma 2.2.1. Based on these

functions, we create the above 2n sorted lists in O(mn) time. Then, we build a fractional

18

cascading on these sorted lists in O(mn) time [49, 50]. This finishes our preprocessing,

which takes O(mn) time in total. For any given value ε, we can compute all intervals of

α(P, ε) in O(logm+ n) time, as discussed above.

The lemma thus follows.

2.4 The Optimization Problem

In this section, we present our algorithm for the original k-center problem, to which

we refer as the optimization problem, and our goal is to find the smallest feasible value

ε∗ and the corresponding optimal facility set Q. Based on some observations and our

decision algorithm in Lemma 2.3.3, we finally compute ε∗ by modifying the parametric

search technique [43,44].

For any ε > 0, for each 1 ≤ i ≤ n, let α(Pi, ε) = [li(ε), ri(ε)], i.e., li(ε) is the

x-coordinate of the left endpoint of α(Pi, ε) and ri(ε) is the x-coordinate of the right

endpoint of α(Pi, ε); below we will consider li(ε) and ri(ε) as functions of ε. With a

little abuse of notation, we also use li(ε) and ri(ε) to denote the left and right endpoints

of α(Pi, ε), respectively. Define E(ε) to be the set of the endpoints of all intervals in

α(P, ε). Notice that if we know the sorted order of the endpoints of E(ε∗) at the value

ε∗, we can easily find an optimal facility set Q, e.g., by using the greedy algorithm

mentioned before. Although we do not know ε∗, but we can still sort the values in

E(ε∗) by making use of our decision algorithm to resolve comparisons, which is the key

idea of parametric search [43, 44]. However, our problem does not allow us to apply

the parametric search approaches in [43,44] directly, because in our problem we cannot

resolve each “comparison” by a single call on the decision algorithm (since a comparison

may have multiple “roots”; refer to [43,44] for these standard terminology on parametric

search). The details are given below.

Suppose in our sorting algorithm we want to resolve a comparison between two val-

ues in E(ε∗). Depending on whether the two values are left endpoints or right endpoints,

there are two cases.

1. If a value is a left endpoint, say li(ε
∗), and the other value is a right endpoint,

say rj(ε
∗), then the comparison between them is called a type-1 comparison. We

resolve this type of comparison in the following way.

19

x

y

y1 = y2

EdL(xp, Pi)

EdR(xp, Pj)

pipj

Figure 2.2. Illustrating the intersection of
EdL(xp, Pi) and EdR(xp, Pj), where the in-
tersection is a single point and thus y1 = y2.
li(ε
∗) ≥ rj(ε∗) if and only if ε∗ ≤ y1.

x

y

y1

EdR(xp, Pi)

EdR(xp, Pj)

pi pj

y2

Figure 2.3. Illustrating two intersections of
EdR(xp, Pi) and EdR(xp, Pj). For example,
if ε∗ ∈ [y1, y2], then ri(ε

∗) ≥ rj(ε∗).

Recall that pk is the centroid for each uncertain point Pk ∈ P. We denote the

function Ed(xp, Pk) on xp ∈ (−∞, xpk] by EdL(xp, Pk) and denote Ed(xp, Pk) on

x ∈ [xpk ,+∞) by EdR(xp, Pk). By Lemma 2.2.1, EdL(xp, Pk) is monotonically

decreasing and EdR(xp, Pk) is monotonically increasing. Further, lk(ε) ≤ xpk ≤

rk(ε) holds. To simplify the discussion, for each Pk ∈ P, we add a vertical half-

line on the function EdL(xp, Pk) from the point pk downwards to −∞ and we

also add the same half-line to EdR(xp, Pk). Note that each new EdL(xp, Pk) is

still monotonically decreasing and each new EdR(xp, Pk) is still monotonically

increasing.

To resolve the comparison between li(ε
∗) and rj(ε

∗), our goal is to determine

whether li(ε
∗) ≤ rj(ε

∗) or li(ε
∗) ≥ rj(ε

∗) holds. To this end, we first determine

whether EdL(xp, Pi) intersects EdR(xp, Pj).

If xpi < xpj , then since EdL(xp, Pi) is to the left of pi and EdR(xp, Pj) is to the

right of pj , the two functions do not intersect and li(ε
∗) ≤ rj(ε∗) always holds.

Otherwise, since EdL(xp, Pi) is monotonically decreasing and EdR(xp, Pj) is mono-

tonically increasing, EdL(xp, Pi) must intersect EdR(xp, Pj) and the intersection

is a line segment (may be degenerated into a single point) that spans an interval

[y1, y2] on y-coordinates (e.g., see Fig. 2.2). Observe that li(ε
∗) < rj(ε

∗) if ε∗ > y2,

li(ε
∗) = rj(ε

∗) if ε∗ ∈ [y1, y2], and li(ε
∗) > rj(ε

∗) if ε∗ < y1.

Hence, to resolve the comparison between li(ε
∗) and rj(ε

∗), it sufficient to resolve

the comparisons among ε∗, y1, and y2, which can be done by calling the decision

20

algorithm to determine whether y1 and y2 are feasible values. Specifically, if ε = y2

is not feasible, then ε∗ > y2 and we obtain li(ε
∗) < rj(ε

∗). If ε = y2 is feasible, then

ε∗ ≤ y2. We further check whether ε = y1 is feasible. If y1 is not feasible, then we

have ε∗ ∈ (y1, y2] and thus obtain li(ε
∗) = rj(ε

∗); otherwise, we have ε∗ ≤ y1 and

obtain li(ε
∗) ≥ rj(ε∗).

In summary, we can resolve the comparison between li(ε
∗) and rj(ε

∗) by first find-

ing the intersection of EdL(xp, Pi) and EdR(xp, Pj) and subsequently at most two

calls on the decision algorithm. The intersection of EdL(xp, Pi) and EdR(xp, Pj)

can be found in O(m) time (it is possible to do better by binary search; however,

this does not affect the overall result because the time for resolving each compar-

ison is dominated by resolving a type-2 comparison, which will be given later and

has a term O(m) in its running time). The two calls on the decision algorithm

takes O(logm+ n log k) time.

Hence, we can resolve each type-1 comparison in O(m+ n log k) time.

2. If the two values involved in the comparison are both left endpoints or both right

endpoints, then we call it a type-2 comparison. It becomes more complex to resolve

this type of comparison. Assume both values are two right endpoints, say ri(ε
∗)

and rj(ε
∗), and the case where both values are two left endpoints can be handled

similarly. In the sequel, we resolve the comparison in the following way.

As in the type-1 case, we first compute the intersections between the two functions

EdR(xp, Pi) and EdR(s, Pj). Although both functions are monotonically increasing,

there may be Θ(m) intersections as their complexities are Θ(m) in the worst case

(e.g., see Fig. 2.3). All intersections can be computed in O(m) time. If there is no

intersection, then ri(ε
∗) ≤ rj(ε

∗) if and only if xpi ≤ xpj , where pi and pj are the

centroids.

Otherwise, let y1, y2, . . . , yh be the y-coordinates of all intersections, sorted in

ascending order, with h = O(m). We can compute this sorted list in O(m) time

as we compute the intersections. Using our decision algorithm, we can determine

an interval (yk, yk+1] that contains ε∗, by binary search with O(logm) calls on the

decision algorithm. After finding the interval (yk, yk+1], we can easily determine

21

whether ri(ε
∗) ≤ rj(ε

∗) or ri(ε
∗) ≥ rj(ε

∗) in the similar way as in the type-1 case

(e.g., see Fig. 2.3).

Hence, we can resolve each type-2 comparison in O(m+ n log k logm) time.

The above shows that we can resolve each comparison in O(m+n log k logm) time,

which is dominated by the type-2 comparisons.

Now we apply the parametric search scheme to our problem by resolving compar-

isons in the above ways. We first consider Megiddo’s approach [44]. We can use n

processors to do the soring in O(log n) parallel steps. For each parallel step, we need to

resolve n “independent” comparisons. Our problem is different from other problems in

the sense that each type-2 comparison can have O(m) “roots” (i.e., the y-coordinates of

the intersections). Nevertheless, we can still be able to resolve all these comparisons in

a simultaneous way, as follows.

First, for each comparison, we compute the coordinates of the O(m) intersections

as discussed above. The intersections of all n comparisons can be computed in O(mn)

time. Then, we have O(mn) roots. Suppose y1, y2, . . . , yh are the list of all O(mn) roots

sorted in ascending order, with h = O(mn). Note that we only use this sorted list to

explain our approach and our algorithm do not compute this sorted list. By using our

decision algorithm, we determine the interval (yk, yk+1] that contains ε, which can be

done in O(mn) time plus O(logmn) calls on the decision algorithm by using the linear

time selection algorithm and binary search (without computing the above sorted list).

Further, all n comparisons are resolved on the interval (yk, yk+1]. Therefore, we can

resolve all these n independent comparisons in O(mn+n log k logmn) time. Since there

are O(log n) parallel steps, we can resolve all comparisons and compute the order for

E(ε∗) in O(mn log n+ n log k log n logmn) time.

Once the order for E(ε∗) is determined, we can easily compute ε∗ and obtain an

optimal facility set Q by using the greedy algorithm discussed in Section 2.3. In fact, we

can immediately determine ε∗ after the above parametric search finishes. Specifically,

after the parametric search finishes, the algorithm also gives us an interval (yk, yk+1] that

contains ε∗. We claim that ε∗ = yk+1. Indeed, an observation is that ε∗ is always equal

to the y-coordinate of the intersection of two functions Ed(xp, Pi) and Ed(xp, Pj) since

22

otherwise we would always make ε∗ smaller without changing the order of E(ε∗). On

the other hand, the parametric search essentially finds yk+1 as the smallest y-coordinate

of such function intersections that is feasible. Therefore, ε∗ = yk+1.

In summary, we solve the k-center problem in O(mn log n + n log k log n logmn)

time. Note that this result is based on the assumption that xij for j = 1, . . . ,m are

given sorted for each uncertain point Pi ∈ P. If they are not given sorted, then we need

an extra step to sort them first, which takes O(mn logm) time in total. Therefore, we

have the following lemma.

Theorem 2.4.1. The optimization version of the k-center problem can be solved in O(mn·

logmn+ n log k log n logmn) time.

One may wonder whether Cole’s parametric search [43] can be used to further reduce

the time complexity by a logarithmic factor, i.e., reduce the time to O(mn logmn +

n log k logmn). However this is not the case because resolving each type-2 comparison

needs to consider O(m) roots. Specifically, in Cole’s parametric search, calling the

decision algorithm on the weighted median root of all roots in each comparison level can

resolve a weighted-half comparisons in the level. However, in our problem, to resolve the

each type-2 comparison, calling the decision algorithm once is not enough. Therefore,

Cole’s approach is not applicable to our problem.

Since even Megiddo’s parametric search may not be quite practical, Van Oostrum

and Veltkamp [45] showed that one can replace the parallel sorting scheme in Megiddo’s

parametric search by the randomized quicksort to obtain a practical solution with the

same expected running time. By using the randomized quicksort, we can solve the k-

center problem in expected O(mn log nm+ n log k log n logmn) time and the algorithm

is relatively practical.

2.5 The Discrete k-Center Problem

In this section, we present an algorithm for the discrete version of the k-center

problem, and due to some special properties of the discrete case, the algorithm is faster

than the one in Theorem 2.4.1 for the general case.

23

In the discrete k-center problem, each uncertain point Pi has m possible locations,

denoted by pi1, pi2, . . . , pim, each having a probability. Since this is a special case of

the general k-center problem, the previous results on the general k-center problem (e.g.,

Lemma 2.3.3 and Theorem 2.4.1) are still applicable.

By Lemma 2.2.1, the function Ed(xp, Pi) for xp ∈ R is still a unimodal function,

but in the discrete version, Ed(xp, Pi) is a piecewise linear function. This can be ob-

tained from the proof of Lemma 2.2.1 and we omit the details here. After the locations

pi1, pi2, . . . , pim are sorted in O(m logm) time, the function Ed(xp, Pi) can be computed

in additional O(m) time by Lemma 2.2.1. In the following, we assume all functions

Ed(xp, Pi) for i = 1, 2, . . . , n have been computed.

We define the decision problem in the same way as before. Our goal is to find the

smallest feasible value ε∗. As we discussed in the general k-center problem, ε∗ is the

y-coordinate of the intersection of two functions Ed(xp, Pi) and Ed(xp, Pj) for some i and

j. Let I be the set of intersections of all functions Ed(xp, Pi) for i = 1, 2, . . . , n, and for

simplicity of discussion, we assume each such intersection is a single point (the general

case can be solved by the same techniques with more tedious discussion). Then, ε∗ is

the smallest feasible value among the y-coordinates of all points of I. The algorithm

of Theorem 2.4.1 uses parametric search to find ε∗. In the discrete version, due to the

property that each Ed(xp, Pi) is a piecewise linear function, we compute ε∗ by using a

technique for searching line arrangement [46], as follows.

We first define an arrangement A. For each 1 ≤ i ≤ n, since Ed(xp, Pi) is a

piecewise linear function, it consists of O(m) line segments and two half-lines, and we

let Ai denote the set of lines containing all line segments and half-lines of Ed(xp, Pi).

Hence, |Ai| = O(m) for each 1 ≤ i ≤ n. Note that we can explicitly compute each

Ai in O(m) time. Let A be the arrangement of the lines in
⋃n
i=1Ai. Note that our

algorithm does not compute A explicitly. With a little abuse of notation, we also use A

to denote the set of all vertices of A (i.e., all line intersections). Clearly, I ⊆ A. Hence,

ε∗ is also the smallest feasible value among the y-coordinates of the vertices of A, and

in other words, ε∗ is the y-coordinate of the lowest vertex v∗ of A whose y-coordinate is

feasible for the decision problem. To search the particular vertex v∗, we use the decision

algorithm in Lemma 2.3.3 and the following arrangement searching technique in [46].

24

Suppose there is a function g : R→ {0, 1}, such that the description of g is unknown

but it is known that g is monotonically increasing. Further, given any value y, we have

a “black-box” that can evaluate g(y) (i.e., determine whether g(y) is 1 or 0) in O(G)

time, which we call the g-oracle (i.e., O(G) is the query time for the g-oracle). Let B

be a set of n lines in the plane and let B denote their arrangement. Note that B is

not computed explicitly. For any vertex v of B, let yv be the y-coordinate of v. The

arrangement searching is to find the lowest vertex vertex v of B such that g(yv) = 1.

An O((n+G) log n) time algorithm is given in [46] to solve the arrangement searching

problem by modifying the slope selection algorithm [51, 52], without using parametric

search.

In our problem, we are searching the vertex v∗ in the arrangement A. We can

define such a function g as follows. For any value y, g(y) = 1 if and only if y is a feasible

value. Clearly, g is monotonically increasing since for any feasible value y, any value

larger than y is also feasible. Hence, v∗ is the lowest point in A with g(yv∗) = 1. We

use our decision algorithm in Lemma 2.3.3 as the g-oracle with G = O(logm+ n log k).

By the result in [46], after the O(mn) lines of
⋃n
i=1Ai are computed, we can compute

v∗ in O((mn + logm + n log k) logmn) time. It can be verified that (mn + logm +

n log k) logmn = O(mn logmn + n log k log n). Consequently, we can obtain ε∗. An

optimal solution set Q can be found by using the decision algorithm on ε∗ in additional

O(logm+ n log k log n) time.

Theorem 2.5.1. The optimization version of the discrete k-center problem can be solved

in O(mn logmn+ n log k log n) time.

Now we consider the case where k = 1 and the locations pi1, pi2, . . . , pim are given

sorted for each uncertain point Pi. Again, the function Ed(xp, Pi) can be computed in

additional O(m) time by Lemma 2.2.1. Thus, all functions Ed(xp, Pi) for i = 1, 2, . . . , n

can be computed in O(mn) time.

Consider any function Ed(xp, Pi). Recall that Ed(xp, Pi) is a unimodal piecewise

linear function. The function Ed(xp, Pi) divides the plane into two regions, one above

Ed(xp, Pi) and the other below Ed(xp, Pi). Denote by Ri the region above Ed(xp, Pi).

25

Denote by R the common intersection of all regions Ri for i = 1, 2, . . . , n and by q∗ the

lowest point in R. We have the following observation.

Observation 2.5.2. The optimal value ε∗ is the y-coordinate of q∗ and the x-coordinate

of the center in the optimal solution is the x-coordinate of q∗.

Hence, to solve the one-center problem, it is sufficient to find the lowest point q∗.

To this end, we reduce the problem to a linear programming problem as follows.

Consider any function Ed(xp, Pi). We let each line segment (or half-line) of the

function Ed(xp, Pi) define an upper half-plane lower bounded by the line containing the

line segment. Hence, the region Ri is the common intersection of the upper half-planes

defined by all (at most O(k)) segments of the function Ed(xp, Pi). Further, the common

intersection R of all region Ri’s is also the common intersection of the O(mn) upper

half-planes defined by the segments of all functions Ed(xp, Pi)’s. Hence, q∗ is also the

lowest point of the common intersection of all O(mn) upper half-planes, which can be

computed in O(mn) time by applying the linear time algorithm in [27]. We thus obtain

the following result.

Theorem 2.5.3. If the locations of each uncertain point are given sorted, then the discrete

one-center problem can be solved in O(mn) time.

26

CHAPTER 3

THE ONE-CENTER PROBLEM OF UNCERTAIN POINTS ON TREE

NETWORKS

3.1 Introduction

In this chapter, we consider the one-center problem for uncertain data on tree

networks, where the existence (presence) of each uncertain point is described probabilis-

tically. The results in this chapter have been published in a conference [53,54].

3.1.1 Problem Definitions

We borrow some terminology on trees from the literature (e.g., [27, 55]). Let T

be a tree. Each edge e = (u, v) of T has a positive length l(e). We consider e as a

line segment of length l(e) so that we can talk about “points” on e. Formally, a point

p = (u, v, t) is characterized by being located at a distance of t ≤ l(e) from the vertex

u. The distance of any two points p and q on T , denoted by d(p, q), is defined as the

length of the simple path from p to q on T .

Let P = {P1, P2, . . . , Pn} be a set of n uncertain points on T . Each uncertain point

Pi has m possible locations on T , denoted by {pi1, pi2, · · · , pim}, and each location pij

is associated with a probability fij ≥ 0 that is the probability of Pi being at pij (which

is independent of other locations), with
∑m

j=1 fij = 1; e.g., see Fig. 3.1. Further, each

uncertain point Pi has a weight wi > 0.

Consider any point x on T . For any uncertain point Pi, the (weighted) expected

distance from x to Pi, denoted by Ed(x, Pi), is defined as

Ed(x, Pi) = wi ·
m∑
j=1

{fij · d(x, pij)}.

In the following, for simplicity, we use “expected distance” to refer to “weighted

expected distance”. We define R(x) as the maximum expected distance from x to all

27

p1,2

p2,2

p2,1

p1,1

p1,3p2,3

p3,2

p3,1

p3,3

0.3

0.2

0.5
0.3

0.1

0.4

0.5

0.3

0.4

Figure 3.1. Illustrating three uncertain points P1, P2, P3. Each of them has three possible
locations (their probabilities are also shown).

uncertain points of P, i.e., R(x) = max1≤i≤nEd(x, Pi).

The center of T with respect to P is defined to be a point x∗ that minimizes the

value R(x) among all points x ∈ T . Our goal is to compute x∗.

For any edge e of T , we assume the locations of the uncertain points of P on e are

already given sorted on e. This means that if we traverse the edge e from one end to

the other, then we can encounter those locations in order.

If T is a path network, the problem has been studied in Chapter 2, where a linear

time is given for computing the center. However, if T is a tree, to the best of our

knowledge, the problem has not been studied before. In this chapter, we give an O(|T |+

mn) time algorithm for the problem, where |T | is the number of vertices of T . Note that

since Θ(|T |+mn) is essentially the input size, the time complexity of our algorithm is

linear, and thus our algorithm is optimal.

3.1.2 Related Work

Problems on uncertain data have been studied extensively. Two models have been

commonly considered: the existential model [9, 11–14, 16] and the locational model [7,

8, 10, 15]. In the existential model, an uncertain point has a specific location but its

existence is uncertain. In the locational model, an uncertain point always exists but

its location is uncertain and follows a probability distribution function. Our one-center

problem belongs to the locational model. In fact, the same problem under existential

model is essentially the weighted one-center problem for deterministic data, which was

solved in linear time [27].

As mentioned before, if T is a path network, the uncertain one-center problem has

28

been solved in linear time by the algorithm for the discrete k-Center Problem in Chap-

ter 2. Algorithms for the more general uncertain k-center problems on path networks

have also been given in Chapter 2.

The one-center and the more general k-center problems for the deterministic case

where all data are certain have been studied extensively, as discussed below.

Megiddo [27] solved the (weighted) one-center problem on trees in linear time.

For the more general k-center problem on trees, Megiddo and Tamir [31] presented

an O(n log2 n log logn) time algorithm for the weighted case, where n is the number

of vertices of the tree, and later the running time of the algorithm was reduced to

O(n log2 n) by Cole [43]. The unweighted case was solved in linear time by Frederickson

[30]. If all centers are required to be located at the vertices, then the weighted k-center

problem on trees is solvable in O(n log2 n) time [33] and the unweighted case is solvable

in linear time [30].

In addition, the weighted k-center problem on the real line can be solved inO(n log n)

time [31, 41, 43], and Bhattacharya and Shi [56] proposed an algorithm whose running

time is linear in n but exponential in k.

If all points are on the two-dimensional plane, the unweighted one-center problem

becomes the minimum enclosing circle problem, which is solvable in linear time [19];

the weighted one-center problem can be solved in O(n log n) time by the techniques

in [43], where n is the number of input points (see also the discussions in [57], where

an O(n log n) time randomized algorithm was given). The general k-center problem in

the plane is NP-hard [19]. Efficient algorithms are known for some other special cases

(e.g., [58–60] studied the line-constrained version where all centers are required to be on

a line).

Facility location and related problems under other uncertain models have also been

considered. Foul [61] studied the problem of finding the center in the plane to mini-

mize the maximum expected distance from the center to all uncertain points, where each

uncertain point has a uniform distribution in a given rectangle. Jørgenson et al. [62] con-

sidered the problem of computing the distribution of the radius of the smallest enclosing

ball for a set of indecisive points each of which has multiple locations associated with

probabilities in the plane. Löffler and van Kreveld [63] studied the problem of finding the

29

smallest enclosing circle and other related problems for imprecise points each of which is

known to be contained in a planar region (e.g., a circle or a square). de Berg et al. [64]

proposed an approximation algorithm to dynamically maintain Euclidean 2-centers for

a set of moving points in the plane (the moving points are considered uncertain). See

also the minmax regret problems, e.g., [37, 38,65].

3.1.3 Our Approach

Note that the locations of the uncertain points of P may be in the interior of some

edges of T . A vertex-constrained case happens when all locations of P are at vertices of

T and each vertex of T contains at least one location of P. We show (in Theorem 3.3.8)

that the general problem can be reduced to the vertex-constrained case in O(|T |+mn)

time. In the following, unless otherwise stated, we focus our discussion on the vertex-

constrained case (i.e., we assume our problem on T and P is a vertex-constrained case).

Note that even in the vertex-constrained case, the center x∗ do not have to be at a

vertex of T .

To solve our problem, one immediate option is to see whether Meggido’s prune-

and-search techniques [27] for solving the deterministic one-center problem on trees can

be applied. However, as will be discussed below, there are some “enormous” difficulties

to apply Meggido’s techniques directly. To overcome these difficulties, we propose new

techniques, which can be viewed as a refinement of Megiddo’s techniques and which we

call the refined prune-and-search.

Megiddo’s algorithm [27] is used to find the center x∗ for a tree T of n vertices,

where each vertex v has a weight wv. Megiddo’s algorithm first computes the centroid

c of T (each of c’s subtree has at most n/2 vertices), and then based on the weighted

distances from all vertices to c, one can determine which subtree of c contains the center

x∗. Suppose T ′ is a subtree containing x∗. The number of vertices outside T (i.e., those

in T \ T ′) is at least n/2. Consider any two vertices u and v in T \ T ′. In general, by

solving the equation wu(d(u, c) + t) = wv(d(v, c) + t), one can obtain a value tuv such

that for every point x in T ′ at a distance t from c, wu(d(u, x)) ≥ wv(d(v, x)) if and

only if 0 ≤ t ≤ tuv. Based on this observation, the vertices in T \ T ′ are arbitrarily

arranged in roughly at least n/4 disjoint pairs, and for each pair u and v, the value tuv

30

is computed. Let t∗ be the median of these tuv values. Depending on whether x∗ is

within distance t∗ from c, at least n/8 vertices of T can be pruned. More specifically,

suppose x∗ is within distance t∗ from c and t∗ ≤ tuv for two vertices u and v; then since

wu(d(u, x)) ≥ wv(d(v, x)) if and only if 0 ≤ t ≤ tuv, the vertex v can be pruned (i.e., the

“influence” of v on x∗ is “dominated” by that of u).

In our problem, the tree T has O(mn) vertices, and we do the same thing and first

find the centroid c of T . Although now we have uncertain points, by observations, we can

still efficiently determine the subtree T ′ of c that contains the center x∗. However, we

cannot proceed as above in Megiddo’s algorithm. The reason is that for each uncertain

point Pi, it may have locations in both T ′ and T \ T ′, which prevents us from having

an equation for two uncertain points and further prevents us from pruning uncertain

points as in Megiddo’s algorithm. Indeed, this is one of the major difficulties for us to

apply Megiddo’s algorithmic scheme. To overcome the difficulty, we continue to find the

centroid c′ of T ′ and determine which subtree of T ′ (rooted at c′) containing x∗. One key

idea is that we repeat this for logm+ 1 times, after which we obtain a subtree T ′′ with

at most nm/(2logm+1) = n/2 vertices (one may wonder why not repeat this for log(mn)

times so that we could obtain an edge containing x∗; the reason is that this would cost

Ω(mn log n) time). One observation is that there are at most n/2 uncertain points that

have locations in T ′′, and thus, at least n/2 uncertain points have all locations outside

T ′′. At this moment, we show that if T ′′ is connected with T \ T ′′ by only one vertex,

then we can apply Megiddo’s pruning scheme. However, another major difficulty is that

T ′′ may be connected with T \ T ′′ by more than one vertex (indeed, there may be as

many as logm + 1 such vertices), in which case we introduce new pruning techniques

to further reduce T ′′ to a smaller subtree T ′′′ such that x∗ ∈ T ′′′ and T ′′′ is connected

with T \ T ′′′ by either one or two vertices. For either case, we develop algorithms for

the pruning. All above procedures are carefully implemented so that they together take

O(mn) time and eventually prune at least n/8 uncertain points. The total time for

computing the center x∗ is thus O(mn).

Note that although we have assumed
∑m

j=1 fij = 1 for each Pi ∈ P, our algorithm

also works if
∑m

j=1 fij 6= 1. But for ease of exposition, our following discussion assumes∑m
j=1 fij = 1.

31

x
T1(x) T2(x)

Figure 3.2. The point x has two split subtrees T1(x) and T2(x).

3.2 Preliminaries

In the following chapter, unless otherwise stated, we assume our problem is the

vertex-constrained case, i.e., all locations of P are at vertices of T and each vertex of T

has at least one location. Later in Theorem 3.3.8, we will show that the general problem

can be reduced to this case in linear time. For ease of exposition, we further assume

every vertex of T has only one location of P, and thus |T | = mn.

In this section, we discuss a few observations, which are mainly related to deter-

mining which subtree of x contains the center x∗ for any given point x on T . We begin

with some notations.

For any two points p and q on T , denote by π(p, q) the simple path on T from p to q.

For any subtree T ′ of T and any uncertain point Pi, we call the sum of the probabilities

of the locations of Pi in T ′ the probability sum of Pi in T ′.

Consider any point x on T . Removing x from T will produce several subtrees of T ,

and we call them the split subtrees of x in T . More specifically, if x is in the interior of

an edge, then there are two split subtrees (e.g., see Fig. 3.2); otherwise the number of

subtrees is equal to the degree of x. We consider x as a vertex in each of these subtrees.

However, we assign x to be contained in only one (and an arbitrary one) split subtree,

but consider x as an “open vertex” in each of other subtrees. In this way, every point

of T is in one and only one split subtree of x.

Let π be any simple path on T and x be any point on π. Consider any uncertain

point Pi. For any location pij of Pi, the distance d(x, pij) is a convex (and piecewise

linear) function as x changes on π [27]. Recall that the expected distance Ed(x, Pi) =

wi ·
∑m

j=1 fij · d(x, pij). Since the sum of convex functions is also convex, Ed(x, Pi) is

convex (and piecewise linear) on π. Therefore, in general, as xmoves from one end of π to

32

the other end, the value Ed(x, Pi) first monotonically decreases and then monotonically

increases. Further, recall that R(x) = max1≤i≤nEd(x, Pi). Since the max of convex

functions is also convex, R(x) is convex (and piecewise linear) on π.

For each uncertain Pi, let p∗i be a point x ∈ T that minimizes Ed(x, Pi). In fact, if

we consider wi · fij as the weight of pij , p
∗
i is the weighted median of the points pij for

all j = 1, 2, . . . ,m. Hence, we call p∗i the median of Pi. Note that p∗i may not be unique

(in which case we use p∗i to denote an arbitrary median of Pi). This case happens when

there is an edge dividing T into two subtrees such that the probability sum of Pi in

either subtree is exactly 0.5. Indeed, the above “degenerate case” also possibly makes

the center x∗ of T not unique, in which case we use x∗ to refer to an arbitrary center of

T .

The following lemma can be obtained readily from the results given by Kariv and

Hakimi [55].

Lemma 3.2.1. Consider any point x on T and any uncertain point Pi of P.

1. If x has a split subtree whose probability sum of Pi is greater than 0.5, then p∗i

must be in that split subtree.

2. The point x is p∗i if the probability sum of Pi in each of x’s split subtree is less

than 0.5.

3. The point x is p∗i if x has a split subtree in which the probability sum of Pi is equal

to 0.5.

Consider any point x on T . If R(x) = Ed(x, Pi) for some uncertain point Pi, then

Pi is called a dominating point of x. Note that x may have multiple dominating points.

Lemma 3.2.2. If x has a dominating point Pi whose median p∗i is at x or x has two

dominating points Pi and Pj whose medians p∗i and p∗j are in two different split subtrees

of x, then x is x∗; otherwise, x∗ is in the same split subtree of x as p∗i .

Proof. Suppose x has a dominating point Pi whose median p∗i is at x. Then, imagine

that x moves to any of its split subtrees to a new position x1 and we use x0 to denote

x’s original location. According to the definition of p∗i and based on the complexity of

33

Ed(x, Pi), as x moves, the value Ed(x, Pi) is monotonically increasing, i.e, Ed(x1, Pi) ≥

Ed(x0, Pi). Clearly, R(x1) ≥ Ed(x1, Pi). Note that R(x0) = Ed(x0, Pi) since Pi is a

dominating point of x when x is at x0. Thus, we obtain R(x1) ≥ R(x0), which proves

that x0 is a center.

Suppose x has two dominating points Pi and Pj such that the medians p∗i and p∗j

are in two different split subtrees of x. We use a similar argument as above to prove that

x is a center. Imagine that x moves to any of its split subtrees to a new position x1 and

we use x0 to denote x’s original location. Since p∗i and p∗j are in different split subtrees,

as x moves, at least one of Ed(x, Pi) and Ed(x, Pj) must be monotonically increasing.

Therefore, R(x1) ≥ max{Ed(x1, Pi), Ed(x1, Pj)} ≥ Ed(x0, Pi) = Ed(x0, Pj) = R(x0).

This proves that x0 is a center.

The remaining case is that all dominating points of x have their medians in the

same split subtree T ′ of x and none of their medians is at x. Then, if we move x into T ′

infinitesimally, the value R(x) will be strictly decreasing. Due to the convexity of R(x),

we obtain that x∗ is in T ′.

The lemma thus follows.

The following corollary can be obtained from Lemmas 3.2.1 and 3.2.2.

Corollary 3.2.3. If a point x on T has a dominating point Pi whose probability sum in

a split subtree of x is less than 0.5, then unless x∗ is at x, the split subtree does not

contain x∗.

Proof. Suppose the probability sum of Pi in a split subtree T ′ of x is less than 0.5. When

x moves to T ′, the value Ed(x, Pi) will be strictly increasing, and thus, p∗i cannot be in

the split subtree except at x. In other words, either p∗i is at x or p∗i is outside T ′. Since

P ∗ is a dominating point of x, by Lemma 3.2.2, x∗ is either at x or outside T ′.

Based on the above observations, we can obtain the following result.

Lemma 3.2.4. Given any point x on T , we can determine whether x is x∗, and if not,

determine which split subtree of x contains x∗ in O(|T |) time.

Proof. We first compute the expected distances Ed(x, Pi) for all uncertain points Pi ∈ P,

which can be done in O(mn) time by traversing the tree from x. Specifically, we maintain

34

an array A[1 · · ·n] of size n, where A[i] is used to compute Ed(x, Pi) for each 1 ≤ i ≤ n.

During the traversal, we also maintain the distance from the current vertex to x. Suppose

the traversal visits a vertex v of T for the first time and assume v holds a location pij of

Pi. Then, we update A[i] = A[i] + wi · fij · d(x, pij) in constant time since the distance

d(x, pij) has been maintained during the traversal.

Next, we can find all dominating points of x in O(n) time. Let Pi be an arbitrary

dominating point. We compute the probability sums of Pi in all split subtrees of x by

traversing the tree again, which takes O(|T |) time.

If the probability sum of Pi in every split subtree of x is less than 0.5 or there is a

split subtree in which the probability sum of Pi is equal to 0.5, then by Lemma 3.2.1, x

is p∗i , and further by Lemma 3.2.2, x is x∗.

Otherwise, there must be a split subtree T ′ in which the probability sum of Pi

is greater than 0.5. By Lemma 3.2.1, T ′ contains p∗i . If x does not have another

dominating point, then by Lemma 3.2.2, the center x∗ is in T ′. Otherwise, we compute

the probability sums of all dominating points in T ′ only, which can be done in O(|T ′|+n)

time by traversing T ′. Note that |T ′| + n = O(|T |) since |T | = mn. By Lemmas 3.2.1

and 3.2.2, if the probability sums of all dominating points in T ′ are greater than 0.5,

then x∗ is in T ′; otherwise, x∗ is x.

The lemma thus follows.

Lemma 3.2.5. If the edge of T that contains x∗ is known, we can compute x∗ in O(|T |)

time.

Proof. We use similar techniques/observations that have been used in [21] for solving

the one-dimensional version of the one-center problem.

Let e = (u, v) be the edge of T that contains x∗. We first use the algorithm in

Lemma 3.2.4 to determine whether u or v is x∗. If not, we know that x∗ is in the

interior of e. Below we assume x∗ is in the interior of e.

Let x be any point in the interior of e and let t be the distance between x and u.

Let T (u) denote the subtree of T induced by u and the vertices u′ ∈ T such that the

simple path from u′ to x contains u.

35

We define an array A[1 · · ·n] such that for each 1 ≤ i ≤ n, A[i] is the probability

sum of Pi in T (u). Since the interior of e do not contain any locations of P (and

thus the probability sum of the locations of Pi not in T (u) is 1 − A[i]), it holds that

Ed(x, Pi) = Ed(u, Pi) + wi · (2 ·A[i]− 1) · t. Since A[i] is a constant, Ed(x, Pi) changes

linearly as x moves on e. In other words, Ed(x, Pi) defines a line on e. Since the center

x∗ is in the interior of e, we observe that x∗ corresponds to the lowest point in the upper

envelope of the lines defined by all uncertain points of P.

Based on the above discussion, our algorithm for computing x∗ works as follows.

We first compute the array A[1 · · ·n], which can be done in O(|T |) time by traversing

T (u). Then, we compute the n lines as defined above. Finally, compute the lowest point

in the upper envelope of the lines, which be done in O(n) time using Meggido’s linear

time linear programming algorithm [27].

The lemma thus follows.

3.3 The Refined Prune-and-Search

In this section, we give our refined prune-and-search algorithm for computing the

center x∗ of T . As discussed in Section 3.1.3, each round of our algorithm will prune

at least n
8 uncertain points of P in O(mn) time. After at most O(log n) rounds, only

a constant number of uncertain points remain, in which case we can compute x∗ in

additional O(m) time (see Lemma 3.3.7).

3.3.1 The Initial Pruning

A vertex c of T is called a centroid if every split subtree of c has no more than |T |/2

vertices. The centroid of T can be found in O(|T |) time by traversing the tree [27,55].

We first compute the centroid c of T . By Lemma 3.2.4, we determine whether c is

x∗, and if not, determine which split subtree of c contains x∗. If c is x∗, we are done

with the algorithm. Otherwise, let T1 be the split subtree of c that contains x∗. To

avoid repeatedly traversing T \T1 in future, we associate with c two information arrays

Dc[1 · · ·n] and Fc[1 · · ·n], defined as follows. Note that according to our definition of

split subtrees in Section 3.2, c may only be an “open vertex” of T1. But from now on we

consider c as a normal vertex of T1. Note that |T1| ≤ |T |/2 + 1 (we assume |T1| ≤ |T |/2

36

for simplicity of the time analysis). Let T (c) = (T \ T1) ∪ {c}. For each 1 ≤ i ≤ n,

we define Fc[i] to be the probability sum of Pi in T (c), i.e., Fc[i] =
∑

pij∈Pi∩T1 fij , and

we define Dc[i] to be the expected distance from c to the locations of Pi in T1, i.e.,

Dc[i] = wi ·
∑

pij∈Pi∩T1 fij · d(c, pij). We can compute the two information arrays in

O(mn) time by traversing T (c).

Our following algorithm will continue to work on the split subtree T1. Clearly, for

any point p ∈ T1 and q ∈ T (c), the path π(p, q) contains c. We call c a connector of T1

since it connects T1 with T (c). We call T (c) the connector subtree of c with respect to

T1.

As discussed in Section 3.1.3, since each uncertain point may have locations in both

T1 and T \ T1, we cannot proceed as Megiddo’s algorithm [27]. Instead, we continue to

find the centroid of T1, denoted by c1, which can be done in O(|T1|) time. Similarly, c1

has many split subtrees in T1, and we want to determine whether c1 is the center x∗,

and if not, which split subtree of c1 contains x∗. This can be done in O(mn) time by

Lemma 3.2.4. However, we can do faster in O(|T1|+n) time by using the two information

arrays associated with the connector c without traversing the subtree T (c) again. The

algorithm is given in Lemma 3.3.1. Later we will generalize the algorithm to the more

general case, which is necessary to bound the running time of our overall algorithm in

O(mn) time.

Lemma 3.3.1. We can determine in O(|T1|+ n) time whether c1 is the center x∗, and if

not, determine which split subtree of c1 in T1 contains x∗.

Proof. As in Lemma 3.2.4, we first compute the expected distances Ed(x, Pi) for all

uncertain points Pi ∈ P. To this end, we traverse T1 starting from c1. As in Lemma

3.2.4, during the traversal, we maintain an array A[1 · · ·n] and the distance from the

current vertex to c1. Suppose the traversal visits a vertex v of T1 for the first time;

depending on whether v is the connector c, there are two cases. Note that the distance

d(c1, v) is known.

If v is not c, then we proceed normally: Assume v holds a location pij of some

uncertain point Pi; we update A[i] = A[i] + wi · fij · d(c1, v).

37

T2

c1
c T (c)

T1

T (c1)

Figure 3.3. Illustrating the subtrees T (c), T1, T2, and T (c1), where c is in T2.

If v is c, then for each 1 ≤ i ≤ n, we update A[i] = A[i]+Dc[i]+wi ·Fc[i]·d(c1, c). By

the definition of the arrays Dc and Fc, the above correctly updates A[i] since essentially

Dc[i] +wi · Fc[i] · d(c1, c) is the expected distance from c1 to the locations of Pi in T (c).

Once all vertices of T1 are visited, the expected distances Ed(c1, Pi) for all Pi ∈ P

are computed. It is easy to see that the algorithm spends O(n) time on the connector c

and spends constant time on each of other vertices of T1. Therefore, the algorithm runs

in O(|T1|+ n) time.

The rest of the algorithm is similar to that of Lemma 3.2.4 with a difference that

we need to use the array Fc associated with c to compute the probability sums, which

can also be done in O(|T1|+ n) time.

Hence, the total running time of the algorithm is O(|T1|+ n).

If c1 is x∗, we are done. Otherwise let T2 denote the split subtree of c1 in T1 that

contains x∗. Note that c may or may not be in T2. Define T (c1) to be the subtree of

T induced by c1 and the vertices v ∈ T such that the simple path from v to any vertex

of T2 contains c1. In fact, T (c1) = (T1 \ T2) ∪ {c1} if c is in T2 (e.g., see Fig. 3.3) and

T (c1) = T (c) ∪ (T1 \ T2) ∪ {c1} otherwise.

Similarly, we associate c1 with two information arrays Fc1 [1 · · ·n] and Dc1 [1 · · ·n],

where Fc1 [i] =
∑

pij∈Pi∩T (c1) fij and Dc1 [i] = wi ·
∑

pij∈Pi∩T (c1) fijd(c1, pij) for each

1 ≤ i ≤ n. Similar to the algorithm in Lemma 3.3.1, we can compute the above two

arrays in O(|T1|+ n) time, regardless whether c is in T2 or not. We call c1 a connector

of T2 and call T (c1) the connector subtree of c1. If c is in T2, c is also a connector of T2.

Hence, T2 may have at most two connectors. Note that each connector of T2 must be a

leaf of T2.

38

Next we continue the above procedure recursively on T2.

In general, suppose we have performed the above procedure for h recursive steps

and obtain a subtree Th, which may have at most h connectors. Each connector of Th is a

leaf of Th and is associated with two information arrays. Then, we compute the centroid

ch of Th in |Th| time. By generalizing the algorithm in Lemma 3.3.1 and using the

information arrays associated at the connectors, in O(|Th|+nh) time we can determine

whether ch is x∗, and if not, which split subtree of ch in Th contains x∗ (i.e., the algorithm

spends O(n) time on each connector and O(1) time on each of other vertices of Th). If

ch is x∗, we are done with the algorithm. Otherwise, let Th+1 be the split subtree of ch

containing x∗. The vertex ch is a connector of Th+1, and the connectors of Th that are

in Th+1 are also connectors of Th+1. Hence, Th+1 has at most h + 1 connectors, each

of which is a leaf of Th+1. We define the connector subtree T (ch) of ch similarly (i.e.,

T (ch) is the subtree of T induced by ch and the vertices v ∈ T such that the simple path

from v to any vertex of Th+1 contains ch). Also, we associate two information arrays

Fch [1 · · ·n] and Dch [1 · · ·n] with ch (i.e., for each 1 ≤ i ≤ n, Fch [i] =
∑

pij∈Pi∩T (ch) fij

and Dch [i] = wi ·
∑

pij∈Pi∩T (ch) fijd(ch, pij)), and the two arrays can be computed in

O(|Th|+ nh) time.

We perform the above procedure for h = 1 + logm recursive steps, after which

we obtain a tree Th. By the definition of centroids, |Th| ≤ |T |/2h = (mn)/2h =

n/2. Therefore, if we let T0 = T , the running time of all above recursive steps is

O(
∑h

k=1(|Tk−1|+n(k− 1))), which is O(mn+nh2) = O(mn+n log2m) = O(mn) since

|T | = mn and |Tk| ≤ |Tk−1|/2 for each 1 ≤ k ≤ h.

We refer to the above algorithm as the initial pruning step.

Since |Th| ≤ n/2, there are at most n/2 uncertain points of P that have locations in

Th. In other words, we have the following observation, which is crucial to our algorithm.

Observation 3.3.2. There are at least n/2 uncertain points Pi ∈ P such that Pi does not

have any location in Th.

Let C denote the number of connectors in Th. Depending on the value of C, our

algorithm will proceed accordingly for three cases: C = 1, C = 2, and C > 2. If C = 1,

although the implementation details are quite different, we can still apply Meggido’s

39

pruning scheme [27] due to the following key property: if an uncertain point Pi does not

have any location in Th, then all its locations must be in the connector subtree T (ĉ),

where ĉ is the only connector of Th. However, if C > 2, although an uncertain point

Pi may not have any location in Th, the above key property does not hold any more,

which makes Meggido’s pruning scheme fail. To overcome the difficult, if C > 2, we will

further process the subtree Th using different techniques. For solving the case C = 2,

we will reduce the problem to the case C = 1, and for solving the case C > 2, we will

reduce the problem to either the case C = 2 or the case C = 1. In the following, we

first present our algorithm for the case C = 1.

Let P ′ denote the set of uncertain points Pi ∈ P such that Pi does not have any

location in Th. We can easily find P ′ in O(nm) time by traversing Th. By Observation

3.3.2, |P ′| ≥ n/2.

3.3.2 The Case C = 1

In this case, the subtree Th has only one connector, denoted by ĉ. Hence, all vertices

that are not in Th are in the connector subtree T (ĉ). Recall that ĉ is associated with

two information arrays Dĉ[1 · · ·n] and Fĉ[1 · · ·n].

For each Pi ∈ P ′, since all locations of Pi are in T (ĉ), it holds that Ed(x, Pi) =

Ed(ĉ, Pi) +wi · t, where x is a point in Th at a distance t from ĉ. Note that Ed(ĉ, Pi) is

essentially Dĉ[i], and thus it is already known.

Consider any pair Pi and Pj of uncertain points in P ′. Without of loss generality,

assume Ed(ĉ, Pi) ≥ Ed(ĉ, Pj). If wi < wj , then by solving the equation Ed(ĉ, Pi)+wi·t =

Ed(ĉ, Pj)+wj ·t, we can obtain a value tij such that for every x in Th at a distance t from

ĉ, Ed(x, Pi) ≥ Ed(x, Pj) if and only if 0 ≤ t ≤ tij . If wi ≥ wj , Ed(x, Pi) ≥ Ed(x, Pj)

holds for any x in Th, and thus Pj can be pruned immediately (since it is “dominated”

by Pi).

Based on the above discussions, we arbitrarily arrange the uncertain points of P ′

into a set Σ of |P ′|/2 disjoint pairs, and for each pair (Pi, Pj), we compute the value tij .

Let t∗ denote the median of these tij values. Suppose we have already known whether

x∗ is within the distance t∗ from ĉ on Th (we will discuss this step later); in either case,

we can prune exactly one uncertain point from each pair of Σ. Since |P ′| ≥ n/2 and

40

|Σ| ≥ n/4, the total number of pruned uncertain points is at least n/8. At this point, we

have reduced our problem to the same problem on a tree T+ of at most 7n/8 uncertain

points, defined as follows. First, let T+ = Th. Then, consider any pair (Pi, Pj) of Σ.

Without of loss of generality, assume Pi is not pruned. For each location pij of Pi, we

create a vertex for T+ connecting to ĉ directly by an edge of length d(pij , ĉ). Also let

wi still be the weight of Pi. In this way, the tree T+ has at most 7n/8 uncertain points

and at most 7nm/8 vertices. Based on our above pruning procedure, the center of T+

is also the center of the original tree T . Note that the above way of constructing T+

can be easily done in O(mn) time.

It remains to determine whether x∗ is within the distance of t∗ from ĉ on Th. As

in [27], by traversing Th from ĉ, in |Th| time we can find all points q ∈ Th such that

d(ĉ, q) = t∗, and we use Q(ĉ, Th) to denote the set of these points. Note that each point

q ∈ Q(ĉ, Th) has a split subtree that contains ĉ, and we assign q to be contained in

that split subtree (recall that we allow q to be in only one of its split subtrees); for

any point x in other split subtrees of q, it holds that d(ĉ, x) > t∗. Hence, the set of all

points x of Th with d(ĉ, x) > t∗ can be represented as the union of split subtrees of the

points in Q(ĉ, Th) that do not contain ĉ, and we use T (ĉ, Th) to denote the above set

of split subtrees. Our goal is to determine whether x∗ is in any subtree of T (ĉ, Th). To

this end, we solve a more general problem, called a center-detecting problem, defined as

follows. Another reason for solving this more general problem is that our algorithms for

the other two cases C = 2 and C > 2 will need it.

Consider the input tree T . Let y be any vertex of T . Consider any point x ∈ T with

x 6= y. One split subtree of x, denoted by τ(x), contains y, and we assign x to be in τ(x).

We call other split subtrees of x than τ(x) the y-exclusive split subtrees of x. Note that

since the y-exclusive split subtrees of x each contain x as an “open vertex”, they are

actually pairwise disjoint. Let Y be a set of points on T with y 6∈ Y and T (Y) be any

subset of the set of all y-exclusive subtrees of all points of Y with the following disjoint

property: any two subtrees of T (Y) are disjoint (e.g., see Fig. 3.4; one can verify that

this condition implies that |Y | ≤ |T |). The center-detecting problem on (y, Y, T (Y)) is

to determine whether the center x∗ is located in one of the subtrees of T (Y). In Section

3.3.3, we will give an O(|T |) time algorithm to solve the center-detecting problem.

41

y

y2

y1

y3

y4

y6

y5

T ′
1

T ′
2

T ′
3

T ′
4

T ′
5

T ′
6

T ′
7

T ′
8

Figure 3.4. Illustrating an example for the center-detecting problem. In this example,
Y = {y1, y2, . . . , y6} and T (Y) = {T ′1, . . . , T ′8} shown with triangles. Note that although
T ′2 and T ′3 share a common point y2, since y2 is considered as an open vertex in each of
them, T ′2 and T ′3 are disjoint. This is also the case for T ′6 and T ′8.

By using this result, in O(|T |) time, we can solve the above problem of determining

whether x∗ is in the subtrees of T (ĉ, Th) as follows. Recall that T = T (ĉ) ∪ Th and ĉ

is a leaf of Th. By the definitions of the points of Q(ĉ, Th), we observe that T (ĉ, Th) is

actually the set of the ĉ-exclusive subtrees of all points of Q(ĉ, Th) in T and any two

subtrees in T (ĉ, Th) are disjoint. Hence, although our problem is on the subtree Th, we

can actually work on the tree T . Therefore, to determine whether x∗ is in the subtrees

of T (ĉ, Th) is to solve the center-detecting problem on (ĉ, Q(ĉ, Th), T (ĉ, Th)) and T .

3.3.3 The Center-Detecting Problem

In this section, we give an O(|T |) time algorithm to solve the center-detecting

problem on (y, Y, T (Y)), as defined above.

A similar (but somewhat constrained) problem also appears in [27] on the determin-

istic one-center problem, and Megiddo [27] gave an O(|T |) time algorithm, which simply

traverses all subtrees of T (Y). Our problem is more challenging, which is partially due

to that each uncertain point may have locations either in or outside those subtrees of

T (Y). In the following, we first give some observations, based on which our algorithm

will be developed.

To simplify notation, let T = T (Y). For each subtree τ ∈ T , let y(τ) be the point

in Y such that τ is the y-exclusive split subtree of y(τ).

Consider any subtree τ ∈ T . Let P(τ) be the set of uncertain points Pi whose

probability sums in τ are greater than 0.5. Note that P(τ) = ∅ is possible. Define

42

g(τ) = maxPi∈P(τ)Ed(y(τ), Pi), and g(τ) = 0 if P(τ) = ∅. Define g(T) = maxτ∈T g(τ).

Note that P(τ) ∩ P(τ ′) = ∅ for any two subtrees τ and τ ′ of T .

Lemma 3.3.3. For any τ ∈ T , if g(τ) < g(T), then the center x∗ cannot be in τ .

Proof. Consider any subtree τ ∈ T with g(τ) < g(T). Let Pj be a dominating point of

y(τ), i.e., R(y(τ)) = Ed(y(τ), Pj). We first show that Pj is not in P(τ).

Let τ ′ be a subtree of T such that g(τ ′) = g(T), and let Pi be a point of P(τ ′) such

that g(τ ′) = Ed(y(τ ′), Pi). Based on the disjoint property of Y and T , we can obtain

that y(τ) is not in τ ′. Since the probability sum of Pi in τ ′ is greater than 0.5 and y(τ)

is not in τ ′, it holds that Ed(y(τ), Pi) ≥ Ed(y(τ ′), Pi) = g(τ ′) = g(T) > g(τ). On the

other hand, recall that R(y(τ)) is the maximum expected distance from all uncertain

points of P to y(τ). Thus, R(y(τ)) ≥ Ed(y(τ), Pi), and we obtain R(y(τ)) > g(τ).

Therefore, Pj , as a dominating point of y(τ), cannot be in P(τ), since otherwise we

would obtain g(τ) = Ed(y(τ), Pj) = R(y(τ)), incurring contradiction.

Since Pj 6∈ P(τ), the probability sum of Pj in τ is less than or equal to 0.5.

If the probability sum of Pj in τ is less than 0.5, then since Pj is a dominating point

of y(τ) and τ is a split subtree of y(τ), by Corollary 3.2.3 (recall that y(τ) is not in τ ,

i.e., y(τ) is an “open” vertex of τ), the center x∗ cannot be in τ .

If the probability sum of Pj in τ is equal to 0.5, then by Lemma 3.2.1, y(τ) is the

median p∗j of Pj . Further, since Pj is a dominating point of y(τ), by Lemma 3.2.2, y(τ)

is x∗. Recall that y(τ) is not in τ . Hence, x∗ is not in τ .

The lemma thus follows.

Lemma 3.3.4. If there exist two subtrees τ1 and τ2 in T such that g(τ1) = g(τ2) = g(T),

then the center x∗ cannot be in any subtree of T .

Proof. Let τ1 and τ2 be two subtrees in T such that g(τ1) = g(τ2) = g(T). We first

show that x∗ cannot be in τ1.

Let Pi be a point of P(τ2) such that g(τ2) = Ed(y(τ2), Pi). As in the proof of

Lemma 3.3.3, since the probability sum of Pi in τ2 is greater than 0.5 and y(τ1) is not

in τ2, it holds that Ed(y(τ1), Pi) ≥ Ed(y(τ2), Pi) = g(τ2) = g(τ1). On the other hand,

since R(y(τ1)) ≥ Ed(y(τ1), Pi), we obtain that R(y(τ1)) ≥ g(τ1). Depending on whether

R(y(τ1)) = g(τ1), there are two cases.

43

If R(y(τ1)) = g(τ1), then Pi is a dominating point of y(τ1). Since Pi ∈ P(τ2), the

probability sum of Pi in τ2 is greater than 0.5, which implies that the probability sum

of Pi in τ1 is less than 0.5 because τ1 and τ2 are disjoint. Consequently, by Corollary

3.2.3, we obtain that x∗ cannot be in τ1 since Pi is a dominating point of y(τ1).

If R(y(τ1)) > g(τ1), then for any dominating point Pj of y(τ1), Pj cannot be in

P(τ1) since otherwise we would obtain g(τ1) = Ed(y(τ1), Pj) = R(y(τ1)), incurring

contradiction. Hence, the probability sum of Pj in τ1 is less than or equal to 0.5. By

the similar analysis as that for Lemma 3.3.3, we can show that x∗ is not in τ1.

The above proves that x∗ cannot be in τ1. Analogously, we can show that x∗ cannot

be in any subtree τ with g(τ) = g(T). Combining with Lemma 3.3.3, we conclude that

x∗ cannot be in any subtree of T . The lemma thus follows.

Suppose we have computed the value g(τ) for each τ ∈ T ; based on Lemmas 3.3.3

and 3.3.4, we can solve the center-detecting problem in O(mn) time in the following

way. First, we compute g(T) and check whether there exist two subtrees τ1 and τ2 such

that g(τ1) = g(τ2) = g(T). If yes, by Lemma 3.3.4, x∗ cannot be in any subtree of T and

we are done. Otherwise, let τ be the subtree such that g(τ) = g(T). By Lemma 3.3.3,

we only need to determine whether x∗ is in τ , which can be done by applying Lemma

3.2.4 on x = y(τ). Since |T | ≤ |T | = mn (recall that due to the disjoint property of Y

and T , it always holds that |T | ≤ |T |), the above can be done in O(mn) time.

It remains to compute the value g(τ) for each τ ∈ T . Below we present an O(|T |)

time algorithm.

We first compute the set P(τ) for all τ ∈ T . We use an array A[1 . . . n] of size n.

Initially set A[i] = 0 for each 1 ≤ i ≤ n. Consider any τ ∈ T . We traverse the subtree τ

starting from y(τ). Whenever we visit a vertex v for the first time and suppose v holds

a location pij of Pi, we update A[i] = A[i] + fij . After the update, if A[i] > 0.5, then we

add Pi to P(τ) (e.g., we can use a list to store P(τ)). In this way, we can obtain the set

P(τ) in time linear to the size of τ . After traversing τ and before traversing the next

subtree of T , we reset the non-zero elements of A to zero. However, to avoid the Ω(n)

time, we do not scan the entire array A. Instead, we can traverse the subtree τ again

and whenever we visit a location pij of Pi, we reset A[i] = 0. In this way, we can reset

44

A in time linear to the size of τ . We continue to traverse other subtrees of T as above.

Hence, we can compute P(τ) for all τ ∈ T in time linear to the total size of all subtrees

of T , which is bounded by O(mn) since the subtrees of T are pairwise disjoint.

We proceed to compute g(τ) for all τ ∈ T . Recall that for any two subtrees τ1 and

τ2 of T , P(τ1)∩P(τ2) = ∅. Hence, each Pi ∈ P belongs to P(τ) for at most one subtree

τ of T . We organize the set P(τ) for all τ ∈ T in a way that given Pi, if Pi is in P(τ)

for some τ , then we can obtain τ in constant time. This can be easily done by using an

array B[1 . . . n], i.e., B[i] = τ if Pi is in P(τ). Note that B can be constructed in O(n)

time by scanning P(τ) for all τ ∈ T .

Next we traverse the entire tree T to compute g(τ) for all τ ∈ T . During the

traversal, we maintain another array α[1 . . . n]. For each 1 ≤ i ≤ n, initially we set α[i] =

0, and after the algorithm finishes, if B[i] = τ , then α[i] will be equal to Ed(y(τ), Pi).

During the traversal, suppose we visit a vertex v for the first time and v holds a location

pij from an uncertain pint Pi, we update α[i] = α[i] +wi ·fij ·d(v, y(τ)), where τ = B[i],

provided that we know the distance d(v, y(τ)). Below in Lemma 3.3.5 we will give a data

structure that can compute d(v, y(τ)) in constant time, with O(mn) time preprocessing.

After the entire tree T is traversed, the values Ed(y(τ), Pi) for all Pi ∈ P(τ) and all

τ ∈ T are computed. Then, we can compute the values g(τ) for all τ ∈ T in additional

O(n) time.

Lemma 3.3.5. With O(|T |) time preprocessing, given any two points p and q in V (T)∪Y ,

where V (T) is the set of all vertices of T , we can compute the distance d(p, q) in O(1)

time.

Proof. For each point in Y ∪ {y}, if it is not a vertex of T , then it is in the interior of

an edge of T , and we insert the point to T as a new vertex of T . In this way, since

|Y | ≤ |T |, the number of vertices in the new tree T is O(mn).

We consider y as the root of the new tree T . For any two vertices u and v of

T , let lca(u, v) denote the lowest common ancestor of u and v. To determine the

distance d(u, v), we have the following easy observation: d(u, v) = d(u,w) + d(w, v),

where w = lca(u, v), and further, d(u,w) = d(y, u) − d(y, w) and d(w, v) = d(y, v) −

d(y, w); consequently, d(u, v) = d(y, u) + d(y, v)− 2 · d(y, w).

45

T ′
1

T ′
2 T ′

3

T ′
4

T ′
5

T ′
6

T ′
7

ĉ1 ĉ2

T ′
8

Figure 3.5. Illustrating the tree Th for the case C = 2, where T (V) = {T ′1, . . . T ′8} are
shown with triangles.

Based on the above observation, in the preprocessing we compute d(y, v) for each

vertex v of T , which can be done in O(|T |) time by traversing the tree. Further, in |T |

time we can build a lowest common ancestor data structure [66,67] on T such that given

any two vertices u and v, lca(u, v) can be found in constant time.

Given any two query vertices u and v of T , we first determine w = lca(u, v) in

constant time by using the lowest common ancestor data structure, and then compute

d(u, v) = d(y, u) + d(y, v)− 2 · d(y, w) again in constant time.

The lemma thus follows.

The above discussion leads to the following result.

Lemma 3.3.6. The center-detecting problem on T can be solved in O(|T |) time.

3.3.4 The Case C = 2

In this case, the subtree Th has two connectors, denoted by ĉ1 and ĉ2. Recall that

each ĉk is associated with two arrays Dĉk [1 · · ·n] and Fĉk [1 · · ·n] for k = 1, 2. The

techniques for the previous case C = 1 do not work here. The reason is that although

every uncertain point in P ′ does not have any location in Th, it may have locations in

both connector subtrees T (ĉ1) and T (ĉ2). We use a different approach given below.

Consider the path π(ĉ1, ĉ2) from ĉ1 to ĉ2. Recall that ĉ1 and ĉ2 are leaves of Th

because they are connectors. Let V denote the set of vertices of π(ĉ1, ĉ2) except ĉ1 and

ĉ2. Consider any vertex v of V . Let T (v) be the set of the split subtrees of v that do

not contain either ĉ1 or ĉ2. We assume v is not contained in any subtree of T (v). Note

that T (v) is empty if the degree of v is two. Let T (V) = ∪v∈V T (v) (e.g., see Fig. 3.5).

Thus, Th is the union of the subtrees of T (V) and π(ĉ1, ĉ2).

46

First of all, we want to determine whether the center x∗ is in one of the subtrees

of T (V). Indeed, this is an instance of the center-detecting problem. To see this, each

subtree of T (V) is a ĉ1-exclusive split subtree of some point in V , and any two subtrees

of T (V) are disjoint. Further, ĉ1 is a leaf of Th. Hence, as discussed in Section 3.3.2,

it is an instance of the center-detecting problem on (ĉ1, V, T (V)) and T , which can be

solved in O(mn) time by Lemma 3.3.6.

If x∗ is contained in a subtree τ of T (V), and assume τ is the split subtree of

v ∈ V . Then, the problem essentially becomes the first case where C = 1. Indeed, we

can consider v as the “connector” of τ . Recall that every uncertain point in P ′ does

not have any location in Th, since τ is a subtree of Th, every uncertain point in P ′ does

not have any location in τ as well. Since τ has only one connector, by using the same

techniques as for the case C = 1, we can prune at least n/8 uncertain points.

If x∗ is not contained in any subtree of T (V), then x∗ must be in the path π(ĉ1, ĉ2).

Consider any uncertain point Pi ∈ P ′. Since Pi does not have any location in Th, Pi does

not have any location in π(ĉ1, ĉ2). Hence, if x is a point on π(ĉ1, ĉ2) at a distance t from

ĉ1, then it is not difficult to see that Ed(x, Pi) = Ed(ĉ1, Pi)+wi ·(Fĉ1 [i]−Fĉ2 [i]) ·t (recall

that Fĉk [i] is the probability sum of Pi in T (ĉk) for k = 1, 2). Note that Fĉ1 [i] − Fĉ2 [i]

is constant as long as x is in π(ĉ1, ĉ2) since Pi does not have any location in π(ĉ1, ĉ2).

Hence, as x moves from ĉ1 to ĉ2 along π(ĉ1, ĉ2), the value Ed(x, Pi) changes linearly.

The above observation leads to the following algorithm for pruning the uncertain

points of P ′. We again arbitrarily arrange the points of P ′ into |P ′|/2 pairs. In general,

for each such pair (Pi, Pj), by solving the equation Ed(ĉ1, Pi) +wi · (Fĉ1 [i]−Fĉ2 [i]) · t =

Ed(ĉ1, Pj) + wj · (Fĉ1 [j]− Fĉ2 [j]) · t, we can determine a value tij such that for a point

x in π(ĉ1, ĉ2) at a distance t from ĉ1, Ed(x, Pi) ≥ Ed(x, Pj) if and only if 0 ≤ t ≤ tij .

In this way, we can obtain |P ′|/2 such values tij , and let t∗ be the median of them.

Let q∗ be the point on π(ĉ1, ĉ2) at distance t∗ from ĉ1. Again, by Lemma 3.2.4, we can

determine in O(mn) time whether q∗ is x∗, and if not, which split subtree of q∗ contains

x∗ (and thus determine whether x∗ is within the distance t∗ from ĉ1). In either case, we

can prune an uncertain point from each of the above pairs of P ′, and thus prune a total

of at least n/8 uncertain points due to |P ′| ≥ n/2.

47

3.3.5 The Case C > 2

In this case, Th has more than two connectors. Indeed, this is the most general

case. Clearly, the techniques for the case C = 2, which reply on a path π(ĉ1, ĉ2), are

not applicable any more. We use a new approach by “shrinking” Th until the problem

is reduced to one of the previous two cases.

A vertex z of Th is called a connector-centroid if each split subtree of z has no

more than C/2 connectors (such a vertex may not be unique). The main idea of our

algorithm is similar to the scheme of the initial pruning in Section 3.3.1. We first find a

connector-centroid z of Th and then remove the split subtrees of z that do not contain

the center x∗. We work on the remaining split subtree of z recursively until there are at

most two connectors left, at which moment we have reduced the problem to the case of

either C = 2 or C = 1. The details are given below.

We first find a connector-centroid z of Th. This can be done in O(|Th|) time by

a traversal of Th, always moving in the direction in which the number of connectors,

in the subtree entered into, is being maximized (or by modifying the algorithm in [55]

for finding the ordinary centroid). As the algorithm in Section 3.3.1, by traversing Th

and using the information arrays associated with the connectors, we can determine in

O(Cn+|Th|) time whether z is the center x∗, and if not, which split subtree of z contains

x∗. If z is x∗, we are done with the algorithm. Otherwise, let T 1
h (z) denote the split

subtree of z in Th that contains x∗. Further, we consider z as a “connector” of T 1
h (z). By

the definition of the connector-centroid, T 1
h (z) has at most C/2+1 connectors. Also as in

Section 3.3.1, we define the connector subtree T (z) for z as the subtree of T induced by z

and the vertices v ∈ T such that the simple path from v to any vertex of T 1
h (z) contains

z. Similarly, we associate two information arrays Fz[1 · · ·n] and Dz[1 · · ·n] with z (i.e.,

for each 1 ≤ i ≤ n, Fz[i] =
∑

pij∈Pi∩T (z) fij and Dz[i] = wi ·
∑

pij∈Pi∩T (z) fijd(z, pij)).

As in Section 3.3.1, the two arrays can be computed in O(Cn+ |Th|) time by traversing

Th.

We continue the above algorithm recursively on T 1
h (z) until after l steps we obtain

a subtree T lh(z) of at most two connectors, at which moment we have reduced the

problem to one of the previous two cases (and thus we can use the algorithms for the

previous case to proceed). Clearly, l = O(logC). For the running time, suppose for

48

each 1 ≤ k ≤ l, we refer to the k-th step as for determining the subtree T kh (z) and

computing the corresponding information (e.g., the information arrays). As discussed

above, the first step takes O(nC+ |Th|) time, and similarly, the second step can be done

in O(nC/2 + |Th|) time because there are only at most C/2 + 1 connectors in T 1
h (z).

In general, the k-th step can be done in O(nC/2k−1 + |Th|) time for each 1 ≤ k ≤ l.

Recall that Th was obtained in the initial pruning step in Section 3.3.1 and |Th| ≤

n/2. Since l = O(logC) and C = O(logm), the total running time for obtaining the

subtree T lh(z) (and thus reducing the problem to the previous two cases) is bounded by∑l
k=1(nC/2k−1 + n/2) = O(nC + nl) = O(n logm).

As a summary, for the case C > 2, within O(mn) time we can also prune at least

n/8 uncertain points.

3.3.6 Wrapping Things Up

The above gives an O(mn) time algorithm that computes a tree T+ of at most

7n/8 uncertain points and at most 7mn/8 vertices, such that the center of T+ is x∗.

We continue the same procedure recursively on T+ until we obtain a tree T ∗ with only

a constant number of uncertain points (hence T ∗ has O(m) vertices). The total time is

O(mn). The following lemma computes the center x∗ on T ∗ in additional O(m) time,

and the algorithm is similar to the algorithmic scheme of the initial pruning in Section

3.3.1.

Lemma 3.3.7. The center x∗ on T ∗ can be computed in O(m) time.

Proof. Let H denote the number of uncertain points on T ∗, and H = O(1). Note that

|T ∗| = Hm. We reorder the uncertain points of T ∗ as P1, P2, . . . , PH .

We first compute the centroid b of T ∗. By Lemma 3.2.4, in O(m) time we can

determine whether b is x∗, and if not, determine which split subtree of b contains x∗.

If b is x∗, we are done. Otherwise, assume T ∗1 is the split subtree of b that contains

x∗. As in Section 3.3.1, we consider b as the connector of T ∗1 . Similarly, we define the

connector subtree T ∗(b) as the subtree of T ∗ induced by b and the vertices v ∈ T ∗ such

that the simple path from v to any vertex of T ∗1 contains b. Also, we associate b with

two information arrays Fb[1 · · ·H] and Db[1 · · ·H] size H, i.e., for each 1 ≤ i ≤ H,

49

Fb[i] =
∑

pij∈Pi∩T ∗(b) fij and Db[i] = wi ·
∑

pij∈Pi∩T ∗(b) fijd(b, pij). Note that the size of

T ∗1 is at most Hm/2.

Next we find the centroid b1 of T ∗1 . As in Section 3.3.1, by traversing T ∗1 and using

the two information arrays associated with the connector b, in O(H + |T ∗1 |) time we can

determine whether b1 is x∗, and if not, which split subtree of b1 contains x∗. If b1 is

x∗, then we are done. Otherwise, we proceed on the split subtree of b1 that contains x∗

recursively until after l steps we obtain a subtree T ∗l that is an edge of T ∗ with x∗ ∈ T ∗l .

Since |T ∗| = O(m), we have l = O(logm).

To analyze the total running time of all above recursive steps, suppose for each

1 ≤ k ≤ l, we refer to the k-th step as for determining the subtree T ∗k and computing

the corresponding information (e.g., the information arrays). Note that |T ∗k | ≤ Hm/2k

and T ∗k has at most k connectors. As discussed above, the first step takes O(|T ∗|) time,

and similarly, the second step takes O(H + |T ∗1 |) time because there is a connector in

T ∗1 . In general, the k-th step can be done in O((k−1)H+ |T ∗k−1|) time. Therefore, if we

let T ∗0 = T ∗, the total running time for obtaining T ∗l is O(
∑l

k=1((k − 1)H + |T ∗k−1|)) =

O(H · l2 +H ·m ·∑l
k=1(1/2k)), which is O(m) since H = O(1) and l = O(logm).

Finally, to compute x∗ in T ∗l , which is an edge of T ∗, we can use Lemma 3.2.5

(replacing T with T ∗) and find x∗ in O(m) time.

The lemma thus follows.

We conclude that the center x∗ on T can be found in O(|T |) = O(mn) time.

Recall that the above only considered the vertex-constrained case, i.e., all locations

of P are at vertices of T and each vertex of T contains at least one location of P. For

the general problem where a location of P may be in the interior of an edge of T and

a vertex of T may not contain any location of P, the following theorem solves it in

O(mn+ |T |) time by reducing it to the vertex-constrained case.

Theorem 3.3.8. The center x∗ of T and P can be found in O(mn+ |T |) time.

Proof. Recall that P consists of n uncertain points, each of which has m locations on T .

We reduce the problem to a problem instance of the vertex-constrained case and then

apply our algorithm for the vertex-constrained case. More specifically, we will modify

the tree T to obtain another tree T ′ of size O(mn). We will also compute another set

50

(a) (b) (c)

Figure 3.6. Illustrating the three trees: (a) T1, (b) T2, and (c) T ′. Note that the empty
and non-empty vertices are shown with squares and disks, respectively.

P ′ of n uncertain points on T ′, which correspond to the uncertain points of P with the

same weights, but each uncertain point of P ′ has at most 2m locations on T ′. Further,

each location of P ′ is at a vertex of T ′ and each vertex of T ′ holds at least one location

of P ′. We will show that we can obtain T ′ and P ′ in O(mn+ |T |) time based on T and

P. Finally, given the center x′ of T ′ and P ′, we can find x∗ on T in O(mn+ |T |) time.

The details are given below.

Recall that for each edge e of T , all locations of P on e have been sorted. We

traverse T , and for each edge e, if e contains some locations of P in its interior, then we

create a new vertex in T for each such location. In this way, we create at most mn new

vertices for T . The above can be done in O(mn + |T |) time. We use T1 to denote the

new tree. Note that |T1| = O(mn+ |T |). For each vertex v of T1, if v does not hold any

location of P, then we call v an empty vertex.

Next, we modify T1 in the following way. First, for each leaf v of T1, if v is empty,

then we remove v from T1. We keep doing this until every leaf of the remaining tree

is not empty. Let T2 denote the tree after the above step (e.g., see Fig. 3.6). Second,

for each internal vertex v of T2, if the degree of v is 2 and v is empty, then we remove

v from T2 and merge its two incident edges as a single edge whose length is equal to

the sum of the lengths of the two incident edges of v. We keep doing this until every

degree-2 vertex of the remaining tree is not empty. Let T ′ be the remaining tree (e.g.,

see Fig. 3.6).

The above two steps can be implemented in O(|T1|) time as follows. We pick an

arbitrary non-empty vertex of T1 as the root. The first step can be done by a post-

order traversal of T1 from the root. Indeed, during the traversal, suppose a vertex v is

51

currently being visited; if all vertices in its subtree are empty, then v should be removed

from T1. In this way, we can obtain T2 in O(|T1|) time. The second step can be done

by traversing T2 and checking every degree-2 vertices.

We have the following observation on T ′: Every location of P is at a vertex of T ′

and every vertex of T ′ except those whose degrees are larger than two holds a location

of P. Let V denote the set of all vertices of T ′ and let V3 denote the set of the vertices

of T ′ whose degrees are at least three. Clearly, |V3| ≤ |V \ V3|. Since each vertex in

V \ V3 holds a location of P, we have |V \ V3| ≤ mn, and thus |V3| ≤ mn.

To make sure that every vertex of T ′ contains a location of an uncertain point, we

arbitrarily pick m vertices from V3 and remove them from V3, and then set a “dummy”

location for P1 at each of these vertices with zero probability. We keep picking another

m vertices from V3 for P2 and continue this procedure until V3 becomes empty. Note

that since |V3| ≤ mn, the above procedure will eventually make V3 empty before we “use

up” all n uncertain points of P. We let P ′ be the set of new uncertain points, each of

which has at most 2m locations.

Clearly, now every vertex of T ′ holds a location of P ′ and every location of P ′ is

at a vertex of T ′, and therefore, we have obtained an instance of the vertex-constrained

case on T ′ and P ′. Hence, we can use our algorithm for the vertex-constrained case to

compute the center x′ of T ′ in O(mn) time. Finally, we determine the center x∗ for our

original problem on T and P in the following way.

Observe that every vertex v of T ′ also exists as a vertex in T1, and every edge (u, v)

of T ′ corresponds to the simple path in T1 between u and v. Suppose x′ is on an edge

(u, v) of T ′ and let δ be the distance from u to x′. Then, we can locate the point x1 in T1

in the simple path from u to v and at distance δ from u. The above way of computing

x1 can be done in O(|T1|) = O(mn + |T |) time. By our construction from T1 to T ′, x1

is a center of T1. Further, by our construction from T to T1, if an edge e of T does not

appear in T1, then e is broken into several edges in T1 whose total length is equal to

that of e. Hence, every point of T corresponds a unique point on T1. The point of T

that corresponds to x′ is the center x∗ of T and P. Therefore, given x′, x∗ can be found

in O(mn+ |T |) time.

52

As a summary, we can compute the center x∗ of T and P in O(mn+ |T |) time. The

theorem thus follows.

53

CHAPTER 4

THE ONE-CENTER PROBLEM OF UNCERTAIN POINTS ON THE REAL LINE

In this chapter, we consider the one-dimensional one-center problem on uncertain

data under the locational model. Our results in this chapter have been published in [68].

4.1 Introduction

Let L be a real line. Without loss of generality, we assume L is the x-axis. Let P

be a set of n uncertain points {P1, P2, . . . , Pn} on L, where each uncertain point Pi ∈ P

is specified by its pdf fi: R → R+ ∪ {0}, which is a piecewise-uniform function (i.e., a

histogram), consisting of at most m + 1 pieces (e.g., see Fig. 2.1 in Chapter 2). More

specifically, for each Pi, there are m sorted x-coordinates xi1 < xi2 < . . . < xim and

m − 1 nonnegative values yi1, yi2, . . . , yi,m−1 such that fi(x) = yij for xij ≤ x < xi,j+1

with 1 ≤ j ≤ m−1. For convenience of discussion, we assume xi0 = −∞, xi,m+1 = +∞,

yi0 = yim = 0, and fi(x) = 0 for x ∈ (−∞, xi1) ∪ [xim,+∞).

As discussed in [7], such a histogram function fi can be used to approximate any

pdf with arbitrary precision. In particular, for the discrete case where each uncertain

point has a finite number of discrete locations, each with a probability, it can also be

incorporated by our histogram model using infinitesimal pieces at these locations. Thus,

the discrete case is a special case of our histogram model.

With a little abuse of notation, for any (deterministic) point q on L, we also use q

to denote the x-coordinate of q. For any uncertain point Pi ∈ P, the expected distance

from q to Pi is

Ed(q, Pi) =

∫ +∞

−∞
fi(x)|x− q|dx.

The goal of our one-center problem on P is to find a (deterministic) point c∗ on

L such that the maximum expected distance from c∗ to all uncertain points of P is

minimized, and c∗ is called a center of P.

54

The algorithm proposed in Chapter 2 can solve the problem in O(mn logmn +

n log n logmn) time. In this paper, we present an O(mn) time algorithm. Since the

input size of the problem is Θ(mn), our algorithm runs in linear time, which is optimal.

We should point out that our algorithm is applicable to the weighted case of this

problem where each uncertain point Pi ∈ P has a nonnegative multiplicative weight wi

and the weighted expected distance is considered (i.e., Ed(q, Pi) = wi ·
∫ +∞
−∞ fi(x)|x −

q|dx). To solve the weighted case, we can first reduce it to the above unweighted case

by changing each value yij to wi · yij for every 1 ≤ i ≤ n and 1 ≤ j ≤ m− 1, and then

apply our algorithm for the unweighted case. The running time is still linear. Hence,

we will focus our discussion on the unweighted case.

4.1.1 Related Work

In Chapter 2, the problem of finding k centers for a set P of uncertain points on L

was studied, and an algorithm of O(mn logmn+n log k log n logmn) time was proposed.

Therefore, when k = 1, the algorithm runs in O(mn logmn + n log n logmn) time as

mentioned above. In addition, the discrete case of the above k-center problem (where

each uncertain point Pi has m discrete locations, each with a probability) was solved in

a faster way in O(mn logmn+n log k logmn) time, and the discrete one-center problem

was solved in O(mn) time. Therefore, our new result in this chapter for the one-center

problem under the more general histogram model matches the previous result for the

discrete case. We also studied the discrete one-center problem for uncertain points on

tree networks and proposed a linear-time algorithm in Chapter 3.

The deterministic k-center problems are classical facility location problems have

been extensively studied. The problem is NP-hard in the plane [19]. Efficient algorithms

were known for special cases, e.g., finding the smallest enclosing circle (i.e., the case

k = 1) [27], k-center on trees [29–31]. The deterministic k-center problem in the one-

dimensional space is solvable in O(n log n) time [31,43,69]. As shown in Chapter 2, the

deterministic one-center problem in the one-dimensional space can be solved in linear

time.

The k-center problems on uncertain data in high-dimensional spaces have also been

considered. For example, approximation algorithms were given in [34] for different prob-

55

lem models, e.g., the assigned model that is somewhat similar to our problem model

and the unassigned model which was relatively easy because it can be reduced to the

corresponding deterministic problem [34]. Foul [61] studied the problem of finding the

center in the plane to minimize the maximum expected distance from the center to all

uncertain points, where each uncertain point has a uniform distribution in a given rect-

angle. Other facility location problems on uncertain data under various models, e.g.,

the minmax regret [37,38,65], have also been studied (see [40] for a survey).

4.1.2 Our Techniques

To solve our one-center problem, based on observations, we reduce it to the following

geometric problem. Let H be a set of n unimodal functions in the plane (i.e., when x

changes from −∞ to +∞, it first monotonically decreases and then increases) and each

function consists of m pieces with each piece being a parabolic arc. We wish to find the

lowest point v∗ in the upper envelope of the functions of H. In the discrete version of

the one-center problem, as shown in Chapter 2, each parabolic arc of every function of

H is simply a line segment, and thus, v∗ can be found by applying Megiddo’s linear time

linear programming algorithm [27]. In our problem, however, since the parabolic arcs

of the functions of H may not be line segments, Megiddo’s algorithm in [27] does not

work any more. We present a new prune-and-search technique that can compute v∗ in

O(mn) time. This result immediately leads to a linear time algorithm for our one-center

problem on P.

Comparing with the linear programming problem, the above geometric problem is

more general (i.e., the linear programming problem is a special case of our problem).

Our linear time algorithm for the problem may be interesting in its own right and may

find other applications as well. In fact, our result can be extended to more general

unimodal functions.

4.2 Preliminaries

A function g : R → R is a unimodal if there exists a value x′ such that for any

x1 < x2, g(x1) ≥ g(x2) holds if x2 ≤ x′ and g(x1) ≤ g(x2) holds if x′ ≤ x1, i.e., g(x) is

monotonically decreasing on x ∈ (−∞, x′] and increasing on x ∈ [x′,+∞).

56

Ed(x, Pi)

xxi,1 xi,2 xi,3 xi,4 xi,5xi,6 xi,7 xi,8

pi

Figure 4.1. Illustrating the expected distance function Ed(x, Pi) for an uncertain point
Pi with m = 8. Ed(x, Pi) is monotonically decreasing for x ∈ (−∞, pi], and increasing
for x ∈ [pi,−∞).

Recall that L is the x-axis, and for any point q on L, we also use q to denote the

x-coordinate of q. Therefore, the values of R correspond to the points of L. In the

following, we will use “the values of R” and “the points of L” interchangeably.

Consider any uncertain point Pi of P. If we consider the expected distance Ed(x, Pi)

as a function of the points x on L (or x ∈ R), the following observation has been proved

in Chapter 2. Note that the m coordinates xi1, . . . , xim of Pi are already given sorted.

Lemma 4.2.1. The function Ed(x, Pi) for x ∈ R is unimodal. More specifically, there

exists a point pi ∈ L such that Ed(x, Pi) is monotonically decreasing on x ∈ (−∞, pi]

and increasing on x ∈ [pi,+∞) (e.g., see Fig. 4.1). In addition, Ed(x, Pi) is a parabolic

arc (of constant complexity) on the interval [xik, xi,k+1) for each 0 ≤ k ≤ m, and can be

explicitly computed in O(m) time.

The point pi in Lemma 4.2.1 is referred to as a centroid of Pi and can be easily

computed in O(m) time after Ed(x, Pi) is explicitly computed in O(m) time, proved in

Chapter 2. In fact, a point q ∈ L is a centroid of Pi if and only if
∫ q
−∞ fi(x) = 0.5 and∫ +∞

q fi(x) = 0.5. Note that the centroid of Pi may not be unique. This case happens

when there exists an interval on the x-axis such that for any point q in this interval

both
∫ q
−∞ fi(x) = 0.5 and

∫ +∞
q fi(x) = 0.5 hold, and thus Ed(x, Pi) is a constant when

x is in this interval and any point q in this interval is a centroid. If the centroid of Pi is

not unique, then we use pi to refer to an arbitrary such centroid. For a similar reason,

the center of P may also not be unique, in which case our algorithm will find one such

center.

57

The following corollary can be easily obtained based on Lemma 4.2.1 and binary

search on the sorted list of xi1, xi2, . . . , xim. Refer to Chapter 2 for the proof.

Corollary 4.2.2. For each uncertain point Pi, with O(m) time preprocessing, the value

Ed(x′, Pi) for any query value x′ can be computed in O(logm) time.

Let H denote the set of all functions Ed(x, Pi) for i = 1, 2, . . . , n. Since the

center c∗ of P is a point on L that minimizes the value maxni=1 Ed(x, Pi), i.e., c∗ =

argminx∈L maxni=1 Ed(x, Pi), c
∗ is equal to the x-coordinate of the lowest point v∗ in the

upper envelope of H. Therefore, to compute c∗, it is sufficient to find v∗.

As shown in Chapter 2 and mentioned in Section 4.1.2, in the discrete case where

each uncertain point Pi has m discrete locations (each with a probability), each function

Ed(x, Pi) consists of m + 1 pieces with each piece being a special parabolic arc: a line

segment. Consequently, to compute v∗ is equivalent to computing the lowest point in

the upper envelope of the n(m+ 1) extending lines of all line segments of all functions

of H, which can be done in O(mn) time by Megiddo’s linear time linear programming

algorithm [27].

In our problem, since each piece of every function of H may be a general parabolic

arc, Megiddo’s algorithm [27], which heavily relies on the properties of lines, does not

work any more. In the next section, we present a new prune-and-search algorithm that

can compute v∗ in O(mn) time, and it can be considered as an extension of Megiddo’s

algorithm [27].

4.3 Compute the Lowest Point v∗ in the Upper Envelope of H

In this section, we present an algorithm that can compute v∗ in O(mn) time. Note

that the lowest point of the upper envelope of H may not be unique, in which case we

use v∗ to represent an arbitrary such lowest point. We assume the preprocessing in

Corollary 4.2.2 has been done for every uncertain point Pi ∈ P, which takes O(mn)

time in total. Denote by x∗ the x-coordinate of v∗. We first present an O(n logm)

time algorithm for solving the following decision problem: given any value x′, determine

whether x′ < x∗, x′ = x∗, or x′ > x∗. Let U denote the upper envelope of H.

58

4.3.1 A Decision Algorithm

Consider any value x′. To solve the decision problem, the main idea is to compute

the intersection of U and the vertical line x = x′, and then determine whether x′ < x∗,

x′ = x∗, or x′ > x∗ based on the local information of U at the above intersection. The

details are given below. Denote by l(x′) the vertical line x = x′.

For any uncertain point Pi ∈ P, by Corollary 4.2.2, we can compute the intersection

of the function Ed(x, Pi) and l(x′) in O(logm) time, and let qi denote the above inter-

section. In fact, the parabolic arc of Ed(x, Pi) that contains qi can also be determined.

We let Si denote the above parabolic arc. In the case that qi is the common endpoint

of two parabolic arcs, we let Si denote the set of both parabolic arcs. Hence |Si| ≤ 2

holds in either case. In summary, qi and Si can be determined in O(logm) time.

We compute qi and Si for every uncertain point Pi ∈ P, which takes O(n logm)

time in total with the preprocessing in Corollary 4.2.2. Let Q = {qi | 1 ≤ i ≤ n}. Next,

we find the highest point q(x′) of Q, and clearly, q(x′) is the intersection of l(x′) and

the upper envelope U . In case q(x′) is equal to multiple points of Q, we let I(x′) denote

the index set such that for each i ∈ I(x′), qi = q(x′). Let S(x′) = ∪i∈I(x′)Si. Note that

after qi and Si for every Pi ∈ P are computed, we can obtain q(x′), I(x′) and S(x′) in

O(n) time.

Based on q(x′) and the set S(x′) of parabolic arcs , it is not difficult to see that

we can solve the decision problem in the following way. If all parabolic arcs of S(x′)

are strictly decreasing at q(x′), then x′ < x∗. If all parabolic arcs of S(x′) are strictly

increasing at q(x′), then x′ > x∗. Otherwise, x′ = x∗. Clearly, with q(x′) and S(x′), the

above can be determined in O(n) time.

Therefore, we obtain the following result.

Lemma 4.3.1. With O(mn) time preprocessing, given any value x′, we can determine

whether x′ < x∗, x′ = x∗, or x′ > x∗, in O(n logm) time.

4.3.2 Observations

We first give the following lemma, which will help us to prune uncertain points of

P in our prune-and-search algorithm.

59

Lemma 4.3.2. For any two uncertain points Pi and Pj, the upper envelope of Ed(x, Pi)

and Ed(x, Pj) has O(m) complexity and can be computed in O(m) time.

Proof. Consider two uncertain points Pi and Pj . We first analyze the intersections of

the functions Ed(x, Pi) and Ed(x, Pj). Recall that each of these two functions has m+ 1

parabolic arcs.

We use EdL(x, Pi) to denote the part of Ed(x, Pi) to the left of the centroid pi (i.e.,

x ∈ (−∞, pi]), and use EdR(x, Pi) to denote the part of Ed(x, Pi) to the right of pi

(i.e., x ∈ [pi,+∞)). Hence, EdL(x, Pi) is monotonically decreasing and EdR(x, Pi) is

monotonically increasing. We define EdL(x, Pj) and EdR(x, Pj) for Pj similarly.

Since EdL(x, Pi) is monotonically increasing and EdR(x, Pj) is monotonically de-

creasing, EdL(x, Pi) can intersect EdR(x, Pj) transversally at most once. Similarly,

EdR(x, Pi) can intersect EdL(x, Pj) transversally at most once.

Consider EdL(x, Pi) and EdL(x, Pj). Since both of them are monotonically de-

creasing, a parabolic arc of EdL(x, Pi) can intersect any parabolic arc of EdL(x, Pj)

transversally at most twice (this is because both parabolic arcs are decreasing). There-

fore, EdL(x, Pi) can intersect EdL(x, Pj) transversally O(m) times. Similarly, EdR(x, Pi)

can intersect EdR(x, Pj) transversally O(m) times.

The above discussion leads to the conclusion that the two functions Ed(x, Pi) and

Ed(x, Pj) can intersect each other transversally at most O(m) times. This implies

that the upper envelope of Ed(x, Pi) and Ed(x, Pj) is of complexity O(m). Since both

Ed(x, Pi) and Ed(x, Pj) can be computed in O(m) time by Lemma 4.2.1, their upper

envelope can be computed by a simple sweeping algorithm in O(m) time. The lemma

thus follows.

Lemma 4.3.2 implies the following corollary.

Corollary 4.3.3. For any two uncertain points Pi and Pj, in O(m) time we can compute

a sorted list of values −∞ = x0 < x1 < x2 < . . . < xt < xt+1 = +∞ with t = O(m) such

that either Ed(x, Pi) ≤ Ed(x, Pj) or Ed(x, Pi) > Ed(x, Pj) holds when x ∈ [xk, xk+1] for

any 0 ≤ k ≤ t.

Recall that x∗ is the x-coordinate of v∗. Corollary 4.3.3 implies that if we know

x∗ is contained in some interval [xk, xk+1] as defined in Corollary 4.3.3, then at least

60

one of Pi and Pj can be pruned, and more specifically, if Ed(x, Pi) ≤ Ed(x, Pj) when

x ∈ [xk, xk+1], then for computing v∗, Pi can be discarded. In the following, let X(i, j)

denote the set of sorted x-coordinates as defined in Corollary 4.3.3. Thus, it holds that

|X(i, j)| ≤ Cm for some constant C for any two uncertain points Pi and Pj of P.

4.3.3 Computing the Lowest Point v∗

In the sequel, we present our algorithm for computing v∗ based on the prune-and-

search techniques. Below, we show that our algorithm can prune n/4 uncertain points

of P in O(mn) time.

We arbitrarily assign the uncertain points of P into n/2 pairs. Let Σ denote all such

pairs. For each pair (Pi, Pj) ∈ Σ, we compute X(i, j) and the upper envelope of Ed(x, Pi)

and Ed(x, Pj) in O(m) time by Lemma 4.3.2. Let X =
⋃

(Pi,Pj)∈ΣX(i, j). Since Σ has

n/2 pairs, X can be computed in O(mn) time by Lemma 4.3.2 and |X | ≤ Cmn/2.

We find the median xm of X in O(mn) time. By using our decision algorithm in

Lemma 4.3.1, we can determine whether xm < x∗, xm = x∗, or xm > x∗ in O(n logm)

time. If xm = x∗, then xm is the center of P and we are done with the algorithm.

Otherwise, if xm < x∗, then we eliminate all values in X that are smaller than or equal

to xm; if xm > x∗, then we eliminate all values in X that are larger than or equal to

xm. In either case, no more than |X |/2 values of X will remain. Next, we continue the

above procedure recursively on the remaining values of X until the number of remaining

values is no more than n/4. Since initially |X | ≤ Cmn/2, the number of recursive steps

is bounded by O(log(2Cm)) = O(logm+ logC + 1).

We claim that the total running time of the above recursive procedure is O(mn).

Indeed, the total time for finding the medians in all recursive steps is bounded by

O(|X | + |X |/2 + |X |/4 + · · ·) = O(|X |) = O(mn). In each recursive step, we need to

call the decision algorithm once, and therefore, the total time of the decision algorithm

in all recursive steps is O(n log2m). Hence, the above claim is proved.

We should point out that one may want to keep doing the above recursive procedure

until X has at most one or two remaining values, which would need Θ(logmn) recursive

steps; but according to our above time complexity analysis, it would take O(mn +

n logm logmn) time, which may not necessarily be bounded by O(mn) (e.g., when

61

m = o(log n)). In fact, performing the above recursive steps until the remaining values

of X is at most n/4 is an interesting and crucial part of our techniques.

Let X ′ be the set of remaining values of X . Hence, |X ′| ≤ n/4. Let x′ and x′′

denote the smallest and largest values of X ′, respectively. According to our above way

of computing X ′, X ′ consists of all values of X in [x′, x′′], and further, x∗ ∈ [x′, x′′].

Since |X ′| ≤ n/4, there are at most n/4 pairs (Pi, Pj) of Σ such that X(i, j) contains a

value in X ′. In other words, we have the following observation.

Observation 4.3.4. There are at least n/4 pairs (Pi, Pj) of Σ such that X(i, j) does not

contain any value of X ′ (i.e., no value of X(i, j) is in the interval [x′, x′′]).

Let Σ′ denote the set of pairs of Σ that satisfy the condition in Observation 4.3.4

(i.e., for each pair (Pi, Pj) of Σ′, no value of X(i, j) is in the interval [x′, x′′]). Hence,

|Σ′| ≥ n/4. Consider any pair (Pi, Pj) ∈ Σ′. Let X(i, j) = x1, x2, . . . , xt with x0 = −∞

and xt+1 = +∞. By Observation 4.3.4, since no value of X(i, j) is in the interval

[x′, x′′], [x′, x′′] is contained in [xk, xk+1] for some k with 0 ≤ k ≤ t. Thus, either

Ed(x, Pi) ≤ Ed(x, Pj) or Ed(x, Pi) > Ed(x, Pj) holds for x ∈ [x′, x′′]. Without loss of

generality, we assume Ed(x, Pi) ≤ Ed(x, Pj) holds for x ∈ [x′, x′′]. Since x∗ ∈ [x′, x′′], we

obtain that Ed(x∗, Pi) ≤ Ed(x∗, Pj). Therefore, Pi can be discarded. Since |Σ′| ≥ n/4,

we can discard at least n/4 uncertain points of P.

Recall that X ′ has been computed and |X ′| ≤ n/4. The above pruning procedure

can be done in O(mn) time. Indeed, we can find x′ and x′′ in X ′ in O(n) time. To

determine the set Σ′, suppose for each element x ∈ X , we have associated the pair

(Pi, Pj) with x such that x ∈ X(i, j); then Σ′ can be determined in O(n) time by

scanning X ′. Next, for each pair (Pi, Pj) of Σ′, we determine the interval [xk, xk+1] of

Xij (as defined above) that contains [x′, x′′], which can be easily done in O(m) since the

values of X(i, j) have already been sorted and |X(i, j)| = O(m) by Corollary 4.3.3. Since

the upper envelope of Pi and Pj has been computed, we can also determine whether

Ed(x, Pi) ≤ Ed(x, Pj) or Ed(x, Pi) > Ed(x, Pj) holds for x ∈ [x′, x′′] in O(m) time.

Consequently, we can prune one of Pi and Pj . Hence, the pruning procedure can be

done in O(mn) time.

62

The above discussion shows that within O(mn) time, we can prune at least n/4

uncertain points of P such that the center c∗ is determined only by the remaining at

most 3n/4 uncertain points of P.

We continue the above procedure recursively on the remaining uncertain points of

P until a constant number of uncertain points of P remain. The total running time

satisfies the recurrence T (m,n) = T (m, 3n/4) + O(mn). Solving the recurrence yields

T (m,n) = O(mn). Let P ′ denote the set of remaining uncertain points of P. We have

|P ′| = O(1). Let H′ denote the set of functions Ed(x, Pi) for all Pi ∈ P ′, and let U ′ be

the upper envelope of the functions of H′. According to our above pruning algorithm,

v∗ is also the lowest point of U ′. Note that in the case that the lowest point of U ′ is

not unique, our pruning algorithm above makes sure that every lowest point of U ′ is a

lowest point of U (we omit the detailed discussions).

Finally, we find the lowest point of U ′ by constructing it explicitly, which can be

done in O(m) time by a sweeping algorithm, as follows. We sweep a vertical line l from

left to right. During the sweeping, we maintain the intersections of l with all functions of

H′ in the order sorted by their y-coordinates (note that the number of such intersections

is O(1) since |H′| = O(1)). An event happens when l hits a vertex of some function

or an intersection of two functions. Clearly, all functions of H′ have O(m) vertices

since |H′| = O(1). As discussed in the proof of Lemma 4.3.2, every two functions of

H′ can intersect (transversally) O(m) times. Therefore, the number of (transversal)

intersections among all functions of H′ is O(m) since |H′| = O(1). Hence, the total

number of events is O(m). Processing each event can be done in constant time since

|H′| = O(1). Therefore, we can explicitly construct U ′ and thus find its lowest point in

O(m) time.

Combining all above efforts, the lowest vertex v∗ of H can be computed in O(mn)

time. Thus, the center of P can be computed in O(mn) time.

Theorem 4.3.5. The center of P can be computed in O(mn) time.

63

CHAPTER 5

THE RECTILINEAR CENTER OF UNCERTAIN POINTS IN THE PLANE

In this chapter, we study the one-center problem on uncertain points in the plane

with respect to the rectilinear distance. The results in this chapter have been submitted

to International Journal of Computational Geometry and Applications.

5.1 Introduction

Let P = {P1, P2, . . . , Pn} be a set of n uncertain points in the plane, where each

uncertain point Pi ∈ P has m possible locations pi1, pi2, · · · , pim and for each 1 ≤ j ≤ m,

pij is associated with a probability fij ≥ 0 for Pi being at pij (which is independent of

other locations). Technically, we should assume
∑m

j=1 fij ≤ 1 for each Pi. However, our

algorithm also works when the assumption does not hold, in which case we may simply

consider fij as some kind of weight for the location pij .

For any (deterministic) point p in the plane, we use xp and yp to denote the x- and

y-coordinates of p, respectively. For any two points p and q, we use d(p, q) to denote

the rectilinear distance between p and q, i.e., d(p, q) = |xp − xq|+ |yp − yq|.

Consider a point q in the plane. For any uncertain point Pi ∈ P, the expected

rectilinear distance between q and Pi is defined as

Ed(Pi, q) =
m∑
j=1

fij · d(pij , q).

Let Edmax(q) = maxPi∈P Ed(Pi, q). A point q∗ is called a rectilinear center of P if

it minimizes the value Edmax(q∗) among all points in the plane. Our goal is to compute

q∗. Note that such a point q∗ may not be unique, in which case we let q∗ denote an

arbitrary such point.

We assume that for each uncertain point Pi of P, its m locations are given in two

sorted lists, one by x-coordinates and the other by y-coordinates. To the best of our

knowledge, this problem has not been studied before. In this chapter, we present an

64

O(mn) time algorithm. Since the input size of the problem is Θ(nm), our algorithm

essentially runs in linear time, which is optimal.

Further, our algorithm is applicable to the weighted version of this problem in which

each Pi ∈ P has a weight wi ≥ 0 and the weighted expected distance, i.e., wi · Ed(Pi, q),

is considered. To solve the weighted version, we can first reduce it to the unweighted

version by changing each fij to wi · fij for all 1 ≤ i ≤ n and 1 ≤ j ≤ m, and then apply

our algorithm for the unweighted version. The running time is still O(mn).

5.1.1 Related Work

The problem of finding one-center among uncertain points on a line has been con-

sidered in Chapter 2 where an O(nm) time algorithm was given. An algorithm for

computing k centers for general k was also given in Chapter 2 with the running time

O(mn logmn+ n log n log k). In fact, in Chapter 2 we considered the k-center problem

under a more general uncertain model where each uncertain point can appear in m in-

tervals, and in Chapter 4 we solve the one-center problem on a line in linear time under

the more general uncertain model. We also studied the one-center problem for uncertain

points on a tree in Chapter 3, where a linear-time algorithm was proposed.

There is also a lot of other work on facility location problems for uncertain data. For

instance, Cormode and McGregor [34] proved that the k-center problem on uncertain

points each associated with multiple locations in high-dimension space is NP-hard and

gave approximation algorithms for different problem models. Foul [61] considered the

Euclidean one-center problem on uncertain points each of which has a uniform distribu-

tion in a given rectangle in the plane. de Berg et al. [64] studied the Euclidean 2-center

problem for a set of moving points in the plane (the moving points can be considered

uncertain).

The k-center problems on deterministic points are classical problems and have been

studied extensively. When all points are in the plane, the problems on most distance

metrics are NP-hard [19]. However, some special cases can be solved in polynomial time,

e.g., the one-center problem [27], the two-center problem [70], the rectilinear three-center

problem [71], the line-constrained k-center problems (where all centers are restricted to

be on a given line in the plane) [58–60].

65

5.1.2 Our Techniques

Consider any uncertain point Pi ∈ P and any (deterministic) point q in the plane

R2. We first show that Ed(Pi, q) is a convex piecewise linear function with respect to

q ∈ R2. More specifically, if we draw a horizontal line and a vertical line from each

location of Pi, these lines partition the plane into a grid Gi of (m+ 1)× (m+ 1) cells.

Then, Ed(Pi, q) is a linear function (in both the x- and y-coordinates of q) in each cell

of Gi. In other words, Ed(Pi, q) defines a plane surface patch in 3D on each cell of Gi.

Then, finding q∗ ∈ R2 is equivalent to finding a lowest point p∗ in the upper envelope of

the n graphs in 3D defined by Ed(Pi, q) for all Pi ∈ P (specifically, q∗ is the projection

of p∗ onto the xy-plane).

The problem of finding p∗, which may be interesting in its own right, can be solved in

O(nm2) time by the linear-time algorithm for the 3D linear programming (LP) problem

[27]. Indeed, for a plane surface patch, we call the plane containing it the supporting

plane. Let H be the set of the supporting planes of the surface patches of the functions

Ed(Pi, q) for all Pi ∈ P. Since each function Ed(Pi, q) is convex, p∗ is also a lowest point

in the upper envelope of the planes of H. Thus, finding p∗ is an LP problem in R3

and can be solved in O(|H|) time [27]. Note that |H| = Θ(nm2) since each grid Gi has

(m+ 1)2 cells.

We give an O(mn) time algorithm without computing the functions Ed(Pi, q) ex-

plicitly. We use a prune-and-search technique that can be considered as an extension of

Megiddo’s technique for the 3D LP problem [27]. In each recursive step, we prune at

least n/32 uncertain points from P in linear time. In this way, q∗ can be found after

O(log n) recursive steps.

Unlike Megiddo’s algorithm [27], each recursive step of our algorithm itself is a

recursive algorithm of O(logm) recursive steps. Therefore, our algorithm has O(log n)

“outer” recursive steps and each outer recursive step has O(logm) “inner” recursive

steps. In each outer recursive step, we maintain a rectangle R that always contains q∗ in

the xy-plane. Initially, R is the entire plane. Each inner recursive step shrinks R with

the help of a decision algorithm. The key idea is that after O(logm) steps, R is so small

that there is a set P∗ of at least n/2 uncertain points such that R is contained inside a

single cell of the grid Gi of each uncertain point Pi of P∗ (i.e., R does not intersect the

66

extension lines from the locations of Pi). At this point, with the help of our decision

algorithm, we can use a pruning procedure similar to Megiddo’s algorithm [27] to prune

at least |P∗|/16 ≥ n/32 uncertain points of P∗. Each outer recursive step is carefully

implemented so that it takes only linear time.

In particular, our decision algorithm is for the following decision problem. Let R

be a rectangle in the plane and R contains q∗ (but the exact location of q∗ is unknown).

Given an arbitrary line L that intersects R, the decision problem is to determine which

side of L contains q∗. Megiddo’s technique [27] gave an algorithm that can solve our

decision problem in O(m2n) time. We give a decision algorithm of O(mn) time. In fact,

in order to achieve the overall O(mn) time for computing q∗, our decision algorithm has

the following performance. For each 1 ≤ i ≤ n, let ai and bi be the number of columns

and rows of the grid Gi intersecting R, respectively. Our decision algorithm runs in

O(
∑n

i=1(ai + bi)) time.

The rest of this chapter is organized as follows. In Section 5.2, we introduce some

observations. In Section 5.3, we present our decision algorithm. Section 5.4 gives the

overall algorithm for computing the rectilinear center q∗.

5.2 Observations

Let p be a point in the plane R2. The vertical line and the horizontal line through

p partition the plane into four (unbounded) rectangles. Consider another point q ∈ R2.

We consider d(p, q) as a function of q ∈ R2. For each of the above rectangles R, d(p, q)

on q ∈ R is a linear function in both the x- and y-coordinates of q, and thus d(p, q)

on q ∈ R defines a plane surface patch in R3. Further, d(p, q) on q ∈ R2 is a convex

piecewise linear function.

For ease of exposition, we make a general position assumption that no two locations

of the uncertain points of P have the same x- or y-coordinate.

Consider an uncertain point Pi of P. We extend a horizontal line and a vertical line

through each location of Pi to obtain a grid, denoted by Gi, which has (m+1)× (m+1)

cells (and each cell is a rectangle). According to the above discussion, for each location

pij of P, the function d(pij , q) of q in each cell of Gi is linear and defines a plane surface

patch in R3. Therefore, if we consider Ed(Pi, q) as a function of q, since Ed(Pi, q) is the

67

Figure 5.1. Illustrating the function Edi(x, y) of an uncertain point Pi with m = 4.

sum of fij · d(pij , q) for all 1 ≤ j ≤ m, Ed(Pi, q) of q in each cell of Gi is also linear and

defines a plane surface patch in R3. Further, since each d(pij , q) for q ∈ R2 is convex,

the function Ed(Pi, q), as the sum of convex functions, is also convex.

In the following, since Ed(Pi, q) is normally considered as function of q, for conve-

nience, we will use Edi(x, y) to denote it for q = (x, y) ∈ R2.

The above discussion leads to the following observation.

Observation 5.2.1. For each uncertain point Pi ∈ P, the function Edi(x, y) is convex

piecewise linear. More specifically, Edi(x, y) on each cell of the grid Gi is linear and

defines a plane surface patch in R3 (e.g., see Fig. 5.1).

Consider the function Edi(x, y) of any Pi ∈ P. Clearly, the size of Edi(x, y) is Θ(m2).

However, since Edi(x, y) on each cell C of Gi is a plane surface patch in R3, Edi(x, y)

on C is of constant complexity. We use Edi(x, y, C) to denote the linear function of

Edi(x, y) on C. Note that Edi(x, y, C) is also the function of the supporting plane of the

surface patch of Edi(x, y) on C.

As discussed in Section 5.1.2, our algorithm will not compute the function Edi(x, y)

explicitly. Instead, we will compute it implicitly. More specifically, we will do some pre-

processing such that given any cell C of Gi, the function Edi(x, y, C) can be determined

efficiently. We first introduce some notation.

Let Xi = {xi1, xi2, · · · , xim} be the set of the x-coordinates of all locations of Pi

sorted in ascending order. Let Yi = {yi1, yi2, · · · , yim} be the set of their y-coordinates

in ascending order. Note that Xi and Yi can be obtained in O(m) time from the input

68

(recall that the locations of Pi are given in two sorted lists in the input). For convenience

of discussion, we let xi0 = −∞, and let Xi also include xi0. Similarly, let yi0 = −∞,

and let Yi also include yi0. Note that due to our general position assumption, the values

in Xi (resp., Yi) are distinct.

For any value z, we refer to the largest value in Xi that is smaller than or equal to

z the predecessor of z in Xi, and we use Iz(Xi) to denote the index of the predecessor.

Similarly, Iz(Yi) is the index of the predecessor of z in Yi.

Consider any point q in the plane. The predecessor of the x-coordinate of q in Xi

is also called the predecessor of q in Xi. Similarly, the predecessor of the y-coordinate

of q in Yi is also called the predecessor of q in Yi. We use Iq(Xi) and Iq(Yi) to denote

their indices, respectively.

Consider any cell C of the grid Gi. For convenience of discussion, we assume C

contains its left and bottom sides, but does not contain its top and right sides. In this

way, any point in the plane is contained in one and only one cell of Gi. Further, all

points of C have the same predecessor in Xi and also have the same predecessor in Yi.

This allows us to define the predecessor of C in Xi as the predecessor of any point in Xi,

and we use IC(Xi) to denote the index of the predecessor. We define IC(Yi) similarly.

We have the following lemma.

Lemma 5.2.2. For any uncertain point Pi ∈ P, after O(m) time preprocessing, for any

cell C of the grid Gi, if IC(Xi) and IC(Yi) are known, then the function Edi(x, y, C) can

be computed in constant time.

Proof. For each location p ∈ Pi, let xp and yq be the x- and y-coordinates of p, respec-

tively, and let fp be the probability associated with p.

For any point q = (x, y) in R2, recall that the expected distance function Edi(x, y) =∑
p∈Pi

fp · d(p, q) =
∑

p∈Pi
fp · (|xp − x|+ |yp − y|). Therefore, we can write Edi(x, y) =∑

p∈Pi
fp · |xp−x|+

∑
p∈Pi

fp · |yp−y|. In the following, we first discuss how to compute∑
p∈Pi

fp · |xp − x| and the case for
∑

p∈Pi
fp · |yp − y| is very similar.

69

Let S1 denote the set of all locations of Pi whose x-coordinates are smaller than or

equal to x, i.e., the x-coordinate of q. Let S2 = Pi \ S1. Then, we have the following:

∑
p∈Pi

fp · |xp − x| =
∑
p∈S1

fp · (x− xp) +
∑
p∈S2

fp · (xp − x)

= x ·
(∑
p∈S1

fp −
∑
p∈S2

fp
)
−
∑
p∈S1

fp · xp +
∑
p∈S2

fp · xp

= x ·
(
2 ·
∑
p∈S1

fp −
∑
p∈Pi

fp
)
− 2

∑
p∈S1

fp · xp +
∑
p∈Pi

fp · xp.

(5.1)

Thus, in order to compute
∑

p∈Pi
fp · |xp−x|, it is sufficient to know the four values∑

p∈S1
fp,
∑

p∈Pi
fp,
∑

p∈S1
fp · xp, and

∑
p∈Pi

fp · xp. To this end, we do the following

preprocessing.

First, we compute
∑

p∈Pi
fp and

∑
p∈Pi

fp · xp, which can be done in O(m) time.

Second, recall that Xi = {xi0, xi1, . . . , xim} maintains the x-coordinates of the locations

of Pi sorted in ascending order. Note that given any index j with 1 ≤ j ≤ m, we

can access the information of the location of Pi whose x-coordinate is xij in constant

time, and this can be done by linking each xij to the corresponding location of Pi when

we create the list Xi from the input. For each j with 1 ≤ j ≤ n, we let f(j) be the

probability associated with the location of Pi whose x-coordinate is xij .

In the preprocessing, we compute two arrays A[0 · · ·m] and B[0 · · ·m]. Specifically,

for each 1 ≤ j ≤ n, A[j] =
∑j

k=1 f(k) and B[j] =
∑j

k=1 f(k) · xik. For j = 0, we let

A[0] = B[0] = 0. As discussed above, since we can access f(j) in constant time for any

1 ≤ j ≤ m, the two arrays A and B can be computed in O(m) time.

Let t = Iq(Xi), i.e., the index of the predecessor of q in Xi. Note that t ∈ [0,m].

To compute
∑

p∈Pi
fp · |xp− x|, an easy observation is that

∑
p∈S1

fp is exactly equal to

A[t] and
∑

p∈S1
fp ·xp is exactly equal to B[t]. Therefore, with the above preprocessing,

if t is known, according to Equation (5.1),
∑

p∈Pi
fp · |xp − x| can be computed in O(1)

time.

The above shows that with O(m) time preprocessing, given Iq(Xi), we can compute

the function
∑

p∈Pi
fp · |xp − x| of x at q = (x, y) in constant time.

In a similar way, with O(m) time preprocessing, given Iq(Yi), we can compute the

function
∑

p∈Pi
fp · |yp − y| of y at p = (x, y) in constant time.

70

Let q be any point in the cell C. Hence, Iq(Xi) = IC(Xi) and Iq(Yi) = IC(Yi).

Further, the function Edi(x, y) on q = (x, y) ∈ C is exactly the function Edi(x, y, C).

Therefore, with O(m) time preprocessing, given IC(Xi) and IC(Yi), we can compute the

function Edi(x, y, C) in constant time.

The lemma thus follows.

Due to Lemma 5.2.2, we have the following corollary.

Corollary 5.2.3. For each uncertain point Pi ∈ P, after O(m) time preprocessing, given

any point q in the plane, the expected distance Ed(Pi, q) can be computed in O(logm)

time.

Proof. Given any point q ∈ R2, we can compute Iq(Xi) in O(logm) time by doing binary

search on Xi. Similarly, we can compute Iq(Yi) in O(logm) time. Let C be the cell

containing q. Recall that IC(Xi) = Iq(Xi) and IC(Yi) = Iq(Yi). Hence, by Lemma 5.2.2,

we can compute the function Edi(x, y, C) in constant time. Then, Ed(Pi, q) is equal to

Edi(qx, qy, C), where qx and qy are the x- and y-coordinates of q, respectively. Thus,

after Edi(x, y, C) is known, Ed(Pi, q) can be computed in constant time. The corollary

thus follows.

Recall that Edmax(q) = maxPi∈P Ed(Pi, q) for any point q in the plane. For conve-

nience, we use Edmax(x, y) to represent Edmax(q) as a function of q = (x, y) ∈ R2. Note

that Edmax(x, y) is the upper envelope of the functions Edi(x, y) for all i = 1, 2, . . . , n.

Since each Edi(x, y) is convex on R2, Edmax(x, y) is also convex on R2. Further, the rec-

tilinear center q∗ corresponds to a lowest point p∗ on Edmax(x, y). Specifically, q∗ is the

projection of p∗ on the xy-plane. Therefore, computing q∗ is equivalent to computing a

lowest point in the upper envelope of all functions Edi(x, y) for all i = 1, 2, . . . , n.

For each 1 ≤ i ≤ n, let Hi denote the set of supporting planes of all surface

patches of the function Edi(x, y). Let H = ∪ni=1Hi. Since Edi(x, y) is convex, Edi(x, y)

is essentially the upper envelope of the planes in Hi. Hence, Edmax(x, y) is also the

upper envelope of all planes in H. Therefore, as discussed in Section 5.1.2, finding p∗ is

essentially a 3D LP problem on H, which can be solved in O(|H|) time by Megiddo’s

technique [27]. Since the size of each Hi is Θ(m2), |H| = Θ(nm2). Therefore, applying

71

the algorithm in [27] directly can solve the problem in O(nm2) time. In the following,

we give an O(nm) time algorithm.

In the following sections, we assume we have done the preprocessing of Lemma 5.2.2

for each Pi ∈ P, which takes O(mn) time in total.

5.3 The Decision Algorithm

In this section, we present a decision algorithm that solves a decision problem,

which is needed later in Section 5.4. We first introduce the decision problem.

Let R = [x1, x2] × [y1, y2] be an axis-parallel rectangle in the plane, where x1 and

x2 are the x-coordinates of the left and right sides of R, respectively, and y1 and y2 are

the y-coordinates of the bottom and top sides of R, respectively. Suppose it is known

that q∗ is in R (but the exact location of q∗ is not known). Let L be an arbitrary line

that intersects the interior of R. The decision problem asks whether q∗ is on L, and if

not, which side of L contains q∗. We assume the two predecessor indices Ix1(Xi) and

Iy1(Yi) are already known.

For each 1 ≤ i ≤ n, let ai = Ix2(Xi)− Ix1(Xi) + 1 and bi = Iy2(Yi)− Iy1(Yi) + 1. In

fact, ai and bi are the numbers of columns and rows of Gi that intersect R, respectively.

Below, we give a decision algorithm that solves the decision problem in O(
∑n

i=1(ai+bi))

time. Note that for each 1 ≤ i ≤ n, it holds that 1 ≤ ai, bi ≤ m + 1, and thus

2n ≤∑n
i=1(ai + bi) ≤ 2(m+ 1)n.

We first show that the decision problem can be solved in O(
∑n

i=1 ai · bi) time by

using the decision algorithm for the 3D LP problem [27]. Later we will reduce the

running time to O(
∑n

i=1(ai + bi)) time.

Recall that p∗ is a lowest point in the upper envelope of the functions Edi(x, y) for

i = 1, 2, . . . , n. Since q∗ is in R and each function Edi(x, y) is convex, an easy observation

is that p∗ is also a lowest point in the upper envelope of Edi(x, y) for i = 1, 2, . . . , n

restricted on (x, y) ∈ R. This implies that we only need to consider each function

Edi(x, y) restricted on R.

For each 1 ≤ i ≤ n, let Gi(R) be the set of cells of Gi that intersect R, and let

Hi(R) be the set of supporting planes of the surface patches of Ed(Pi, q) defined on the

cells of Gi(R). Let H(R) = ∪ni=1Hi(R). By our above analysis, p∗ is a lowest point of

72

the upper envelope of all planes in H(R). Note that |Hi(R)| = ai · bi for each 1 ≤ i ≤ n.

Thus, |H(R)| = ∑n
i=1 ai · bi. Then, we can apply the decision algorithm in [27] (Section

5.2) on H(R) to determine which side of L contains q∗ in O(|H(R)|) time. In order to

explain our improved algorithm later, we sketch this algorithm below.

We consider each plane of H(R) as a function of the points q on the xy-plane R2. In

the first step, the algorithm finds a point q′ on L that minimizes the maximum value of

all functions in H(R) restricted on q ∈ L. This is essentially a 2D LP problem because

each function of H(R) restricted on L is a line, and thus the problem can be solved in

O(|H(R)|) time [27]. Let Φq′ be the set of functions of H(R) whose values at q′ are equal

to the above maximum value. The set Φq′ can be found in O(|H(R)|) time after q′ is

computed. This finishes the first step, which takes O(|H(R)|) = O(
∑n

i=1 ai · bi) time.

The second step solves another two instances of the 2D LP problem on the planes

of Φq′ , which takes O(|Φq′ |) time. An easy upper bound for |Φq′ | is
∑n

i=1 ai · bi. A

close analysis can show that |Φq′ | = O(n). Indeed, for each 1 ≤ i ≤ n, since the

function Edi(x, y) is convex, among all ai · bi planes in Hi(R), at most four of them

are in Φq′ . Therefore, |Φq′ | = O(n). Hence, the second step runs in O(n) time. Since

in our problem there always exists a solution, according to [27], the second step will

either conclude that q′ is q∗ or tell which side of L contains q∗, which solves the decision

problem. The algorithm takes O(
∑n

i=1 ai · bi) time in total, which is dominated by the

first step.

In the sequel, we reduce the running time of the above algorithm, in particular, the

first step, to O(
∑n

i=1(ai + bi)). Our goal is to compute q′ and Φq′ . By the definition,

q′ is a lowest point in the upper envelope of all functions of H(R) restricted on the line

L. Consider any uncertain point Pi ∈ P. Let Hi(R,L) be the set of supporting planes

of the surface patches defined on the cells of Gi(R) intersecting L. Observe that since

Edi(x, y) is convex, the upper envelope of all the functions of Hi(R) restricted on L is

exactly the upper envelope of the functions of Hi(R,L) restricted on L. Therefore, q′

is also a lowest point in the upper envelope of the functions of H(R,L) restricted on

L, where H(R,L) = ∪ni=1Hi(R,L). In other words, among all planes in H(R), only

the planes of H(R,L) are relevant for determining q′. Thus, suppose H(R,L) has been

computed; then q′ can be computed based on the planes of H(R,L) in O(|H(R,L)|) time

73

by the 2D LP algorithm [27]. After q′ is computed, the set Φq′ can also be determined

in O(|H(R,L)|) time.

Note that |H(R,L)| = O(
∑n

i=1(ai+ bi)), since for each 1 ≤ i ≤ n, |Hi(R,L)|, which

is equal to the number of cells of Gi(R) intersecting L, is O(ai + bi).

It remains to compute H(R,L), i.e., compute Hi(R,L) for each 1 ≤ i ≤ n. Recall

that R = [x1, x2]× [y1, y2] and the two predecessor indices Ix1(Xi) and Iy1(Yi) for each

1 ≤ i ≤ n are already known. The following lemma gives an O(ai + bi)-time algorithm

to compute Hi(R,L).

Lemma 5.3.1. For each 1 ≤ i ≤ n, Hi(R,L) can be computed in O(ai + bi) time.

Proof. Let Gi(R,L) be the set of cells of Gi(R) intersecting L. To compute the planes

in Hi(R,L), it is sufficient to determine the plane surface patches of Edi(x, y) defined

on the cells of Gi(R,L). By Lemma 5.2.2, this amounts to determine the indices of

the predecessors of these cells in Xi and Yi, respectively. In the following, we give an

algorithm to compute the cells of Gi(R,L) and determine their predecessor indices in

Xi and Yi, respectively, and the algorithm runs in O(ai + bi) time.

The main idea is that we first pick a particular point p on L ∩ R and locate the

cell of Gi(R) containing p (clearly this cell belongs to Gi(R,L)), and then starting from

p, we traverse on L and Gi(R) simultaneously to trace other cells of Gi(R,L) until we

move out of R. The details are given below.

We focus on the case where L has a positive slope. The other cases can be handled

similarly. Recall that L intersects the interior of R. Let p be the leftmost intersection

of L with the boundary of R. Hence, p is either on the left side or the bottom side of R.

Let C be the cell of Gi that contains p. We first determine the two indices Ip(Xi)

and Ip(Yi). Note that IC(Xi) = Ip(Xi) and IC(Yi) = Ip(Yi).

Since p ∈ R, the index Ip(Xi) can be found in O(ai) time by scanning the list Xi

from the index Ix1(Xi). Similarly, Ip(Yi) can be found in O(bi) time by scanning the list

Yi from the index Iy1(Yi). After IC(Xi) = Ip(Xi) and IC(Yi) = Ip(Yi) are computed, by

Lemma 5.2.2, the function Edi(x, y, C) can be computed in constant time, and we add

the function to Hi(R,L).

74

Next, we move p on L rightwards. We will show that when p crosses the boundary

of C, we can determine the new cell containing p and update the two indices Ip(Xi)

and Ip(Yi) in constant time. This process continues until p moves out of R. Specifically,

when p moves on L rightwards, p will cross the boundary of C either from the top side

or the right side.

First, we determine whether p will move out of R before p crosses the boundary of

C. If yes, then we terminate the algorithm. Otherwise, we determine whether p moves

out of C from its right side or left side. All above can be easily done in constant time.

Depending on whether p crosses the boundary of C from its top side, right side, or from

both sides simultaneously, there are three cases.

1. If p crosses the boundary of C from the top side and p does not cross the right side

of C, then p enters into a new cell that is on top of C. We update C to the new

cell. We increase the index Ip(Yi) by one, but keep Ip(Xi) unchanged. Clearly, the

above two indices are correctly updated and IC(Xi) = Ip(Xi) and IC(Yi) = Ip(Yi)

for the new cell C. Again, by Lemma 5.2.2, the function Edi(x, y, C) for the new

cell C can be computed in constant time. We add the new function to Hi(R,L).

2. If p crosses the boundary of C from the right side and p does not cross the top

side of C, then p enters into a new cell that is on right of C. The algorithm in this

case is similar to the above case and we omit the discussions.

3. The remaining case is when p crosses the boundary of C through the top right

corner of C. In this case, p enters into the northeast neighboring cell of C. We

first add to Hi(R,L) the supporting planes of the surface patches of Edi(x, y)

defined on the top neighboring cell and the right neighboring cell of C, which can

be computed in constant time as the above two cases. Then, we update C to the

new cell p is entering. We increase each of Ip(Xi) and Ip(Yi) by one. Again, the

two indices are correctly updated for the new cell C. Finally, we compute the new

function Edi(x, y, C) and add it to Hi(R,L).

When the algorithm stops, Hi(R,L) is computed. In general, during the procedure

of moving p on L, we spend constant time on finding each supporting plane of Hi(R,L).

75

Therefore, the total running time of the entire algorithm is O(ai + bi). The lemma thus

follows.

With the preceding lemma, we have the following result.

Theorem 5.3.2. The decision problem can be solved in O(
∑n

i=1(ai + bi)) time.

5.4 Computing the Rectilinear Center

In this section, with the help of our decision algorithm in Section 5.3, we compute

the rectilinear center q∗ in O(mn) time.

As discussed in Section 5.1.2, our algorithm is a prune-and-search algorithm that

has O(log n) “outer” recursive steps each of which has O(logm) “inner” recursive steps.

In each outer recursive step, the algorithm prunes at least |P|/32 uncertain points of P

such that these uncertain points are not relevant for computing q∗. After O(log n) outer

recursive steps, there will be only a constant number of uncertain points remaining in P.

Each outer recursive step runs in O(m|P|) time, where |P| is the number of uncertain

points remaining in P. In this way, the total running time of the algorithm is O(mn).

Each outer recursive step is another recursive prune-and-search algorithm, which

consists of 2 + logm inner recursive steps. Let X = ∪ni=1Xi and Y = ∪ni=1Yi. Hence,

|X | = |Y| = mn. We maintain a rectangle R = [x1, x2] × [y1, y2] that contains q∗.

Initially, R is the entire plane. In each inner recursive step, we shrink R such that the

x-range [x1, x2] (resp., y-range [y1, y2]) of the new R only contains half of the values of X

(resp., Y) in the x-range (resp., y-range) of the previous R. In this way, after logm+ 2

inner recursive steps, the x-range (resp., y-range) of R only contains at most n/4 values

of X (resp., Y). At this moment, a key observation is that there is a subset P∗ of at

least n/2 uncertain points, such that for each Pi ∈ P∗, R is contained in the interior of

a single cell of the grid Gi, i.e., the x-range (resp., y-range) of R does not contain any

value of Xi (resp., Yi). Due to the observation, we can use a pruning procedure similar

to that in [27] to prune at least |P∗|/16 ≥ n/32 uncertain points.

In the following, in Section 5.4.1, we give our algorithm on pruning the values of X

and Y to obtain P∗. In Section 5.4.2, we prune uncertain points of P∗.

76

5.4.1 Pruning the Coordinate Values of X and Y

Consider a general step of the algorithm where we are about to perform the j-th

inner recursive step for 1 ≤ j ≤ logm + 2. Our algorithm maintains the following

algorithm invariants. (1) We have a rectangle Rj−1 = [xj−1
1 , xj−1

2] × [yj−1
1 , yj−1

2] that

contains q∗. (2) For each 1 ≤ i ≤ n, the index I
xj−1
1

(Xi) of the predecessor of xj−1
1 in Xi

is known, and so is the index I
yj−1
1

(Yi). (3) We have a sublist Xj−1
i of Xi that consists

of all values of Xi in [xj−1
1 , xj−1

2] and a sublist Y j−1
i of Yi that consists of all values of

Yi in [yj−1
1 , yj−1

2]. Note that these sublists can be empty. (4) |X j−1| ≤ mn/2j−1 and

|Yj−1| ≤ mn/2j−1, where X j−1 = ∪ni=1X
j−1
i and Yj−1 = ∪ni=1Y

j−1
i .

Initially, we set R0 = [−∞,+∞] × [−∞,+∞], X0
i = Xi and Y 0

i = Yi for each

1 ≤ i ≤ n, with X 0 = X and Y0 = Y. It is easy to see that before we start the first

inner recursive step for j = 1, all the algorithm invariants hold.

In the sequel, we give the details of the j-th inner recursive step. We will show that

its running time is O(mn/2j + n) and all algorithm invariants are still maintained after

the step.

Let xm be the median of X j−1 and ym be the median of Yj−1. Both xm and ym

can be found in O(|X j−1|+ |Yj−1|) time.

For each 1 ≤ i ≤ n, let aj−1
i = I

xj−1
2

(Xi) − Ixj−1
1

(Xi) + 1 and bj−1
i = I

yj−1
2

(Yi) −

I
yj−1
1

(Yi) + 1. Observe that aj−1
i = |Xj−1

i |+ 1 and bj−1
i = |Y j−1

i |+ 1.

Let x∗ and y∗ be the x- and y-coordinates of q∗, respectively.

We first determine whether x∗ > xm, x∗ < xm, or x∗ = xm. This can be done by

applying our decision algorithm on Rj−1 and L with L being the vertical line x = xm.

By Theorem 5.3.2, the running time of our decision algorithm is O(
∑n

i=1(aj−1
i + bj−1

i)),

which is O(n+ |X j−1|+ |Yj−1|).

Note that if x∗ = xm, then q∗ will be found by the decision algorithm and we

can terminate the entire algorithm. Otherwise, without loss of generality, we assume

x∗ > xm. We proceed to determine whether y∗ > ym or y∗ < ym, or y∗ = ym by applying

our decision algorithm on Rj−1 and L with L being the horizontal line y = ym. Similarly,

if y∗ = ym, then the decision algorithm will find q∗ and we are done. Otherwise, without

loss of generality we assume y∗ > ym. The above calls our decision algorithm twice,

which takes O(n+ |X j−1|+ |Yj−1|) time in total.

77

Now we know that q∗ is in the rectangle [xm, x
j−1
2] × [ym, y

j−1
2]. We let Rj =

[xj1, x
j
2] × [yj1, y

j
2] be the above rectangle, i.e., xj1 = xm, xj2 = xj−1

2 , yj1 = ym, and

yj2 = yj−1
2 . Clearly, the first algorithm invariant is maintained.

We further proceed as follows to maintain the other three invariants.

For each 1 ≤ i ≤ n, by scanning the sorted list Xj−1
i , we compute the index

I
xj1

(Xi) of the predecessor of xj1 in Xi (each element of Xj−1
i maintains its original

index in Xi), and similarly, by scanning the sorted list Y j−1
i , we compute the index

I
yj1

(Yi). Computing these indices in all Xi and Yi for i = 1, 2, . . . , n can be done in

O(|X j−1|+ |Yj−1|) time. This maintains the second algorithm invariant.

Next, for each 1 ≤ i ≤ n, we scan Xj−1
i to compute a sublist Xj

i , which consists

of all values of Xj−1
i in [xj1, x

j
2], and similarly, we scan Y j−1

i to compute a sublist Y j
i ,

which consists of all values of Y j−1
i in [yj1, y

j
2]. Computing the lists Xj

i and Y j
i for all

i = 1, 2, . . . , n as above can be done in overall O(|X j−1|+ |Yj−1|) time. This maintains

the third algorithm invariant.

Let X j = ∪ni=1X
j
i and Yj = ∪ni=1Y

j
i . According to our above algorithm, |X j | ≤

|X j−1|/2 and |Yj | ≤ |Yj−1|/2. Since |X j−1| ≤ nm/2j−1 and |Yj−1| ≤ nm/2j−1, we

obtain |X j | ≤ nm/2j and |Yj | ≤ nm/2j . Hence, the fourth algorithm invariant is

maintained.

In summary, after the j-th inner recursive step, all four algorithm invariants are

maintained. Our above analysis also shows that the total running time is O(n+ |X j−1|+

|Yj−1|), which is O(nm/2j + n).

We stop the algorithm after the t-th inner recursive step, for t = 2 + logm. The

total time for all t steps is thus O(
∑t

j=1(n+mn/2j)) = O(mn).

After the t-th step, by our algorithm invariants, the rectangle Rt contains q∗, and

|X t| ≤ mn/2t = n/4 and |Yt| ≤ mn/2t = n/4.

We say that an uncertain point Pi is prunable if both Xt
i and Y t

i are empty (and

thus Rt is contained in the interior of a cell of Gi). Let P∗ denote the set of all prunable

uncertain points of P. The following is an easy but crucial observation.

Observation 5.4.1. |P∗| ≥ n/2.

78

Proof. Since X t ≤ n/4, among the n sets Xt
i for i = 1, 2, . . . , n, at most n/4 of them

are non-empty. Similarly, since Yt ≤ n/4, among the n sets Y t
i for i = 1, 2, . . . , n, at

most n/4 of them are non-empty. Therefore, there are at most n/2 uncertain points

Pi ∈ P such that either Xt
i or Y t

i is non-empty. This implies that there are at least n/2

prunable uncertain points in P.

After the t-th inner recursive step, the set P∗ can be obtained in O(n) time by

checking all sets Xt
i and Y t

i for i = 1, 2, . . . , n and see whether they are empty.

The reason we are interested in prunable uncertain points is that for each prunable

uncertain point Pi of P∗, since Rt contains q∗ and Rt is contained in a single cell Ci

of Gi, there is only one surface patch of Edi(x, y) (i.e., the one defined on Ci) that is

relevant for computing q∗. Let hi denote the supporting plane of the above surface

patch. We call hi the relevant plane of Pi. Note that we can obtain hi in constant time.

Indeed, observe that the predecessor index ICi(Xi) is exactly Ixt1(Xi), which is known by

our algorithm invariants. Similarly, the index ICi(Yi) is also known. By Lemma 5.2.2,

the function Edi(x, y, Ci), which is also the function of hi, can be obtained in constant

time. Hence, the relevant planes of all prunable uncertain points of P∗ can be obtained

in O(n) time.

Remark.. One may wonder why we did not perform the inner recursive steps for

t = logmn times (instead of t = 2 + logm time) so that X t and Yt would each have a

constant number of values in the range of R. The reason is that based on our analysis,

that would take O(mn + n log nm) time, which may not be bounded by O(mn) (e.g.,

when m = o(log n)). In fact, performing the inner recursive steps for t = 2+logm times

such that X t and Yt each have at most n
4 values in the range of R is an interesting and

crucial ingredient of our techniques.

5.4.2 Pruning Uncertain Points from P∗

Consider a prunable uncertain point Pi of P∗. Recall that Hi is the set of supporting

planes of all surface patches of Edi(x, y). The above analysis shows that among all planes

in Hi, only the relevant plane hi is useful for determining q∗. In other words, the point

p∗, as a lowest point of all planes in H = ∪ni=1Hi, is also a lowest point of the planes

79

in the union of ∪Pi∈P∗hi and ∪Pi∈P\P∗Hi. This will allow us to prune at least |P∗|/16

uncertain points from P∗. The idea is similar to Megiddo’s pruning scheme for the 3D

LP algorithm in [27].

For each Pi ∈ P∗, its relevant plane hi is also considered as a function in the xy-

plane. Arrange all uncertain points of P∗ into |P∗|/2 disjoint pairs. Let D(P∗) denote

the set of all these pairs. For each pair (Pi, Pj) ∈ D(P∗), if the value of the function

hi at any point of Rt is greater than or equal to that of hj , then Pj can be pruned

immediately; otherwise, we project the intersection of hi and hj on the xy-plane to

obtain a line Lij dividing Rt into two parts, such that hi ≥ hj on one part and hi ≤ hj
on the other.

Let L denote the set of the dividing lines Lij for all pairs of D(P∗). Let Lm be the

line whose slope has the median value among the lines of L. We transform the coordinate

system by rotating the x-axis to be parallel to Lm (the y-axis does not change). For

ease of discussion, we assume no other lines of L are parallel to Lm (the assumption can

be easily lifted; see [27]). In the new coordinate system, half the lines of L have negative

slopes and the other half have positive slopes. We now arrange all lines of L into disjoint

pairs such that each pair has a line of a negative slope and a line of a positive slope.

Let D(L) denote the set of all these line pairs.

Let x∗ and y∗ respectively be the x- and y-coordinate of the center q∗ in the new

coordinate system. For each pair (Li, Lj) ∈ D(L), we define yij as the y-coordinate of

the intersection of Li and Lj . We find the median ym of the values yij for all pairs in

D(L). We determine in O(mn) time whether y∗ > ym, y∗ < ym or y∗ = ym by using our

decision algorithm (here an O(mn) time decision algorithm is sufficient for our purpose).

If y∗ = ym, then our decision algorithm will find q∗ and we can terminate the algorithm.

Otherwise, without of loss generality, we assume y∗ < ym.

Let D′(L) denote the set of all pairs (Li, Lj) of D(L) such that yij ≥ ym. Note

that |D′(L)| ≥ |D(L)|/2. For each pair (Li, Lj) ∈ D′(L), let xij be the x-coordinate of

the intersection of Li and Lj . We find the median xm of all such xij ’s. By using our

decision algorithm, we can determine in O(mn) time whether x∗ > xm, x∗ < xm, or

x∗ = xm. If x∗ = xm, our decision algorithm will find q∗ and we are done. Otherwise,

without loss of generality, we assume x∗ < xm.

80

q∗

Li Lj

x = xm

y = ym

Figure 5.2. The intersection of Li and Lj is in the first quarter of the intersection of
x = xm and y = ym. Note that q∗ is in the interior of the third quarter.

Now for each pair (Li, Lj) of D′(L) with xij ≥ xm and yij ≥ ym (there are at least

|D′(L)|/2 such pairs), we can prune either Pi or Pj , as follows. Indeed, one of the lines

in such a pair (Li, Lj), say Li, has a negative slope and does not intersect the region

A = {(x, y) | x < xm, y < ym} (e.g., see Fig. 5.2). Suppose Li is the dividing line of the

relevant planes hk1 and hk2 of two uncertain points Pk1 and Pk2 of P∗. It follows that

either hk1 ≥ hk2 or hk1 ≤ hk2 holds on the region A. Since q∗ ∈ A, one of Pk1 and Pk2

can be pruned.

As a summary, the above pruning algorithm prunes at least |P∗|/16 ≥ n/32 uncer-

tain points and the total time is O(mn).

5.4.3 Wrapping Things Up

The algorithm in the above two subsections either computes q∗ or prunes at least

n/32 uncertain points from P in O(mn) time. We assume the latter case happens. Then

we apply the same algorithm recursively on the remaining uncertain points for O(log n)

steps, after which only a constant number of uncertain points remain. The total running

time can be described by the following recurrence: T (m,n) = T (m, 31·n
32) + O(mn).

Solving the recurrence gives T (m,n) = O(mn).

Let P ′ be the set of the remaining uncertain points, with |P ′| = O(1). Hence, the

rectilinear center q∗ is determined by P ′. In other words, q∗ is also a rectilinear center of

P ′. In fact, like other standard prune-and-search algorithms, the way we prune uncertain

points of P guarantees that any rectilinear center of P is also a rectilinear center of P ′,

and vice versa. By using an approach similar to that in Section 5.4.1, Lemma 5.4.2

finally computes q∗ based on P ′ in additional O(m) time.

81

Lemma 5.4.2. The rectilinear center q∗ of P ′ can be computed in O(m) time.

Proof. Let c = |P ′|, which is a constant. Let X ′ = ∪Pi∈P ′Xi and Y ′ = ∪Pi∈P ′Yi. We

apply the same recursive algorithm in Section 5.4.1 on X ′ and Y ′ for O(logm) steps,

after which we will obtain a rectangle R such that R contains q∗ and for each Pi ∈ P ′, the

x-range (resp., y-range) of R only contains a constant number of values of Xi (resp., Yi),

and thus R intersects a set Gi(R) of only a constant number of cells of Gi. Therefore,

for each Pi ∈ P ′, only the surface patches of Edi(x, y) defined on the cells of Gi(R)

are relevant for computing q∗. The supporting planes of these surface patches can be

determined immediately after the above O(logm) recursive steps. By the same analysis

as in Section 5.4.1, all above can be done in O(c ·m) time.

The above found O(c) “relevant” supporting planes such that q∗ corresponds to a

lowest point in the upper envelope of them. Consequently, q∗ can be found in O(c) time

by applying the linear-time algorithm for the 3D LP problem [27] on these O(c) relevant

supporting planes.

This finishes our algorithm for computing q∗, which runs in O(mn) time.

Theorem 5.4.3. A rectilinear center q∗ of the uncertain points of P in the plane can be

computed in O(mn) time.

82

CHAPTER 6

THE K-CENTER PROBLEM OF UNCERTAIN POINTS ON TREE NETWORKS

In this chapter, we study the k-center problem of uncertain points on a tree. To

solve this problem, we first present an algorithm to solve a center-coverage problem,

which is the decision or dual version of the k-center problem. We then use it to solve

the k-center problem. A preliminary version of this chapter will appear in the 14th

Algorithms and Data Structures Symposium (WADS 2017).

6.1 Introduction

As in Chapter 3, let T be a tree, and we consider each edge e of T as a line segment

so that we can talk about “points” on e. Formally, we specify a point x of T by an edge

e of T that contains x and the distance between x and an incident vertex of e. The

distance of any two points p and q on T , denoted by d(p, q), is defined as the length of

the simple path from p to q in T . Let P = {P1, . . . , Pn} be a set of n uncertain (demand)

points on T . Each Pi ∈ P has mi possible locations on T , denoted by {pi1, pi2, · · · , pimi},

and each location pij of Pi is associated with a probability fij ≥ 0 for Pi appearing at

pij (which is independent of other locations), with
∑mi

j=1 fij = 1; e.g., see Fig. 3.1 in

Chapter 3. In addition, each Pi ∈ P has a weight wi ≥ 0. For any point x on T , the

(weighted) expected distance from x to Pi, denoted by Ed(x, Pi), is defined as

Ed(x, Pi) = wi ·
mi∑
j=1

fij · d(x, pij).

Given a value λ ≥ 0, called the covering range, we say that a point x on T covers

an uncertain point Pi if Ed(x, Pi) ≤ λ. The center-coverage problem is to compute a

minimum number of points on T , called centers, such that every uncertain point of P is

covered by at least one center (hence we can build facilities on these centers to “serve”

all demand points).

83

Let M denote the total number of locations all uncertain points, i.e., M =
∑n

i=1mi.

In this chapter, we present an algorithm that solves the problem in O(|T |+M log2M)

time, which is nearly linear as the input size of the problem is Θ(|T |+M).

As an application of our algorithm, we can solve the k-center problem, which com-

putes a given number of k centers on T such that the covering range can be minimized.

Our algorithm solves it in O(|T |+ n2 log n logM +M log2M log n) time.

6.1.1 Related Work

If each Pi ∈ P has a single “certain” location, this problem is essentially the

weighted case for “deterministic” points and the center-coverage problem is solvable

in linear time [72] and the k-center problem is solvable in O(n log2 n) time [31,43].

If T is a path, both the center-coverage problem and the k-center problem on

uncertain points have been studied in Chapter 2, but under a somewhat special problem

setting where mi is the same for all 1 ≤ i ≤ n. The two problems were solved in O(M +

n log k) and O(M logM + n log k log n) time, respectively. If T is tree, an O(|T | + M)

time algorithm was given in Chapter 3 for the one-center problem under the above

special problem setting.

As mentioned above, the “deterministic” version of the center-coverage problem is

solvable in linear time [72], where all demand points are on the vertices. For the k-center

problem, Megiddo and Tamir [31] presented an O(n log2 n log log n) time algorithm (n

is the size of the tree), which was improved to O(n log2 n) time by Cole [43]. The

unweighted case was solved in linear time by Frederickson [30].

Facility location problems in other uncertain models have also been considered. For

example, Löffler and van Kreveld [63] gave algorithms for computing the smallest en-

closing circle for imprecise points each of which is contained in a planar region (e.g., a

circle or a square). Jørgenson et al. [62] studied the problem of computing the distribu-

tion of the radius of the smallest enclosing circle for uncertain points each of which has

multiple locations in the plane. de Berg et al. [64] proposed algorithms for dynamically

maintaining Euclidean 2-centers for a set of moving points in the plane (the moving

points are considered uncertain). See also the problems for minimizing the maximum

regret, e.g., [37, 38,65].

84

Our center-coverage problem can also be considered as a geometric coverage prob-

lem, which has been studied in various settings. For example, the unit disk coverage

problem is to compute a minimum number of unit disks to cover a given set of points in

the plane. The problem is NP-hard and a polynomial-time approximation scheme was

known [73]. The discrete case where the disks must be selected from a given set was

also studied [74]. See [75–78] and the references therein for various problems of covering

points using squares. Refer to a survey [79] for more geometric coverage problems.

6.1.2 Our Techniques

We first discuss our techniques for solving the center-coverage problem.

For each uncertain point Pi ∈ P, we find a point p∗i on T that minimizes the

expected distance Ed(pi, Pi), and p∗i is actually the weighted median of all locations of

Pi. We observe that if we move a point x on T away from p∗i , the expected distance

Ed(x, Pi) is monotonically increasing. We compute the medians p∗i for all uncertain

points in O(M logM) time. Then we show that there exists an optimal solution in

which all centers are in Tm, where Tm is the minimum subtree of T that connects all

medians p∗i (so every leaf of Tm is a median p∗i). Next we find centers on Tm. To this

end, we propose a simple greedy algorithm, but the challenge is on developing efficient

data structures to perform certain operations. We briefly discuss it below.

We pick an arbitrary vertex r of Tm as the root. Starting from the leaves, we

consider the vertices of Tm in a bottom-up manner and place centers whenever we “have

to”. For example, consider a leaf v holding a median p∗i and let u be the parent of v.

If Ed(u, Pi) > λ, then we have to place a center c on the edge e(u, v) in order to cover

Pi. The location of c is chosen to be at a point of e(u, v) with Ed(c, Pi) = λ (i.e., on the

one hand, c covers Pi, and on the other hand, c is as close to u as possible in the hope

of covering other uncertain points as many as possible). After c is placed, we find and

remove all uncertain points that are covered by c. Performing this operation efficiently

is a key difficulty for our approach. We solve the problem in an output-sensitive manner

by proposing a dynamic data structure that also supports the remove operations.

We also develop data structures for other operations needed in the algorithm. For

example, we build a data structure in O(M logM) time that can compute the expected

85

distance Ed(x, Pi) in O(logM) time for any point x on T and any Pi ∈ P. These data

structures may be of independent interest.

For solving the k-center problem, by observations, we first identify a set of O(n2)

“candidate” values such that the covering range in the optimal solution must be in the

set. Consequently, we use our algorithm for the center-coverage problem as a decision

procedure to find the optimal covering range in the set.

We should point out that although we have assumed
∑mi

j=1 fij = 1 for each Pi ∈ P, it

is quite straightforward to adapt our algorithm to the general case where the assumption

does not hold.

The rest of the chapter is organized as follows. We introduce some notation in

Section 6.2. In Section 6.3, we describe our algorithmic scheme for the center-coverage

problem but leave the implementation details in the subsequent two sections. Specifi-

cally, the algorithm for computing all medians p∗i is given in Section 6.4, and in the same

section we also propose a connector-bounded centroid decomposition of T , which is re-

peatedly used in the paper and may be interesting in its own right. The data structures

used in our algorithmic scheme are given in Section 6.5. We finally solve the k-center

problem in Section 6.6.

6.2 Preliminaries

Note that the locations of the uncertain points of P may be in the interior of the

edges of T . A vertex-constrained case happens if all locations of P are at vertices of T

and each vertex of T holds at least one location of P (but the centers we seek can still

be in the interior of edges). As in Chapter 3, we will show later in Section 6.5.4 that

the general problem can be reduced to the vertex-constrained case in O(|T |+M) time.

In the following paper, unless otherwise stated, we focus our discussion on the vertex-

constrained case and assume our problem on P and T is a vertex-constrained case. For

ease of exposition, we further make a general position assumption that every vertex of T

has only one location of P (we explain in Section 6.5.4 that our algorithm easily extends

to the degenerate case). Under this assumption, it holds that |T | = M ≥ n.

Let e(u, v) denote the edge of T incident to two vertices u and v. For any two points

p and q on T , denote by π(p, q) the simple path from p to q on T .

86

Let π be any simple path on T and x be any point on π. For any location pij of an

uncertain point Pi, the distance d(x, pij) is a convex (and piecewise linear) function as x

changes on π [27]. As a sum of multiple convex functions, Ed(x, Pi) is also convex (and

piecewise linear) on π, that is, in general, as x moves on π, Ed(x, Pi) first monotonically

decreases and then monotonically increases. In particular, for each edge e of T , Ed(x, Pi)

is a linear function for x ∈ e.

For any subtree T ′ of T and any Pi ∈ P, we call the sum of the probabilities of the

locations of Pi in T ′ the probability sum of Pi in T ′.

For each uncertain point Pi, let p∗i be a point x ∈ T that minimizes Ed(x, Pi). If

we consider wi · fij as the weight of pij , p
∗
i is actually the weighted median of all points

pij ∈ Pi. We call p∗i the median of Pi. Although p∗i may not be unique (e.g., when there

is an edge e dividing T into two subtrees such that the probability sum of Pi in either

subtree is exactly 0.5), Pi always has a median located at a vertex v of T , and we let p∗i

refer to such a vertex.

Recall that λ is the given covering range for the center-coverage problem. If

Ed(p∗i , Pi) > λ for some i ∈ [1, n], then there is no solution for the problem since

no point of T can cover Pi. Henceforth, we assume Ed(p∗i , Pi) ≤ λ for each i ∈ [1, n].

6.3 The Algorithmic Scheme

In this section, we describe our algorithmic scheme for the center-coverage problem,

and the implementation details will be presented in the subsequent two sections.

We start with computing the medians p∗i of all uncertain points of P. We have the

following lemma, whose proof is deferred to Section 6.4.2.

Lemma 6.3.1. The medians p∗i of all uncertain points Pi of P can be computed in

O(M logM) time.

6.3.1 The Medians-Spanning Tree Tm

Denote by P ∗ the set of all medians p∗i . Let Tm be the minimum connected subtree

of T that spans/connects all medians. Note that each leaf of Tm must hold a median.

We pick an arbitrary median as the root of T , denoted by r. The subtree Tm can be

easily computed in O(M) time by a post-order traversal on T (with respect to the root

87

r), and we omit the details. The following lemma is based on the fact that Ed(x, Pi) is

convex for x on any simple path of T and Ed(x, Pi) minimizes at x = p∗i .

Lemma 6.3.2. There exists an optimal solution for the center-coverage problem in which

every center is on Tm.

Proof. Consider an optimal solution and let C be the set of all centers in it. Assume

there is a center c ∈ C that is not on Tm. Let v be the vertex of Tm that holds a median

and is closest to c. Then v decompose T into two subtrees T1 and T2 with the only

common vertex v such that c is in one subtree, say T1, and all medians are in T2. If

we move a point x from c to v along π(c, v), then Ed(x, Pi) is non-increasing for each

i ∈ [1, n]. This implies that if we move the center c to v, we can obtain an optimal

solution in which c is in Tm.

If C has other centers that are not on Tm, we do the same as above to obtain an

optimal solution in which all centers are on Tm. The lemma thus follows.

Due to Lemma 6.3.2, we will focus on finding centers on Tm. We also consider r as

the root of Tm. With respect to r, we can talk about ancestors and descendants of the

vertices in Tm. Note that for any two vertices u and v of Tm, π(u, v) is in Tm.

We reindex all medians and the corresponding uncertain points so that the new

indices will facilitate our algorithm, as follows. Starting from an arbitrary child of r in

Tm, we traverse down the tree Tm by always following the leftmost child of the current

node until we encounter a leaf, denoted by v∗. Starting from v∗, we perform a post-

order traversal on Tm and reindex all medians of P ∗ such that p∗1, p
∗
2, . . . , p

∗
n is the list of

points of P ∗ encountered in order in the above traversal. Recall that the root r contains

a median, which is p∗n after the reindexing. Accordingly, we also reindex all uncertain

points of P and their corresponding locations on T , which can be done in O(M) time.

In the following paper, we will always use the new indices.

For each vertex v of Tm, we use Tm(v) to represent the subtree of Tm rooted at v.

The reason we do the above reindexing is that for any vertex v of Tm, the new indices of

all medians in Tm(v) must form a range [i, j] for some 1 ≤ i ≤ j ≤ n, and we use R(v) to

denote the range. It will be clear later that this property will facilitate our algorithm.

88

6.3.2 The Algorithm

Our algorithm for the center-coverage problem works as follows. Initially, all uncer-

tain points are “active”. During the algorithm, we will place centers on Tm, and once an

uncertain point Pi is covered by a center, we will “deactivate” it (it then becomes “in-

active”). The algorithm visits all vertices of Tm following the above post-order traversal

of Tm starting from leaf v∗. Suppose v is currently being visited. Unless v is the root r,

let u be the parent of v. Below we describe our algorithm for processing v. There are

two cases depending on whether v is a leaf or an internal node, although the algorithm

for them is essentially the same.

The Leaf Case

If v is a leaf, then we process it as follows. Since v is leaf, it holds a median p∗i . If

Pi is inactive, we do nothing; otherwise, we proceed as follows.

We compute a point c (called a candidate center) on the path π(v, r) closest to

r such that Ed(c, Pi) ≤ λ. Note that if we move a point x from v to r along π(v, r),

Ed(x, Pi) is monotonically increasing. By the definition of c, if Ed(r, Pi) ≤ λ, then c = r;

otherwise, Ed(c, Pi) = λ. If c is in π(u, r), then we do nothing and finish processing v.

Below we assume that c is not in π(u, r) and thus is in e(u, v) \ {u} (i.e., c ∈ e(u, v) but

c 6= u).

In order to cover Pi, by the definition of c, we must place a center in e(u, v) \ {u}.

Our strategy is to place a center at c. Indeed, this is the best location for placing a

center since it is the location that can cover Pi and is closest to u (and thus is closest

to every other active uncertain point). We use a candidate-center-query to compute c in

O(log n) time, whose details will be discussed later. Next, we report all active uncertain

points that can be covered by c, and this is done by a coverage-report-query in output-

sensitive O(logM log n + k log n) amortized time, where k is the number of uncertain

points covered by c. The details for the operation will be discussed later. Further, we

deactivate all these uncertain points. We will show that deactivating each uncertain

point Pj can be done in O(mj logM log n) amortized time. This finishes processing v.

89

The Internal Node Case

If v is an internal node, since we process the vertices of Tm following a post-order

traversal, all descendants of v have already been processed. Our algorithm maintains an

invariant that if the subtree Tm(v) contains any active median p∗i (i.e., Pi is active), then

Ed(v, Pi) ≤ λ. When v is a leaf, this invariant trivially holds. Our way of processing a

leaf discussed above also maintains this invariant.

To process v, we first check whether Tm(v) has any active medians. This is done by

a range-status-query in O(log n) time, whose details will be given later. If Tm(v) does

not have any active median, then we are done with processing v. Otherwise, by the

algorithm invariant, for each active median p∗i in Tm(v), it holds that Ed(v, Pi) ≤ λ. If

v = r, we place a center at v and finish the entire algorithm. Below, we assume v is not

r and thus u is the parent of v.

We compute a point c on π(v, r) closest to r such that Ed(c, Pi) ≤ λ for all active

medians p∗i ∈ Tm(v), and we call c the candidate center. By the definition of c, if

Ed(r, Pi) ≤ λ for all active medians p∗i ∈ Tm(v), then c = r; otherwise, Ed(c, Pi) = λ

for some active median p∗i ∈ Tm(v). As in the leaf case, finding c is done in O(log n)

time by a candidate-center-query. If c is on π(u, r), then we finish processing v. Note

that this implies Ed(u, Pi) ≤ λ for each active median p∗i ∈ Tm(v), which maintains the

algorithm invariant for u.

If c 6∈ π(u, r), then c ∈ e(u, v)\{u}. In this case, by the definition of c, we must place

a center in e(u, v) \ {u} to cover Pi. As discussed in the leaf case, the best location for

placing a center is c and thus we place a center at c. Then, by using a coverage-report-

query, we find all active uncertain points covered by c and deactivate them. Note that

by the definition of c, c covers Pj for all medians p∗j ∈ Tm(v). This finishes processing v.

Once the root r is processed, the algorithm finishes.

6.3.3 The Time Complexity

To analyze the running time of the algorithm, it remains to discuss the three oper-

ations: range-status-queries, coverage-report-queries, and candidate-center-queries. For

answering range-status-queries, it is trivial, as shown in Lemma 6.3.3.

90

Lemma 6.3.3. We can build a data structure in O(M) time that can answer each range-

status-query in O(log n) time. Further, once an uncertain point is deactivated, we can

remove it from the data structure in O(log n) time.

Proof. Initially we build a balanced binary search tree Φ to maintain all indices 1, 2, . . . , n.

If an uncertain point Pi is deactivated, then we simply remove i from the tree in O(log n)

time.

For each range-status-query, we are given a vertex v of Tm, and the goal is to decide

whether Tm(v) has any active medians. Recall that all medians in Tm(v) form a range

R(v) = [i, j]. As preprocessing, we compute R(v) for all vertices v of Tm, which can be

done in O(|Tm|) time by the post-order traversal of Tm starting from leaf v∗. Note that

|Tm| = O(M).

During the query, we simply check whether Φ still contains any index in the range

R(v) = [i, j], which can be done in O(log n) time by standard approaches (e.g., by

finding the successor of i in Φ).

For answering the coverage-report-queries and the candidate-center-queries, we have

the following two lemmas. Their proofs are deferred to Section 6.5.

Lemma 6.3.4. We can build a data structure A1 in O(M log2M) time that can answer in

O(logM log n+k log n) amortized time each coverage-report-query, i.e., given any point

x ∈ T , report all active uncertain points covered by x, where k is the output size. Further,

if an uncertain point Pi is deactivated, we can remove Pi from A1 in O(mi · logM · log n)

amortized time.

Lemma 6.3.5. We can build a data structure A2 in O(M logM+n log2M) time that can

answer in O(log n) time each candidate-center-query, i.e., given any vertex v ∈ Tm, find

the candidate center c for the active medians of Tm(v). Further, if an uncertain point

Pi is deactivated, we can remove Pi from A2 in O(log n) time.

Using these results, we obtain the following.

Theorem 6.3.6. We can find a minimum number of centers on T to cover all uncertain

points of P in O(M log2M) time.

91

Proof. First of all, the total preprocessing time of Lemmas 6.3.3, 6.3.4, and 6.3.5 is

O(M log2M). Computing all medians takes O(M logM) time by Lemma 6.3.1. Below

we analyze the total time for computing centers on Tm.

The algorithm processes each vertex of Tm exactly once. The processing of each

vertex calls each of the following three operations at most once: coverage-report-queries,

range-status-queries, and candidate-center-queries. Since each of the last two operations

runs in O(log n) time, the total time of these two operations in the entire algorithm is

O(M log n). For the coverage-report-queries, each operation runs in O(logM log n +

k log n) amortized time. Once an uncertain point Pi is reported by it, Pi will be de-

activated by removing it from all three data structures (i.e., those in Lemmas 6.3.3,

6.3.4, and 6.3.5) and Pi will not become active again. Therefore, each uncertain point

will be reported by the coverage-report-query operations at most once. Hence, the total

sum of the value k in the entire algorithm is n. Further, notices that there are at most

n centers placed by the algorithm. Hence, there are at most n coverage-report-query

operations in the algorithm. Therefore, the total time of the coverage-report-queries in

the entire algorithm is O(n logM log n). In addition, since each uncertain point Pi will

be deactivated at most once, the total time of the remove operations for all three data

structures in the entire algorithm is O(M logM log n) time.

The theorem thus follows.

In addition, Lemma 6.3.7 will be used to build the data structureA2 in Lemma 6.3.5,

and it will also help to solve the k-center problem in Section 6.6. Its proof is given in

Section 6.5.

Lemma 6.3.7. We can build a data structure A3 in O(M logM) time that can compute

the expected distance Ed(x, Pi) in O(logM) time for any point x ∈ T and any uncertain

point Pi ∈ P.

6.4 A Tree Decomposition and Computing the Medians

In this section, we first introduce a decomposition of T , which will be repeatedly

used in our algorithms (e.g., for Lemmas 6.3.1, 6.3.4, 6.3.7). Later in Section 6.4.2 we

will compute the medians with the help of the decomposition.

92

6.4.1 A Connector-Bounded Centroid Decomposition

We propose a tree decomposition of T , called a connector-bounded centroid decompo-

sition, which is different from the centroid decompositions used before, e.g., [31,33,72,80]

and has certain properties that can facilitate our algorithms.

A vertex v of T is called a centroid if T can be represented as a union of two subtrees

with v as their only common vertex and each subtree has at most 2
3 of the vertices of

T [33, 72], and we say the two subtrees are decomposed by v. Such a centroid always

exists and can be found in linear time [33,72]. For convenience of discussion, we consider

v to be contained in only one subtree but an “open vertex” in the other subtree (thus,

the location of P at v only belongs to one subtree).

Our decomposition of T corresponds to a decomposition tree, denoted by Υ and

defined recursively as follows. Each internal node of Υ has two, three, or four children.

The root of Υ corresponds to the entire tree T . Let v be the centroid of T , and let T1

and T2 be the subtrees of T decomposed by v. Note that T1 and T2 are disjoint since we

consider v to be contained in only one of them. Further, we call v a connector in both

T1 and T2. Correspondingly, in Υ, its root has two children corresponding to T1 and T2,

respectively.

In general, consider a node µ of Υ. Let T (µ) represent the subtree of T correspond-

ing to µ. We assume T (µ) has at most two connectors (initially this is true when µ is

the root). We further decompose T (µ) into subtrees that correspond to the children of

µ in Υ, as follows. Let v be the centroid of T (µ) and let T1(µ) and T2(µ) respectively

be the two subtrees of T (µ) decomposed by v. We consider v as a connector in both

T1(µ) and T2(µ).

If T (µ) has at most one connector, then each of T1(µ) and T2(µ) has at most

two connectors. In this case, µ has two children corresponding to T1(µ) and T2(µ),

respectively.

If T (µ) has two connectors but each of T1(µ) and T2(µ) still has at most two

connectors (with v as a new connector), then µ has two children corresponding to T1(µ)

and T2(µ), respectively. Otherwise, one of them, say, T2(µ), has three connectors and

the other T1(µ) has only one connector (e.g., see Fig. 6.1). In this case, µ has a child in

Υ corresponding to T1(µ), and we further perform a connector-reducing decomposition

93

v

y1

y2

T1(µ)
v′

T2(µ)

Figure 6.1. Illustrating the decomposition of T (µ) into four subtrees enclosed by the
(red) dashed cycles. y1 and y2 are two connectors of T (µ); T (µ) is first decomposed into
two subtrees T1(µ) and T2(µ). However, since T2(µ) has three connectors, we further
decompose it into three subtrees each of which has at most two connectors.

on T2(µ), as follows (this is the main difference between our decomposition and the

traditional centroid decomposition used before [31, 33, 72, 80]). Depending on whether

the three connectors of T2(µ) are in a simple path, there are two cases.

1. If they are in a simple path, without loss of generality, we assume v is the one

between the other two connectors in the path. We decompose T2(µ) into two

subtrees at v such that they contain the two connectors respectively. In this way,

each subtree contains at most two connectors. Correspondingly, µ has another two

children corresponding the two subtrees of T2(µ), and thus µ has three children in

total.

2. Otherwise, there is a unique vertex v′ in T2(µ) that decomposes T2(µ) into three

subtrees that contain the three connectors respectively (e.g., see Fig. 6.1). Note

that v′ and the three subtrees can be easily found in linear time by traversing

T2(µ). Correspondingly, µ has another three children corresponding to the above

three subtrees of T2(µ), respectively, and thus µ has four children in total. Note

that we consider v′ as a connector in each of the above three subtrees. Thus, each

subtree contains at most two connectors.

We continue the decomposition until each subtree T (µ) of µ ∈ Υ becomes an edge

e(v1, v2) of T . According to our decomposition, both v1 and v2 are connectors of T (µ),

but they may only open vertices of T (µ). If both v1 and v2 are open vertices of T (µ),

then we will not further decompose T (µ), so µ is a leaf of Υ. Otherwise, we further

94

decompose T (µ) into an open edge and a closed vertex vi if vi is contained in T (µ) for

each i = 1, 2. Correspondingly, µ has either two or three children that are leaves of Υ.

In this way, for each leaf µ of Υ, T (µ) is either an open edge or a closed vertex of T . In

the former case, T (µ) has two connectors that are its incident vertices, and in the latter

case, T (µ) has one connector that is itself.

This finishes the decomposition of T . A major difference between our decomposition

and the traditional centroid decomposition [31, 33, 72, 80] is that the subtree in our

decomposition has at most two connectors. As will be clear later, this property is

crucial to guarantee the runtime of our algorithms.

Lemma 6.4.1. The height of Υ is O(logM) and Υ has O(M) nodes. The connector-

bounded centroid decomposition of T can be computed in O(M logM) time.

Proof. Consider any node µ of Υ. Let T (µ) be the subtree of T corresponding to µ.

According to our decomposition, |T (µ)| = O(M · (2
3)t), where t is the depth of µ in Υ.

This implies that the height of Υ is O(logM).

Since each leaf of Υ corresponds to either a vertex or an open edge of T , the number

of leaves of Υ is O(M). Since each internal node of Υ has at least two children, the

number of internal nodes is no more than the number of leaves. Hence, Υ has O(M)

nodes.

According to our decomposition, all subtrees of T corresponding to all nodes in the

same level of Υ (i.e., all nodes with the same depth) are pairwise disjoint, and thus the

total size of all these subtrees is O(M). Decomposing each subtree can be done in linear

time (e.g., finding a centroid takes linear time). Therefore, decomposing all subtrees in

each level of Υ takes O(M) time. As the height of Υ is O(logM), the total time for

computing the decomposition of T is O(M logM).

In the following, we assume our decomposition of T and the decomposition tree Υ

have been computed. In addition, we introduce some notation that will be used later.

For each node µ of Υ, we use T (µ) to represent the subtree of T corresponding to µ. If y

is a connector of T (µ), then we use T (y, µ) to represent the subtree of T consisting of all

points q of T \ T (µ) such that π(q, p) contains y for any point p ∈ T (µ) (i.e., T (y, µ) is

the “outside world” connecting to T (µ) through y; e.g., see Fig. 6.2). By this definition,

95

v

T (µ1)

T (µ2)

T (y, µ)
y

T (µ)

Figure 6.2. Illustrating the subtrees T (µ1), T (µ2), and T (y, µ), where y is a connector
of T (µ) = T (µ1) ∪ T (µ2). Note that T (y, µ) is also T (y, µ1) as y ∈ T (µ1).

if y is the only connector of T (µ), then T = T (µ) ∪ T (y, µ); if T (µ) has two connectors

y1 and y2, then T = T (µ) ∪ T (y1, µ) ∪ T (y2, µ).

6.4.2 Computing the Medians

In this section, we compute all medians. It is easy to compute the median p∗i for

a single uncertain point Pi in O(M) time by traversing the tree T . Hence, a straight-

forward algorithm can compute all n medians in O(nM) time. Instead, we present an

O(M logM) time algorithm, which will prove Lemma 6.3.1.

For any vertex v (e.g., the centroid) of T , let T1 and T2 be two subtrees of T

decomposed by v (i.e., v is their only common vertex and T = T1 ∪ T2), such that v is

contained in only one subtree and is an open vertex in the other. The following lemma

can be readily obtained from Kariv and Hakimi [55], and similar results were also given

in Chapter 3.

Lemma 6.4.2. For any uncertain point Pi of P, we have the following.

1. If the probability sum of Pi in Tj is greater than 0.5 for some j ∈ {1, 2}, then the

median p∗i must be in Tj.

2. The vertex v is p∗i if the probability sum of Pi in Tj is equal to 0.5 for some

j ∈ {1, 2}.

Consider the connector-bounded centroid decomposition Υ of T . Starting from the

root of Υ, our algorithm will process the nodes of Υ in a top-down manner. Suppose

we are processing a node µ. Then, we maintain a sorted list of indices for µ, called

the index list of µ and denoted by L(µ), which consists of all indices i ∈ [1, n] such

96

that p∗i is not found yet but is known to be in the subtree T (µ). Since each index i of

L(µ) essentially refers to Pi, for convenience, we also say that L(µ) is a set of uncertain

points. Let F [1 · · ·n] be an array, which will help to compute the probability sums in

our algorithm.

The Root Case

Initially, µ is the root and we process it as follows. We present our algorithm in a

way that is consistent with that for the general case.

Since µ is the root, we have T (µ) = T and L(µ) = {1, 2, . . . , n}. Let µ1 and µ2

be the two children of µ. Let v be the centroid of T that is used to decompose T (µ)

into T (µ1) and T (µ2) (e.g., see Fig. 6.2). We compute in O(|T (µ)|) time the probability

sums of all uncertain points of L(µ) in T (µ1) by using the array F and traversing T (µ1).

Specifically, we first perform a reset procedure on F to reset F [i] to 0 for each i ∈ L(µ),

by scanning the list L(µ). Then, we traverse T (µ1), and for each visited vertex, which

holds some uncertain point location pij , we update F [i] = F [i]+fij . After the traversal,

for each i ∈ L(µ), F [i] is equal to the probability sum of Pi in T (µ1). By Lemma 6.4.2,

if F [i] = 0.5, then p∗i is v and we report p∗i = v; if F [i] > 0.5, then p∗i is in T1(µ) and we

add i to the end of the index list L(µ1) for µ1 (initially L(µ1) = ∅); if F [i] < 0.5, then

p∗i is in T2(µ) and add i to the end of L(µ2) for µ2. The above has correctly computed

the index lists for µ1 and µ2.

Recall that v is a connector in both T (µ1) and T (µ2). In order to efficiently compute

medians in T (µ1) and T (µ2) recursively, we compute a probability list L(v, µj) at v for

µj for each j = 1, 2. We discuss L(v, µ1) first.

The list L(v, µ1) is the same as L(µ1) except that each index i ∈ L(v, µ1) is also

associated with a value, denoted by F (i, v, µ1), which is the probability sum of Pi in

T (v, µ1) (recall the definition of T (v, µ1) at the end of Section 6.4.1; note that T (v, µ1) =

T (µ2) in this case). The list L(v, µ1) can be built in O(|T (µ)|) time by traversing T (µ2)

and using the array F . Specifically, we scan the list L(µ1), and for each index i ∈ L(µ1),

we reset F [i] = 0. Then, we traverse the subtree T (µ2), and for each location pij in

T (µ2), we update F [i] = F [i] + fij (if i is not in L(µ1), this step is actually redundant

but does not affect anything). After the traversal, for each index i ∈ L(µ1), we copy it

97

to L(v, µ1) and set F (i, v, µ1) = F [i].

Similarly, we compute the probability list L(v, µ2) at v for µ2 in O(|T (µ)|) time by

traversing T (µ1). This finishes the processing of the root µ. The total time is O(|T (µ)|)

since |L(µ)| ≤ |T (µ)|. Note that our algorithm guarantees that for each i ∈ L(µ1), Pi

must have at least one location in T (µ1), and thus |L(µ1)| ≤ |T (µ1)|. Similarly, for each

i ∈ L(µ2), Pi must have at least one location in T (µ2), and thus |L(µ2)| ≤ |T (µ2)|.

The General Case

Let µ be an internal node of Υ such that the ancestors of µ have all been processed.

Hence, we have a sorted index list L(µ). If L(µ) = ∅, then we do not need to process µ

and any of its descendants. We assume L(µ) 6= ∅. Thus, for each i ∈ L(µ), p∗i is in T (µ)

and Pi has at least one location in T (µ) (and thus |L(µ)| ≤ |T (µ)|). Further, for each

connector y of T (µ), the algorithm maintains a probability list L(y, µ) that is the same

as L(µ) except that each index i ∈ L(y, µ) is associated with a value F (i, y, µ), which is

the probability sum of Pi in the subtree T (y, µ). Our processing algorithm for µ works

as follows, whose total time is O(|T (µ)|).

According to our decomposition, T (µ) has at most two connectors and µ may have

two, three, or four children. We first discuss the case where µ has two children, and

other cases can be handled similarly.

Let µ1 and µ2 be the two children of µ, respectively. Let v be the centroid of T (µ)

that is used to decompose it. We discuss the subtree T (µ1) first, and T (µ2) is similar.

Since v is a connector of T (µ1) and T (µ1) has at most two connectors, T (µ1) has at most

one connector y other than v. We consider the general situation where T (µ1) has such

a connector y (the case where such a connector does not exist can be handled similarly

but in a simpler way). Note that y must be a connector of T (µ).

We first compute the probability sums of Pi’s for all i ∈ L(µ) in the subtree T (µ1)∪

T (y, µ) (e.g., see Fig. 6.2), which can be done in O(|T (µ)|) time by traversing T (µ1)

and using the array F and the probability list L(y, µ) at y, as follows. We scan the list

L(µ) and for each index i ∈ L(µ), we reset F [i] = 0. Then, we traverse T (µ1) and for

each location pij , we update F [i] = F [i] + fij (it does not matter if i 6∈ L(µ)). When

the traversal visits y, we scan the list L(y, µ) and for each index i ∈ L(y, µ), we update

98

F [i] = F [i] + F (i, y, µ). After the traversal, for each i ∈ L(µ), F [i] is the probability

sum of Pi in T (µ1) ∪ T (y, µ). For each i ∈ L(µ), if F [i] = 0.5, we report p∗i = v; if

F [i] > 0.5, we add i to L(µ1); if F [i] < 0.5, we add i to L(µ2). This builds the two lists

L(µ1) and L(µ2), which are initially ∅. Note that since for each i ∈ L(µ), Pi has at least

one location in T (µ), the above way of computing L(µ1) (resp., L(µ2)) guarantees that

for each i in L(µ1) (resp., L(µ2)), Pi has at least one location in T (µ1) (resp., T (µ2)),

which implies |L(µ1)| ≤ |T (µ1)| (resp., |L(µ2)| ≤ |T (µ2)|).

Next we compute the probability lists for the connectors of T (µ1). Note that T (µ1)

has two connectors v and y. For v, we compute the probability list L(v, µ1) that is the

same as L(µ1) except that each i ∈ L(v, µ1) is associated with a value F (i, v, µ1), which

is the probability sum of Pi in the subtree T (v, µ1). To compute L(v, µ1), we first reset

F [i] = 0 for each i ∈ L(µ1). Then we traverse T (µ2) and for each location pij ∈ T (µ2),

we update F [i] = F [i] + fij . If T (µ2) has a connector y′ other than v, then y′ is also a

connector of T (µ) (note that there is at most one such connector); we scan the probability

list L(y′, µ) and for each i ∈ L(y′, µ), we update F [i] = F [i] + F (i, y′, µ). Finally, we

scan L(µ1) and for each i ∈ L(µ1), we copy it to L(v, µ1) and set F (i, v, µ1) = F [i].

This computes the probability list L(v, µ1).

Further, we also need to compute the probability list L(y, µ1) at y for T (µ1). The

list L(y, µ1) is the same as L(µ1) except that each i ∈ L(y, µ1) also has a value F (i, y, µ1),

which is the probability sum of Pi in T (y, µ1). To compute L(y, µ1), we first copy all

indices of L(µ1) to L(y, µ1), and then compute the values F (i, y, µ1), as follows. Note

that T (y, µ1) is exactly T (y, µ) (e.g., see Fig. 6.2). Recall that as a connector of T (µ), y

has a probability list L(y, µ) in which each i ∈ L(y, µ) has a value F (i, y, µ). Notice that

L(y, µ1) ⊆ L(y, µ). Due to T (y, µ1) = T (y, µ), for each i ∈ L(y, µ1), F (i, y, µ1) is equal

to F (i, y, µ). Since indices in each of L(y, µ1) and L(y, µ) are sorted, we scan L(y, µ1)

and L(y, µ) simultaneously (like merging two sorted lists) and for each i ∈ L(y, µ1),

if we encounter i in L(y, µ), then we set F (i, y, µ1) = F (i, y, µ). This computes the

probability list L(y, µ1) at y for T (µ1).

The above has processed the subtree T (µ1). Using the similar approach, we can

process T (µ2) and we omit the details.

This finishes the processing of µ for the case where µ has two children. The total

99

time is O(|T (µ)|). To see this, the algorithm traverses T (µ) for a constant number of

times. The algorithm also visits the list L(µ) and the probability list of each connector of

T (µ) for a constant number of times. Recall that |L(µ)| ≤ |T (µ)| and |L(µ)| = |L(µ, y)|

for each connector y of T (µ). Also recall that T (µ) has at most two connectors. Thus,

the total time for processing µ is O(|T (µ)|).

Remark. If the number of connectors of T (µ) were not bounded by a constant,

then we could not bound the processing time for µ as above. This is one reason our

decomposition on T requires each subtree T (µ) to have at most two connectors.

If µ has three children, µ1, µ2, µ3, then T (µ) is decomposed into three subtrees

T (µj) for j = 1, 2, 3. In this case, T (µ) has two connectors. To process µ, we apply the

above algorithm for the two-children case twice. Specifically, we consider the procedure

of decomposing T (µ) into three subtrees consisting of two “intermediate decomposition

steps”. According to our decomposition, T (µ) was first decomposed into two subtrees

by its centroid such that one subtree T1(µ) contains at most two connectors while the

other one T2(µ) contains three connectors, and we consider this as the first intermediate

step. The second intermediate step is to further decompose T2(µ) into two subtrees each

of which contains at most two connectors. To process µ, we apply our two-children case

algorithm on the first intermediate step and then on the second intermediate step. The

total time is still O(|T (µ)|). We omit the details.

Similarly, if µ has four children, then the decomposition can be considered as con-

sisting of three intermediate steps (e.g., in Fig. 6.2, the first step is to decompose T (µ)

into T1(µ) and T2(µ), and then decomposing T2(µ) into three subtrees can be considered

as consisting of two steps each of which decomposes a subtree into two subtrees), and

we apply our two-children case algorithm three times. The total processing time for µ

is also O(|T (µ)|).

The above describes the algorithm for processing µ when µ is an internal node of

Υ.

If µ is a leaf, then T (µ) is either a vertex or an open edge of T . If T (µ) is an

open edge, the index list L(µ) must be empty since our algorithm only finds medians

on vertices. Otherwise, T (µ) is a vertex v of T . If L(µ) is not empty, then for each

100

i ∈ L(µ), we simply report p∗i = v.

The running time of the entire algorithm is O(M logM). To see this, processing

each node µ of Υ takes O(|T (µ)|) time. For each level of Υ, the total sum of |T (µ)| of

all nodes µ in the level is O(|T |). Since the height of Υ is O(logM), the total time of

the algorithm is O(M logM). This proves Lemma 6.3.1.

6.5 The Data Structures A1, A2, and A3

In this section, we present the three data structures A1, A2, and A3, for Lem-

mas 6.3.4, 6.3.5, and 6.3.7, respectively. In particular, A3 will be used to build A2 and

it will also be needed for solving the k-center problem in Section 6.6. Our connector-

bounded centroid decomposition Υ will play an important role in constructing both A1

and A3. In the following, we present them in the order of A1,A3, and A2.

6.5.1 The Data Structure A1

The data structure A1 is for answering the coverage-report-queries, i.e., given any

point x ∈ T , find all active uncertain points that are covered by x. Further, it also

supports the operation of removing an uncertain point once it is deactivated.

Consider any node µ ∈ Υ. If µ is the root, let L(µ) = ∅; otherwise, define L(µ) to

be the sorted list of all such indices i ∈ [1, n] that Pi does not have any locations in the

subtree T (µ) but has at least one location in T (µ′), where µ′ is the parent of µ. Let

y be any connector of T (µ). Let L(y, µ) be an index list the same as L(µ) and each

index i ∈ L(y, µ) is associated with two values: F (i, y, µ), which is the probability sum

of Pi in the subtree T (y, µ), and D(i, y, µ), which is the expected distance from y to the

locations of Pij in T (y, µ), i.e., D(i, y, µ) = wi ·
∑

pij∈T (y,µ) fij · d(pij , y). We refer to

L(µ) and L(y, µ) for each connector y ∈ T (µ) the information lists of µ.

Lemma 6.5.1. Suppose L(µ) 6= ∅ and the information lists of µ are available. Let tµ be

the number of indices in L(µ). Then, we can build a data structure of O(tµ) size in

O(|T (µ)|+ tµ log tµ) time on T (µ), such that given any point x ∈ T (µ), we can report all

indices i of L(µ) such that Pi is covered by x in O(log n+k log n) amortized time, where

k is the output size; further, if Pi is deactivated with i ∈ L(µ), then we can remove i

from the data structure and all information lists of µ in O(log n) amortized time.

101

y1

y2

qx

x

Figure 6.3. Illustrating the definition of qx in the subtree T (µ) with two connectors y1

and y2. The path π(y1, y2) is highlighted with thicker (red) segments.

Proof. As L(µ) 6= ∅, µ is not the root. Thus, T (µ) has one or two connectors. We

only discuss the most general case where T (µ) has two connectors since the other case

is similar but easier. Let y1 and y2 denote the two connectors of T (µ), respectively. So

the lists L(y1, µ) and L(y2, µ) are available.

Note that for any two points p and q in T (µ), π(p, q) is also in T (µ) since T (µ) is

connected.

Consider any point x ∈ T (µ). Suppose we traverse on T (µ) from x to y1, and let qx

be the first point on π(y1, y2) we encounter (e.g. see Fig 6.3; so qx is x if x ∈ π(y1, y2)).

Let ax = d(x, qx) and bx = d(qx, y1). Thus, d(y1, x) = ax + bx and d(y2, x) = ax +

d(y1, y2)− bx.

For any i ∈ L(µ), since Pi does not have any location in T (µ), we have F (i, y1, µ) +

F (i, y2, µ) = 1, and thus the following holds for Ed(x, Pi):

Ed(x, Pi) = wi ·
∑
pij∈T

fij · d(x, pij)

= wi ·
∑

pij∈T (y1,µ)

fij · d(x, pij) + wi ·
∑

pij∈T (y2,µ)

fij · d(x, pij)

= wi · [F (i, y1, µ) · (ax + bx) +D(i, y1, µ)] + wi · [F (i, y2, µ) · (ax + d(y1, y2)− bx) +D(i, y2, µ)]

= wi · [ax + (F (i, y1, µ)− F (i, y2, µ)) · bx +D(i, y1, µ) +D(i, y2, µ) + F (i, y2, µ) · d(y1, y2)].

Notice that for any x ∈ T (µ), all above values are constant except ax and bx.

Therefore, if we consider ax and bx as two variables of x, Ed(x, Pi) is a linear function

of them. In other words, Ed(x, Pi) defines a plane in R3, where the z-coordinates

correspond to the values of Ed(x, Pi) and the x- and y-coordinates correspond to ax

and bx respectively. In the following, we also use Ed(x, Pi) to refer to the plane defined

102

by it in R3.

Remark. This nice property for calculating Ed(x, Pi) is due to that µ has at most

two connectors. This is another reason our decomposition requires every subtree T (µ)

to have at most two connectors.

Recall that x covers Pi if Ed(x, Pi) ≤ λ. Consider the plane Hλ : z = λ in R3. In

general the two planes Ed(x, Pi) and Hλ intersect at a line li and we let hi represent

the closed half-plane of Hλ bounded by li and above the plane Ed(x, Pi). Let xλ be

the point (ax, bx) in the plane Hλ. An easy observation is that Ed(x, Pi) ≤ λ if and

only if xλ ∈ hi. Further, we say that li is an upper bounding line of hi if hi is below

li and a lower bounding line otherwise. Observe that if li is an upper bounding line,

then Ed(x, Pi) ≤ λ if and only if xλ is below li; if li is a lower bounding line, then

Ed(x, Pi) ≤ λ if and only if xλ is above li.

Given any query point x ∈ T (µ), our goal for answering the query is to find all

indices i ∈ L(µ) such that Pi is covered by x. Based on the above discussions, we do

the following preprocessing. After d(y1, y2) is computed, by using the information lists

of y1 and y2, we compute all functions Ed(x, Pi) for all i ∈ L(µ) in O(tµ) time. Then,

we obtain a set U of all upper bounding lines and a set of all lower bounding lines on

the plane Hλ defined by Ed(x, Pi) for all i ∈ L(µ). In the following, we first discuss the

upper bounding lines. Let SU denote the indices i ∈ L(µ) such that Pi defines an upper

bounding line in U .

Given any point x ∈ T (µ), we first compute ax and bx. This can be done in constant

time after O(|T (µ)|) time preprocessing, as follows. In the preprocessing, for each vertex

v of T (µ), we compute the vertex qv (defined in the similar way as qx with respect to x)

as well as the two values av and bv (defined similarly as ax and bx, respectively). This

can be easily done in O(|T (µ)|) time by traversing T (µ) and we omit the details. Given

the point x, which is specified by an edge e containing x, let v be the incident vertex of

e closer to y1 and let δ be the length of e between v and x. Then, if e is on π(y1, y2),

we have ax = 0 and bx = bv + δ. Otherwise, ax = av + δ and bx = bv.

After ax and bx are computed, the point xλ = (ax, bx) on the plane Hλ is also

obtained. Then, according to our discussion, all uncertain points of SU that are covered

103

by x correspond to exactly those lines of U above xλ. Finding the lines of U above

xλ is actually the dual problem of half-plane range reporting query in R2 [81]. By

using the dynamic convex hull maintenance data structure of Brodal and Jacob [82],

with O(|U | log |U |) time and O(|U |) space preprocessing, for any point xλ, we can easily

report all lines of U above xλ in O(log |U |+ k log |U |) amortized time (i.e., by repeating

k deletions), where k is the output size, and deleting a line from U can be done in

O(log |U |) amortized time. Clearly, |U | ≤ tµ.

On the set of all lower bounding lines, we do the similar preprocessing, and the

query algorithm is symmetric.

Hence, the total preprocessing time is O(|T (µ)|+ tµ log tµ) time. Each query takes

O(log tµ + k log2 tµ) amortized time and each remove operation can be performed in

O(log tµ) amortized time. Note that tµ ≤ n. The lemma thus follows.

The preprocessing algorithm for our data structure A1 consists of the following four

steps. First, we compute the information lists for all nodes µ of Υ. Second, for each

node µ ∈ Υ, we compute the data structure of Lemma 6.5.1. Third, for each i ∈ [1, n],

we compute a node list Lµ(i) containing all nodes µ ∈ Υ such that i ∈ L(µ). Fourth,

for each leave µ of Υ that is a vertex v of T holding a location pij , we maintain at µ

the value Ed(v, Pi). Before giving the details of the above processing algorithm, we first

assume the preprocessing work has been done and discuss the algorithm for answering

the coverage-report-queries.

Given any point x ∈ T , we answer the coverage-report-query as follows. Note that

x is in T (µx) for some leaf µx of Υ. For each node µ in the path of Υ from the root

to µx, we apply the query algorithm in Lemma 6.5.1 to report all indices i ∈ L(µ) such

that x covers Pi. In addition, if µx is a vertex of T holding a location pij such that

Pi is active, then we report i if Ed(v, Pi), which is maintained at v, is at most λ. The

following lemma proves the correctness and the performance of our query algorithm.

Lemma 6.5.2. Our query algorithm correctly finds all active uncertain points that are

covered by x in O(logM log n+ k log n) amortized time, where k is the output size.

104

Proof. Let πx represent the path of Υ from the root to the leaf µx. To show the

correctness of the algorithm, we argue that for each active uncertain point Pi that is

covered by x, i will be reported by our query algorithm.

Indeed, if T (µx) is a vertex v of T holding a location pij of Pi, then the leaf µx

maintains the value Ed(v, Pi), which is equal to Ed(x, Pi) as x = v. Hence, our algorithm

will report i when it processes µx. Otherwise, no location of Pi is in T (µx). Since Pi

has locations in T , if we go from the root to µx along π, we will eventually meet a node

µ such that T (µ) does not have any location of Pi while T (µ′) has at least one location

of Pi, where µ′ is the parent of µ. This implies that i is in L(µ), and consequently, our

query algorithm will report i when it processes µ. This establishes the correctness of

our query algorithm.

For the runtime, as the height of Υ is O(logM), we make O(logM) calls on the

query algorithm in Lemma 6.5.1. Hence, the total time is O(logM log n+ k log n).

If an uncertain point Pi is deactivated, then we scan the node list Lµ(i) and for each

node µ ∈ Lµ(i), we remove i from the data structure by Lemma 6.5.1. The following

lemma implies that the total time is O(mi logM log n).

Lemma 6.5.3. For each i ∈ [1, n], the number of nodes in Lµ(i) is O(mi logM).

Proof. Let α denote the number of nodes of Lµ(i). Our goal is to argue that i appears in

L(µ) for O(mi logM) nodes µ of Υ. Recall that if i is in L(µ) for a node µ ∈ Υ, then Pi

has at least one location in T (µ′), where µ′ is the parent of µ. Since each node of Υ has

at most four children, if N is the total number of nodes µ′ such that Pi has at least one

location in T (µ′), then it holds that α ≤ 4N . Below we show that N = O(mi logM),

which will prove the lemma.

Consider any location pij of Pi. According to our decomposition, the subtrees T (µ)

for all nodes µ in the same level of Υ are pairwise disjoint. Let v be the vertex of T that

holds pij , and let µv be the leaf of Υ with T (µv) = v. Observe that for any node µ ∈ Υ,

pij appears in T (µ) if and only if µ is in the path of Υ from µv to the root. Hence, there

are O(logM) nodes µ ∈ Υ such that pij appears in T (µ). As Pi has mi locations, we

obtain N = O(mi logM).

The following lemma gives our preprocessing algorithm for building A1.

105

Lemma 6.5.4.
∑

µ∈Υ tµ = O(M logM), and the preprocessing time for constructing the

data structure A1 excluding the second step is O(M logM).

Proof. We begin with the first step of the preprocessing algorithm for A1, i.e., computing

the information lists for all nodes µ of Υ.

In order to do so, for each node µ ∈ Υ, we will also compute a sorted list L′(µ) of

all such indices i ∈ [1, n] that Pi has at least one location in T (µ), and further, for each

connector y of T (µ), we will compute a list L′(y, µ) that is the same as L′(µ) except

that each i ∈ L′(y, µ) is associated with two values: F (i, y, µ), which is equal to the

probability sum of Pi in the subtree T (y, µ), andD(i, y, µ), which is equal to the expected

distance from y to the locations of Pi in T (y, µ), i.e., D(i, y, µ) = wi ·
∑

pij∈T (y,µ) fij ·

d(y, pij). With a little abuse of notation, we call all above the information lists of µ

(including its original information lists). In the following, we describe our algorithm for

computing the information lists of all nodes µ of Υ. Let F [1 · · ·n] and D[1 · · ·n] be two

arrays that we are going to use in our algorithm (they will mostly be used to compute

the F values and D values of the information lists of connectors).

Initially, if µ is the root of Υ, we have L′(µ) = {1, 2, . . . , n} and L(µ) = ∅. Since

T (µ) does not have any connectors, we do not need to compute the information lists for

connectors.

Consider any internal node µ. We assume all information lists for µ has been

computed (i.e., L(µ), L′(µ), and L′(y, µ), L(y, µ) for each connector y of T (µ)). In the

following we present our algorithm for processing µ, which will compute the information

lists of all children of µ in O(|T (µ)|) time.

We first discuss the case where µ has two children, denoted by µ1 and µ2, respec-

tively. Let v be the centroid of T (µ) that is used to decompose T (µ) into T (µ1) and

T (µ2) (e.g., see Fig. 6.4). We first compute the information lists of µ1, as follows.

We begin with computing the two lists L(µ1) and L′(µ1). Initially, we set both of

them to ∅. We scan the list L′(µ) and for each i ∈ L′(µ), we reset F [i] = 0. Then,

we scan the subtree T (µ1), and for each location pij , we set F [i] = 1 as a flag showing

that Pi has locations in T (µ1). Afterwards, we scan the list L′(µ) again, and for each

i ∈ L′(µ), if F [i] = 1, then we add i to L′(µ1); otherwise, we add i to L(µ1). This

106

v

T (µ2)

T (µ1)

T (y, µ)
y

T (µ)

Figure 6.4. Illustrating the subtrees T (µ1), T (µ2), and T (y, µ), where y is a connector
of T (µ) = T (µ1) ∪ T (µ2). Note that T (y, µ) is also T (y, µ2) as y ∈ T (µ2).

computes the two index lists L(µ1) and L′(µ1) for µ1. The running time is O(|T (µ)|)

since the size of L′(µ) is no more than |T (µ)|.

We proceed to compute the information lists for the connectors of T (µ1). Recall that

v is a connector of T (µ1). So we need to compute the two lists L(v, µ1) and L′(v, µ1),

such that each index i in either list is associated with the two values F (i, v, µ1) and

D(i, v, µ1). We first copy all indices of L(µ1) to L(v, µ1) and copy all indices of L′(µ1)

to L′(v, µ1). Next we compute their F and D values as follows.

We first scan L′(µ) and for each i ∈ L′(µ), we reset F [i] = 0 and D[i] = 0.

Next, we traverse T (µ2) and for each location pij , we update F [i] = F [i] + fij and

D[i] = D[i] + d(v, pij) (d(v, pij) can be computed in constant time after O(T (µ))-time

preprocessing that computes d(v, v′) for every vertex v′ ∈ T (µ) by traversing T (µ)).

Further, if T (µ2) has a connector y other than v, then y must be a connector of T (µ) (e.g.,

see Fig. 6.4; there exists at most one such connector y); we scan the list L′(y, µ2), and for

each i ∈ L′(y, µ2), we update F [i] = F [i]+F (i, y, µ) and D[i] = D[i]+D(i, y, µ)+d(v, y)·

F (i, y, µ) (d(v, y) is already computed in the preprocessing discussed above). Finally,

we scan L(v, µ1) (resp., L′(v, µ1)) and for each index i in L(v, µ1) (resp., L′(v, µ1)), we

set F (i, v, µ1) = F [i] and D(i, v, µ1) = D[i]. This computes the two information lists

L(v, µ1) and L′(v, µ1). The total time is O(|T (µ)|).

In addition, if T (µ1) has a connector y other than v, then y must be a connector

of T (µ) (e.g., see Fig. 6.2; there is only one such connector), and we further compute

the two information lists L(y, µ1) and L′(y, µ1). To do so, we first copy all indices of

L(µ1) to L(y, µ1) and copy all indices of L′(µ1) to L′(y, µ1). Observe that L(y, µ1) and

L′(y, µ1) form a partition of the indices of L′(y, µ). For each index i in L(y, µ1) (resp.,

107

L′(y, µ1)), we have F (i, y, µ1) = F (i, y, µ) and D(i, y, µ1) = D(i, y, µ). Therefore, the F

and D values for L′(y, µ1) and L(y, µ1) can be obtained from L′(y, µ) by scanning the

three lists L′(y, µ1), L(y, µ1), and L′(y, µ) simultaneously, as they are all sorted lists.

The above has computed the information lists for µ1 and the total time is O(|T (µ)|).

Using the similar approach, we can compute the information lists for µ2, and we omit

the details. This finishes the algorithm for processing µ where µ has two children.

If µ has three children, then T (µ) is decomposed into three subtrees in our de-

composition. As discussed in Section 6.4.2 on the algorithm for Lemma 6.3.1, we can

consider the decomposition of T (µ) consisting of two intermediate decomposition steps

each of which decompose a subtree into two subtrees. For each intermediate step, we

apply the above processing algorithm for the two-children case. In this way, we can

compute the information lists for all three children of µ in O(|T (µ)|) time. If µ has four

children, then similarly there are four intermediate decomposition steps and we apply

the two-children case algorithm three times. The total processing time for µ is still

O(|T (µ)|).

Once all internal nodes of Υ are processed, the information lists of all nodes are

computed. Since processing each node µ of Υ takes O(|T (µ)|) time, the total time of

the algorithm is O(M logM). This also implies that the total size of the information

lists of all nodes of Υ is O(M logM), i.e.,
∑

µ∈Υ tµ = O(M logM).

This above describes the first step of our preprocessing algorithm for A1. For the

third step, the node lists Lµ(i) can be built during the course of the above algorithm.

Specifically, whenever an index i is added to L(µ) for some node µ of Υ, we add µ to

the list Lµ(i). This only introduces constant extra time each. Therefore, the overall

algorithm has the same runtime asymptotically as before.

For the fourth step, for each leaf µ of Υ such that T (µ) is a vertex v of T , we do the

following. Let pij be the uncertain point location at v. Based on our above algorithm,

we have L′(µ) = {i}. Since v is a connector, we have a list L′(v, µ) consisting of i itself

and two values F (i, v, µ) and D(i, v, µ). Notice that Ed(v, Pi) = D(i, v, µ). Hence, once

the above algorithm finishes, the value Ed(v, Pi) is available.

As a summary, the preprocessing algorithm for A1 except the second step runs in

O(M logM) time. The lemma thus follows.

108

For the second step of the preprocessing of A1, since
∑

µ∈Υ tµ = O(M logM) by

Lemma 6.5.4, applying the preprocessing algorithm of Lemma 6.5.1 on all nodes of Υ

takes O(M log2M) time and O(M logM) space in total. Hence, the total preprocessing

time of A1 is O(M log2M) and the space is O(M logM). This proves Lemma 6.3.4.

6.5.2 The Data Structure A3

In this section, we present the data structure A3. Given any point x and any

uncertain point Pi, A3 is used to compute the expected distance Ed(x, Pi). Note that

we do not need to consider the remove operations for A3.

We follow the notation defined in Section 6.5.1. As preprocessing, for each node

µ ∈ Υ, we compute the information lists L(µ) and L(y, µ) for each connector y of T (µ).

This is actually the first step of the preprocessing algorithm of A1 in Section 6.5.1.

Further, we also preform the fourth step of the preprocessing algorithm for A1. The

above can be done in O(M logM) time by Lemma 6.5.4.

Consider any node µ ∈ Υ with L(µ) 6= ∅. Given any point x ∈ T (µ), we have shown

in the proof of Lemma 6.5.1 that Ed(x, Pi) is a function of two variables ax and bx. As

preprocessing, we compute these functions for all i ∈ L(µ), which takes O(tµ) time as

shown in the proof of Lemma 6.5.1. For each i ∈ L(µ), we store the function Ed(x, Pi)

at µ. The total preprocessing time for A3 is O(M logM).

Consider any query on a point x ∈ T and Pi ∈ P. Note that x is specified by an

edge e and its distance to a vertex of e. Let µx be the leaf of Υ with x ∈ T (µx). If x

is in the interior of e, then T (µx) is the open edge e; otherwise, T (µx) is a single vertex

v = x.

We first consider the case where x is in the interior of e. In this case, Pi does not

have any location in T (µx) since T (µx) is an open edge. Hence, if we go along the path

of Υ from the root to µx, we will encounter a first node µ′ with i ∈ L(µ′). After finding

µ′, we compute ax and bx in T (µ′), which can be done in constant time after O(|T (µ′)|)

time preprocessing on T (µ′), as discussed in the proof of Lemma 6.5.1 (so the total

preprocessing time for all nodes of Υ is O(M logM)). After ax and bx are computed,

we can obtain the value Ed(x, Pi).

109

Remark. One can verify (from the proof of Lemma 6.5.1) that as x changes on e,

Ed(x, Pi) is a linear function of x because one of ax and bx is constant and the other

linearly changes as x changes in e. Hence, the above also computes the linear function

Ed(x, Pi) for x ∈ e.

To find the above node µ′, for each node µ in the path of Υ from the root to µx,

we need to determine whether i ∈ L(µ). If we represented the sorted index list L(µ) by

a binary search tree, then we could spend O(log n) time on each node µ and thus the

total query time would be O(log n logM). To remove the O(log n) factor, we further

enhance our preprocessing work by building a fractional cascading structure [49] on the

sorted index lists L(µ) for all nodes µ of Υ. The total preprocessing time for building

the structure is linear in the total number of nodes of all lists, which is O(M logM) by

Lemma 6.5.4. For each node µ, the fractional cascading structure will create a new list

L∗(µ) such that L(µ) ⊆ L∗(µ). Further, for each index i ∈ L∗(µ), if it is also in L(µ),

then we set a flag as an indicator. Setting the flags for all nodes of Υ can be done in

O(M logM) time as well. Using the fractional cascading structure, we only need to do

binary search on the list in the root and then spend constant time on each subsequent

node [49], and thus the total query time is O(logM).

If x is a vertex v of T , then depending on whether the location at v is Pi’s or not,

there are two subcases. If it is not, then we apply the same query algorithm as above.

Otherwise, let pij be the location at v. Recall that in our preprocessing, the value

Ed(v, Pi) has already been computed and stored at µx as T (µx) = v. Due to v = x, we

obtain Ed(x, Pi) = Ed(v, Pi).

Hence, in either case, the query algorithm runs in O(logM) time. This proves

Lemma 6.3.7.

6.5.3 The Data Structure A2

The data structure A2 is for answering candidate-center-queries: Given any vertex

v ∈ Tm, the query asks for the candidate center c for the active medians in Tm(v), which

is the subtree of Tm rooted at v. Once an uncertain point is deactivated, A2 can also

support the operation of removing it.

Consider any vertex v ∈ Tm. Recall that due to our reindexing, the indices of all

110

medians in Tm(v) exactly form the range R(v). Recall that the candidate center c is the

point on the path π(v, r) closest to r with Ed(v, Pi) ≤ λ for each active uncertain point

Pi with i ∈ R(v). Also recall that our algorithm invariant guarantees that whenever a

candidate-center-query is called at a vertex v, then it holds that Ed(v, Pi) ≤ λ for each

active uncertain point Pi with i ∈ R(v). However, we actually give a result that can

answer a more general query. Specifically, given a range [k, j] with 1 ≤ k ≤ j ≤ n, let vkj

be the lowest common ancestor of all medians p∗i with i ∈ [k, j] in Tm; if Ed(vkj , Pi) > λ

for some active Pi with i ∈ [k, j], then our query algorithm will return ∅; otherwise, our

algorithm will compute a point c on π(vkj , r) closest to r with Ed(c, Pi) ≤ λ for each

active Pi with i ∈ [k, j]. We refer to it as the generalized candidate-center-query.

In the preprocessing, we build a complete binary search tree T whose leaves from

left to right correspond to indices 1, 2, . . . , n. For each node u of T , let R(u) denote

the set of indices corresponding to the leaves in the subtree of T rooted at u. For each

median p∗i , define qi to be the point x on the path π(p∗i , r) of Tm closest to r with

Ed(x, Pi) ≤ λ.

For each node u of T , we define a node q(u) as follows. If u is a leaf, define q(u) to

be qi, where i is the index corresponding to leaf u. If u is an internal node, let vu denote

the vertex of Tm that is the lowest common ancestor of the medians p∗i for all i ∈ R(u).

If Ed(vu, Pi) ≤ λ for all i ∈ R(u) (or equivalently, qi is in π(vu, r) for all i ∈ R(u)), then

define q(u) to be the point x on the path π(vu, r) of Tm closest to r with Ed(x, Pi) ≤ λ

for all i ∈ R(u); otherwise, q(u) = ∅.

Lemma 6.5.5. The points q(u) for all nodes u ∈ T can be computed in O(M logM +

n log2M) time.

Proof. Assume the data structureA3 for Lemma 6.3.7 has been computed inO(M logM)

time. In the following, by using A3 we compute q(u) for all nodes u ∈ T in O(M +

n log2M) time.

We first compute qi for all medians p∗i . Consider the depth-first-search on Tm

starting from the root r. During the traversal, we use a stack S to maintain all vertices

in order along the path π(r, v) whenever a vertex v is visited. Such a stack can be

easily maintained by standard techniques (i.e., push new vertices into S when we go

111

“deeper” and pop vertices out of S when backtrack), without affecting the linear-time

performance of the traversal asymptotically. Suppose the traversal visits a median p∗i .

Then, the vertices of S essentially form the path π(r, p∗i). To compute qi, we do binary

search on the vertices of S, as follows.

We implement S by using an array of size M . Since the order of the vertices of S

is the same as their order along π(r, p∗i), the expected distances Ed(v, Pi) of the vertices

v ∈ S along their order in S are monotonically changing. Consider a middle vertex v

of S. The vertex v partitions S into two subarrays such that one subarray contains all

vertices of π(r, v) and the other contains vertices of π(v, p∗i). We compute Ed(v, Pi) by

using data structure A3. Depending on whether Ed(v, Pi) ≤ λ, we can proceed on only

one subarray of M . The binary search will eventually locate an edge e = (v, v′) such

that Ed(v, Pi) ≤ λ and Ed(v′, Pi) > λ. Then, we know that qi is located on e \ {v′}. We

further pick any point x in the interior of e and the data structure A3 can also compute

the function Ed(x, Pi) for x ∈ e as remarked in Section 6.5.2. With the function Ed(x, Pi)

for x ∈ e, we can compute qi in constant time. Since the binary search calls A3 O(logM)

times, the total time of the binary search is O(log2M).

In this way, we can compute qi for all medians p∗i with i ∈ [1, n] in O(M+n log2M)

time, where the O(n log2M) time is for the binary search procedures in the entire

algorithm and the O(M) time is for traversing the tree Tm. Note that this also computes

q(u) for all leaves u of T .

We proceed to compute the points q(u) for all internal nodes µ of T in a bottom-up

manner. Consider an internal node u such that q(u1) and q(u2) have been computed,

where u1 and u2 are the children of u, respectively. We compute q(u) as follows.

If either one of q(u1) and q(u2) is ∅, then we set q(u) = ∅. Otherwise, we do the

following. Let i (resp., j) be the leftmost (resp., rightmost) leaf in the subtree T (u) of

T rooted at u. We first find the lowest comment ancestor of p∗i and p∗j in the tree Tm,

denoted by vij . Due to our particular way of defining indices of all medians, vij is the

lowest common ancestor of the medians p∗k for all k ∈ [i, j]. We determine whether q(u1)

and q(u2) are both on π(r, vij). If either one is not on π(r, vij), then we set q(u) = ∅;

otherwise, we set q(u) to the one of q(u1) and q(u2) closer to vij .

The above for computing q(u) can be implemented in O(1) time, after O(M) time

112

preprocessing on Tm. Specifically, with O(M) time preprocessing on Tm, given any two

vertices of Tm, we can compute their lowest common ancestor in O(1) time [66, 67].

Hence, we can compute vij in constant time. To determine whether q(u1) is on π(r, vij),

we use the following approach. As a point on Tm, q(u1) is specified by an edge e1 and its

distance to one incident vertex of e1. Let v1 be the incident vertex of e1 that is farther

from the root r. Observe that q(u1) is on π(r, vij) if and only if the lowest common

ancestor of v1 and vij is v1. Hence, we can determine whether q(u1) is on π(r, vij) in

constant time by a lowest common ancestor query. Similarly, we can determine whether

q(u2) is on π(r, vij) in constant time. Assume both q(u1) and q(u2) are on π(r, vij). To

determine which one of q(u1) and q(u2) is closer to vij , if they are on the same edge e

of Tm, then this can be done in constant time since both points are specified by their

distances to an incident vertex of e. Otherwise, let e1 be the edge of Tm containing

q(u1) and let v1 be the incident vertex of e1 farther to r; similarly, let e2 be the edge of

Tm containing q(u2) and let v2 be the incident vertex of e2 farther to r. Observe that

q(u1) is closer to vij if and only if the lowest common ancestor of v1 and v2 is v2, which

can be determined in constant time by a lowest common ancestor query.

The above shows that we can compute q(u) in constant time based on q(u1) and

q(u2). Thus, we can compute q(u) for all internal nodes u of T in O(n) time. The

lemma thus follows.

In addition to constructing the tree T as above, our preprocessing for A2 also

includes building a lowest common ancestor query data structure on Tm in O(M) time,

such that given any two vertices of Tm, we can compute their lowest common ancestor in

O(1) time [66,67]. This finishes the preprocessing for A2. The total time is O(M logM+

n log2M).

The following lemma gives our algorithm for performing operations on T .

Lemma 6.5.6. Given any range [k, j], we can answer each generalized candidate-center-

query in O(log n) time, and each remove operation (i.e., deactivating an uncertain point)

can be performed in O(log n) time.

Proof. We first describe how to perform the remove operations. Suppose an uncertain

point Pi is deactivated. Let ui be the leaf of T corresponding to the index i. We first

113

set q(ui) = ∅. Then, we consider the path of T from ui to the root in a bottom-up

manner, and for each node u, we update q(u) based on q(u1) and q(u2) in constant time

in exactly the same way as in the Lemma 6.5.5, where u1 and u2 are the two children of

u, respectively. In this way, each remove operation can be performed in O(log n) time.

Next we discuss the generalized candidate-center-query on a range [k, j]. By stan-

dard techniques, we can locate a set S of O(log n) nodes of T such that the descendant

leaves of these nodes exactly correspond to indices in the range [k, j]. We find the lowest

common ancestor vkj of p∗k and p∗j in Tm in constant time. Then, for each node u ∈ S,

we check whether q(u) is on π(r, vkj), which can be done in constant time by using the

lowest common ancestor query in the same way as in the proof of Lemma 6.5.5. If q(u) is

not on π(r, vkj) for some u ∈ S, then we simply return ∅. Otherwise, q(u) is on π(r, vkj)

for every u ∈ S. We further find the point q(u) that is closest to vkj among all u ∈ S,

and return it as the answer to the candidate-center-query on [k, j]. Such a q(u) can be

found by comparing the nodes of S in O(log n) time. Specifically, for each pair u and

u′ in a comparison, we find among q(u) and q(u′) the one closer to vkj , which can be

done in constant time by using the lowest common ancestor query in the same way as in

the proof of Lemma 6.5.5, and then we keep comparing the above closer one to the rest

of the nodes in S. In this way, the candidate-center-query can be handled in O(log n)

time.

This proves Lemma 6.3.5.

6.5.4 Handling the Degenerate Case and Reducing the General Case to the Vertex-

Constrained Case

The above has solved the vertex-constrained case, i.e., all locations of P are at

vertices of T and each vertex of T contains at least one location of P. Recall that we

have made a general position assumption that every vertex of T has only one location

of P. For the degenerate case, our algorithm still works in the same way as before

with the following slight change. Consider a subtree T (µ) corresponding to a node µ

of Υ. In the degenerate case, since a vertex of T (µ) may hold multiple uncertain point

locations of P, we define the size |T (µ)| to be the total number of all uncertain point

114

locations in T (µ). In this way, the algorithm and the analysis follow similarly as before.

In fact, the performance of the algorithm becomes even better in the degenerate case

since the height of the decomposition tree Υ becomes smaller (specifically, it is bounded

by O(log t), where t is the number of vertices of T , and t < M in the degenerate case).

The above has solved the vertex-constrained case. In the general case, a location of

P may be in the interior of an edge of T and a vertex of T may not hold any location of P.

The following theorem solves the general case by reducing it to the vertex-constrained

case. The reduction is almost the same as the one given in Chapter 3 for the one-center

problem and we include it here for the completeness of this paper.

Lemma 6.5.7. The center-coverage problem on P and T is solvable in O(τ + M + |T |)

time, where τ is the time for solving the same problem on P and T if this were a

vertex-constrained case.

Proof. We reduce the problem to an instance of the vertex-constrained case and then

apply our algorithm for the vertex-constrained case. More specifically, we will modify

the tree T to obtain another tree T ′ of size Θ(M). We will also compute another set

P ′ of n uncertain points on T ′, which correspond to the uncertain points of P with

the same weights, but each uncertain point Pi of P ′ has at most 2mi locations on T ′.

Further, each location of P ′ is at a vertex of T ′ and each vertex of T ′ holds at least one

location of P ′, i.e., it is the vertex-constrained case. We will show that we can obtain

T ′ and P ′ in O(M + |T |) time. Finally, we will show that given a set of centers on T ′

for P ′, we can find a corresponding set of the same number of centers on T for P in

O(M + |T |) time. The details are given below.

We assume that for each edge e of T , all locations of P on e have been sorted

(otherwise we sort them first, which would introduce an additional O(M logM) time on

the problem reduction). We traverse T , and for each edge e, if e contains some locations

of P in its interior, we create a new vertex in T for each such location. In this way, we

create at most M new vertices for T . The above can be done in O(M + |T |) time. We

use T1 to denote the new tree. Note that |T1| = O(M + |T |). For each vertex v of T1, if

v does not hold any location of P, we call v an empty vertex.

115

Next, we modify T1 in the following way. First, for each leaf v of T1, if v is empty,

then we remove v from T1. We keep doing this until every leaf of the remaining tree is

not empty. Let T2 denote the tree after the above step (e.g., see Fig. 3.6 in Chapter 3).

Second, for each internal vertex v of T2, if the degree of v is 2 and v is empty, then we

remove v from T2 and merge its two incident edges as a single edge whose length is equal

to the sum of the lengths of the two incident edges of v. We keep doing this until every

degree-2 vertex of the remaining tree is not empty. Let T ′ represent the remaining tree

(e.g., see Fig. 3.6 in Chapter 3). The above two steps can be implemented in O(|T1|)

time, e.g., by a post-order traversal of T1. We omit the details.

Notice that every location of P is at a vertex of T ′ and every vertex of T ′ except

those whose degrees are at least three holds a location of P. Let V denote the set of all

vertices of T ′ and let V3 denote the set of the vertices of T ′ whose degrees are at least

three. Clearly, |V3| ≤ |V \ V3|. Since each vertex in V \ V3 holds a location of P, we

have |V \ V3| ≤M , and thus |V3| ≤M .

To make every vertex of T ′ contain a location of an uncertain point, we first arbi-

trarily pick m1 vertices from V3 and remove them from V3, and set a “dummy” location

for P1 at each of these vertices with zero probability. We keep picking next m2 vertices

from V3 for P2 and continue this procedure until V3 becomes empty. Since |V3| ≤ M ,

the above procedure will eventually make V3 empty before we “use up” all n uncertain

points of P. We let P ′ be the set of new uncertain points. For each Pi ∈ P, it has at

most 2mi locations on T ′.

Since now every vertex of T ′ holds a location of P ′ and every location of P ′ is at a

vertex of T ′, we obtain an instance of the vertex-constrained case on T ′ and P ′. Hence,

we can use our algorithm for the vertex-constrained case to compute a set C ′ of centers

on T ′ in O(τ) time. In the following, for each center c′ ∈ C ′, we find a corresponding

center c on the original tree T such that Pi is covered by c on T if and only if P ′i is

covered by c′ on T ′.

Observe that every vertex v of T ′ also exists as a vertex in T1, and every edge (u, v)

of T ′ corresponds to the simple path in T1 between u and v. Suppose c′ is on an edge

(u, v) of T ′ and let δ be the length of e between u and c′. We locate a corresponding

c1 in T1 in the simple path from u to v at distance δ from u. On the other hand, by

116

our construction from T to T1, if an edge e of T does not appear in T1, then e is broken

into several edges in T1 whose total length is equal to that of e. Hence, every point of

T corresponds a point on T1. We find the point on T that corresponds to c1 of T1, and

let the point be c.

Let C be the set of points c on T corresponding to all c′ ∈ C ′ on T , as defined above.

Let C1 be the set of points c1 on T1 corresponding to all c′ ∈ C ′ on T ′. To compute C,

we first compute C1. This can be done by traversing both T ′ and T1, i.e., for each edge

e of T ′ that contains centers c′ of C ′, we find the corresponding points c1 in the path

of T1 corresponding to the edge e. Since the paths of T1 corresponding to the edges of

T ′ are pairwise edge-disjoint, the runtime for computing C1 is O(|T1| + |T ′|). Next we

compute C, and similarly this can be done by traversing both T1 and T in O(|T1|+ |T |)

time. Hence, the total time for computing C is O(|T |+M) since both |T1| and |T ′| are

bounded by O(|T |+M).

As a summary, we can find an optimal solution for the center-coverage problem on

T and P in O(τ +M + |T |) time. The lemma thus follows.

6.6 The k-Center Problem

The k-center problem is to find a set C of k centers on T minimizing the value

max1≤i≤n d(C,Pi), where d(C,Pi) = minc∈C d(c, Pi). Let λopt = max1≤i≤n d(C,Pi) for

an optimal solution C, and we call λopt the optimal covering range.

As the center-coverage problem, we can also reduce the general k-center problem to

the vertex-constrained case. The reduction is similar to the one in Lemma 6.5.7 and we

omit the details. In the following, we only discuss the vertex-constrained case and we

assume the problem on T and P is a vertex-constrained case. Let τ denote the running

time for solving the center-coverage algorithm on T and P.

To solve the k-center problem, the key is to compute λopt, after which we can

compute k centers in additional O(τ) time using our algorithm for the center-coverage

problem with λ = λopt. To compute λopt, there are two main steps. In the first step, we

find a set S of O(n2) candidate values such that λopt must be in S. In the second step,

we compute λopt in S. Below we first compute the set S.

For any two medians p∗i and p∗j on Tm, observe that as x moves on π(p∗i , p
∗
j) from p∗i

117

p∗i p∗j

Ed(x, Pj)
Ed(x, Pi)

cij

Figure 6.5. Illustrating cij and the two functions Ed(x, Pi) and Ed(x, Pj) as x changes
in the path π(p∗i , p

∗
j). π(p∗i , p

∗
j) is shown as a segment.

to p∗j , Ed(x, Pi) is monotonically increasing and Ed(x, Pj) is monotonically decreasing

(e.g., see Fig. 6.5); we define cij to be a point on the path π(p∗i , p
∗
j) with Ed(cij , Pi) =

Ed(cij , Pj), and we let cij = ∅ if such a point does not exist on π(p∗i , p
∗
j). We have the

following lemma.

Lemma 6.6.1. Either λopt = Ed(p∗i , Pi) for some uncertain point Pi or λopt = Ed(cij , Pi) =

Ed(cij , Pj) for two uncertain points Pi and Pj.

Proof. Consider any optimal solution and let C be the set of all centers. For each c ∈ C,

let Q(c) be the set of uncertain points that are covered by c with respect to λopt, i.e.,

for each Pi ∈ Q(c), Ed(c, Pi) ≤ λopt. Let C ′ be the subset of all centers c ∈ C such that

Q(c) has an uncertain point Pi with Ed(c, Pi) = λopt and there is no other center c′ ∈ C

with Ed(c′, Pi) < λopt. For each c ∈ C ′, let Q′(c) be the set of all uncertain points Pi

such that Ed(c, Pi) = λopt.

If there exists a center c ∈ C ′ with an uncertain point Pi ∈ Q′(c) such that c is

at p∗i , then the lemma follows since λopt = Ed(c, Pi) = Ed(p∗i , Pi). Otherwise, if there

exists a center c ∈ C ′ with two uncertain points Pi and Pj in Q′(c) such that c is at

cij , then the lemma also follows since λopt = Ed(cij , Pi) = Ed(cij , Pj). Otherwise, if we

move each c ∈ C ′ towards the median p∗j for any Pj ∈ Q′(c), then Ed(c, Pi) for every

Pi ∈ Q′(c) becomes non-increasing. During the above movements of all c ∈ C ′, one of

the following two cases must happen (since otherwise we would obtain another set C ′′

of k centers with max1≤i≤n d(C ′′, Pi) < λopt, contradicting with that λopt is the optimal

covering range): either a center c of C ′ arrives at a median p∗i with λopt = Ed(c, Pi) =

Ed(p∗i , Pi) or a center c of C ′ arrives at cij for two uncertain points Pi and Pj with

λopt = Ed(cij , Pi) = Ed(cij , Pj). In either case, the lemma follows.

118

In light of Lemma 6.6.1, we let S = S1 ∪ S2 with S1 = {Ed(p∗i , Pi) | 1 ≤ i ≤ n} and

S2 = {Ed(cij , Pi) | 1 ≤ i, j ≤ n} (if cij = ∅ for a pair i and j, then let Ed(cij , Pi) = 0).

Hence, λopt must be in S and |S| = O(n2).

We assume the data structure A3 has been computed in O(M logM) time. Then,

computing the values of S1 can be done in O(n logM) time by using A3. The following

lemma computes S2 in O(M + n2 log n logM) time.

Lemma 6.6.2. After O(M) time preprocessing, we can compute Ed(cij , Pi) in O(log n ·

logM) time for any pair i and j.

Proof. As preprocessing, we do the following. First, we compute a lowest common

ancestor query data structure on Tm in O(M) time such that given any two vertices of

Tm, their lowest common ancestor can be found in O(1) time [66, 67]. Second, for each

vertex v of Tm, we compute the length d(v, r), i.e., the number of edges in the path of

Tm from v to the root r of Tm. Note that d(v, r) is also the depth of v. Computing

d(v, r) for all vertices v of Tm can be done in O(M) time by a depth-first-traversal of

Tm starting from r. For each vertex v ∈ Tm and any integer d ∈ [0, d(v, r)], we use

α(v, d) to denote the ancestor of v whose depth is d. We build a level ancestor query

data structure on Tm in O(M) time that can compute α(v, d) in constant time for any

vertex v and any d ∈ [0, d(v, r)] [83]. The total time of the above processing is O(M).

Consider any pair i and j. We present an algorithm to compute cij in O(log n·logM)

time, after which Ed(cij , Pi) can be computed in O(logM) time by using the data

structure A3.

Observe that cij 6= ∅ if and only if Ed(p∗i , Pi) ≤ Ed(p∗i , Pj) and Ed(p∗j , Pj) ≤

Ed(p∗j , Pi). Using A3, we can compute the four expected distances in O(logM) time

and thus determine whether cij = ∅. If yes, we simply return zero. Otherwise, we

proceed as follows.

Note that cij is a point x ∈ π(p∗i , p
∗
j) minimizing the value max{Ed(x, Pi),Ed(x, Pj)}

(e.g., see Fig. 6.5). To compute cij , by using a lowest common ancestor query, we find

the lowest common ancestor vij of p∗i and p∗j in constant time. Then, we search cij

on the path π(p∗i , vij), as follows (we will search the path π(p∗j , vij) later). To simplify

the notation, let π = π(p∗i , vij). By using the level ancestor queries, we can find the

119

middle edge of π in O(1) time. Specifically, we find the two vertices v1 = α(p∗i , k) and

v2 = α(p∗i , k + 1), where k = b(d(p∗i , r) + d(vij , r))/2c. Note that the two values d(p∗i , r)

and d(vij , r) are computed in the preprocessing. Hence, v1 and v2 can be found in

constant time by the level ancestor queries. Clearly, the edge e = (v1, v2) is the middle

edge of π.

After e is the obtained, by the data structure A3 and as remarked in Section 6.5.2,

we can obtain the two functions Ed(x, Pi) and Ed(x, Pj) on x ∈ e in O(logM) time, and

both functions are linear in x for x ∈ e. As x moves in e from one end to the other, one

of Ed(x, Pi) and Ed(x, Pj) is monotonically increasing and the other is monotonically

decreasing. Therefore, we can determine in constant time whether cij is on π1, π2, or e,

where π1 and π2 are the sub-paths of π partitioned by e. If cij is on e, then cij can be

computed immediately by the two functions and we can finish the algorithm. Otherwise,

the binary search proceeds on either π1 or π2 recursively.

For the runtime, the binary search has O(log n) iterations and each iteration runs in

O(logM) time. So the total time of the binary search on π(p∗i , vij) is O(log n logM). The

binary search will either find cij or determine that cij is at vij . The latter case actually

implies that cij is in the path π(p∗j , vij), and thus we apply the similar binary search on

π(p∗j , vij), which will eventually compute cij . Thus, the total time for computing cij is

O(log n logM).

The lemma thus follows.

The following theorem summarizes our algorithm.

Theorem 6.6.3. An optimal solution for the k-center problem can be found in O(n2 log n logM+

M log2M log n) time.

Proof. Assume the data structure A3 has been computed in O(M logM) time. Com-

puting S1 can be done in O(n logM) time. Computing S2 takes O(M + n2 log n logM)

time. After S is computed, we find λopt from S as follows.

Given any λ in S, we can use our algorithm for the center-coverage problem to find

a minimum number k′ of centers with respect to λ. If k′ ≤ k, then we say that λ is

feasible. Clearly, λopt is the smallest feasible value in S. To find λopt from S, we first

120

sort all values in S and then do binary search using our center-coverage algorithm as a

decision procedure. In this way, λopt can be found in O(n2 log n+ τ log n) time.

Finally, we can find an optimal solution using our algorithm for the covering

problem with λ = λopt in O(τ) time. Therefore, the total time of the algorithm

is O(n2 log n logM + τ log n), which is O(n2 log n logM + M log2M log n) by Theo-

rem 6.3.6.

121

CHAPTER 7

THE LINE-CONSTRAINED K-MEDIAN, K-MEANS, AND K-CENTER

PROBLEMS IN THE PLANE

It has been known that the (weighted) k-median, k-means, and k-center problems

in the plane are NP-hard [17–19]. In this chapter, we study these problems with an

additional constraint that the sought k facilities must be on a given line. We present

efficient algorithms for various distance metrics such as L1, L2, L∞. The results in this

chapter have been published in [60,84].

7.1 Introduction

For any point p, denote by x(p) and y(p) its x- and y-coordinates, respectively. For

any two points p and q, denote by d(p, q) the distance between p and q. Depending on

the distance metrics, d(p, q) may refer to the L1 distance, i.e., |x(p) − x(q)| + |y(p) −

y(q)|, or the L2 distance, i.e.,
√

(x(p)− x(q))2 + (y(p)− y(q))2, or the L∞ distance, i.e.,

max{|x(p)− x(q)|, |y(p)− y(q)|}. For convenience, we define the L2
2 distance metric1 as

(x(p)− x(q))2 + (y(p)− y(q))2.

Let P be a set of n points in the plane, and each point p ∈ P has a weight

w(p) > 0. The goal of the k-median (resp., k-center) problem is to find a set Q of

k points (called facilities) in the plane such that
∑

p∈P [w(p) · minq∈Q d(p, q)] (resp.,

maxp∈P [w(p)·minq∈Q d(p, q)]) is minimized. With our above definition on the L2
2 metric,

the k-means problem is actually the k-median problem under the L2
2 metric.

If all points of Q are required to be on a given line, denoted by χ, then we refer

to the corresponding problems as line-constrained or simply constrained k-median, k-

means, and k-center problems. In the following, we assume χ is the x-axis and the

points of P have been sorted by their x-coordinates.

1Note that the L2
2 distance is actually not a metric because the triangle inequality does not hold;

we use “metric” here merely for the reference purpose.

122

Table 7.1. Summary of our results, where τ = min{n√k log n, n2O(
√

log k log logn)}.

constrained k-median constrained k-center

L1 O(min{nk, τ log n}), and O(τ) for
the unweighted case

O(n log n), and O(n) for the un-
weighted case

L2 unsolvable O(n log n)
L∞ O(min{nk log n, τ log2 n}) O(n log n), and O(n) for the un-

weighted case
L2

2 O(min{nk, τ}) (i.e., the constrained
k-means)

not applicable

Table 7.1 summarizes our results in this chapter. Throughout the chapter, we

always let τ = min{n√k log n, n2O(
√

log k log logn)}. For the constrained k-median, we

give algorithms for the L1 and L∞ metrics, with running time O(min{nk, τ log n}) and

O(min{nk log n, τ log2 n}), respectively. The L1 unweighted version where all points of

P have the same weight can also be solved in O(τ) time. These time bounds almost

match those of the best algorithms for the one-dimensional k-median problems. Note

that the L2 version of the constrained k-median has been shown unsolvable due to the

computation challenge even for k = 1 [85]. For the constrained k-means, we give an

O(min{nk, τ}) time algorithm. For the constrained k-center, our algorithms run in

O(n log n) time for all three metrics, and in O(n) time for the unweighted version under

L1 and L∞ metrics. These k-center results are optimal.

Our results show that although the 2D versions of these problems are hard, their

“1.5D” versions are “easy”. A practical example in which the facilities are restricted

to lie along a line is that we want to build some supply centers along a highway or

railway (although a highway or railway may not be a straight line, it may be consid-

ered straight in each local area). Other relevant examples may include building partial

delivery stations along an oil or gas transportation pipeline.

7.1.1 Previous work

The L1 and L2 k-median and k-center problems in the plane are NP-hard [19],

and so as the L∞ k-center problem [17]. In the one-dimensional space, however, both

problems are solvable in polynomial time: For k-median, the best-known algorithms run

123

in O(nk) time [86,87] or in O(τ log n) time [88]; for k-center, the best-known algorithms

run in O(n log n) time [41,43,89].

The k-means problem in the plane is also NP-hard [18]. Heuristic and approxima-

tion algorithms have been proposed, e.g., see [90–93].

The unweighted versions of the constrained k-center were studied before. The L2

case was first proposed and solved in O(n log2 n) time by Brass et al. [58] and later was

improved to O(n log n) time by Karmakar et al. [59]. Algorithms of O(n log n) time were

also given in [58] for L1 and L∞ metrics; note that even the points are given sorted, the

above algorithms [58] still run in O(n log n) time. In addition, Brass et al. [58] also gave

interesting and efficient algorithms for other two variations of the unweighted k-center

problems, i.e., the line χ is not fixed but its slope is fixed, or χ is arbitrary. To the best

of our knowledge, we are not aware of any previous work on the weighted versions of

the constrained k-median and k-center problems studied in this chapter.

Efficient algorithms have been given for other special cases. When k = 1, Megiddo

[27] solved the unweighted L2 1-center problem in O(n) time. Hurtado [94] gave an

O(n + m) time algorithm for the unweighted L2 1-center problem with the center re-

stricted in a given convex polygon of m vertices. For k = 2, Chan [70] proposed an

O(n log2 n log2 log n) time for the unweighted L2 2-center problem and another random-

ized algorithm; if the points are in convex positions, the same problem can be solved in

O(n log2 n) time [95]. The L2 1-median problem is also known as the Weber problem

and no exact algorithm is known for it (and even for the constrained version) [85].

Alt et al. [96] studied a somewhat similar problem as our unweighted constrained

problems, where the goal is to find a set of disks whose union covers all points and whose

centers must be on a given line such that the sum of the radii of all disks is minimized,

and they gave an O(n2 log n) time algorithm [96]. Note that this problem is different

from our k-median, k-means, or k-center problems.

Note that the unweighted k-center and k-median problems can be considered as

geometric covering problems, i.e., cover the points in P by using k diamonds, discs, and

squares corresponding to the L1, L2, and L∞ metrics, respectively.

124

7.1.2 Our Approaches

Suppose p1, p2, . . . , pn are the points of P ordered by increasing x-coordinate. We

discover an easy but crucial observation: For every problem studied in this chapter,

there always exists an optimal solution in which the points of P “served” by the same

facility are consecutive in the above index order.

For convenience of discussion, in the following we will refer to the k-means problem

as the k-median problem under the L2
2 metric.

Based on the above observation, for the constrained k-median, for all metrics (i.e.,

L1, L2, L2
2, and L∞), by modeling the problem as finding a minimum weight k-link

path in a DAG G. Furthermore, we prove that the weights of the edges of G satisfy

the concave Monge property and thus efficient techniques [97, 98] can be used. One

challenging problem for the above algorithmic scheme is that we need to design a data

structure to quickly compute any graph edge weight (i.e., given any i and j with i ≤ j,

compute the optimal objective value for the constrained 1-median problem on the points

pi, pi+1, . . . , pj).

For L2
2 metric (i.e., the k-means), we build such a data structure in O(n) time that

can answer each query in O(1) time. For L∞ metric, we build such a data structure

in O(n log n) time that can answer each query in O(log2 n) time. Combining these

data structures with the above algorithmic scheme, we can solve the L2
2 and L∞ cases.

In addition, based on interesting observations, we give another algorithm for the L∞

case that is faster than the above scheme for a certain range of values of k. For L1

metric, instead of using the above algorithmic scheme, we reduce the problem to the

one-dimensional k-median problem and then the algorithms in [86–88] can be applied.

For the constrained k-center, to solve the L2 case, we generalize the O(n log n) time

algorithm in [59] for the unweighted version. In fact, similar approaches can also solve

the L1 and L∞ cases. However, since the algorithm uses Cole’s parametric search [43],

which is complicated and involves large constants and thus is only of theoretical interest,

we design another O(n log n) time algorithms for the L1 and L∞ cases, without using

parametric search.

In addition, for the unweighted L1 and L∞ cases, due to the above crucial obser-

vation, our linear time algorithm hinges on the following efficient data structures. With

125

R

q
p

x

Figure 7.1. Illustrating the proof of Lemma 7.2.1. The (red) squared points are facilities
and the vertical dashed lines pass through the midpoints of adjacent facilities.

O(n) time preprocessing, for any query i ≤ j, we can solve in O(1) time the constrained

L1 and L∞ 1-median problems on the points pi, pi+1, . . . , pj .

Note that our algorithms for the L2 and L2
2 metrics work for any arbitrary line χ

(but χ must be given as input). However, since the distances under L1 and L∞ metrics

are closely related to the orientation of the coordinate system, our algorithms for them

only work for horizontal lines χ.

The rest of the chapter is organized as follows. In Section 7.2, we introduce some

notations and observations. In Sections 7.3 and 7.4, we present our algorithms for

the constrained k-median (including the k-means) and k-center problems, respectively.

Again, in the following we will consider the k-means problem as the k-median problem

under the L2
2 metric.

7.2 Preliminaries

For simplicity of discussion, we assume no two points in P have the same x-

coordinate. Let p1, p2, . . . , pn be the points of P ordered by increasing x-coordinate.

Define P (i, j) = {pi, pi+1, . . . , pj} for any i ≤ j. For any 1 ≤ i ≤ n, we also use xi, yi,

and wi to refer to x(pi), y(pi), and w(pi), respectively.

For any facility set Q and any point p, let d(p,Q) = minq∈Q d(p, q). For any point

p ∈ P , if d(p,Q) = d(p, q) for some facility point q ∈ Q, then we say p is “served” by

q. We call
∑

p∈P [w(p) · d(p,Q)] and maxp∈P [w(p) · d(p,Q)] the objective value of the

k-median and k-center problems, respectively.

The following is the crucial lemma mentioned in Section 7.1.2.

Lemma 7.2.1. For each of the constrained k-median and k-center problems of any metric

(i.e., L1, L2, L2
2, or L∞), there must exist an optimal solution in which the points of P

126

served by the same facility are consecutive in their index order.

Proof. We first consider the constrained k-median, for all metrics. Let Q be the facility

set in any optimal solution. Let q1, q2, . . . , qk be the facilities of Q sorted from left to

right. For any 1 ≤ i ≤ k − 1, let li be the vertical line through the midpoint of the

line segment qiqi+1 (e.g., see Fig. 7.1). The above k − 1 lines partition the plane into k

strips (the leftmost and rightmost strips are two half-planes; in fact, this is exactly the

Voronoi diagram of the k facilities) and each strip contains a single facility. Consider

any strip R. Suppose R contains a facility q. It is easy to see that for any point p ∈ P

that is contained in R, it holds that d(p,Q) = d(p, q) for any metric (e.g., see Fig. 7.1),

implying that p should be served by q. Of course, if p is on the boundary of two strips,

p can be served by either of the two facilities contained in the two strips. Clearly, the

points of P contained in R are consecutive in their index order. Therefore, the lemma

is proved for the constrained k-center problem for any metric.

For the constrained k-center, the proof is exactly the same as above and we omit

it. The lemma thus follows.

For any i ≤ j, consider the constrained 1-median problem on P (i, j); denote by

f(i, j) the facility in an optimal solution and define α(i, j) to be the objective value of

the optimal solution, i.e., α(i, j) =
∑j

t=i[wt ·d(pt, f(i, j))]. We call f(i, j) the constrained

median of P (i, j). In the case that f(i, j) is not unique, we let f(i, j) refer to the leftmost

such point.

According to Lemma 7.2.1, solving the constrained k-median problem is equivalent

to partitioning the sequence p1, p2, . . . , pn into k subsequences such that the sum of the

α values of all these subsequences is minimized. Formally, we want to find k− 1 indices

i0 < i1 < i2 < · · · < ik−1 < ik, with i0 = 0 and ik = n, such that
∑k

j=1 α(ij−1 + 1, ij)

is minimized. There are also similar observations for the constrained k-center problem.

As will be seen later, these observations are quite useful for our algorithms.

For any point p on the x-axis, for convenience, we also use p to denote its x-

coordinate. For example, if two points p and q are on the x-axis, then p < q means that

p is strictly to the left of q. For any value x, we sometime also use x to refer to the

point on the x-axis with x-coordinate x.

127

7.3 The Constrained k-Median

This section presents our algorithms for the constrained k-median under L1, L∞,

and L2
2 metrics.

We first propose an algorithmic scheme in Section 7.3.1 that works for any metric.

To use the scheme, one has to design a data structure for computing α(i, j) for any query

i ≤ j. In Section 7.3.2, we design such a data structure for L∞ metric, and thus solves

the L∞ case. In addition, we give another algorithm that is faster than the scheme for

a certain range of values of k. In Section 7.3.3, we solve the L1 case; instead of using

the above scheme, we get a better result by reducing it to the one-dimensional problem.

In Section 7.3.4, we solve the L2
2 case (i.e., the k-means) by designing an efficient data

structure for the above algorithmic scheme.

7.3.1 An Algorithmic Scheme for All Metrics

In this subsection, unless otherwise stated, all notations involving distances, e.g.,

d(p, q), α(i, j), can use any distance metric (i.e., L1, L2, L2
2, and L∞).

In light of our observations in Section 7.2, we will reduce the problem to finding a

minimum weight k-link path in a DAG G. Further, we will show that the edge weights

of G satisfy the concave Monge property and then efficient algorithms [97–99] can be

used. Below, we first define the graph G.

For each point pi ∈ P , recall that xi = x(pi) and we also use xi to denote the

projection of pi on the x-axis. The vertex set of G consists of n+1 vertices v0, v1, . . . , vn

and one can consider each vi corresponding to a point between xi and xi+1 (v0 is to

the left of x1 and vn is to the right of xn); e.g., see Fig.7.2. For any i and j with

0 ≤ i ≤ j ≤ n, we define a directed edge e(i, j) from vi to vj , and the weight of the

edge, denoted by w(i, j), is defined to be α(i+ 1, j) (if we view vi and vj as two points

on the x-axis as above, then vivj contains the points xi+1, xi+2, . . . , xj). Clearly, G is a

directly acyclic graph (DAG).

xxi xi+1 xj xj+1
vi vj

Figure 7.2. Illustrating an edge of G from vi to vj . It is the two (red) squared points.

128

A path in G is a k-link path if it has k edges. The weight of any path is the sum

of the weights of all edges of the path. A minimum weight k-link path from v0 to vn in

G is a k-link path that has the minimum weight among all k-link paths from v0 to vn.

Note that any k-link path from v0 to vn in G corresponds to a partition of the points in

P into k subsequences. According to our observations in Section 7.2 and the definition

of G, the following lemma is self-evident.

Lemma 7.3.1. A minimum weight k-link path π from v0 to vn in G corresponding to

an optimal solution OPT of the constrained k-median problem on P . Specifically, the

objective value of OPT is equal to the weight of π, and for each edge e(vi, vj) of π, there

is a corresponding facility serving all points of P (i+ 1, j) in OPT .

Recall that f(i, j) is the leftmost constrained median of P (i, j) for any i ≤ j.

Lemma 7.3.2. For any metric, the weights of the edges of G satisfy the concave Monge

property, i.e., w(i, j)+w(i+1, j+1) ≤ w(i, j+1)+w(i+1, j) holds for any 1 ≤ i < j ≤ n.

Proof. Recall that w(i, j) = α(i+ 1, j) for any i < j. To facilitate using indices, we will

prove that for any i ≤ j, w(i − 1, j) + w(i, j + 1) ≤ w(i − 1, j + 1) + w(i, j) holds, i.e.,

α(i, j) + α(i+ 1, j + 1) ≤ α(i, j + 1) + α(i+ 1, j), for any metric.

Note that both f(i, j + 1) ≤ f(i+ 1, j) and f(i, j + 1) > f(i+ 1, j) are possible. In

the following, we will show that α(i, j) + α(i+ 1, j + 1) ≤ α(i, j + 1) + α(i+ 1, j) holds

in either case.

1. Consider the case f(i, j + 1) ≤ f(i+ 1, j).

According to the definition, α(i, j) is the optimal objective solution for the 1-

median problem on the points in P (i, j). If we place a facility at f(i, j+1) to serve

all points in P (i, j), then the objective value is
∑j

t=iwtd(pt, f(i, j + 1)), which is

equal to α(i, j+1)−wj+1d(pj+1, f(i, j+1)) since α(i, j+1) =
∑j+1

t=i wtd(pt, f(i, j+

1)). Because α(i, j) is the optimal objective value for P (i, j), it holds that α(i, j) ≤∑j
t=iwtd(pt, f(i, j + 1)). Therefore, we obtain

α(i, j) ≤ α(i, j + 1)− wj+1d(pj+1, f(i, j + 1)). (7.1)

129

Similarly, α(i+1, j+1) is the optimal objective value for the 1-median problem on

P (i+1, j+1). If we place a facility at f(i+1, j) to serve all points of P (i+1, j+1),

then the objective value is
∑j+1

t=i+1wtd(pt, f(i + 1, j)), which is exactly equal to

α(i+ 1, j) +wj+1d(pj+1, f(i+ 1, j)) since α(i+ 1, j) =
∑j

t=i+1wtd(pt, f(i+ 1, j)).

Because α(i + 1, j + 1) is the optimal objective value for P (i + 1, j + 1), it holds

that α(i+ 1, j + 1) ≤∑j+1
t=i+1wtd(pt, f(i+ 1, j)). Therefore, we obtain

α(i+ 1, j + 1) ≤ α(i+ 1, j) + wj+1d(pj+1, f(i+ 1, j)). (7.2)

Recall that f(i, j + 1) ≤ f(i + 1, j) in this case. Since f(i + 1, j) is the leftmost

constrained k-median of P (i+ 1, j), it can be easily shown that f(i+ 1, j) ≤ xj ≤

xj+1 and we omit the detailed proof. Due to f(i, j + 1) ≤ f(i + 1, j) ≤ xj+1, we

obtain the following for any metric

d(pj+1, f(i+ 1, j)) ≤ d(pj+1, f(i, j + 1)). (7.3)

Combining the three inequalities (7.1), (7.2), and (7.3), since all point weights are

positive, we obtain α(i, j) + α(i+ 1, j + 1) ≤ α(i, j + 1) + α(i+ 1, j).

2. Consider the other case f(i, j+ 1) > f(i+ 1, j). Some proof techniques are similar

to the first case and we briefly discuss them.

Note that α(i, j) is the optimal objective value for the 1-median problem on P (i, j).

If we place a facility at f(i+ 1, j) to serve all points of P (i, j), then the objective

value is
∑j

t=iwtd(pt, f(i+1, j)), which is exactly equal to α(i+1, j)+wid(pi, f(i+

1, j)). Therefore, we obtain

α(i, j) ≤ α(i+ 1, j) + wid(pi, f(i+ 1, j)). (7.4)

Similarly, α(i+1, j+1) is the optimal objective value for the 1-median problem on

P (i+1, j+1). If we place a facility at f(i, j+1) to serve all points in P (i+1, j+1),

130

then the objective value is
∑j+1

t=i+1wtd(pt, f(i, j + 1)), which is exactly equal to

α(i, j + 1)− wid(pi, f(i, j + 1)). Therefore, we obtain

α(i+ 1, j + 1) ≤ α(i, j + 1)− wid(pi, f(i, j + 1)). (7.5)

Hence, if we can obtain the following

d(pi, f(i+ 1, j)) ≤ d(pi, f(i, j + 1)), (7.6)

then combining Inequalities (7.4) and (7.5), we can prove that α(i, j)+α(i+1, j+

1) ≤ α(i, j + 1) + α(i+ 1, j).

Recall that f(i + 1, j) < f(i, j + 1) in this case. One can easily prove that xi ≤

xi+1 ≤ f(i+ 1, j) holds for the L1, L2, and L2
2 metrics, and thus Inequality (7.6)

holds.

In the L∞ metric, however, xi ≤ f(i + 1, j) may not be true. The reason is as

follows. For any point pt, let It be the interval on the x-axis centered at xt with

length |yt| (i.e., the absolute value of the y-coordinate of pt). It can be easily seen

that the points of It have the same L∞ distance to pt and the points of It are

also the closest points to pt on the x-axis. Let I(i + 1, j) be the intersections of

all intervals It for t = i+ 1, i+ 2, . . . , j. Hence, if I(i+ 1, j) 6= ∅, then f(i+ 1, j)

is the leftmost point of I(i + 1, j). One can easily draw an example in which

xi > f(i+ 1, j).

If xi ≤ f(i + 1, j) holds, then we can obtain Inequality (7.6) and thus prove the

lemma. In the following, we assume that xi > f(i+ 1, j).

First, we claim I(i + 1, j) 6= ∅. Suppose to the contrary that I(i + 1, j) = ∅.

Then, there is at least one point ph ∈ P (i + 1, j) such that Ih does not contain

f(i + 1, j). Due to xi > f(i + 1, j), all points of P (i + 1, j) have x-coordinates

strictly larger than f(i + 1, j). Hence, if we move f(i + 1, j) rightwards for an

infinitesimal distance, ph will have the distance d(ph, f(i+ 1, j)) strictly decrease,

which makes the value
∑t

t=i+1wtd(pt, f(i + 1, j)) strictly decrease, contradicting

131

with that the original f(i + 1, j) is the constrained median of P (i + 1, j). The

claim is thus proved.

Since I(i+ 1, j) 6= ∅, according to our above discussion, f(i+ 1, j) is the leftmost

point of I(i + 1, j). In fact, any point of I(i + 1, j) is a constrained median

of P (i + 1, j). By its definition, the interval I(i + 1, j) must contain xi due to

f(i+ 1, j) < xi. Therefore, xi is also a constrained median of P (i+ 1, j). Now we

let f(i + 1, j) temporarily refer to xi. By exactly the same analysis as above, we

can still obtain Inequality (7.4).

Now consider f(i, j+ 1). If f(i, j+ 1) ≥ xi, then Inequality (7.6) is obtained since

f(i+ 1, j) is now xi, and thus the lemma is proved.

If f(i, j+1) < xi, then using the similar analysis as above, we can also obtain that

xi is a constrained median of P (i, j + 1). Hence, by letting f(i, j + 1) refer to xi,

we can still obtain Inequality (7.5). Since now both f(i+ 1, j) and f(i, j + 1) are

xi, Inequality (7.6) trivially holds and the lemma is proved.

Therefore, for the L∞ metric, we also obtain α(i, j)+α(i+1, j+1) ≤ α(i, j+1) +

α(i+ 1, j).

In summary, in any case, we obtain α(i, j) +α(i+ 1, j+ 1) ≤ α(i, j+ 1) +α(i+ 1, j)

for any metric, and the lemma is thus proved.

By Lemma 7.3.2, we can apply the algorithm in [97–99]. Assuming the weight of

each graph edge w(i, j) can be obtained in O(1) time, the algorithms in [97] and [98]

can compute a minimum weight k-link path from v0 to vn in O(n
√
k log n) time and

O(n2O(
√

log k log logn)) time, respectively. Further, as indicated in [97], by using dynamic

programming and applying the technique in [99], such a path can also be computed in

O(nk) time. In our problem, to compute each w(i, j) is essentially to compute α(i+1, j).

Therefore, we can obtain the following result.

Theorem 7.3.3. For any metric (i.e., L1, L2, L2
2, or L∞), if we can build a data structure

in O(T) time that can compute α(i, j) in O(σ) time for any query i ≤ j, then we

can solve the constrained k-median problem in O(T + σ ·min{nk, τ}) time, where τ =

min{√nk log n, n2O(
√

log k log logn)}.

132

x

d(pi, x)

pi

Ii

Figure 7.3. Illustrating the function d(pi, x). The (red) thick segment on the x-axis is
Ii.

7.3.2 The Constrained k-Median under the L∞-Metric

In this section, we present two algorithms for the L∞ metric. The first algorithm,

which runs in O(min{nk, τ} · log2 n) time, utilizes our result in Theorem 7.3.3, and

the second algorithm, which runs in O(nk log n) time, uses a dynamic programming

approach. Our second algorithm is actually based on some observations we found for

the first algorithm and also uses some results of the first algorithm. In the sequel, we

successively present the two algorithms.

In this section, all notations related to distances use the L∞ metric.

The first algorithm

For the first algorithm, our main goal is to prove the following Lemma 7.3.4. Con-

sequently, by Theorem 7.3.3, we can solve the L∞ case in O(min{nk, τ} · log2 n) time.

Lemma 7.3.4. For the L∞ metric, a data structure can be constructed in O(n log n) time

that can answer each α(i, j) query in O(log2 n) time.

We first introduce some notations. For any point pi, let Ii denote the interval on

the x-axis centered at xi with length |yi| (i.e., the absolute value of the y-coordinate of

pi). Note that the points of Ii have the same (L∞) distance to pi. Consider d(pi, x)

as a function of a point x on the x-axis. As x changes from −∞ to +∞, d(pi, x) first

decreases and then does not change when x ∈ Ii and finally increases (e.g., see Fig. 7.3).

Consider any two indices i ≤ j. Let E(i, j) be the set of the endpoints of all intervals

It for i ≤ t ≤ j. For any point x on the x-axis, define φ(i, j, x) =
∑j

t=iwtd(pt, x). By

the definition of f(i, j), φ(i, j, x) is minimized at x = f(i, j) and α(i, j) = φ(i, j, f(i, j)).

Lemma 7.3.5 is crucial for computing α(i, j).

133

Lemma 7.3.5. The function φ(i, j, x) is a continuous piecewise linear function whose

slopes change only at the points of E(i, j). Further, there exist two points in E(i, j),

denoted by x′ and x′′ with x′ ≤ x′′ (x′ = x′′ is possible), such that as x increases from

−∞ to +∞, φ(i, j, x) will strictly decrease when x ≤ x′, and will be constant when

x ∈ [x′, x′′], and will strictly increase when x ≥ x′′.

Proof. Consider any point x on the x-axis. We define three sets

PL(i, j, x) = {pt | i ≤ t ≤ j and It is strictly to the left of x},

PM (i, j, x) = {pt | i ≤ t ≤ j and It contains x}, and

PR(i, j, x) = {pt | i ≤ t ≤ j and It is strictly to the right of x}.

It is not difficult to see that the above three sets form a partition of P (i, j). For

any point pt and any x, it can be verified that if pt ∈ PL(i, j, x), then d(pt, x) = x− xt,

if x ∈ PM (i, j, x), then d(pt, x) = |yt|, and if It ∈ PR(i, j, x), then d(pt, x) = −x+ xt.

To simplify notations in this proof, when the context is clear, we will omit the

indices i and j from some notations, e.g., we use PL(x), PM (x), PR(x), φ(x) to refer to

PL(i, j, x), PM (i, j, x), PR(i, j, x), φ(i, j, x), respectively.

We have the following way to compute φ(x) (recall that for any point p, x(p) and

y(p) are its x- and y-coordinates, respectively):

φ(x) =
∑

p∈P (i,j)

w(p)d(p, x)

=
∑

p∈PL(x)

w(p)d(p, x) +
∑

p∈PM (x)

w(p)d(p, x) +
∑

p∈PR(x)

w(p)d(p, x)

=
∑

p∈PL(x)

w(p)(x− x(p)) +
∑

p∈PM (x)

w(p)|y(p)|+
∑

p∈PR(x)

w(p)(−x+ x(p))

= x ·
[∑
p∈PL(x)

w(p)−
∑

p∈PR(x)

w(p)
]

−
∑

p∈PL(x)

w(p)x(p) +
∑

p∈PM (x)

w(p)|y(p)|+
∑

p∈PR(x)

w(p)x(p).

(7.7)

For simplicity, we assume no two points in E(i, j) are the same. Let m = |E(i, j)|.

Suppose x′1, x
′
2, . . . , x

′
m is the sorted list of E(i, j). Let x′0 = −∞ and x′m+1 = +∞.

Consider any open interval (x′t, x
′
t+1) for 0 ≤ t ≤ m. For any x ∈ (x′t, x

′
t+1), the three

sets PL(x), PM (x), and PR(x) are the same, and thus, the coefficient of x in Equality

134

(7.7) is a constant and the last three terms are also constants. Hence, φ(x) is a linear

function for x ∈ (x′t, x
′
t+1). To prove that φ(x) is a continuous function, it is sufficient to

show that limx→x′t φ(x) = φ(x′t) for any 1 ≤ t ≤ m, which can be verified using Equation

(7.7), and we omit the details.

The above proves φ(i, j, x) is a continuous piecewise linear function whose slopes

change only at the points of E(i, j).

As x increases from −∞ to +∞, PL(x) is monotonically increasing and PR(x) is

monotonically decreasing, and thus, by Equality (7.7) the slope of φ(x) is monotonically

increasing. Note that when x ∈ (x′0, x
′
1), PL(x) = ∅ and PR(x) = P (i, j), and thus

the slope of φ(x) is negative; when x ∈ (x′m, x
′
m+1), PL(x) = P (i, j) and PR(x) = ∅,

and thus the slope of φ(x) is positive. Hence, as x increases from −∞ to +∞, at some

moment, the slope of φ(x) changes from negative to zero and then from zero to positive,

or from negative directly to positive. In either case, as the slope of φ(x) is monotonically

increasing and only changes at the points of E(i, j), there exists two points x′ and x′′ in

E(i, j) with x′ ≤ x′′, such that the slope of φ(x) is negative for x ∈ (−∞, x′), zero for

x ∈ (x′, x′′), and positive for x ∈ (x′′,+∞). Since the function φ(x) is continuous, the

lemma is proved.

By Lemma 7.3.5, to compute α(i, j), which is the minimum value of φ(x, i, j), we

can do binary search on the sorted list of E(i, j), provided that we can compute φ(i, j, x)

efficiently for any x. Clearly, E(i, j) ⊆ E(1, n), and thus, we can also do binary search on

the sorted list of E(1, n) to compute α(i, j) for any query i ≤ j. Hence, as preprocessing,

we compute the sorted list of E(1, n) in O(n log n) time since |E(1, n)| = 2n.

According to the above discussion, for any query (i, j) with i ≤ j, if we can compute

φ(i, j, x) in O(σ′) time for any x, then we can compute α(i, j) in O(σ′ log n) time. The

following Lemma 7.3.6 gives a data structure for answering φ(i, j, x) queries, which

immediately leads to Lemma 7.3.4.

Lemma 7.3.6. We can construct a data structure in O(n log n) time that can compute

φ(i, j, x) in O(log n) time for any i ≤ j and x.

Proof. Let T be a complete binary tree whose leaves correspond to the points of P from

left to right. For each 1 ≤ i ≤ n, the i-th leaf is associated with the function wid(pi, x),

135

which is actually φ(i, i, x). Consider any internal node v. Let the leftmost (resp.,

rightmost) leaf of the subtree rooted at v be the i-th (resp., j-th) leaf. We associate

with v the function φ(i, j, x), and use φv(x) to denote the function. By Lemma 7.3.5,

the combinatorial complexity of the function φv(x) is O(j − i+ 1). Let u and w be v’s

two children. Suppose we have already computed the two functions φu(x) and φw(x);

since essentially φv(x) = φu(x) + φw(x), we can compute φv(x) in O(j − i + 1) time.

Therefore, we can compute the tree T in O(n log n) time in a bottom-up fashion.

Consider any query i ≤ j and x = x′ and the goal is to compute φ(i, j, x′). By

standard approaches, we first find O(log n) maximum subtrees such that the leaves of

these subtrees are exactly the leaves from the i-th leaf to the j-th one. Let V be the

set of the roots of these subtrees, and V can be found in O(log n) time by following the

two paths from the root of T to the i-th leaf and the j-th leaf, respectively. Notice that

φ(i, j, x′) =
∑

v∈V φv(x
′). For each v ∈ V , to compute the value φv(x

′), we can do binary

search on the function φv(x) associated with v, which can be done in O(log n) time. In

this way, since |V | = O(log n), we can compute φ(i, j, x′) in overall O(log2 n) time. We

can avoid doing binary search on each node v of V by constructing a fractional cascading

structure [49] on the functions φv(x) of the nodes of T . Using fractional cascading, we

only need to do one binary search on the root of T , and then the values φv(x
′) for all

nodes v of V can be computed in constant time each. The fractional cascading structure

can be built in additional O(n log n) time [49].

As a summary, we can construct a data structure in O(n log n) time that can com-

pute φ(i, j, x) in O(log n) time for any i ≤ j and x.

By Theorem 7.3.3 and Lemma 7.3.4, we have the following result.

Lemma 7.3.7. The L∞ constrained k-median can be solved in O(min{nk log2 n, τ log2 n}

time.

The second algorithm

In the sequel, we present our second algorithm for the L∞ constrained k-median

problem, which runs inO(nk log n) time. Our algorithm is based on the following Lemma

7.3.8.

136

Lemma 7.3.8. For the L∞ constrained k-median problem on P , there must exist an

optimal solution in which the facility set Q is a subset of E(1, n).

Proof. As discussed in Section 7.2, solving the k-median problem is equivalent to par-

titioning the sequence of the points of P into k subsequences such that the sum of the

values α(i, j) for all subsequences P (i, j) is minimized. By Lemma 7.3.5, for each subse-

quence P (i, j), there must be a point of E(i, j) that is a constrained 1-median of P (i, j).

This implies that there must exist an optimal solution for the constrained k-median

problem on P such that each facility is a point of E(1, n).

Based on Lemma 7.3.8, we develop a dynamic programming algorithm. Intuitively,

we have a set of “candidate” facilities, and further, by Lemma 7.2.1, we only need to

check these candidates from left to right. Our algorithm is similar to the algorithm in [87]

for the one-dimensional k-median problem. Below, we first do a problem transformation.

For each point p ∈ E(1, n), we assign a weight of zero to p. Let S = E(1, n) ∪ P .

Consider the L∞ constrained k-median problem on S. Since the weight of each point of

E(1, n) is zero, an optimal solution to the problem on S is also an optimal solution to

the problem on P , and vice versa. In the following, we will focus on solving the problem

on S.

Note that |S| = 3n. To simplify the notation, we still use n to denote the size of S.

For simplicity of discussion, we assume no two points of S have the same x-coordinate.

Let s1, s2, . . . , sn be the sorted list of S by their x-coordinates. For each si ∈ S, let

s′i be the projection of si on the x-axis. For any i ≤ j, let S(i, j) = {si, si+1, . . . , sj}

and S′(i, j) = {s′i, s′i+1, . . . , s
′
j}. Let S′ = {s′i | 1 ≤ i ≤ n}. Note that E(1, n) ⊆ S′.

According to Lemma 7.3.8, there must exist an optimal facility set Q that is a subset of

S′.

For any 1 ≤ r ≤ k and 1 ≤ j ≤ n, let A(r, j) denote the optimal objective value

of the subproblem on S(j, n) using r facilities, i.e., A(r, j) is the minimized value of∑
p∈S(j,n)[w(p) · minq∈Q′ d(q, p)] subject to Q′ ⊆ S′(j, n) and |Q′| ≤ r; let B(r, j) be

the optimal objective value on the same subproblem with an additional condition that

a facility must be placed at s′j , i.e., B(r, j) is the minimized value of
∑

p∈S(j,n)[w(p) ·

137

minq∈Q′ d(q, p)] subject to s′j ∈ Q′ ⊆ S′(j, n) and |Q′| ≤ r. Then, we obtain the following

recursions

B(r, j) = min
j<t≤n+1


t−1∑
i=j

w(si)d(s′j , si) +A(r − 1, t)

 , r ≥ 2, 1 ≤ j ≤ n, (7.8)

A(r, j) = min
j≤t≤n


t∑
i=j

w(si)d(s′t, si) +B(r, t)

 , r ≥ 1, 1 ≤ j ≤ n. (7.9)

The base case is B(1, j) =
∑n

i=j d(s′j , si), for j = 1, 2, . . . , n, and A(r, n+ 1) = 0 for

any r ≥ 1. Our goal is to compute A(1, n).

By the above recursions, computing A(1, n) can be easily done in O(n2k) time. As

in [87], by showing a concave quadrangle inequality (note that it is not the same Monge

property as in Lemma 7.3.2), we can solve the recursions in a more efficient way [100].

The details are given below.

For any i ≤ j, define g(i, j) =
∑j

t=iw(st)d(s′i, st) and g′(i, j) =
∑j

t=iw(st)d(s′j , st).

Note that we can replace the first term in Equality (7.8) by g(j, t − 1) and replace

the first term in Equality (7.9) by g′(j, t). We can easily prove that the following

concave quadrangle inequality: for any 1 ≤ a ≤ b ≤ c ≤ d ≤ n, g(a, c) + g(b, d) ≤

g(b, c) + g(a, d). To see this, we have g(a, d) − g(a, c) =
∑d

t=c+1w(st)d(s′a, st) and

g(b, d) − g(b, c) =
∑d

t=c+1w(st)d(s′b, st). Clearly, due to a ≤ b ≤ c, d(s′a, st) ≥ d(s′b, st)

for any c + 1 ≤ t. Therefore, we obtain g(b, d) − g(b, c) ≤ g(a, d) − g(a, c) and the

above inequality holds. Similarly, we can prove that for any 1 ≤ a ≤ b ≤ c ≤ d ≤ n,

g′(a, c) + g′(b, d) ≤ g′(b, c) + g′(a, d).

Therefore, if we can compute g(i, j) and g′(i, j) in O(σ′) time for any i ≤ j, then as

in [87], by using the algorithm in [100] we can solve the recursions and compute A(1, n) in

O(nkσ′) time. To compute g(i, j), an easy observation is that g(i, j) is exactly φ(i, j, x)

for x = s′i, which can be computed in O(log n) time by Lemma 7.3.6 with O(n log n)

time preprocessing. Similarly, g′(i, j) is exactly φ(i, j, x) for x = s′j and can be computed

in O(log n) time.

Therefore, we can solve the k-median problem on S in O(nk log n) time. Not that

the algorithm in [87] for the one-dimensional k-median problem runs in O(nk) time

because in the 1D space we can easily compute each g(i, j) or g′(i, j) in constant time

138

with O(n) time preprocessing.

Combining with Lemma 7.3.7, we obtain the following theorem.

Theorem 7.3.9. The L∞ constrained k-median can be solved in O(min{nk log n, τ log2 n})

time.

7.3.3 The Constrained k-Median Problem under the L1-Metric

To solve the L1 case, we could use the algorithmic scheme in Theorem 7.3.3. How-

ever, we get a better result by reducing the problem to the one-dimensional problem

and then applying the algorithms in [86–88]. In this section, all notations related to

distances use the L1 metric.

Recall that our goal is to minimize
∑n

i=1[wi · d(pi, Q)]. Consider any point pi ∈ P .

For any point q on the x-axis, since d(pi, q) is the L1 distance, we have d(pi, q) = d(xi, q)+

|yi|. Since all points of Q are on the x-axis, it holds that d(pi, Q) = minq∈Q d(pi, q) =

|yi|+minq∈Q d(xi, q). Therefore, we obtain
∑n

i=1[wi ·d(pi, Q)] =
∑n

i=1wi|yi|+
∑n

i=1[wi ·

d(xi, Q)].

Note that once P is given,
∑n

i=1wi|yi| is constant, and thus, to minimize
∑n

i=1[wi ·

d(pi, Q)] is to minimize
∑n

i=1[wi · d(xi, Q)], which is the following one-dimensional k-

median problem: Given a set of n points P ′ = {x1, x2, . . . , xn} on the x-axis with each

xi having a weight w(xi) = wi ≥ 0, find a set Q of k points on the x-axis to minimize∑n
i=1[wi · d(xi, Q)].

The above 1D k-median problem is a continuous version because each point of our

facility set Q can be any point on the x-axis. There is also a discrete version, where

Q is required to be a subset of P ′. The algorithms given in [86–88] are for the discrete

version and therefore we cannot apply their algorithms directly. Fortunately, due to

some observations, we prove below that for our continuous version there always exists

an optimal solution in which the set Q is a subset of P ′, and consequently we can apply

the discrete version algorithms.

Consider any indices i ≤ j. Let P ′(i, j) = {xi, xi+1, . . . , xj}. As in the L∞ case, for

any point x on the x-axis, define φ(i, j, x) =
∑j

t=iwtd(xt, x). The following lemma is

similar in spirit to Lemma 7.3.5.

139

Lemma 7.3.10. The function φ(i, j, x) is a continuous piecewise linear function whose

slopes change only at the points of P ′(i, j). Further, there exist two points, denoted

by x′ and x′′, in P ′(i, j) with x′ ≤ x′′ (x′ = x′′ is possible), such that as x increases

from −∞ to +∞, φ(i, j, x) will strictly decrease when x ≤ x′, and will be constant when

x ∈ [x′, x′′], and will strictly increase when x ≥ x′′.

Proof. Consider any point x on the x-axis. Define P ′L(i, j, x) = {xt | i ≤ t ≤ j and xt ≤ x},

and P ′R(i, j, x) = {xt | i ≤ t ≤ j and xt > x}. Hence, the above two sets form a partition

of P ′(i, j). For any point xt, if xt ∈ P ′L(i, j, x), then d(xt, x) = x−xt, and d(xt, x) = xt−x

otherwise.

To simplify notations in this proof, when the context is clear, we will omit the

indices i and j from some notations, e.g., we use P ′L(x), P ′R(x), φ(x) to refer to P ′L(i, j, x),

P ′R(i, j, x), φ(i, j, x), respectively.

We have the following way to compute φ(x):

φ(x) =
∑

p∈P ′(i,j)

w(p)d(p, x) =
∑

p∈P ′L(x)

w(p)(x− p) +
∑

p∈P ′R(x)

w(p)(p− x)

= x ·
[∑
p∈P ′L(x)

w(p)−
∑

p∈P ′R(x)

w(p)
]
−

∑
p∈P ′L(x)

w(p)p+
∑

p∈P ′R(x)

w(p)p.

(7.10)

For ease of discussion, we let xi−1 = −∞ and xj+1 = +∞ temporarily for this

proof. Consider any interval [xt, xt+1) for i− 1 ≤ t ≤ j. For any x ∈ [xt, xt+1), the two

sets P ′L(x) and P ′R(x) are the same, and thus, the coefficient of x in Equality (7.10) is

a constant and the last two terms are also constants, and consequently φ(x) is a linear

function for x ∈ [xt, xt+1). To prove that φ(x) is a continuous function, it is sufficient

to show that limx→xt+1 φ(x) = φ(xt+1), which can be verified by using Equation (7.10),

and we omit the details.

The above proves that φ(x) is a continuous piecewise linear function whose slopes

change only at the points of P ′(i, j).

As x increases from −∞ to +∞, P ′L(x) is monotonically increasing and P ′R(x) is

monotonically decreasing, and thus the slope of φ(x) is monotonically increasing. When

x ∈ [xi−1, xi), then P ′L(x) = ∅ and P ′R(x) = P ′(i, j), and thus, the slope of φ(x) is

negative; if x ∈ [xj , xj+1), then P ′L(x) = P ′(i, j) and P ′R(x) = ∅, and thus, the slope of

140

φ(x) is positive. Hence, as x increases from −∞ to +∞, at some moment, the slope

of φ(x) changes from negative to zero and then from zero to positive, or from negative

directly to positive. In either case, as the slope of φ(x) is monotonically increasing

and only changes at the points of P ′(i, j), there exist two points x′ and x′′ in P ′(i, j)

with x′ ≤ x′′, such that the slope of φ(x) is negative when x ∈ (−∞, x′), zero if when

x ∈ [x′, x′′), and positive when x ∈ [x′′,+∞). Since the function φ(x) is continuous, the

lemma is proved.

Lemma 7.3.11. For the 1D k-median problem on P ′, there must exist an optimal solution

in which the facility set Q is a subset of P ′.

Proof. Similar as we discussed in Section 7.2, solving the 1D k-median problem is equiv-

alent to partitioning the sequence of the points of P ′ into k subsequences such that the

sum of the values α(i, j) for all subsequences P ′(i, j) is minimized.

By Lemma 7.3.10, for each subsequence P ′(i, j), there must be a point of P ′(i, j)

that is a 1-median of P ′(i, j). This implies that there must exist an optimal solution for

the k-median problem on P ′ in which each facility is a point of P ′, which leads to the

lemma.

In light of Lemma 7.3.11, we can apply the algorithms in [86–88] to solve the k-

median problem on P ′. The algorithms in [86,87] run in O(nk) time and the algorithm

in [88] runs in O(τ log n) time and O(τ) time for the unweighted case. As a summary,

we have the following result.

Theorem 7.3.12. The L1 constrained k-median can be solved in O(min{nk, τ log n}) time

and the unweighted case can be solved in O(min{nk, τ}) time.

7.3.4 The Constrained k-Median under the L2
2-Metric (i.e., the Constrained k-Means)

In this section, we use the algorithmic scheme in Theorem 7.3.3 to solve the L2
2 case

in O(min{nk, τ}) time, by designing a data structure for answering the α(i, j) queries

in the following Lemma 7.3.13.

Lemma 7.3.13. For the L2
2 metric, a data structure can be built in O(n) time that can

answer each α(i, j) query in O(1) time.

141

Proof. Consider any two indices i ≤ j. For any point x on the x-axis, define φ(i, j, x) =∑j
t=iwtd(pt, x). By the definition of f(i, j), φ(i, j, x) is minimized at x = f(i, j) and

α(i, j) = φ(i, j, f(i, j)). We further obtain the following

φ(i, j, x) =

j∑
t=i

wtd(pt, x) =

j∑
t=i

wt[(x− xt)2 + y2
t] =

j∑
t=i

wt(x
2 − 2xtx+ x2

t + y2
t)

=

j∑
t=i

wt · x2 − 2

j∑
t=i

wtxt · x+

j∑
t=i

wt(x
2
t + y2

t).

(7.11)

Hence, φ(i, j, x) is a parabola opening up, which is minimized at x =
∑j

t=i wtxt∑j
t=i wt

,

implying that f(i, j) =
∑j

t=i wtxt∑j
t=i wt

.

By Equality (7.11), to compute α(i, j), it is sufficient to compute f(i, j) and the

parabola function φ(i, j, x), and specifically, it is sufficient to compute the three values∑j
t=iwt,

∑j
t=iwtxt, and

∑j
t=iwt(x

2
t + y2

t). To this end, we do the following preprocess-

ing. For each 1 ≤ i ≤ n, we compute
∑i

t=1wt,
∑i

t=1wtxt, and
∑i

t=1wt(x
2
t + y2

t). In

this way, given any two indices i ≤ j, we can obtain the above three values in constant

time and thus compute α(i, j) in constant time. The preprocessing can be done in O(n)

time.

The lemma is thus proved.

Hence, by Theorem 7.3.3 we obtain the following result.

Theorem 7.3.14. The constrained k-median problem under the L2
2 metric, which is also

the constrained k-means problem, can be solved in O(min{nk, τ}) time.

7.4 The Constrained k-Center

This section presents our algorithms for the constrained k-center for all metrics.

We first give in Section 7.4.1 a linear time algorithm to solve the decision version of

the problem for all metrics, which will be used in both Sections 7.4.2 and 7.4.3. In

Section 7.4.2, we present an O(n log n) time algorithm for L2 metric. In fact, similar

algorithms also work for the other two metrics. However, since the algorithm uses Cole’s

parametric search [43], which is complicated and involves large constants and thus is

142

only of theoretical interest, in Section 7.4.3, we give another O(n log n) time algorithm

for L1 and L∞ metrics, without using parametric search. Finally, in Section 7.4.4, we

give an O(n) time algorithm for the unweighted case under L1 and L∞ metrics.

7.4.1 A Decision Algorithm for All Metrics

In this subsection, unless otherwise stated, all notations related to distances are

applicable to all metrics, i.e., L1, L2, and L∞.

The decision version of the problem is as follows: given any value ε, determine

whether there are a set Q of k facilities such that maxp∈P [w(p) · d(p,Q)] ≤ ε, and

if yes, we call ε a feasible value. We let ε∗ denote the optimal objective value, i.e.,

ε∗ = maxp∈P [w(p) ·d(p,Q)] for the facility set Q in any optimal solution. Hence, for any

ε, it is a feasible value if and only ε ≥ ε∗.

For any point pi ∈ P , denote by I(pi, ε) the set of points q on the x-axis such that

wid(pi, q) ≤ ε. Note that I(pi, ε) is the intersection of the “disk” centered at pi with

radius ε/wi (the “disk” is a diamond, a real circular disk, and a square under L1, L2, and

L∞ metrics, respectively). Hence, I(pi, ε) is an interval and we refer to I(pi, ε) as the

facility location interval of pi. Note that for any subset P (i, j), if the intersection of all

facility location intervals of P (i, j) is not empty, then any point in the above intersection

can be used as a facility to serve all points of P (i, j) within weighted distance ε.

We say a point covers an interval on the x-axis if the interval contains the point. Let

I(P, ε) be the set of all facility location intervals of P . According to the above discussion,

to determine whether ε is a feasible value, it is sufficient to compute a minimum number

of points that can cover all intervals of I(P, ε), which can be done in O(n) time after

the endpoints of all intervals of I(P, ε) are sorted [47]. The overall time for solving

the decision problem is O(n log n) due to the sorting. Below, we give an O(n) time

algorithm, without sorting.

Similar to Lemma 7.2.1, if ε is a feasible value, then there exists a feasible solution

in which each facility serves a set of consecutive points of P . Using this observation, our

algorithm works as follows. We consider the intervals of I(P, ε) from I(p1, ε) in the index

order of pi. We find the largest index j such that
⋂j
i=1 I(pi, ε) is not empty, and then

we place a facility at any point in the above intersection to serve all points in P (1, j).

143

Next, from I(pj+1, ε), we find the next maximal subset of intervals whose intersection is

not empty to place a facility. We continue this procedure until the last interval I(pn, ε)

has been considered. Clearly, the running time of the algorithm is O(n). Let k′ be the

number of facilities that are placed in the above procedure. The value ε is a feasible

value if and only if k′ ≤ k. Hence, we have the following result.

Lemma 7.4.1. Given any value ε, we can determine whether ε is a feasible value in O(n)

time for any metric.

7.4.2 The Algorithm for the L2 Metric

In this subsection, all notations related to distances are for the L2 metric. Our algo-

rithm uses Cole’s parametric search [43], which generalizes the O(n log n) time algorithm

for the unweighted case [59].

For any ε and each 1 ≤ i ≤ n, let li(ε) and ri(ε) denote the left and right end-

points of I(pi, ε), respectively. Recall that ε∗ is the optimal objective value. Let

S = {li(ε∗), ri(ε∗) | 1 ≤ i ≤ n}. If we know the sorted lists of the values of S, then we can

use our decision algorithm to compute an optimal facility set in O(n) time. Although

we do not know ε∗, we can still sort S by parametric search and our decision algorithm.

In the parametric search, we will need to compare two values of S. Although we do not

know ε∗, we can still resolve the comparison by using our decision algorithm in Lemma

7.4.1. The details are given below.

Let γ1 and γ2 be any two values of S whose relative order needs to be determined

(i.e., determine whether γ1 ≥ γ2 or γ1 ≤ γ2). There are several cases.

1. If γ1 and γ2 are li(ε
∗) and ri(ε

∗) for the same index i, then li(ε
∗) ≤ ri(ε

∗) always

holds.

2. If γ1 and γ2 are ri(ε
∗) and rj(ε

∗) for i 6= j, then we use the following approach. We

consider ri(ε) as a function of ε (e.g., see Fig. 7.4). First of all, it must hold that

ε∗/wi ≥ |yi| since otherwise the interval I(pi, ε) would be empty and no facility

would be able to sever pi within the weighted distance ε∗. One can verify that

for ε ≥ wi · |yi|, we have ri(ε) = xi +
√

(ε/wi)2 − y2
i . It can be verify that there

is at most one root for ri(ε) = rj(ε). Note that we can determine whether there

144

ǫ

x
li(ǫ) I(pi, ǫ) ri(ǫ)

Figure 7.4. Illustrating the relationship between ε and li(ε) and ri(ε) under the L2

metric. Suppose the y-coordinate of the dashed horizontal line is ε; the interval I(pi, ε)
is shown on the x-axis.

is a root for ri(ε) = rj(ε), and if yes, find the root, in constant time. If there is

no root, then we can determine the relative order of ri(ε
∗) and rj(ε

∗) by assigning

any value at least max{wi · |yi|, wj · |yj |} to ε, i.e., ri(ε
∗) ≤ rj(ε

∗) if and only

if ri(ε
′) ≤ rj(ε

′) for any value ε′ ≥ max{wi · |yi|, wj · |yj |}. Otherwise, let ε′ be

the root. We can determine the relative order by using our decision algorithm

to determine whether ε′ is a feasibility value. Hence, the relative order of ri(ε
∗)

and rj(ε
∗) can be determined by at most one feasibility test using our decision

algorithm.

3. If γ1 and γ2 are li(ε
∗) and lj(ε

∗) for i 6= j, then we use the same approach as the

above second case to resolve the comparison.

4. Finally, suppose γ1 and γ2 are li(ε
∗) and rj(ε

∗) for i 6= j. If i < j, then li(ε
∗) ≤

rj(ε
∗) holds since li(ε

∗) ≤ xi ≤ xj ≤ rj(ε
∗). Otherwise, it can be verified that

there is one root for li(ε) = rj(ε). Hence, by one feasibility test using our decision

algorithm, we can determine the relative order of li(ε
∗) and rj(ε

∗).

The above shows that we can resolve the comparison of any two values in S by at

most one feasibility test using our decision algorithm. Using Cole’s parametric search

[43], we can determine the sorted list of S by using only O(log n) feasibility test. Hence,

the total running time of the algorithm is O(n log n).

Theorem 7.4.2. The constrained k-center problem under the L2 metric can be solved in

O(n log n) time.

145

x

ǫ

I(pi, ǫ)

Figure 7.5. Illustrating the relationship between ε and li(ε) and ri(ε) under the L1

metric. Suppose the y-coordinate of the dashed horizontal line is ε; the interval I(pi, ε)
is shown on the x-axis.

7.4.3 The Algorithms for L1 and L∞ Metrics

We present O(n log n) time algorithms for the L1 and L∞ metrics, without using

parametric search. We consider the L1 case first.

We define li(ε) and ri(ε) in the same way as in Section 7.4.2. We consider li(ε) and

ri(ε) as functions of ε (e.g., see Fig. 7.5). It can be verified that ri(ε) = xi + ε/wi − |yi|

defined on ε ≥ wi · |yi|. Similarly, we have li(ε) = xi− ε/wi + |yi| defined on ε ≥ wi · |yi|.

Hence, each of li(ε) and ri(ε) defines a half-lines. Let A be the set of the half-lines

defined by li(ε) and ri(ε) for all i = 1, 2, . . . , n. As analyzed in [58] for the unweighted

case, the optimal objective value ε∗ must be the y-coordinate of an intersection of two

half-lines of A. In fact, ε∗ is the smallest feasible value among the y-coordinates of all

intersections of the half-lines of A. Let A be the arrangement of the lines containing

the half-lines of A. The intersection of two lines of A is called a vertex. Hence, ε∗ is

the smallest feasible value among the y-coordinates of the vertices of A. Therefore, to

solve the constrained k-center problem on P , it is sufficient to find the lowest vertex

(denoted by v∗) of A whose y-coordinate is a feasible value (which is ε∗) and then apply

our decision algorithm in Lemma 7.4.1 on ε∗ to find an optimal facility set in additional

O(n) time.

To find such a vertex v∗, we use our decision algorithm and a line arrangement

searching technique given in [46]. The technique gives the following result. Suppose

there is a function g : R → {0, 1}, such that the description of g is unknown but it

is known that g is monotonically increasing. Further, given any value y, we have a

“black-box” that can evaluate g(y) (i.e., determine whether g(y) is 1 or 0) in O(G) time,

which we call the g-oracle. Let B be a set of n lines in the plane and let B denote

146

x

ǫ

I(pi, ǫ)

2|yi|

Figure 7.6. Illustrating the relationship between ε and li(ε) and ri(ε) under the L∞
metric. Suppose the y-coordinate of the dashed horizontal line is ε; the interval I(pi, ε)
is shown on the x-axis.

their arrangement. Note that B is not computed explicitly. For any vertex v of B, let

yv be the y-coordinate of v. The arrangement searching is to find the lowest vertex v

of B such that g(yv) = 1. An O((n + G) log n) time algorithm is given in [46] to solve

the arrangement searching problem by modifying the slope selection algorithm [51, 52],

without using parametric search.

For our problem, to search v∗ in the arrangement A, we can define such a function

g as follows. For any value y, g(y) = 1 if and only if y is a feasible value. Clearly,

g is monotonically increasing since for any feasible value y, any value larger than y is

also feasible. Hence, v∗ is the lowest point in A with g(yv∗) = 1. We use our decision

algorithm in Lemma 7.4.1 as the g-oracle with G = O(n). By the result in [46], we can

compute v∗ in O(n log n) time. Consequently, we obtain ε∗. An optimal facility set Q

can be found by using our decision algorithm on ε∗ in additional O(n) time.

As a summary, we can solve the L1 constrained k-center problem on P in O(n log n)

time.

For the L∞ case, the algorithm is similar. Under L∞ metric, it can be verified that

ri(ε) = xi + ε/wi and li(ε) = xi − ε/wi, both defined on ε ≥ wi · |yi| (e.g., see Fig. 7.6).

Hence, each of ri(ε) and li(ε) still defines a half-line, as in the L1 case. Therefore, we can

use the similar algorithm as in the L1 case and solve the L∞ case problem in O(n log n)

time.

Theorem 7.4.3. The L1 and L∞ constrained k-center problems can be solved in O(n log n)

time, without using parametric search.

147

7.4.4 The Unweighted Case under L1 and L∞ Metrics

We give an O(n) time algorithm for the unweighted case under L1 and L∞ metrics.

We use the similar idea as discussed in Section 7.2 for the k-median problem. For

any i ≤ j, consider the constrained 1-center problem on the points in P (i, j); denote by

g(i, j) the facility in an optimal solution and define β(i, j) to be the objective value of the

optimal solution, i.e., β(i, j) = maxi≤t≤j wtd(pt, g(i, j)). We call g(i, j) the constrained

center of P (i, j).

By Lemma 7.2.1, solving the constrained k-median problem is equivalent to parti-

tioning the sequence p1, p2, . . . , pn into k subsequences such that the maximum of the β

values of all these subsequences is minimized. Formally, we want to find k − 1 indices

i0 < i1 < i2 < · · · < ik−1 < ik, with i0 = 0 and ik = n, such that maxkj=1 β(ij−1 + 1, ij)

is minimized. This is exactly the MIN-MAX PARTITION problem proposed in [101].

Based on Frederickson’s algorithm [102], the following result is a re-statement of Theo-

rem 2 in [101] with respect to our problem.

Lemma 7.4.4. [101] If β(i, j) ≤ β(i′, j′) holds for any 1 ≤ i′ ≤ i ≤ j ≤ j′ ≤ n, then

we have the following result. For any metric, suppose after O(T) time preprocessing,

we can compute β(i, j) in O(σ) time for any query i ≤ j; then the constrained k-center

problem can be solved in O(T + nσ) time.

Clearly, the condition in Lemma 7.4.4 holds for our problem, i.e., β(i, j) ≤ β(i′, j′)

for any 1 ≤ i′ ≤ i ≤ j ≤ j′ ≤ n.

In Lemma 7.4.5, we give data structures for β(i, j) queries under L1 and L∞ metrics.

Lemma 7.4.5. For L1 and L∞ metrics, with O(n) time preprocessing, we can compute

β(i, j) in constant time for any query i ≤ j.

Proof. Since we only consider the unweighted case, without loss of generality, we assume

the weights of all points of P are 1. We begin with the L1 case.

Consider the constrained 1-center problem on P (i, j) for any i ≤ j. We want to

find a point q on the x-axis to minimize maxi≤t≤j d(pt, q), or equivalently, we want to

find a smallest diamond centered at a point on the x-axis such that all points of P (i, j)

are contained in the diamond (and the center of such a smallest diamond is g(i, j), e.g.,

see Fig. 7.7). (We remark that this observation does not apply to the weighted case of

148

y

xq pse

psw

pnw pne

Figure 7.7. Illustrating the smallest diamond centered at the x-axis containing all points.
The four red points are the four extreme points of the point set along the northeast,
northwest, southwest, and southeast directions, and q is the center of the diamond.

the problem.) Note that such a smallest diamond must be determined by the extreme

points of P (i, j) along the following four directions: northeast, northwest, southwest,

southeast. Specifically, let pne an extreme point of P (i, j) along the northeast direction,

and similarly, define pnw, psw, and pse for the other three directions. Then, the smallest

diamond containing the above four points and centered at the x-axis is also the smallest

diamond containing all points of P (i, j) and centered at the x-axis. Since we only have

four points, finding such a smallest diamond can be done in constant time and we omit

the details.

According to the above discussion, to solve the 1-center problem on P (i, j) and

compute β(i, j) for the L1 metric, it is sufficient to find the four extreme points of

P (i, j) (after which β(i, j) can be computed in constant time). To this end, we will use

the range-maxima data structure [66, 67]. Given any arbitrary array A of size n, the

data structure [66, 67] can compute in constant time the largest element and its index

in the sub-array A[i, . . . , j] for any query i ≤ j, with O(n) time preprocessing. To solve

our problem, we create an array A of size n, with A[i] equal to the y-coordinate of the

projection point of pi on the line y = x. Given any query i ≤ j, the extreme point pne

corresponds to the largest element in the sub-array A[i, . . . , j]. Therefore, the point pne

can be found by a range-maxima query on A with i ≤ j. We can find the other three

extreme points in a similar manner.

As a summary, for the L1 case, we can build a data structure in O(n) time that

can answer each β(i, j) query in O(1) time.

Next we discuss the L∞ case. The idea is similar. Consider the constrained 1-center

149

problem on P (i, j) for any i ≤ j. We want to find a point q on the x-axis to minimize

maxi≤t≤j d(pt, q), or equivalently, we want to find a smallest axis-parallel square centered

at a point on the x-axis such that all points of P (i, j) are contained in the square (again,

this does not apply to the weighted case of the problem). Note that such a smallest

square is be determined by topmost, bottommost, leftmost, and rightmost points of

P (i, j). The leftmost and rightmost points of P (i, j) are pi and pj , respectively. The

topmost and bottommost points of P (i, j) can be found using the range-maxima data

structure as in the L1 case, and we omit the details. Therefore, for the L∞ case, we

can also build a data structure in O(n) time that can answer each β(i, j) query in O(1)

time.

Our linear time algorithm follows immediately from Lemmas 7.4.4 and 7.4.5.

Theorem 7.4.6. The unweighted L∞ and L∞ constrained k-center problem can be solved

in O(n) time.

150

CHAPTER 8

CONCLUSION AND FUTURE WORK

In this dissertation, we study a number of facility location problems, mainly on

uncertain data. We present efficient algorithms for solving these problems.

In Chapter 2, we present an algorithm for solving the one-dimensional k-center

problem on uncertain data. We consider a commonly used pdf—a piecewise constant

function—for each uncertain point, which can be used to approximate other distribu-

tions. A useful observation discovered in Chapter 2 is that the expected distance from

each uncertain point is a unimodal function (i.e., first monotonically decreasing and

then increasing). Accordingly, we can use this property to design an algorithm based

on parametric search. Further, we consider the discrete pdf for uncertain points. Our

algorithm is based on a line arrangement searching technique. As shown in Chapter 2,

our results almost match those for the corresponding deterministic k-center problems.

In Chapter 3, we present a linear-time algorithm for computing the center of un-

certain points on tree networks. To this end, we propose a refined prune-and-search

technique that generalizes Megiddos prune-and-search technique on the deterministic

version of this problem. This general algorithmic framework has also been used to

solved other problems on uncertain data. We suspect that it will find more applications.

In Chapter 4, we study the one-center problem of uncertain points on a line in which

each uncertain point has a continuous pdf—a piecewise constant function. We model

this problem as a geometric problem that is to find the lowest point in the upper envelope

of unimodal functions in the plane. Based on the refined prune-and-search technique,

we compute this lowest point in linear time. Subsequently, we solve the uncertain one-

center problem in linear time, which improves our previous result presented in Chapter

2 for the more general k-center problem when k = 1. In fact, we can easily extend

this algorithm for the above geometric problem to more general functions where each

function consists of m pieces with each piece being a constant-sized algebraic curve

151

segment and any two such curve segments of all functions intersect (transversally) at

most a constant number of times. It would be interesting to see whether the techniques

can be used to solve other related problems.

In Chapter 5, we solve in linear time the rectilinear (or L1) one-center problem of

uncertain points in the plane. We observe that the expected rectilinear distance function

for each uncertain point is a convex piecewise linear function in the three dimensional

space. Further, the lowest point in the upper envelop of graphs defined by all expected

rectilinear distance functions corresponds to the center. By using the refined prune-and-

search technique, we solve this computational geometry problem in linear time. Since

the L1 and L∞ metrics are closely related to each other (by rotating the coordinate axes

by 45◦), the same problem under the L∞ metric can be solved in linear time as well.

In Chapter 6, we first consider the center-coverage problem for uncertain points in

a tree. We solve this problem by a simple greedy algorithm. However, the challenging

work is to develop efficient data structures to perform certain operations that are needed

in our algorithm. These data structures are based on a new tree decomposition with

the following property: each subtree of the decomposition has at most two so-called

“connectors”. This property helps guarantee the running time of our algorithm. With

our algorithm for the center-coverage problem as a decision procedure, we solve the

k-center problem of uncertain points in the tree. Our tree decomposition and data

structures are interesting in their own right and might find other applications as well.

As future work, it would be interesting to see whether the algorithm for the k-center

problem can be further improved.

In Chapter 7, we investigate the line-constrained k-center, k-means, and k-median

problems in the plane (under various distance metrics) where the facilities are required

to be located on a given line. We provide efficient algorithms for these problems, al-

though the general versions (without the line constraint) of these problems are NP-hard.

Since the one-dimensional k-center problem has an Ω(n log n) time lower bound, our al-

gorithms for the line constrained k-center are optimal. The time complexities of our

k-median algorithms almost match those of the currently best algorithms of the one-

dimensional k-median problems. As future work, it might be interesting to consider the

same problems on uncertain points. In addition, two problem variations of the line-

152

constrained problems have been studied in the literature. In the first one, the slope of

the line is given in the input and we want to find the best line with that slope to place

facilities to minimize the objective value. In the second problem, we want to find an ar-

bitrary line to place facilities to minimize the objective value. Efficient algorithms were

given in the previous work for these problems. It might be interesting to see whether

the techniques given in this dissertation can be extended to solve these two problems

more efficiently than those in the previous work.

153

REFERENCES

[1] F. Preparata and M. Shamos, Computational Geometry: An Introduction, 2nd ed.

Springer-Verlag, 1988.

[2] M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars, Computational Ge-

ometry — Algorithms and Applications, 3rd ed. Berlin: Springer-Verlag, 2008.

[3] S. Devadoss and J. O’Rourke, Discrete and Computational Geometry. New Jersey:

Princeton University Press, 2011.

[4] J. Sack and J. Urrutia, Eds., Handbook of Computational Geometry. Elsevier,

Amsterdam, The Netherlands, 2000.

[5] R. Cheng, J. Chen, and X. Xie, “Cleaning uncertain data with quality guarantees,”

Proceedings of the VLDB Endowment, vol. 1, no. 1, pp. 722–735, 2008.

[6] X. Dong, A. Halevy, and C. Yu, “Data integration with uncertainty,” in Proceed-

ings of the 33rd International Conference on Very Large Data Bases, 2007, pp.

687–698.

[7] P. Agarwal, S.-W. Cheng, Y. Tao, and K. Yi, “Indexing uncertain data,” in Proc.

of the 28th Symposium on Principles of Database Systems (PODS), 2009, pp.

137–146.

[8] P. Agarwal, A. Efrat, S. Sankararaman, and W. Zhang, “Nearest-neighbor search-

ing under uncertainty,” in Proc. of the 31st Symposium on Principles of Database

Systems (PODS), 2012, pp. 225–236.

[9] P. Agarwal, S. Har-Peled, S. Suri, H. Yıldız, and W. Zhang, “Convex hulls under

uncertainty,” in Proc. of the 22nd Annual European Symposium on Algorithms,

2014, pp. 37–48.

154

[10] R. Cheng, Y. Xia, S. Prabhakar, R. Shah, and J. Vitter, “Efficient indexing meth-

ods for probabilistic threshold queries over uncertain data,” in Proc. of the 30th

International Conference on Very Large Data Bases (VLDB), 2004, pp. 876–887.

[11] P. Kamousi, T. Chan, and S. Suri, “Closest pair and the post office problem

for stochastic points,” in Proc. of the 12nd Workshop on Algorithms and Data

Structures (WADS), 2011, pp. 548–559.

[12] ——, “Stochastic minimum spanning trees in Euclidean spaces,” in Proc. of the

27th Annual Symposium on Computational Geometry (SoCG), 2011, pp. 65–74.

[13] S. Suri and K. Verbeek, “On the most likely voronoi diagram and nearest neigh-

bor searching,” in Proc. of the 25th International Symposium on Algorithms and

Computation (ISAAC), 2014, pp. 338–350.

[14] S. Suri, K. Verbeek, and H. H. Yıldız, “On the most likely convex hull of uncertain

points,” in Proc. of the 21st European Symposium on Algorithms, 2013, pp. 791–

802.

[15] Y. Tao, X. Xiao, and R. Cheng, “Range search on multidimensional uncertain

data,” ACM Transactions on Database Systems, vol. 32, no. 3, pp. 15–es, 2007.

[16] M. Yiu, N. Mamoulis, X. Dai, Y. Tao, and M. Vaitis, “Efficient evaluation of prob-

abilistic advanced spatial queries on existentially uncertain data,” IEEE Transac-

tions on Knowledge and Data Engineering, vol. 21, pp. 108–122, 2009.

[17] R. Fowler, M. Paterson, and S. Tanimoto, “Optimal packing and covering in the

plane are NP-complete,” Information Processing Letters, vol. 12, pp. 133–137,

1981.

[18] M. Mahajan, P. Nimbhorkar, and K. Varadarajan, “The planar k-means problem

is NP-hard,” Theoretical Computer Science, vol. 442, pp. 13–21, 2012.

[19] N. Megiddo and K. Supowit, “On the complexity of some common geometric

location problems,” SIAM Journal on Comuting, vol. 13, pp. 182–196, 1984.

155

[20] H. Wang and J. Zhang, “One-dimensional k-center on uncertain data,” in Proc.

of the 20th International Computing and Combinatorics Conference (COCOON),

2014, pp. 104–115.

[21] ——, “One-dimensional k-center on uncertain data,” Theoretical Computer Sci-

ence, vol. 602, pp. 114–124, 2015.

[22] V. Arya, N. Garg, R. Khandekar, A. Meyerson, K. Munagala, and V. Pandit, “Lo-

cal search heuristics for k-median and facility location problems,” SIAM Journal

on Computing, vol. 33, pp. 544–562, 2004.

[23] M. Badoiu, S. Har-Peled, and P. Indyk, “Approximate clustering via core-sets,”

in Proc. of the 34th Annual Symposium on Theory of Computing (STOC), 2002,

pp. 250–257.

[24] S. Har-Peled and S. Mazumdar, “On coresets for k-means and k-median cluster-

ing,” in Proc. of the 36th Annual Symposium on Theory of Computing (STOC),

2004, pp. 291–300.

[25] M. Dyer, “On a multidimensional search technique and its application to the

Euclidean one centre problem,” SIAM Journal on Computing, vol. 15, no. 3, pp.

725–738, 1986.

[26] D. Lee and Y. Wu, “Geometric complexity of some location problems,” Algorith-

mica, vol. 1, no. 1, pp. 193–211, 1986.

[27] N. Megiddo, “Linear-time algorithms for linear programming in R3 and related

problems,” SIAM Journal on Computing, vol. 12, no. 4, pp. 759–776, 1983.

[28] R. Chandrasekaran and A. Tamir, “Algebraic optimization: The Fermat-Weber

location problem,” Mathematical Programming, vol. 46, no. 2, pp. 219–224, 1990.

[29] ——, “Polynomially bounded algorithms for locating p-centers on a tree,” Math-

ematical Programming, vol. 22, no. 1, pp. 304–315, 1982.

[30] G. Frederickson, “Parametric search and locating supply centers in trees,” in Proc.

of the 2nd International Workshop on Algorithms and Data Structures (WADS),

1991, pp. 299–319.

156

[31] N. Megiddo and A. Tamir, “New results on the complexity of p-centre problems,”

SIAM J. on Computing, vol. 12, no. 4, pp. 751–758, 1983.

[32] Z. Drezner and H. Hamacher, Facility Location: Applications and Theory. New

York: Springer, 2004.

[33] N. Megiddo, A. Tamir, E. Zemel, and R. Chandrasekaran, “An O(n log2 n) algo-

rithm for the k-th longest path in a tree with applications to location problems,”

SIAM J. on Computing, vol. 10, pp. 328–337, 1981.

[34] G. Cormode and A. McGregor, “Approximation algorithms for clustering uncer-

tain data,” in Proc. of the 27t Symposium on Principles of Database Systems

(PODS), 2008, pp. 191–200.

[35] C. Aggarwal and P. Yu, “A framework for clustering uncertain data streams,” in

Proc. of the 24th International Conference on Data Engineering (ICDE), 2008,

pp. 150–159.

[36] W. Ngai, B. Kao, C. Chui, R. Cheng, M. Chau, and K. Yip, “Efficient clustering

of uncertain data,” in Proc. of the 6th International Conference on Data Mining

(ICDM), 2006, pp. 436–445.

[37] I. Averbakh and S. Bereg, “Facility location problems with uncertainty on the

plane,” Discrete Optimization, vol. 2, pp. 3–34, 2005.

[38] H. Wang, “Minmax regret 1-facility location on uncertain path networks,” Euro-

pean Journal of Operational Research, vol. 239, pp. 636–643, 2014.

[39] H.-I. Yu, T.-C. Lin, and B.-F. Wang, “Improved algorithms for the minmax-regret

1-center and 1-median problems,” ACM Transactions on Algorithms, vol. 4, no. 3,

pp. 36–es, 2008.

[40] L. Snyder, “Facility location under uncertainty: a review,” IIE Transactions,

vol. 38, pp. 537–554, 2006.

[41] D. Chen, J. Li, and H. Wang, “Efficient algorithms for one-dimensional k-center

problems,” Theoretical Computer Science, vol. 592, pp. 135–142, 2015.

157

[42] D. Chen and H. Wang, “Efficient algorithms for the weighted k-center problem

on a real line,” in Proc. of the 22nd International Symposium on Algorithms and

Computation (ISAAC), 2011, pp. 584–593.

[43] R. Cole, “Slowing down sorting networks to obtain faster sorting algorithms,”

Journal of the ACM, vol. 34, no. 1, pp. 200–208, 1987.

[44] N. Megiddo, “Applying parallel computation algorithms in the design of serial

algorithms,” Journal of the ACM, vol. 30, no. 4, pp. 852–865, 1983.

[45] R. van Oostrum and R. Veltkamp, “Parametric search made practical,” Compu-

tational Geometry: Theory and Applications, vol. 28, pp. 75–88, 2004.

[46] D. Chen and H. Wang, “A note on searching line arrangements and applications,”

Information Processing Letters, vol. 113, pp. 518–521, 2013.

[47] U. Gupta, D. Lee, and J.-T. Leung, “Efficient algorithms for interval graphs and

circular-arc graphs,” Networks, vol. 12, pp. 459–467, 1982.

[48] J. Snoeyink, “Maximum independent set for intervals by divide and conquer with

pruning,” Networks, vol. 49, pp. 158–159, 2007.

[49] B. Chazelle and L. Guibas, “Fractional cascading: I. A data structuring tech-

nique,” Algorithmica, vol. 1, no. 1, pp. 133–162, 1986.

[50] ——, “Fractional cascading: II. Applieacations,” Algorithmica, vol. 1, no. 1, pp.

163–191, 1986.

[51] H. Brönnimann and B. Chazelle, “Optimal slope selection via cuttings,” Compu-

tational Geometry: Theory and Applications, vol. 10, no. 1, pp. 23–29, 1998.

[52] M. Katz and M. Sharir, “Optimal slope selection via expanders,” Information

Processing Letters, vol. 47, no. 3, pp. 115–122, 1993.

[53] H. Wang and J. Zhang, “Computing the center of uncertain points on tree net-

works,” in Proc. of the 14th Algorithms and Data Structures Symposium (WADS),

2015, pp. 606–618.

158

[54] ——, “Computing the center of uncertain points on tree networks,” Algorithmica,

vol. 78, no. 1, pp. 232–254, 2017.

[55] O. Kariv and S. Hakimi, “An algorithmic approach to network location problems.

I: The p-centers,” SIAM J. on Applied Mathematics, vol. 37, no. 3, pp. 513–538,

1979.

[56] B. Bhattacharya and Q. Shi, “Optimal algorithms for the weighted p-center prob-

lems on the real line for small p,” in Proc. of the 10th International Workshop on

Algorithms and Data Structures, 2007, pp. 529–540.

[57] N. Megiddo and E. Zemel, “An O(n log n) randomizing algorithm for the weighted

Euclidean 1-center problem,” Journal of Algorithms, vol. 7, pp. 358–368, 1986.

[58] P. Brass, C. Knauer, H.-S. Na, C.-S. Shin, and A. Vigneron, “The aligned k-center

problem,” International Journal of Computational Geometry and Applications,

vol. 21, no. 02, pp. 157–178, 2011.

[59] A. Karmakar, S. Das, S. Nandy, and B. Bhattacharya, “Some variations on con-

strained minimum enclosing circle problem,” Journal of Combinatorial Optimiza-

tion, vol. 25, no. 2, pp. 176–190, 2013.

[60] H. Wang and J. Zhang, “Line-constrained k-median, k-means, and k-center prob-

lems in the plane,” in Proc. of the 25th International Symposium on Algorithms

and Computation (ISAAC), 2014, pp. 3–14.

[61] A. Foul, “A 1-center problem on the plane with uniformly distributed demand

points,” Operations Research Letters, vol. 34, no. 3, pp. 264–268, 2006.

[62] A. Jørgensen, M. Löffler, and J. Phillips, “Geometric computations on indecisive

points,” in Proc. of the 12nd Algorithms and Data Structures Symposium (WADS),

2011, pp. 536–547.

[63] M. Löffler and M. van Kreveld, “Largest bounding box, smallest diameter, and

related problems on imprecise points,” Computational Geometry: Theory and Ap-

plications, vol. 43, no. 4, pp. 419–433, 2010.

159

[64] M. de Berg, M. Roeloffzen, and B. Speckmann, “Kinetic 2-centers in the black-

box model,” in Proc. of the 29th Annual Symposium on Computational Geometry

(SoCG), 2013, pp. 145–154.

[65] I. Averbakh and O. Berman, “Minimax regret p-center location on a network with

demand uncertainty,” Location Science, vol. 5, pp. 247–254, 1997.

[66] M. Bender and M. Farach-Colton, “The LCA problem revisited,” in Proc. of the

4th Latin American Symposium on Theoretical Informatics, 2000, pp. 88–94.

[67] D. Harel and R. Tarjan, “Fast algorithms for finding nearest common ancestors,”

SIAM Journal on Computing, vol. 13, pp. 338–355, 1984.

[68] H. Wang and J. Zhang, “A note on computing the center of uncertain data on the

real line,” Operations Research Letters, vol. 44, pp. 370–373, 2016.

[69] D. Chen, J. Li, and H. Wang, “Efficient algorithms for the one-dimensional k-

center problem.” Theoretical Computer Science, vol. 592, pp. 135–142, 2015.

[70] T. Chan, “More planar two-center algorithms,” Computational Geometry: Theory

and Applications, vol. 13, pp. 189–198, 1999.

[71] M. Hoffmann, “A simple linear algorithm for computing rectilinear 3-centers,”

Computational Geometry, vol. 31, no. 3, pp. 150–165, 2005.

[72] O. Kariv and S. Hakimi, “An algorithmic approach to network location problems.

I: The p-centers,” SIAM J. on Applied Mathematics, vol. 37, no. 3, pp. 513–538,

1979.

[73] D. Hochbaum and W. Maass, “Approximation schemes for covering and packing

problems in image processing and vlsi,” Journal of the ACM, vol. 32, no. 1, pp.

130–136, 1985.

[74] N. Mustafa and S. Ray, “PTAS for geometric hitting set problems via local search,”

in Proc. of the 25th Annual Symposium on Computational Geometry (SoCG),

2009, pp. 17–22.

160

[75] S. Bereg, B. Bhattacharya, S. Das, T. Kameda, P. Mahapatra, and Z. Song, “Op-

timizing squares covering a set of points,” Theoretical Computer Science, in press,

2015.

[76] T. Chan and N. Hu, “Geometric redblue set cover for unit squares and related

problems,” Computational Geometry, vol. 48, no. 5, pp. 380–385, 2015.

[77] T. F. Gonzalez, “Covering a set of points in multidimensional space,” Information

Processing Letters, vol. 40, no. 4, pp. 181–188, 1991.

[78] S.-S. Kim, S. Bae, and H.-K. Ahn, “Covering a point set by two disjoint rectan-

gles,” International Journal of Computational Geometry and Applications, vol. 21,

pp. 313–330, 2011.

[79] P. Agarwal and M. Sharir, “Efficient algorithms for geometric optimization,” ACM

Computing Surveys, vol. 30, no. 4, pp. 412–458, 1998.

[80] G. Frederickson and D. Johnson, “Finding kth paths and p-centers by generating

and searching good data structures,” Journal of Algorithms, vol. 4, no. 1, pp.

61–80, 1983.

[81] P. Agarwal and J. Matoušek, “Dynamic half-space range reporting and its appli-

cations,” Algorithmica, vol. 13, no. 4, pp. 325–345, 1995.

[82] G. Brodal and R. Jacob, “Dynamic planar convex hull,” in Proc. of the 43rd IEEE

Symposium on Foundations of Computer Science (FOCS), 2002, pp. 617–626.

[83] M. Bender and M. Farach-Colton, “The level ancestor problem simplied,” Theo-

retical Computer Science, vol. 321, pp. 5–12, 2004.

[84] H. Wang and J. Zhang, “Line-constrained k-median, k-means, and k-center prob-

lems in the plane,” International Journal of Computational Geometry and Appli-

cations, vol. 26, no. 3 & 4, pp. 185–210, 2016.

[85] C. Bajaj, “The algebraic degree of geometric optimization problems,” Discrete

and Computational Geometry, vol. 3, pp. 177–191, 1988.

161

[86] V. Auletta, D. Parente, and G. Persiano, “Placing resources on a growing line,”

Journal of Algorithms, vol. 26, no. 1, pp. 87–100, 1998.

[87] R. Hassin and A. Tamir, “Improved complexity bounds for location problems on

the real line,” Operations Research Letters, vol. 10, pp. 395–402, 1991.

[88] D. Chen and H. Wang, “New algorithms for facility location problems on the real

line,” Algorithmica, vol. 69, pp. 370–383, 2014.

[89] N. Megiddo, “Linear programming in linear time when the dimension is fixed,”

Journal of the ACM, vol. 31, no. 1, pp. 114–127, 1984.

[90] W. F. de la Vega, M. Karpinski, C. Kenyon, and Y. Rabani, “Approximation

schemes for clustering problems,” in Proc. of the 25th Annual ACM symposium

on Theory of Computing (STOC), 2003, pp. 50–58.

[91] S. Floyd, “Least squares quantization in PCM,” IEEE Transactions on Informa-

tion Theory, vol. 28, pp. 129–137, 1982.

[92] T. Kanungo, D. Mount, N. Netanyahu, C. Piatko, R. Silverman, and A. Wu,

“A local search approximation algorithm for k-means clustering,” Computational

Geometry: Theory and Applications, vol. 28, pp. 89–112, 2004.

[93] A. Kumar, Y. Sabharwal, and S. Sen, “A simple linear time (1+ ε)-approximation

algorithm for k-means clustering in any dimensions,” in Proc. of the 45th IEEE

Symposium on Foundations of Computer Science (FOCS), 2004, pp. 454–462.

[94] F. Hurtado, V. Sacristn, and G. Toussaint, “Some constrained minimax and max-

imin location problems,” Studies in Locational Analysis, vol. 5, pp. 17–35, 2000.

[95] S. Kim and C.-S. Shin, “Efficient algorithms for two-center problems for a convex

polygon,” in Proc. of the 6th Annual International Computing and Combinatorics

Conference (COCOON), 2000, pp. 299–309.

[96] H. Alt, E. Arkin, H. Brönnimann, J. Erickson, S. Fekete, C. Knauer, J. Lenchner,

J. Mitchell, and K. Whittlesey, “Minimum-cost coverage of point sets by disks,” in

162

Proc, of the 22nd Annual Symposium on Computational Geometry (SoCG), 2006,

pp. 449–458.

[97] A. Aggarwal, B. Schieber, and T. Tokuyama, “Finding a minimum weight k-

link path in graphs with concave monge property and applications,” Discrete &

Computational Geometry, vol. 12, pp. 263–280, 1994.

[98] B. Schieber, “Computing a minimum weight k-link path in graphs with the concave

monge property,” Journal of Algorithms, vol. 29, no. 2, pp. 204–222, 1998.

[99] A. Aggarwal, M. Klawe, S. Moran, P. Shor, and R. Wilbur, “Geometric applica-

tions of a matrix-searching algorithm,” Algorithmica, vol. 2, pp. 195–208, 1987.

[100] Z. Galil and K. Park, “A linear-time algorithm for concave one-dimensional dy-

namic programming,” Information Processing Letters, vol. 33, no. 6, pp. 309–311,

1990.

[101] H. Fournier and A. Vigneron, “Fitting a step function to a point set,” Algorithmica,

vol. 60, no. 1, pp. 95–109, 2011.

[102] G. Frederickson, “Optimal algorithms for tree partitioning,” in Proc. of the 2nd

Annual ACM-SIAM Symposium of Discrete Algorithms (SODA), 1991, pp. 168–

177.

163

CURRICULUM VITAE

Jingru Zhang

EDUCATION

Ph.D., Computer Science. Utah State University, Logan, Utah. Expected in May

2017.

M.S., Traffic Information Engineering and Control. Chang’an University, Xi’an,

China. June 2012.

B.S., Automation. Chang’an University, Xi’an, China. June 2009.

RESEARCH INTERESTS

Algorithms and Theory, Computational Geometry, Combinatorial Optimization, Op-

erations Research, etc.

JOURNAL PUBLICATIONS

Haitao Wang and Jingru Zhang. Computing the Rectilinear Center of Uncertain

Points in the Plane, submitted to International Journal of Computational Geometry

and Applications, 2017. (Under Review)

Haitao Wang and Jingru Zhang. Computing the Center of Uncertain Points on Tree

Networks. Algorithmica, vol. 78, no. 1, pages 232–254, 2017.

Haitao Wang and Jingru Zhang. Line-Constrained k-Median, k-Means, and k-Center

Problems in the Plane, International Journal of Computational Geometry and Ap-

plications, vol. 26, no. 3 & 4, pages 185–210, 2016.

Haitao Wang and Jingru Zhang. A Note on Computing the Center of Uncertain

Data on the Real Line. Operations Research Letters, vol. 44, pages 370–373, 2016.

Haitao Wang and Jingru Zhang, One-Dimensional k-Center on Uncertain Data, The-

oretical Computer Science, vol. 602, no. 3, pages 114–124, 2015.

164

Shuguang Li, Hongkai Yu, Jingru Zhang, Kaixin Yang, Ran Bin. A Video-based

Traffic Data Collection System for Multiple Vehicle Types. Journal of IET Intelligent

Transport Systems, vol. 8, no. 2, pages 164–174, 2014.

CONFERENCE PUBLICATIONS

Haitao Wang and Jingru Zhang. Covering Uncertain Points in a Tree, To appear

in Proceedings of the 15th Algorithms and Data Structures Symposium (WADS), St.

John’s, Canada, 2017.

Haitao Wang and Jingru Zhang. Computing the Center of Uncertain Points on

Tree Networks, Proceedings of the 14th Algorithms and Data Structures Symposium

(WADS), pages 606–618, 2015.

Haitao Wang and Jingru Zhang. Line-Constrained k-Median, k-Means, and k-Center

Problems in the Plane, Proceedings of the 25th International Symposium on Algo-

rithms and Computation(ISAAC), pages 3–14, 2014.

Haitao Wang and Jingru Zhang. One-Dimensional k-Center on Uncertain Data,

Proceedings of the 20th Annual International Computing and Combinatorics Con-

ference(COCOON), pages 104–115, 2014.

Shuguang Li, Hongkai Yu, Jingru Zhang. A Video-based Traffic Data Collection

System for Multiple Vehicle Types, Compendium of Papers CD-ROM for 91st Trans-

portation Research Board Annual Meeting, Washington, D.C., USA, 2012.

Shuguang Li, Hongkai Yu, Jingru Zhang, Ke Yue. Multi-type Vehicles’ Traffic Data

Collection Using Video Processing. Proceedings of The 2nd International Conference

on Intelligent Control and Information Processing(ICICIP), pages 271-276, 2011.

PATENTS

Dynamic and Semi-real Platform of Microscopic Traffic Simulation for Intersection.

Granted Patent No: CN102280027A, China.

165

Video-based Traffic Data Collection System for Multiple Vehicle Types. Granted

Patent No: CN102810250A, China.

	Geometric Facility Location Problems on Uncertain Data
	Recommended Citation

	tmp.1499364490.pdf.R7MD4

