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Although water stress is an important selective force in many 

en v ironments, it is not commonly considered to be of particular 

importance in tundra areas. Even though large portions of tundra 

may have an abundance of water, other more exposed areas may 

become quite dry. This microsite variability with respect to 

moisture stress was reflected in soil water potential measurements 

obtained from an alpine tundra area on Niwot Ridge in Colorado. 

Even though soil water potentials were c011lsistently above -5 

bars in a relatively low lying Deschampsia meadow, soil water 

potentials from an exposed fellfield area were often as low as 

-15 bar s . 

Si n ce moisture stress affects a number of important physio

logical processes in plants and since moisture stress may develop 

in at least some tundra areas, this study was undertaken to 

determine whether the sensitivity of plant physiological processes 



xiii 

to water stress may be one important contributing factor in 

determining the microsite distribution of different tundra species. 

The alpine tundra species examined in this study were Deschampsia 

caespitosa which is typically found in wet meadow habitats and 

Geum rossii, a species which ranges from wet meadow to exposed 

fellfield habitats. The arctic tundra species investigated were 

Dupontia fischeri which is restricted mainly to wet meadow areas 

and Care~ . aquatilis, a species ranging from wet meadows to drier, 

more exposed areas. 

For both the arctic and alpine tundra species, though the 

photosynthetic capacities of the tundra species restricted mainly 

to wet meadow areas were higher under conditions of low moisture 

stress, the wider ranging tundra species were able to maintain 

greater photosynthetic capacity as soil moisture stress increased. 

Although the depression of photosynthesis with water stress in 

these tundra species could be partially attributed to reduced 

stomatal aperture, with decreased soil water potential most of 

the decline of photosynthesis was due to a greater non-stomatal 

or residual resistance, indicating a direct impact of water stress 

on the photosynthetic apparatus. Dark respiration did not increase 

with enhanced water stress. Thus, although photorespiration 

may have increased, increased mitochondrial respiration is unlikely 

involved in the depression of net photosynthesis. The wet site 

species typically exhibited higher photosynthesis/transpiration 

ratios for photosynthesis at low soil moisture stress levels; 



however, as soil moisture stress increased, the wider ranging 

species generally maintained higher photosynthesis/transpiration 

ratios. 

xiv 

At high soil water potentials stomata of the species restricted 

typically to wet meadow tundra areas did not appear to undergo 

a closing response until the bulk leaf water potential decreased; 

however, reduced stomatal aperture of the tundra species with a 

wider distribution was noted before leaf water potential dropped. 

Although the stomatal mechanism of wet site tundra species exhibited 

lowe r degrees of occlusion at high soil water potentials, for the 

more widely distributed tundra species, Carex and especially Geum, 

stomatal closure was less pronounced as soil water potential 

decreased. 

The ability of Geum to maintain a low liquid phase water 
' 

transfer resistance from the soil to the leaves as well as to 

experience relatively small reductions in turgor pressure as 

moisture stress increased may be important factors in maintaining a 

favorable leaf water balance over a rather broad range of soil 

moisture regimes. Differences in turgor pressure response with 

respect to moisture stress may be associated with differences in 

cell wall elasticity. Calculations of cell wall elasticity suggest 

that the wider ranging species have more elastic cell walls as 

compared with the more rigid, inelastic cell walls in the wet 

site tundra species. The results of this study show that tundra 

plants have different gas exchange sensitivities and water relation 



responses with respect to moisture stress and suggest that these 

attributes may be important contributing factors in determining 

the local distribution of these species. 

(137 pages) 
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CHAPTER I 

INTRODUCTION 

1 

Although tundra systems have been of special interest for a 

number of years, integrated studies of tundra systems have been only 

recently undertaken (Bliss, 1972; Wielgolaski and Rosswall, 1972; 

Bliss et al., 1973). This renewed interest in tundra ecosystems 

has occurred largely beca us e of the recent discoveries of vast, 

unexploited, nonrenewable resources in Alaska, Canada, and Siberia. 

An understanding of the adaptive mechanisms of native tundra species 

is a necessary requisite for the wise technological development 

of these especially fragile ecosystems. 

Tundra is a Russian-der ived word meaning marshy plain. However, 

more recently tundra has come to refer to an ecosystem characterized 

by treeless landscapes beyond timberline. Basically there are two 

types of tundra: 1) arctic tundra and 2) alpine tundra. Arctic 

tundra refers to treeless landscapes la ti tudinally beyond timberline, 

while alpine tundra refers to treeless landscapes above timberline. 

Whittaker (1970) estimates that arctic and alpine tundra systems 

2 occupy about 8 million km or approximately 5 percent of the 

earth's land surface. The circumboreal arctic tundra belt col!lprises 

clearly the larges t portion of tundra with the rest consisting 

of relatively small, isolated alpine tundra areas. 

Arctic and alpine tundras differ as to the number and kinds of 

plant species which make up their vegetation. As Billings (1973) 



2 

states, there is a general attenuation in floristic richness as 

one proceeds from the mid-latitude alpine tundras to the arctic 

tundras. For instance, Munz and Keck (1959) list 615 alpine plant 

species for the Sierra Nevada Mountains, while Bamberg and Major 

(1968) report 291 species from three Montana mountain ranges. 

Contrastingly, Bliss (1971) reported only 111 plant species for the 

Arctic Archipelago while Tolmachev (1966) reported 118 species on 

the Taimyr Peninsula. Thus, even though the areal extent of the 

alpine tundra is less than the arctic tundra, their floras contain 

a larger number of species. Billings (1973) suggests that these 

differences may be due to differences in diversity of habitats, 

relative age, and their glacial history. 

Even though arctic and alpine tundras differ as to the number 

and kinds of species which make up their vegetation, tundra plant 

communities can generally be characterized as consisting predominantly 

of low-growing perennial herbs, dwarf shrubs, lichens, and mosses. 

Annuals in tundra environments are extremely rare (Sorenson, 1941; 

Porsild, 1964; Mark and Bliss, 1970). Bliss (1971) suggests that 

tundra environments with their general lack of heat in the short 

summer are not conducive to the evolution of annuals which require 

considerable heat for maturity and seed set. Detailed descriptions 

of vegetation patterns, composition, and structure of arctic 

vegetation can be found in Polunin (1948), Hanson (19 53), B~itton 

(1957), Larsen (1965), Caldwell, Tieszen and Fareed (1974), and 

Love and Love (1974). Similar descriptions for alpine vegetation 

are contained in Braun-Blanquet (1948), Troll (1957), Billings and 



Table 1. Comparative environmen tal characteristics of an arc tic tundra lo ca tion at Barr ow, 
Alaska (71°20 'N, 156°46'\J, 3 m elev.), and an alpine tundra location on Niwot 
Ri dge (40c04 'N, 105c36'W, 3476 m elev.) in Colorado (from Billings and Mooney, 1968). 

E~vironmental Chara cter istic 

Growing days 

Maximum photoperiod 

Air temperature, July mean (+1 m, cC) 

Soil temperatur e, absolute maximum (-15 cm, cc) 

-1 
W:ind, annual mean (km· hr ) 

Solar radiation 

Mean Jul y in tens it y (cal· cm-2 · min -l ) 
Mean July total (langleys) 

Precipitation. annual mean (mm) 

Arctic Tundra 

60 to 90 

84 days 

3.9 

2.5 

19. 3 

o. 30 
426 

107 

Alpine Tundra 

60 to 90 

15 hr 

8.3 

13. 3 

29.6 

0.56 
497 

634 

..,_ 
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the winter months, annual mean pre cipitation in the arctic tun dra i~ 

markedly lower than that received in the alpine tundra. 

The annual aboveground productivity in tundra ecosystems has 

been rev iewed by Bliss (196 2 , 1970) and Bliss et al. (1973) and 

-2 ranges between 3 to 242 g•m (Bliss, 1956; Warren Wilson, 1957; 

Dennis and Johnson, 1970; Tieszen, 1972; Wien and Bliss, 1974 ). 

Bliss (1 966) and Webber (1974) indicate that tundra pla nt pr oduct ivity 

when expressed on a growing season basis is quite comparable to other 

natural systems. 

A very high proportion of tundra plant biomass lies below groun d 

(Scott and Billings, 1964; Bliss, 1966; Mooney and Billings, 1968; 

Alexandr ova, 1970; Dennis and Johnson, 1970). For instance, Denni s 

and Johnson (1970) found as much as 98 percent of the living plant 

materia l may be beneath the soil surface in the form of roots and 

rhiz omes in an arctic tundra connnunity. Similarly, results of 

Scott and Billings (1964) indicate that over 79 percent of the totaJ 

standing crop of vegetation was belowground in alpine tundra pla nts. 

These belowgronnd storage compartments allow carbohydrate storage 

throughout the winter. Data of Mooney and Billings (1960) and 

Fonda and Bliss (1966) indicate that the spring burst of regrowt h 

follow ing snowmelt occurs at the expense of these underground root 

and rhiz ome reserves. In addition, Billings (1973) suggests that 

these high belowground-to-aboveground rat ios may be important fo r 

water and mineral uptake in the cold tundra soils. 

Another characteristic of tundra vegetation is its high 

caloric content (Colley, 1961; Bliss, 1962; Jordan, 1971). Hadl ey and 
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Bliss (1964) have found that the high caloric content of some tundra 

plants may be a result of high lipid content; however, most food 

storage seems to be in the form of carbohydrates contained in below

ground structures. Jordan (1971) suggests that the adaptive 

advantage of these high caloric contents may be that less energy is 

spent processing a concentrated food source . This seems to correspond 

well with the rapid leaf expansion which oecurs in tundra 

plants (Billings and Bliss, 1959; Johnson and Caldwell, 1974). 

More detailed coverage on the adaptations of tundra plants is con

tained in Billings and Mooney (1968), Johnson (1969), Bliss (1971), 

Savile (1972), Billings ~974), and Tieszen and Wieland (in press) . 

In tundra plants, as well as plants in other ecos ystems, long

term survival is strongly hinged on the ability of these plants to 

fix and utilize energy. Even though tundra areas are relatively 

remote and inaccessible, a nurnberof field photosynthetic studies have 

been conducted in tundra environments (Mooney and Billings, 196 1 ; 

Mooney, Wright, and Strain, 1962; Hadley and Bliss, 1964; Billings, 

Clebsch and Mooney, 1966; Tieszen, 1973; Moore et al., 1974; 

Johnson and Caldwell, 1974; Moser, 1974; Johnson and Tieszen, (in 

press). In addition, a number of laboratory gas exchange studies 

have been conducted with arctic and alpine tundra plants (Mooney and 

Billings, 1961; Mooney, 1963; Scott and Billings, 1964; Mooney and 

Johnson, 1965). Such studies have been reviewed by Larcher (1957), 

Tranquillini (1964), Billings and Mooney (1968), Bliss (1971), 

Billings (1974), and Tieszen and Wieland (in press). 



The photosynthetic mechanism of tundra plants must cope with 

the characteristically low growing season temperatures and the 

7 

short growing season of tundra environments. Although water stress 

is another important selective force in many environments, it is not 

commonly considered to be of particular importance in tundra 

environments. However, even though large portions of tundra have 

an abundance of water, many tundra sites can develop moderate to 

relatively severe atmospheric and soil moisture stress levels. 

Arctic tundra habitats such as low center polygons and pol~gon 

troughs typically have standing water during a large portion of the 

growing season. 

and beach ridges 

However, areas such as exposed high-center polygons 

can exhibit soil water potentials,~, below -15 
s 

bars (Teeri, 1973). Bliss (1956) has noted similar microsite 

soil moisture variability in the Medicine Bow Mountains in Wyoming. 

Bliss (1956) found a wet alpine meadow site to be constantly 

saturated, whereas soil moisture potential in a fellfield site was 

often below -15 bars. 

In addition to this soil moisture microsite variability, 

atmospheric moisture stress can be relatively severe in tundra 

environments. Salisbury and Spomer (1964) have measured leaf-to-air 

temperature gradients of more than 20°C in alpine tundra a rea s of 

Colorado. Though much less frequent, similar gradients may be 

reached in some arctic tundra sites. For example, Mayo, Despain , 

and VanZinderen Bakker (1973) report that leaf temperatures for 

Dryas integrifolia can frequently be 30°C above air temperature. 

With these large leaf-to-air temperature gradients, the water vapor 



difference between saturated leaf vapor pressure and ambient air 

vapor pressure, WVD, can exceed 20 rob in some instances. In 

contrast, when relative humidity is high and leaf temperature is 

close to air temperature, the WVD may be less than 1 mb. Thus, 

tundra environments may be expected to exhibit a large degree of 

microsite variability with respect to moisture stress. As a 
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result, plant moisture stress may develop in many years in the more 

exposed sites and in very dry years may even occur in the more mesic 

tundra microsites. 

Plant water stress may develop because of low soil moisture 

contents or temporarily strong environmental demands such as high 

insolation and large evaporative gradients. If the evaporative 

demands for transpiration are large, water absorption may lag behind 

transpiration (Slatyer, 1960; Gardner, 1964; Kramer, 1969). Using 

an Ohm's Law analog, this absorption lag may result from liquid phase 

water transfer resistances encountered from the soil to the root 

(soil resistance) and from the roo t to the leaf evaporative sites 

(plant resistance). The generali ze d equation of Van den Honert 

(1948) can be used as an acceptab ]e approximation for this relation

ship and is expressed as follows: 

R + R s p 
- 1 

(bar·sec•cm ) (1) 

where R and R are the resistan ce s to water flow in the soil and 
s p 

the plant, respectively, ~sis t he soil water potential, ~l is 

the leaf water potential, and Tis transpiration or water flux rate 

through the system. 



The R term has been partitioned into components by Kramer 
p 

(1969). He concludes that the largest compone nt in R resides 
p 
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in the roots with the leaves comprising less and the least resistance 

contained in the stem where water movement takes place largely in the 

vascular conduction system. For example, results of Jensen, 

Taylor, and Wiebe (1961) suggest that the root resistance of sun-

flower is nearly twice as great as the leaf resistance and over 

three times as great as the stem resistance. However, recently 

Boyer (1974) has presented evidence that at very low transpiration 

rates much of the R resistance may reside in the leaves. 
p 

A number of studies suggest that appreciable R are exhibited 
s 

in the soil even at~ above -1 bar (Gingrich and Russell, 1957; 
s 

Peters, 1957; Denmead and Shaw, 1962; Gardner and Ehlig, 1962; 

Macklon and Weatherly, 1965; Etherington, 1967; Ehlig, Gardner, and 

Clark, 1968; Shinn and Lemon, 1968; Tinklin and Weatherley, 1968). 

However, Newman (1969b) has reviewed these studies and concluded 

that their results may be open to alternative explanations. Newman 

(1969a) concluded that R does not become appreciable until the 
s 

soil is near or beyond the permanent wilting point. Indeed, 

calculations by Sykes and Loomis (1967), Lawlor (1972), and Hansen 

(1974a, 1974b) suggest that R is less than the R until soil moisture 
s p 

approaches the permanent wilting point. 

If water absorption by the roots lags behind water loss through 

transpiration, leaf water stress may develop. In order to recover 

a favorable water balance plants can (Tranquillini, 1963): 



1. intensify water absorption 

a) through extension of their root system by growth, 

thereby reaching parts of the soil which may still be 

moist 

10 

b) through a decrease in tissue water potential by which 

they are able to intensify the water potential gradient 

from the soil to the plant. 

2. reduce water loss 

a) through reduction of transpiring surfaces 

b) through increases in leaf diffusive resistances to 

water transfer. 

When water loss through transpiration exceeds water absorption, 

concomitant declines in leaf water potential may be produced and 

may eventually result in stomatal closure. This stomatal closure 

is reflected in an increased stomatal diffusion resistance to water 

vapor flux which appears as r in the following Ohm's Law analog: 
s 

T = 
(VD)leaf - (VD)air 

(r + r ) 
s a 

(2) 

where Tis transpirational water flux, VDleaf is vapor density of the 

leaf assumed to be at saturation at the prevailing leaf temperature, 

VD i is vapor density of the ambient air, and r and r are stomatal 
a r s a 

and boundary layer resistances to water vapor exchange, respectively. 

This increased stomatal resistance not only restricts water 

loss, but also reduces photosynthesis. The water vapor leaf diffusive 

resistances as calculated above can be extrapolated to carbon dioxide 

leaf diffusive resistances using a multiplier (1.594) which relates 
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the diffusion coefficients of carbon dioxide and water vapor 

(McPherson and Slatyer, 1973). Since photosynthesis is dependent 

upon not only leaf diffusive processes but also metabolic processes, 

an additional resistance must be incorporated into an Ohm's Law 

analogy for photosynthesis. The equation for photosynthesis can be 

expressed according to the following equation developed by Gaastra 

(1959): 

p = 
(CO2)e - (CO2)i 

(r' + r') + r' 
a s m 

-2 -1 
(mgCO

2
·dm •hr~) 

where P is net photosynthesis, (CO
2

) e i s the carbon dioxide 

concentration outside the leaf, (co
2

)i is the carbon dioxide 

concentration at the ca rhoxylation site which is necessarily 

assumed to be zero, (r' + r') and r' are the leaf diffusive and 
a s m 

(3) 

mesophyll resistance to carbon dioxide exchange, respectively. The 

rnesophyll resistance term originally developed by Gaastra (1959) 

is referred to in this study as residual resistance. Although Gaastra 

(1959) originally developed this resistance term to refer mainly to 

intracellular CO
2 

diffusion resistance, subsequently this resistance 

has been viewed to includ e both diffusive and metabolic component s 

(Jones and SlaLyer, ]972), and thus more appropriately is termed as 

the residual resi s tance, r' (C:ifford and Musgrave, 1972). 
r 

Reductions in photosynthesis with increasing water st ress ar e 

we 11 established and can occur in some mesophytes at If' 
1 

as high as 

-1 to -3 bars (Schneider and Childers, 1941; Loustalot, 1945; 

Bordeau, 1954: Brix, 1962). HowPver, the photo s ynthetic reduction 

threshold lf'
1 

for a number of other mesophytes seems to range between 
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-7 to -]6 bars (Kanemasu and Tanner, 1969; Boyer, 1970; Duniway, 

1971; Jordan and Ritchie, 1971). These photosynthetic reductions 

may be the result of three major factors (Slavik, 1965; Slatyer, 

1967; Crafts, 1968; DePuit (in press): 1) hydroactive stomatal 

closure, bringing about a reduced CO
2 

supply to the mesophyll 

(affecting r'), 2) water stress effects on the biochemical processes 
s 

involved in photosynthesis (reflected in r'), and 3) water stress 
r 

effects on the processes of respiration in the light (also reflected 

in r'). 
r 

Increasing r' has been shown to he the major cause of reduced 
s 

photosynthesis in many water-stressed crop species (e.g., Trough ton, 

1969; Boyer, 1970; Stevenscm and Shaw, 1971; Teare and Kanemasu, 

1972; Moldau, 1973) . However, there is additional evidence which 

suggests that increased r' may also be i~portant in explaining a 
r 

substantial degree of the photosynthetic depression (e.g., Gale, 

Kohl, and Hagan, 1966; Hellmuth, 1969; Boyer and Bowen, 1970; 

Redshaw and Meidner, 1972; Beadle et al., 1973; DePuit and Caldwell, 

1975). 

As stated earlier, these increases in r' may at least in part 
r 

reflect water stress effects on the biochemical processes involved 

in photosynthesis. For example, Parker (1972) suggests that water 

stress may alter membrane integrity, disrupt chloroplast structure, 

or impair enzyme function. In addition, increases in r' may be 
r 

reflecting increases in respiration in the light concomitant with 

photosynthesis (Levitt, 1972), and m~y reflect either incre~scd 

mitochondrial respiration or photorespiration. Although normal 
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mitochondrial respiration as assayed in the dark may be somewhat 

depressed when the plant is in the light (Jackson and Volk, 1970), 

at least part of the respiratory co
2 

losses from leaves in the 

light may be indicated by dark respiration rates. Although dark 

respiration rates of some species seem to exhibit general declines 

with increasing water stress (e.g., Greenway and Hiller, 1967; 

Boyer, 1971), increased dark respira tion rates following initial 

declines have been noted for some arid and Mediterranean species 

(e . g., Mooney, 1969; DePuit and Caldwell, 1975). However, as Ludwig 

and Canvin (197lb)suggest, there remains the possibility that photo

respiration may incr ease when water stress intensifies. 

Cleland (1967) and Hsiao (1973) have noted that other 

physiological processes such as cell expansion may be inhibited at 

much lower water stress levels than photosynthesis. In fact results 

of Boyer (1968) suggest that leaf enlargement is so sensitive to 

water stress that it may be largely restricted to night periods. 

The importance of turgor pressure in supplying the necessary force 

for cell expansion has long been considered crucial (Vaadia, 

Raney, and Hagan, 1961; Lockhart, 1965; Cleland, 1971). For 

example, results of Wadleigh and Gauch (1948) showed a progressive 

decline in the rate of cotton leaf elongation with increasing soil 

mois tur e stress until elongation ceased at near zero turgor 

pressur e. Similarly, Plaut and Ordin (1961) showed a very close 

agreement between turgor pressure and leaf enlargement in sunflower 

and almond. More recently Acevedo, Hsiao, and Henderson (1971) 

report ed that rewatering mildly stressed corn plants permitted 

rapid resumption of leaf elongation . This effect of turgor pressure 



on cell enlargement would necessarily have an indirect effect 

on plant productivity since reduced cell siz e would ultimately 

result in reduced photosynthetic leaf area. As a result, even 

though water stress may not be severe enoug h to limit primary 

production through declines in photosynthetic rates in tundra 

species, reduction of productivity through depressed growth rates 

may occur more frequently. 
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Since moisture stress affects a number of important physiological 

processes in plants and since significant moisture stresses may 

develop in at least some tundra areas, this study was initiated to 

determine whether plant physiological behavior to water stress 

may be one important contributing factor in determining the microsite 

distributions of tundra plants. However, it should be emphasized 

that even though effects of water stress on physiological processes 

may be important in themselves, these should always be applied in 

conjunction with the other multivariate biotic and abiotic factors 

which constitute the environmental complex of the plant. 



CHAPTER II 

DESIGN DESCRIPTION 

Objectives and Hypotheses 
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The first objective of this study was to determine to what 

degree moisture stress develops in alpine tundra plants under field 

conditions. Therefore, a field study was designed to assess the 

degree of plant moisture stress which may develop in representative 

sites in the alpine tundra in Colorado. These experiments were 

designed to test the hypothesis that significant plant moisture 

~tress may develop in at least the more exposed alpine tundra areas. 

If significant plant moisture stresses develop in the alpine 

tundra and if physiological adaptations to water stress are important 

determining factors in the distribution of alpine tundra species, 

plant moisture stress may be expected to have a larger inhibitory 

effect upon the photosynthetic capacities of species restricted to 

wet sites as compared with species having a broader distribution. To 

address this hypothesis additional field studies were designed to 

investigate the effect of plant moisture stress on the photosynthetic 

capacity of two alpine tundra species with different microsite 

distributions. The species examined in this field study were 

Deschampsia caespitosa (L.) Beauv. which is typically found in wet 

meadow habitats and Ge~ rossii (R.Br.) Ser., a species which ranges 

from wet meadow to exposed fell.field habitats. 
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A second objective of this study was to determine how atmospheric 

and soil moisture stress each impact on the gas exchange of tundra 

species with different local distributions. The same alpine tundra 

species as used for the field study, Geu~ rossii and Deschampsia 

caespitosa, were used in this laboratory study. In addition, to 

determine if the generalizations made for alpine tundra species 

could be extrapolated to plant species from a geographically different 

location, two arctic tundra species with local distributions similar 

to their alpine counterparts were selected for study. The arctic 

tundra species investigated were pupontia fischeri R. Br. which is 

restricted mainly to wet meadow areas and Carex aquatilis Wahlenb., 

a species covering a wider range of habitat types from wet meadows 

to drier, more exposed areas. 

Laboratory experiments enabled precise measurements of net 

photosynthesis, transpiration, and dark respiration as affected by 

the independent effects of atmospheric and soil moisture stress. 

This information allowed partitioning of the gas exchange resistances 

and enabled assessment of the water use efficiency for photosynthesis 

of these tundra species. These laboratory experiments were designed 

to test the hypothesis that increasing atmospheric and soil moisture 

stress result in decreased photosynthetic capacities to a greater 

extent in species restricted to wet areas than in species with a 

broader microsite distribution. In addition, it was hypothesized 

that these photosynthetic reductions would be due to not only 

reduced stomatal aperture~ reflectPcl in in,.r<>-<>s<>~ stometel diffusioa 
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resistance, but also to greater non-stomatal or residual resistance, 

indicating a direct impact of water stress on the photosynthetic 

apparatus. 

The third objective of this study was to determine other 

attributes which may be important in determining the distributions 

of these tundra species. For example, one such attribute may be 

the liquid phase water transfer resistance from the soil to the 

leaf. By exposing these tundra plants to a range of soil moisture 

regimes, it was possible to address the hypothesis that the wider 

ranging species were able to maintain a lower water transfer resistance 

over a wider range of soil moisture stress conditions than species 

restricted to more mesic areas. 

Since leaf enlargement is closely associated with turgor pressure, 

another important attribute may be the ability to minimize reductions 

in leaf turgor pressure as moisture stress increases. Therefore, a 

laboratory study was designed to determine the reduction of turgor 

pressure over a range of plant moisture regimes. Such experiments 

were conducted to test the hypothesis that tundra species having 

a wider ranging local distribution are better able to maintain turgor 

over a broader range of moisture stress conditions than species 

restricted mainly to wet tundra areas. 

Site Descriptions 

The study site where the alpine tundra field study was conducted 

and where the alpine plant material was oht~ined for ~h~ lahnra~nry 

study is located on a gently sloping saddle area on Niwot Ridge 

(40° 04'N, 105° 36'W, 3476 m elev.) in the Front Range of the 
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Colorado Rocky Mountains. The site has a southwest aspect, a 2° 

slope, and is near the U. S . International Biological Programme 

(IBP) Tundra Biome intensive study sites. The vegetation of the 

area is characterized by low perennial grasses, sedges, and herbs. 

The specific site where this study was conducted is dominated by 

Deschampsia c:::aespi tosa, Geum rossii, and Trifolium parryi Gray. 

The flora of the area has been described by Harrin gton (1954) and 

by Weber (1967). 

During the 1972 field season, the two IBP Tundra Biome 

intensive sites were also sampled periodically throughout the growing 

season for dawn and midda y leaf water potentials of Geum rossii and 

Deschampsia _ caespitosa. A thorough characterization of these IBP 

intensive sites is contained in Fareed and Caldwell (1975). One of 

these sites is a Kobresia meadow community dominated by Kobresia 

myosuroides (Vill.) Fiori and Pool. with sub dominants of Geum rossii 

and Carex rupestris All. This si te has a southwest aspect, a 5° 

slope, and is typical of a well-d eve loped, mesic meadow which may be 

snow-free for up to 250 days per year. The second site is a 

Deschampsia meadow community dominated by Deschampsia caespitosa, 

Artemisia scopulorum Gray, and Geum rossii. This Deschamp sia site 

has a southeast aspect, a 4° slope, an d is exposed to heavy snow 

melt water which may persist until late June. 

The geology of this area has been discussed by Marr (1967), 

Benedict (1967), and Mahney (1970). Bedrock in this area generally 

consists of Precambrian granites to granodiorites and met r1morp hics 

in large batholithic masses. In addition Tertiary-age quartz 
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monzonites to diorites occur as stocks, dikes, and sills inject ed 

into the Precambrian rocks. Retze r (1956) has described the soils 

in the Colorado Rocky Mountains and states that these soils have 

typically undergone geomorphic pr ocesses associa ted with heaving, 

thrust ing, sorting, and down-slope movement. Furthermore, Marr 

(1967) states that the soils on Niwot Ridge are coarse to silty 

loams and range to 60 cm in depth . Meadow soils are quite well

developed and have upper horizons rich in humus, whereas fellfield 

areas have minimum soil horizon differentiation and can be less 

than 2 cm in depth. 

Original plant cultures of arctic tundra pla nt species used 

in the laboratory portion of this study were acqui red from Barro w, 

Alaska (71° 20'N, 156° 46'W, 3 m elev.), near th e U. S. IBP Tundra 

Biome study sites which are dominated by low perennial grasses, 

sedges, and herbs. This study site is composed primarily of 

Eriophorum angustifolium Hanek ., Dupontia fisc heri, and Carex aquatilis. 

Studies of the canopy characterization and the seasonal course of 

aboveground production of this si te have been conducted by Caldwell, 

Tieszen, and Fareed (1974) and Ties zen (1972), Additional floristic 

composition and vegetation information of the area is contained in 

Britton (1957), Clebsch and Shanks (1968), Hulten (1968), and Dennis 

and Johnson (1970). 

Brown (1970) reviews the general environmental setting of the 

Barrow area and states that this area is an emergent coastal plain 

underlain by perennially frozen ground which may exceed a depth of 

300 meters. The physical aspect of this ar ea is dominated by poly

gonal ground, oriented lakes, and rapidl y erodi ng shorelines, all 
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of which are reflections of perennially frozen ground. According 

to Drew (1957), the coastal plain soils are composed of silts, 

fine sands, and gravels of the Pleistocene age which overlie 

rocks of the Cretaceous and Tertiary age. Even though a large 

portion of these soils are predominantly wet with an average 

seasonal thaw of approximately 1-¼0 cm, there are raised beach ridges 

and high center polygons which are well-drained and may undergo 

seasonal thaw in excess of 100 cm. 

Laboratory Plant Material 

Sod blocks from near the Niwot Ridge alpine tundra IBP intensive 

site were removed in late August and were placed in a freezer. As 

alpine plant material was needed, these sod blocks were placed in 

flats in the greenhouse. Arctic tundra plant specimens were obtained 

from stock plant cultures maintained at Augustana College, Sioux 

Falls, South Dakota. Original cultures of these arctic tundra 

species were acquired from near the arctic tundra IBP intensive site 

near Barrow, Alaska. 

Arctic and alpine plant material from each of the sites was 

transplanted into plastic pots (13 cm diameter, 13 cm height) 

using a soil mixture consisting of 2 parts peat moss, 2 parts loam, 

and 1 part vermiculite. Thes e potted plants were grown in a green

house with day temperatures reaching 21°C and 10°C at night with 

relative humidities ranging between 45-65 percent. Ambient 

radiation was used during the spring and summer wjth q11pplerne~tary 

fluorescent lighting supplied during fall and winter. 
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The relationships of photosynthesis to light and temperature 

were established to determine how closely the response of these 

plants grown under these conditions corresponded to those of field 

plants. Light saturation for the arctic species, Carex and 

-2 -1 
Dupontia (Figure 1), was near 800 weinsteins•rn ·sec (400-700 nm) 

-2 -1 
and near 900 we·m •sec for ~eum and Descharnpsia, the alpine 

species (Figure 2). Temperature optima for Carex and Dupontia were 

near 15°C (Figure 3), while Geum and Deschampsia exhibited optim a 

at 20°C and 25°C, respectively (Figure 4). These results agree 

closely with the response of these species under field conditions 

(Tieszen, 1973; Moore et al., 1974). 

The higher light saturation of photosynthesis observed in the 

alpine species than in the arctic species has been well es ta blished 

by others (Cartellieri, 1940; Clebsch, 1960; Mooney and Billings, 

1961). Bjorkman and Holmgren (1963) suggest that these light 

saturation values reflect the lower light intensities under which 

arctic plant evolution has occurred. Similarl y , temperature 

optima for arctic plant species generally tend to be 5 to 10°C 

below their alpine counterparts (Clebsch, 1960; Mooney and Billings, 

1961; Mooney and Johnson, 1965). 
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Figure 1. Net photosynthesis and transpiration rates of 
Dupontia fischeri and Carex aquatilis as a 
function of light intensity at a leaf tem
perature of 20°C and a WVD of 10 rnb. Each 
point represents the mean of two replicates 
with the vertical bars representing± one 
standard deviation. 
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Figure 2. Net photosynthesis and transpiration rates of 
Deschampsia caespitosa and Geum rossii as a 
function of light intensity at a leaf tem
perature of 20°C and a WVD of 10 mb. Each 
point represents the mean of two replicates 
with the vertical bars representing± one 
standard deviation. 
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Figure 3. Net photosynthesis and transpiration rates of 
pupontia fischeri and Carex aquatilis as a 
function of leaf temperature at 900 µe·m-2•sec-l 
(400-700 nm) where photosynthesis was light
saturated. Each point represents the mean 
of four replicates with the vertical bars 
representing± one standard deviation. 
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Figure 4. Net photosynthesis and transpiration rates of 
Deschampsia caespitosa and Geum rossii as a 
function of leaf temperature at 900 µe·m-2-sec- 1 

(400-700 nm) where photosynthesis was light
saturated. Each point represents the mean of 
four replicates with the vertical bars 
representing± one standard deviation. 
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CHAPTER III 

FIELD STUDY 

Introduction 
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Plant survival and productivity in the harsh tundra environment 

hinge critically on the photosynthetic capacity .of these plants. 

Although the time of snowmelt at a particular site is of decisive 

importance in terms of initiation of growth and photosynthesis at 

the beginning of the growing season, photosynthetic capacity of 

these tundra plants is likely controlled by other factors during 

the later phases of the growing season. One factor of importance 

may be water stress. 

Johnson, Caldwell and Tieszen (1974) reported field measurements 

of the photosynthetic capacity for leaves of the same age over a 

limited plant moisture stress range in select ed alpine tundra 

species. Al th ough linear regressions of these results for Geum 

rossii and Deschampsi a caespitosa indica te d a weak relationshi p 

between plant moisture str ess and photosy nt h esis , these measurements 

were taken over a limited plant moisture stress range. 

This present field study was i nitiated to yield information on 

the degree of plant moisture stre ss which may develop in a number 

of selected sites in the alpine tundra on Niwot Ridge in Colorado, 

and also to obtain data on the effects of a wider range of plant 

mo..:.stuTe stress OiI the photosynt1 1et ic e:apcu.:lL..i.es o[ Geum rOstSil and 

Deschampsia caespitosa. 
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Methods 

The two IBP Tundra Biome intensive alpine tundra study sites 

were sampled periodically thougho .ut the 1972 field season for dawn 

and midday leaf water potentials of Geum rossii and Deschampsia 

caespitosa. Leaf water potentials were measured using the 

Scholander pressure chamber technique (Waring and Cleary, 1967). 

Four replicates were taken for each species. 

During the 1973 field season, irrigated and non-irrigated plots 

containing both Geum rossii and Deschampsia caespitosa were 

established at the beginning of the field season near the IBP Tundra 

Biome intensive sites on Niwot Ridge in Colorado. The irrigated 

plots were watered every two days with approximately 20 t of water 

obtained from snow meltwater of a nearby persisting snowfield. 

In addition the irrigated plots were wetted immediately before photo

synthetic determinations on plants within these plots were made. 

These plots allowed for varying plant water status throughout the 

growing season and thus allowed a wider range of plant moisture 

than normally encountered in this particular site . 

Leaf photosynthetic measu r ements were determined using a 

14 portable co
2 

field system. The field system and procedure have 

been described by Tiezsen, Johnson, and Caldwell (1974). The field 

system consists of a plexiglas s leaf chamber which is temperature 

controlled by a Peltier thermoelectric stage. The procedure 

involves exposing an intact leaf to a 14 co
2 

air mixture, immediately 

cooling the leaf sa!!!plc ir1 the field followi1 -1g eX!JOt>ure, subsequenc 



drying of the exposed leaf sample, combusting this sample, and 

radioactivity counting using liquid scintillation techniques. 

According to studies by Ludwig and Canvin (1971a), net 
14

co 2 

uptake in a leaf is maximum at exposure periods less than 30 sec. 

This initial period approximates gross co
2 

influx. After 30 sec, 

32 

Co k d h · · 
14

co · d d net 
2 

upta e ecreases as t e exposure time in 
2 

is exten e 

and after 10 min approaches normal net 

decrease in 14co
2 

uptake is associated 

co
2 

exchange rates. This 

14 with co
2 

evolution from 

the leaf. Thus, with exposure times of 1 min used in this study, 

co
2 

uptake measured was closer to gross co
2 

uptake than net 

photosynthesis. 

All CO
2 

uptake determinations were conducted under a 

constant chamber temperature of 10±0.5°C which is repre sentati ve 

of the mean daytime growing season temperatures at the study site. 

Chamber temperatures were measured using a shielded copper-

constantan fine-wire thermocouple. Leaf temperatures were also 

monitored and were always within ±l°C of chamber air temperature. 

Artificial irradiation was provided by a high inten sity incandescent 

lamp (100 W) and was monitored with a Lambda Co. Model LI-190SR 

-2 -1 
+ 200 we•m •sec quantum sensor. A constant intensity of 2,700 

in the 400 to 700 nm wavelength range was used for all determinations 

and is approximately equal to maximum midday solar radiation. In 

addition, th e air stream was bubbled through water which yielded 

a high relative humidity within the plexiglass leaf chamber. A 

period of 5 min was allowed for the leaf t o a ttain a steady state 

gas exchan ge rate und er these environmental condit ion s before 

14
co exposure. 

2 
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Immediately following 
14co

2 
exposure, the leaf water potential, 

1
1

, was determined using the Scholander pressure chamber technique 

(Waring and Cleary, 1967). Since the water relations (Levitt, 

1972) and the photosynthetic capacities (Johnson and Caldwell, 

1974) of leaves can change with age and stage of development, 

only leaves which were the longest, most recently fully expanded 

on the plant were used during these field experiments. 

Leaf lengths and widths for Deschampsia caespitosa were measured 

to the nearest 0.5 mm and could lead to a ±0.3 mm
2 

error in area 

measurements. Although length and width measurements for Geum rossii 

were also measured to the nearest 0.5 mm, as many as four leaflets 

were measured and as a result errors in area measurement could be 

as high as ±1.0 rnm
2

. When compared to the smallest areas measured 

in each of these species, these area determinations would represent 

an accuracy of ±5 percent for Deschampsia and ±12 percent for 

Geum. 

The seasonal trend of soil water potential, 1, for Geum and 
s 

Deschampsia in the non-irrigated plots was determined throughout 

the 1973 field season. Soil samples f rom -10 and -20 cm depths 

were obtained using a 2.5 cm diameter aluminum corer. These soil 

samples were placed into a sample holder and sealed in the air-

tight teflon chamber of a Wescor C-51 psychrometer assembly. A 10 

min equilibration period was allowed before a Peltier cooling period 

and subsequent microvolt outputs were determined . These outputs were 

converted to soil water potential values from calibrations made 

against saturat e d NaCl solutions of known molality. Three replicates 

were taken from each of the two soil depths. 



Results and Discussion 

The seasonal trend of soil water potential, IJ' , in the non-
s 

irrigated plots for both Geum and Deschampsia showed very little 

fluctuation throughout the 1973 field season (Figure 5). The -10 

cm IJ' was used for Deschampsia , while the -20 cm IJ' was used for 
s s 

Geum and correspond approximately to the area of maximum rooting 
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densities for t~ese species. These field measurements of 1 taken 
s 

during the summer of 1973, a summer of below-average precipitation 

(e.g. mean summer precipitation is 19 cm and summer of 1973 was 13 cm), 

indicate that o/ values in the non-irrigated plots on Niwot Ridge 
s 

were never observed below -5 bars. The 1 for Deschampsia was 
s 

consistently above -5 bars, while IJ' for Geum did not achieve 
s 

values less than -2 bars. Additional IJ' de terminations from an 
s 

exposed fellfield area on Niwot Ridge indicated that o/ reached a 
s 

value as low as -15 bars. The seasonal trend of IJ'
1 

(Figure 5) 

indicated that the most negative o/
1 

occurred at the beginning 

and the end of the field season with IJ'
1 

as low as -25 bars for 

Desohampsia and -17 bars for Geum. 

Dawn and midda y IJ'
1 

for Geum and Deschampsia were determined 

in the Kobresia and Deschampsia IBP intensive s tudy sites during 

the 1972 field season (Figures 6 and 7). Dawn and midday IJ'
1 

values 

decreased throughout the season for both Geum and Deschampsia and 

were consistently more negative in the Kobresia site as compared 

to the Deschampsia site. A o/
1 

of -31 bars was the most negative 

IJ' 1 exhibited by Deschampsia and ucC:ulTeJ ln the Kobresia sire ne ar 
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Figure 5. Seasonal trends of ~land~ for Deschampsia 
caespitosa and Geum rossii.s Each ~1 is the 
mean of four to eight replicates with the 
vertical bars representing± one standard 
error. ~ was determined at -10 cm for 
Deschampsra and -20 cm for Geum which 
correspond approximately to the area of max
imum rooting densities, respectively , and 
correspond to the mean of three replicates. 
All measurements were determined at 0800 
solar time . 
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Figure 6. Seasonal course of dawi1 ( 05 30·-0 7 30 solar time) 
and midday (1100-1400 solar time) ~l of 
Deschampsia caespitosa in the Kobresia and 
Deschampsia IBP intensive sites on Niwot 
Ridge in Colorado. Each point represents 
mean of four replicates. 
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Figure 7. Seasonal course of dawn (0530-0730 solar time) 
and midday (1100-1400 solar time) ~l of Geum 
rossii in the Kobresia and Deschampsia IBP 
intensive sites on Niwot Ridge in Colorado. 
Each point represents the mean of four 
replicates. 
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the end of July. The most negative ~
1

• -21 bars, for Geum 

also occurred in the Kobresia site but was observed in the first 

part of August. 
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The effects of plant water stress upon leaf photosynthetic 

capacity for Geum and Deschampsia are presented in Figure 8 . Both 

Geum and Deschampia show a high degree of variability with respect 

to photosynthesis at different ~
1

. In Geum there was no apparent 

trend in this relationship, whereas a general trend of decreasing 

photosynthesis with increasing levels of plant wat er stress seemed 

to be suggested for Deschampsia. 

Direct correlations between plant water potential and net 

photosynthesis have been found in desert shrub species (DePuit and 

Caldwell, 1973; Odening, Strain, and Oechel, 1974) and in soybean 

and sorg hum leaves (Teare and Kanemasu, 1972). However, Hodges 

(1967) working with coniferous species and Dunn (1970) working 

with evergreen sclerophylls found somewhat elevated plant water 

potentials concurrent with water stress-induced stomatal closure 

and net photosynthesis reduction. DePuit (in press) has reviewed 

the literature on this aspect of photosynthesis and states that the 

best correlations between depressed net photosynthesis and lowered 

water potential have been obtained when soil or substrate water 

potentials are used (e.g., Bamberg et al ., 1974; Morrow and Mooney, 

1974; Reid, 1974) . Therefore, Campbell and Harris (1974) suggest 

that soil rather than plant water potential may be the best 

correlative parameter in rel a ting net photosynthesis to water 

potential. 
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Figure 8. Leaf photosynthetic rates at different r
1 for Deschampsia caespitosa and Geum rossii 

determined at a leaf temperature of 10°C, 
2700 µe·m-2·sec-1 (400-700 nm) where 
photosynthesis was light-saturated, and a 
high relative humidity. All measurements 
were taken between 0700 and 1300 solar 
time during the field season between July 9 
and August 14. 
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Crafts (1968) suggested that plant water stress develops in flow-

ering ornamentals and vegetable crops when ~l range between 0 and -5 

bars, in field and crop plants down to -16 bars, and in desert 

plants from -20 to -80 bars. Thus, it seems that moisture stress 

may develop in many years in the more exposed sites and in very dry 

years may even occur in the more mesic tundra microsites. These 

results suggest that water stress may in at least some areas be 

a significant factor limiting primary productivity in the alpine 

tundra. 

Even if future research fails to indicate that water potentials 

which directly limit photosynthetic capacity are widespread in 

alpine areas, the importance of water stress in altering phenological 

progression, leaf enlargement ph eno mena, the development of leaf 

senescence must still be considered as possible indirect effects 

on community primary production. For example, Newman (1965) reported 

that water stress has t ened rosette senescence and, thus, reduced 

fruit and seed set in Teesdalia nudicaulis. In addition, Gates 

(1957) found that relative leaf growth rates in young tomato leaves 

were affected more than old leaves when water stress was imposed. 

Thus, leaves at various developmental stages within a plant responded 

differently to imposed water stress. This may be an extremely 

crucial factor in alpine tundra plants where the ontogenetic timing 

is geared with the surge and decline of individual photosynthetic 

activity so that one to several leaves operating near maximum photo

synthetic capacity are always maintained during the growing season 

for any given plant (Johnson and Caldwell, 1974). Although leaves 

at the state of full expansion and prior to senescence may be only 
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slightly influenced by water stress, any indirect effects on the 

ontogenetic timing of leaf development or an alternative deployment 

of carbon resources to other plant parts such as reproductive 

organs could be of considerable importance. 



CHAPTER IV 

LABORATORY GAS EXCHANGE STUDY 

Introduction 

As shown earlier in Chapter I, tundra environments exhibit 

a large degree of microsite variability with respect to moisture 

stress. As a result, plant moisture stress may develop in many 

years in the more exposed tundra microsites and in very dry years 
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may even occur in the more mesic tundra microsites. If physiological 

adaptations of tundra plants to water stress are important determining 

factors in the distribution of these species, atmospheric and soil 

moisture stress may be expected to have a larger inhibitory effect 

upon the photosynthetic capacities of species restricted to wet 

sites as compared with species having a wider distribution. 

Klikoff (1965) suggested that such differences exist for timberline 

meadow specie s in the California Sierra Nevada. 

Field measureme nts of the photosynthetic capacities of two alpine 

tundra species , Geum rossii and Deschampsia caespitosa,contained in 

Chapter III, did not indicate a strong dependency of photosynthetic 

capacity on moisture stress. These measurement s were, however, taken 

over a rather limited range of plant moisture stress. This present 

study was initiated to determine possible differences in gas 

exchange behavior of tundra species which are typically restricted 

cite these ,. ... t-.-: ,...'\... 1-..,.. ... .,.,... 
wu . .L.-.....LL 110.v c: 

- •• ~ ,.:i __ 
a. W.J..UC.L 

..1..: ..... .,__..!\.. - .~~ -
U.J..O LJ. ..l.UUL.LUll ---1 - - -Wllt!ll 



these plants are exposed to a range of controlled atmospheric 

and soil moisture stress. 

Methods 
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Deschampsia caespitosa and Geum rossii were the alpine tundra 

species investigated, while Dupontia fischeri and Carex aquatilis 

were the arctic tundra species examined. Deschampsia and Dupontia 

are typically found in wet meadow habitats, whereas Geum and Carex 

cover a wider range of habitats from wet meadows to somewhat drier, 

more exposed areas in their respective tundras. A thorough 

characterization of the tundra areas where these plants were obtained 

as well as the laboratory growth techniques are presented in 

Chapter II. 

Laboratory gas exchange measurements were conducted using two 

Siemens Corp. Sirigor gas exchange systems (Koch, Lange, and Schulze, 

1971). Irradiation was provided by four Sylvania 300-W incandescent 

lamps, and total quanta between 400 and 700 nmweremeasured with a 

Lambda Model 11-190 SR quantum sensor. Leaf temperatures were 

measured with fine-wire copper-constantan thermocouples, and an air 

stream conditioning system combined with a vapor trap bypass was 

used to control cuvette water vapor pressure. Water vapor concentra

tions were measured with Cambridge Model 880 dewpoint hygrometers, 

while a Beckman Model 215 infrared gas analyzer measured CO
2 

differentials. 

Leaf areas (one side) were determined usin g a Lambda Model 

LI-3000 portable area meter and subsequent dry weight determinations 
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were made after allowing the leaf samples to dry at 90°C for 18 

hr. Resistances to co
2 

uptake were calculated according to Gaastra 

(1959) as described in Chapter I. Stomatal diffusion resistance, 

r' as used in this study includes a leaf boundary layer resistance, 
s' 

r' which was considered to be small for these microphyllous plants 
a' 

-1 under conditions of rapid convection (~1 m•sec ) in the gas exchange 

cuvettes. For example, using convective coefficients of Gates 

and Papian (1971), at this convection level, r would be less than 
a 

-1 
0.1 sec·cm for these tundra species. 

The desired soil moisture levels were obtained by withholding 

water from the potted plants. A drying period of approximately 6 days 

was required to obtain the lowes t soil moisture levels used in this 

study. So as not to confound th e experiment by introducing long-term 

effects of plant exposure to a low soil moisture level, plants that 

were used for a lo w soil moisture experiment were not used for 

subsequent experiments. The term WVD used in this study refers to 

water vapor difference between saturated internal leaf vapor pressure 

and cuvette air vapor pressure. The sequence of WVD exposure was 

varied for each plant, thus minimizing any residual carryover effect caus-

ed by using the same WVD sequence. Leaf wat er potentials of each leaf 

sealed within the cuvette were determined inmediately after their 

removal from the cuvette using a Scholander-type pressure chamber 

(Waring and Cleary, 1967). After leaf removal, soil water status 

of the potted plant was determined using either in situ soil psychro

meters or a Wescor Model C-52 psychrometer assembly which allows 

soil samples to be placed into a sample hold er and sealed in an 
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airtight aluminum chamber. Three replicates were taken from each 

-2 -1 
pot. A constant saturating light intensity of 900 µe•m ·sec 

and a constant leaf temperature of 20°C were maintained during 

subsequent moisture stress experiments. 

Results 

All r elationships discussed in this section are statistically 

significant at the .95 level. In addition, standard deviation ranges 

are presented in the figure legends. The effect of increasing 

atmospheric stress (increasing WVD) and increasing soil moisture 

stress (decreasing 1) on net photosynthesis was investigated for 
s 

each species (Figures 9 and 10). Striking differences were noted 

between the wet site species, Deschampsia and Dupontia, and the 

wider ranging species, GeUII_! and Carex. At the lowest atmospheric 

and soil moisture stress level s , Deschampsia and Dupontia exhibited 

-2 -1 
rates of 17 and 13 mg co

2
•dm ·hr , respectively; whereas, Geum 

-2 -1 
and Carex had rates of only 12 and 9 mg·dm •hr , respectively. 

Another striking difference between the wet site and more 

widely distributed species can be noted in the relationship of net 

photosynthesis and 1. Q_eschampsia and Dupontia exhibited earlier 
s 

declines in net photosynthesis as 1 decreased than did Geum and 
s --

Carex. For example, near 1 of -8 bars and low WVD, net photo-
s 

~ynthetic rates of Deschampsia and Dupontia had declined to values 

less than 10 percent of maximal rates. However, Geum and Carex 

under comparable conditions still exhi bited photosynthetic values 

nea r 65 perc ent and 30 percent of their maximum values, res pectivel y. 
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Figure 9. Net photosynthesis of Dupontia fischeri and Carex 
aquatilis as a function of WVD and '¥ s at a leaf 
temperature of 20 °C and 900 µe·m-2·sec- 1 (400-700 
nm) where photosynthesis was light-saturated. 
Each point on the response surface represents the 
mean of 4 to 8 replicates. For Dupontia ± one 
standard deviation ranged from 2.9 at high '±'s 
to 0.1 at low 'r's; whereas, ± one standard 
deviation for Carex ranged from 2.5 at high 'r's 
to 0.8 at low '±'s. 
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Figure 10. Net photosynthesis of Deschampsia caespitosa and 
Geum rossii as a function of WVD and ~sat a leaf 
temperature of 20°C and 900 µe·m-2·sec-l (400-
700 nm) where photosynthesis was light-saturated. 
Each point on the response surface represents the 
mean of 4 to 8 replicates. For Deschampsia 
± one standard deviation ranged from 2.9 at high 
~s to 0.1 at low ~5 ; whereas± one standard 
deviation for Geum ranged from 3.2 at high ~s 
to 0.8 at low ~s · 
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Although alpine species exhibited lower stomatal resistances, 

r' than arctic species, species with similar habitat distributions 
s' 

from each of the tundra areas showed similar responses (Figures 11 

and 12). An important difference between the wet site and the wider 

ranging species can be noted in comparing their residual resistance, 

r' ~ Under high 1 and low WVD the wider ranging species in both the 
r s 

arctic and alpine tundras had significantly higher r' as compared with 
r 

the wet m~adow species; Carex and Geum exhibited values of 16 and 13 

-1 -1 
sec• cm , respectively, as compared with 8 and 9 sec• cm for Dupontia 

and Deschampsia. 

All four species exhibited increases in r' with ~ncreasing WVD 
s 

levels under high~ conditions. Care x exhibited the largest increase, 
s 

followed by Dupontia, Geum and Deschampsia . Associated with these 

differences in stomatal resistance were differences in residual 

resistance response. At high 1 both Deschampsia and Dupontia 
s 

exhibited significant increases in r' as WVD proceeded from low to 
r 

high levels, wherea s r' for the wider ranging species, Geum and 
r 

Carex, di d not undergo a statistically significant increase. 

Significant declines in leaf water potentials, 1
1

, were associated 

with these increased r' in Deschampsia and Dupontia. As atmospheric 
r 

stress increased from 9 to 19 mb, 1
1 

of Dupontia decreased from -19 

to -21 bars. Similarly , Deschampsia 1
1 

declined from -11 to -12 

bars. This is in contrast to the wider ranging species where no 

statistically significant decline in ~l was observed. 

The effects of WVD and 1s on the component co
2 

resistances are 

presented in Figures 13 an d 14. In all specie s the largest component 
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Figure 11. Leaf (shaded top layer) and residual (unshaded 
bottom layer) resistances to CO2 transfer of 
Dupontia fischeri and Carex aquatilis as a 
function of WVD at a leaf temperature of 20°C, 
900 µe•m- 2 -sec-l (400-700 nm) where photosynthesis 
was light-saturated and a 18 of near -1 bar. 
Each point represents the mean of 8 replicates. 
Stomatal resistance ± one standard deviation 
ranged from 0.5 to 2.1 f or Dupontia and 1.0 to 
3. 6 for Carex. 
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Figure 12. Leaf (shaded top layer) and residual (unshaded 
bottom layer) resistances to co2 transfer of 
Deschampsia caespitosa and Geum rossii as a 
function of WVD at a leaf temperature of 20°C , 
900 µe·m- 2 •sec-1 (400 to 700 nm) wher e photo
synthesis was light-saturated and a ~s of 
near -1 bar. Each point represents the mean 
of 8 replicates. Stomata! resistance ± one 
standard deviation ranged from 0.3 to 0.7 for 
Deschampsia and 0.4 to 1.6 for Geum. 
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Figure 13. Leaf (shaded top layer) and resi dua l (unshaded 
bottom layer) resistances to COz transfer of 
Dupontia fischeri and Carex aquatilis as a 
function of WVD and ~sat a leaf temp erat ure of 
20°C and 900 µe·m-2,sec-1 (400-700 nm) where 
photosynthesis was light-saturated. Each point 
represents the mean of 4 to 8 replicates. For 
Dupontia stomatal resistance± one standard 
deviation ranged from 0.5 at high ~s to 74.8 
at low ~ 5 ; whereas, residual resistance± one 
standard deviation ranged from 2.5 at high ~s 
to 731.6 at low ~s· For Carex stomatal resistance 
± one standard deviation rang ed from 1.0 at high 
~s to 3.3 at low ~s; whereas, residual resistance 
± one standard deviation ranged from 2.9 at high 
~s t o 21.2 at low ~s· 



so 

Dupontio fischeri 
-' E 
0 

0 
Q) 

. !?.. 

w 
(.) 
z 
~ 
(/) 

u5 
w 
0:: 100 

N 
0 
(.) 

0 

500 

-400 
' E 
0 



61 



Figure 14. Leaf (shaded top layer) and r e si dual (unshaded 
bottom layer) resistances to COz transfer of 
Deschampsia caespitosa and Geum rossii as a 
function of WVD and ~sat a leaf temperature of 
20°C and 900 µe-m- 2 •sec-l (400-700 nm) where 
photosynthesis was light-saturated. Each point 
represents the mean o f 4 to 8 replicates. For 
Deschampsia stomatal resistance ± one standard 
deviation ranged from 0.3 at high ~s to 8.4 at 
low ~s; whereas, residual resistance± one 
standard deviation ranged from 1.5 at high ~s 
to 944.1 at low ~s· For Geum stomatal resistance 
± one standard deviation ranged from 0.4 at high 
~s to 10. 2 at low ~ 9 ; whereas, residual resistance 
± one standard deviation ranged from 2.7 at high 
~s to 275.2 at low ~9 • 
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resistance was r'. However, as noted earlier, r', was an important 
r s 

controlling resistance at the higher 1 levels. A general pattern 
s 

of increasing r' with decreasing 1 was exhibited by all four 
r s 

species. However, the wet site species, Deschampsia and Dupontia, 

exhibited an earlier, sharper rise in r' as compared to the wider 
r 

ranging species, Geum and Carex. For example, in Deschampsia and 

-1 
Dupontia r' reached 80 sec·cm before~ dropped to -6 bars. 

r s 

However, these high r' were not exhibited in Geum and Carex until 
r 

~ approached -10 bars. 
s 

Since r~ as calculated in this study includes respiratory CO
2 

loss, the effect of increasing soil moisture stress upon dark 

respiration was investigated (Figures 15 and 16). In all four species 

there were no statistically significant increases in dark respiratory 

rates as soil moisture stress increased. In fact, as 1 declined, 
s 

there was a statistically significant decrease in respiration of 

Dupontia. Thus, the marked increases in the r' noted in all four 
r 

species as 1 was lowered was not likely due to increased mitochondrial 
s 

respiration as can be assayed in the dark. There remains, however, 

the possibility that phot or espiration may increase when water stress 

intensifies (Ludwig and Canvin, 1971b). 

Water use efficiencies which are taken as photosynthesis/ 

transpiration ratios are presented in Figures 17 and 18. The wet 

site species, Dupontia and Deschampsia, exhibited higher water use 

efficiencies for photosynthesis at high~ levels; however, as~ 
s s 

decreased, the water use efficiencies of Carex and Geurn exceeded 

those of the wet site species. 
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Figure 15. Dark respiration co
2 

losses of Dupontia fischeri 
and Carex aquatilis at a high (e) and low (X) 
f 8 as a function of leaf temperature. Each 
point represents the mean of 4 replicates with 
associated± one standard deviation. 
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Figure 16. Dark respiration CO2 losses of Deschampsi a 
caespitosa and Geum rossii at a high (I) 
and low (X) ~s as a function of leaf 
temperature. Each point represents the mean 
of 4 replicates with associated± one 
standard deviation. 
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Figure 17. Photosynthesis/transpiration ratios of Dupontia 
fischeri and ~arex aquatilis as a function of 
WVD and IJ'5 ataleaf temperature of 20°C and 
900 µe·m-l•sec-1 (400-700 nm) where photo
synthesis was light-saturated. Each point on 
the response surface represents the mean of 4 
to 8 replicates. For Dupontia ± one standard 
deviation ranged from 5.8 to high IJ's to 0.1 at 
low IJ's.; whereas, ± one standard deviation for 
Carex ranged from 5.0 at high IJ's down to 1.4 
at low IJ's. 
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Figure 18. Photosynthesis/transpiration ratios of Deschampsia 
caespitosa and Geum rossii as a function of WVD 
and~ at a leaf temperature of 20°C and 900 
µe·m-t sec- 1 (400-700 nm) where photosynthesis 
was light-saturated. Each point on the response 
surface represents the mean of 4 to 8 replicates. 
For Deschampsia ± one standard deviation ranged 
from 5.2 at high ~s to 0.4 at low ~s; whereas± 
one standard deviation for~ ranged from 4.2 
at high fs to 0.7 at low ~s· 
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Discussion 

Depression of photosynthesis due to increasing water stress 

has been well established for a wide range of plant species 

(Slatyer, 1967; Kramer, 1969; Kozlowski, 1972; Hsiao, 1973). The 

tundra species examined in this study also showed a general decline 

in photosynthetic capacity as water stress increased; however, 

there were important differences between the wet site species, 

Dupontia and Deschampsia, and the more widely distributed species, 

Carex and Geum. The photosynthetic capacities of the wet site 

species were higher than those of the wid e r ranging species under 

conditions of low soil moisture stress, However, this trend was 

offset by the ability of the wider ranging species to maintain greater 

photosynthetic c apacity as water stress increased (Figures 9 and 10). 

These trends would sugge st that given an unstressed soil 

moisture condition, the wet site species would exhibit higher carbon 

gain per unit leaf material than the wider ranging species in the wet 

microsites. Howeve r, in the more exposed habitats or during 

particularly dry years, species such as Carex and Geum would be able 

to maintain a more favorable car bon gain per unit leaf area. This 

general pattern would, of course, be tempered by a number of other 

factors including the number of leaves produce d as well as t he 

productive period for each leaf. For example, Geum typically exserts 

about ] 0 leaves per growing season, where as Deschampsia typically 

produces up to 5 leaves (Johnson and Caldwell, 1974) . 

many species, declines in photo sy nthesis with increasing water stress 
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are due principally to increased stomatal resistances, r' (e.g., 
s 

Troughton, 1969; Pasternak and Wilson, 1973). However, additional 

evidence has been accumulating which suggests that the residual 

resistance component, r', may also be importan t in explaining a substan-
r 

ial degree of the photosynthetic depression (Ga le, Kohl, and Hagan, 

1966; Boyer and Bowen, 1970; Redshaw and Meidner, 1972; DePuit 

and Caldwell, 1975). 

The importance of both r' ·and r' in explaining photosynthetic 
s r 

declines with increasing water stress is apparent from the results 

of this study (Figures 11, 12, 13, and 14). In all four species, 

r~ comprised the largest component of the total resistance to CO
2 

uptake under any combination of atmospheric and soil moisture stress. 

Although declines in photosynthe s is were associated with both r' 
s 

and r' as '¥ decreased, r' typically showed the largest increase. 
r s r 

However, when'¥ was greater than -5 bars, r' usually showed the 
s s 

largest increase and generally exerted the controlling influence 

in de pre ssing photosy n t hetic rat e s. It is appa r ent that either 

r' or r' can be the primary resistance respo nsible for photo-
s r 

synthetic decli ne dependi ng on th e particular s et of conditions. 

These results suggest that extrapolations of photosynthesis from 

onl y r' measurements as has been done fo r o ther alpine tundra 
s 

species (Ehleringer and Mil ler, 1975) may be somewhat tenuous. 

At some point in the series of decreasing '¥ levels, r' 
s r 

increased sharply resulting in large declines in photosynthesis for 

all species studied. The wet site species f rom both tundra areas 

exhibited this marked increase in r' at signif ic antly higher'¥ 
r s 



than the wider ranging species from both the alpine and arctic 

sites. These increases in r' might be partially attributed to 
r 

increases in respiratory co
2 

loss. Increased dark respiratj_on has 

been found for some arid and Mediterranean species under high 

moisture stress (e.g., Mooney, 1969; DePuit and Caldwell, 1975). 

However, the results from this study indicate that this is not 
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the case for these tundra species. Dark respiration did not increase 

with water stress (Figures 15 and 16) which is in agreement with 

reports for other species (e.g., Greenway and Hiller, 1967; Boyer, 

1971). These results suggest that the sharp increases in r' 
r 

may involve other causes such as increased photoresp ir ation, 

alterations of membrane integrity, chloroplast disruption, or enzyme 

function (e.g., Ludwig and Canvin, 1971; Parker, 1972). Although 

normal mitochrondrial respiration as assayed in the dark may be 

somewhat depre ssed when the plant is in the light (Jackson and 

Volk, 1970), at least part of the respiratory co
2 

losses from 

leaves in the light may be indicated by dark respiration rates. 

Photorespiration has not bee n assessed in this stu dy and may behave 

quite differently than dark respiration when the se plants are 

under wat e r stress. 

Under high~ , increasing atmospheric moist ure stress resulted 
s 

in decreased photo syn the tic capacitie s to a gre ater ext ent in the 

wet site species than in the wider rangin g species. Even though 

all four species exhibited some increase in r', only t he wet site 
s 

specie s showed a concomitant increase in r'. 
r 

The incr.:e ased r' 
r 

and r' in the wet site species were associate d with decre as es in 
s 
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leaf water status. Thus, not only might the increase in r' be r 

attributed to lowered ~1 , but increased r~ might also have resulted 

simply from ahydropassivereduction in stomatal aperture resulting 

from changes in bulk leaf water status. Such hydropassive stomatal 

mechanisms have been well established for some crop species (e.g., 

Kanemasu and Tanner, 1969; Duniway and Durbin, 1971). 

In contrast, the wider ranging species exhibited no significant 

increase in r' and associated declines in leaf water status. Thus, 
r 

thestomatalmechanism of the wider ranging species may have responded 

directly to the WVD gradient and hence prevented changes in the 

bulk leaf water status. This has been reported in a variety of 

other species by Lange et al. (1971), Schulze et al. (1972), 

Comacho-Bet al. (1974), and Hall and Kaufmann (1975). This mechanism 

might have allowed a particularly significant stomatal occlusion in 

leaves of Carex which in turn abetted maintenance of pre-stress 

leaf water status. A more moderate increaseinr' in Geum, the other 
s 

wider r a nging species, suggests that additional factors may have 

played a significant role in maintaining ~l in this species. Other 

studies, for example, have shown that Geum exhibits a lower 

liquid-phase resistance to water transport in the plant than the 

other three species and will be discussed in detail in Chapter V. 

Lange et al. (1971) have proposed that the mechanism of rapid 

stomatal response to WVD gradients may involve peristomatal 

transpiratio n where guard cells may respond directl y to changes in 

leaf-t o-at mosphere vapor pressure gradients through e ffect s of 

turgor on guard cell walls. This response mecha nism may provide 
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an adaptive advantage for these wider ranging species in restricting 

water loss and thereby preventing the development of water stress 

within the mesophyll tissues of the leaf. This would allow a 

more sensitive mechanism for stomatal closure in these wider 

ranging species than the apparent hydropassive stomatal mechanism 

of the wet site species. 

The wet site species typically exhibited higher water use 

efficiencies at high~; however, as~ decreased, water use 
s s 

efficiency of the wider ranging species exceeded those of the wet 

site species (Figures 17 and 18). Although reduced stomatal aperture 

increased water use efficiency in all of the species, since r' r 

comprises such a large portion of the total CO
2 

uptake resistance 

for these plants, it also necessarily plays a large role in 

determining their water use efficiency. 

If this water use efficiency for photosynthesis corresponds 

to water use efficiency for growth in the field, the differences 

in efficiency be twee n species could be an important factor in 

partially explaining distribution patterns of these tundra 

species. The wet site species may hav e evolved mechanisms which 

contribute to high photosynthetic rates under wet meadow conditions. 

At the same time this specialization may have restricted the ability 

of these wet site species to maintain photosynthetic carbon gain 

at appreciable levels under moisture stress. This is in contrast 

to the wider ranging species which appear to have a more generalized 

strategy. Although photosynthetic rates of Geum and f!E_ex are not 



as high under favorable moisture conditions, they are able to 

maintain higher photosynthetic rates over a wider range of soil 

moisture regimes. 
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The results of this study show that tundra plants exhibit 

different gas exchange behavior with respect to moisture stress 

and suggest that these responses may be one important contributing 

factor in determining the microsite distributions of these species 

in tundra areas. 
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CHAPTER V 

LABORATORY WATER RELATIONS STUDY 

Introduction 

Although not all habitats within tundra environments are 

constantly under moisture stress, it seems that plant moisture stress 

may develop in many years in the more exposed sites and in very dry 

years may even occur in the more mesic tundra microsites. Conse

quently, tundra species have likely evolved different physiological 

adaptations depending upon their local distribution. Indeed, the 

results discussed in Chapter IV showed that although tundra species 

restricted to more moist sites have higher net photosynthetic 

rates under conditions of low moisture stress, their photosynthetic 

rates declined more rapidly with increasing water stress than those 

of wider ranging species. Furthermore, these results suggested 

that additional phy s iological mechanisms besides leaf diffusive 

resistances may be involved. 

Several authors have noted th at other physiological processes 

such as cell growth may be inhibit ed at much lower water stress levels 

than processes such as photosynthesis (e.g., Cleland, 1967; Hsaio, 

1973). Thus, even though water st ress may not be severe enou gh to 

limit primary production through depression of photosynthet i c rates 

in these tundra species, productivity limitation by depressed growth 

rates may occur more fret1uently. The .i.nvesti. ga U.ou::; r e1)orLe<l he1 ·e 

were undertaken to determine additional attr ibutes which may be 



important contributing factors in determining the distributions 

of tundra species. 

Methods 
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The alpine tundra plant species examined were Deschampsia 

caespitosa and Geum rossii, and the arctic tundra species investi

gated were Dupontia fischeri and Carex aquatilis. Deschampsia and 

and Dupontia are typically found in wet meadow habitats in their 

respective tundras, whereas Geum and Carex cover a wider range of 

habitats from wet meadows to somewhat drier, more exposed areas. 

A detailed des c ription of the tundra areas where these species were 

obtained as well as the laboratory gr owth techniques are presented 

in Chapter II. In addition, the same gas exchange equipment and 

techniques as in Chapt er 1V were used in this study. Water vapor 

leaf diffusive resistances were calculated as described in Chapter I. 

Stomatal diffusion resi st ance, r, as used in this study incl udes 
s 

a le a f boundary layer resistance, ra, which was considered to be 

small for these microphyllous plants under conditions of rapid 

-1 
convection (-1 m•sec ) in the gas exchange cuvettes. For example, 

using convective coefficients of Gates and Papian (1971), at this 

convection level r 
a 

tundra species. 

-1 
would be less than 0.1 s e c•c m for these 

The water potential components of leaf discs from th e four 

species were determined under a range of soil moisture conditions 

using a psychrometric technique described in detail by Brown (1975). 

Each psychrometer assembly contains two Pe ltie r thermocouple 

psychrometer junctions mounted in a stainless steel housing. 
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A leaf disc cutter is incorporated into the psychrometer assembly 

and thereby minimizes leaf evaporative losses between the time of 

leaf disc excision and sealing in the psychrometer assembly. After 

leaf disc excision and sealing, the psychrometer assemblies were 

placed in a water reservoir which allowed stable temperature condi

tions. After a temperature and vapor pressure equilibration period 

of one hour, a switching unit (EMCO Model CU-401) with a Keithley 

microvoltmeter was used to measure the microvolt output of each 

psychrometer after a Peltier cooling period of 15 sec. These outputs 

were converted to '¥
1 

from individual psychrometer calibrations 

against saturated NaCl solutions of known molality. 

Immediately after '¥
1 

was measured, the intact psychrometer 

assemblies were frozen to near -40°C. These intact psychrome.ter 

assemblies were then allowed to slowly warm to room temperature in 

order to achieve maximum cellular disruption (Sakai and Yoshida, 

1967), and then the psychrometric value was again determined. Subse

quent reduction of the data after freezing and thawing resulted in 

determination of '¥TI and '¥m. Evidence of Noy-Meir and Ginzburg 

(1969), and Miller (19 72) suggests that at high '¥ 1, the '¥Tr component 

often exceeds '¥m, whereas at low '¥
1

, the '¥m component may be more 

dominant. Leaf turgor pressure expressed as f ca n then be calculated 
p 

from the following equation: 

'¥ = '¥
1 

- ('¥ + '¥) (bars) 
p TI m (4) 

where '¥
1 

is leaf water potential, '¥TI is osmot ic pote ntial, and '¥m 

is matric potential. 
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Since the water relations of leaves can change with age and 

stage of development (Levitt, 1972), only leaves of approximately 

the same age and vegetative stage were used. The leaves used were 

the largest, most fully expanded leaves on the plant with the leaf 

disc samples being take approximately 3 cm from the tip of the leaf. 

Results and Discussion 

All relationships discussed in this section are statistically 

significant at the .95 level. The effect of increasing atmospheric 

stress (increasing WVD) and increasing soil moisture stress 

(decreasing I!') on water vapor diffusive resistance, r, was 
s s 

investigated for each species (Figures 19 and 20). Although alpine 

species exhibited lower r than th e arctic plants, species with 
s 

similar distributions from each of the tundra areas showed similar 

responses. Even though all four tundra species exhibited some 

increase in r under high I!', only the wet site species showed a 
s s 

concomitant decrease in 1¥
1

. As suggested in Chapter IV, this 

increased r might have resulted from a hydropassive reduction in 
s 

stomatal aperture resulting from changes in bulk leaf water status. 

In contrast, the wider ranging species exhibited no decline in 

1¥
1 

as WVD increased at hig h 1/'s. As a result, it was suggested that 

the stomatal mechanism of the wider ranging spe ci es may have 

responded directly to the WVD gradient and hence prevente d changes 

in the bulk leaf water status. 

However, this more sensitive stomatal mechani sm i n Geum and 

Carex seems to be overridden as I!' increased . ,.Jith decreased 1¥ 
s s 
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Figure 19. Leaf diffusive resistances to water vapor 
transfer of Dupontia fischeri and Carex 
aquatilis as a function of WVD and \[Is at a 
leaf temperature of 20°C and 900 µ e· m-2 •sec-l 
(400-700 nm) where photosynt hes is was ligh t 
s at urated. Each poin t on the response surface 
represents the mean of 4 to 8 r eplicates. Leaf 
diffusive r esistance ± one standard deviation 
ran ge d from 0.5 at hig h o/8 to 7.5 at low \[Is 
for Dupontia and f r om 1. 0 at high \[Is to 3. 3 
at low \[Is fo r Carex . 
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Figure 20. Leaf diffusive resistances to water vapor 
transfer of Deschampsia caespitosa and Geum 
rossii as a function of WVD and Ill at a leaf 
temperature of 20°C and 900 µe·m-~•se c-1 
(400-700 nm) where photosynthesis was light
saturated. Each point on the response 
surface represents the mean of 4 to 8 replicates. 
Leaf diffusive resistance± one standard 
deviation ranged from 0.3 at high Ills to 8.4 
at low Ills for Deschampsia and from 0.4 at high 
Ills to 10.2 at low Ills for Geum. 
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Carex and especially Geum maintained lower r than species 
s 
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typically restricted to wet tundra areas, Dupontia and Deschampsia. 

As a result, at high~ the stomata of Geum and Carex seem to 
s 

respond directly to the WVD gradient, whereas with decreased~ 
s 

the stomatal mechanism may respond mainly to changes in bulk leaf 

water status. These results of greater r in species restricted 
s 

to wet tundra areas are contrary to the results of Mooney, 

Billings, and Hillier (1965) where broad leaf plants from moist 

alpine tundra areas in the California Sierra Nevada exhibited 

little control over transpiration as compared to species from drier 

sites. Similarly, Ehleringer and Miller (1975) found that broad 

leaf plants from wet alpine tundra meadow areas on Niwot Ridge in 

Colorado exhibited higher leaf resistances than the same species 

growing on drier, more exposed sites. These differences in stomat al 

response underscore the caution which should be used in extrapolating 

the results of a few species to a generalization for all species 

even wit~in a geographically similar area. 

The results of this present study seem to suggest that~ 

and Carex have mechanisms which allow them to maintain a favorable 

leaf water balance over a rather broad range of soil moisture regimes. 

Such a mechanism may be the ability of Geum to maintain a low liquid 

phase resistance from the soil to the leaf. I nde ed, specie s 

differences for this resistance term have been found (e.g., Newman, 

1969a; Hansen, 1974b). Most of these studies used the generalized 

equation of van den Honert (1948) as an acceptable approximation 

for the resistances of water flux through the soil -p lant system: 
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R + R = s p 
-1 

(bar· sec• cm ) (5) 

where R and R are the resistances to water flow in the soil and 
s p 

plant, respectively, ~sis the soil water potential, ~l is the 

leaf water potential, and Tis transpiration or water flux rat e 

through the system. 

The results presented in Figures 21 and 22 show the relation

ship of liquid phase water transfer resistance to flux rate. This 

non-Darcy response phenomena of decreasing R + R with increasing 
s p 

water flux rate has been noted for other species as well (e.g., 

Stoker and Weatherley, 1971; Boyer, 1974). At a flux rate of 1000 

-2 -1 
mg H20·dm ·hr the Rs 

6 4.5, 7.5, and 1.5 x 10 

and Geum, respective ly. 

+ R resistances were approximately 5.0, 
p 

-1 
bar·sec·cm for Dupontia, Carex, Deschampsia, 

Thus, Geum was able to maintai n a lower 

R + R than the other species. This may be due to higher root 
s p 

permeability, a higher rooting density, or a larger root surface 

area. Although Geum has a tap root system unlike the fibrous root 

systems of the other species, rooting depth was not a factor since 

all the species were restricted in pots of the sa me size. However, 

in the field the ability of g_~ to extend its root system to more 

than a meter in depth may be an importan t advantage in utilizing 

water at greater depths. 

Since it is well established th at decre as e in guard cell turgor 

causes the stomatal pore to occlude (e.g., Slatyer, 1967; Kozlowski, 

19 72), another mech anism which may be responsible for relatively 

low r in the wider ranging species at low~ may be a stomatal 
s s 

mechanism which is not as sensitive to tur gor pre ssure decline as 
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Figure 21. Liquid phase water transfer resistances (Rs+ Rp) 
for Dupontia fischeri and Carex aquatilis 
determined at a leaf temperature of 20°C, 900 
µe·m-2•sec-l (400-700 nm) where photosynthesis 
was light-saturated, and at varying soil moisture 
levels. Visual regression estimates have been 
drawn in to fit the individual data points. 
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Figure 22. Liquid phase water transfer resistances (Rs+~) 
for Deschampsia caespitosa and Geum rossii 
determined at a leaf temperature of 20°C, 
900 µe·m-2,sec- 1 (400-700 nm) where photosynthesis 
was light-saturated, and at varying soil moisture 
levels. Visual regression estimates have been 
drawn in to fit the individual data points. 
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compared with species restricted to wet tundra habitats. In 

order to examine this possibility, the pressure potential component, 

o/, was determined for each tundra species over a range of moi st ure 
p 

stress conditions. Since o/ as measured in this study represents 
p 

an integrated measure of the different cells in the entire leaf 

sample, o/ should be reasonably indicative of changes in guard cell 
p 

turgor. 

Figures 23 and 24 show the relationship of ~p and ~l in the 

four tundra species. The range of t
1 

values in this study represent 

values which these tundra species may experience in the field. As 

shown in Chapter III, t
1 

reached -30 bars in Des cha mpsia and -20 bars 

in Geum on Niwot Ridge in Colorado during the 1972 fie ld season. 

At Barrow, Alaska, during the 1973 field season r
1 

of -13 bars 

and -15 bars for Dupontia and Carex were measured, respectively 

(Stoner and Miller, unpublished data). Figures 23 and 24 suggest that 

apparently negative o/ develop in all four species. A number of 
p 

o/ (Kreeb, 1963; Noy-Meir 
p 

authors have also reported negative 

and Ginzburg, 1969; Warren Wilson, 1967; Brown, 1972). However, 

Slatyer (1967) suggests that negative o/ may be merely due to 
p 

technique artifacts. These artifacts may be the result of matric 

forces if the measurement technique includes certain matric forces 

in estimates of water potential for living tissue, but excl udes 

them for kil led tissue or may involve changes in the average o/ 
1T 

due to mixing of the solutions from the various phases, varying in 

composition and concentration, when the leaf i s killed (Noy-Meir 

and Ginzburg, 1967). Whether or not the negative o/ found in this 
p 
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Figure 23. 1p and 11 regressions with individual data points 
for Dupontia fischeri ,and Carex aquatilis with r 
values of .92 and .84, respectiv-;i_y. The regressions 
for both Dupontia and Carex are statistically 
significant at the .99 level but do not statistically 
differ from each other. 
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Figure 24. '!'p and '¥1 regressions with individual data 
points for Deschampsia caespitosa and Geum ross11 
with r values of .83 and .80, respectively. 
The regressions for both Deschampsia and Geum 
are statistically significant at the . 99 leve l 
and also are statistically different from each 
other at the .99 level. 
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study indeed are technique artifacts, the results between the we t 

site and wider ranging species should be reasonably comparable on 

a relative basis. 

97 

Deschampsia, an alpine tundra species restricted mainly to wet 

meadow habitats, exhibited a significantly different IJ'p and IJ'
1 

relationship than Gelllll, the wider ranging alpine tundra species. A 

similar trend is suggested in the arctic tundra species; however, 

because of the wider variability in data points for t hes e species, 

their IJ'
1 

and IJ'p slopes are not statistically diff erent . Alternatively, 

this lack of significance may reflect the smaller differences in 

magnitude between the arctic tundra habitats where Dupontia and 

Carex are found. 

For the alpine tundra species and possi bly for the arctic tundra 

specie s, a decline in IJ'1 would produce a larger decline in IJ'p in 

species restrict ed to wet meadow areas than in broader ranging species. 

These data also sugges t that the wet site species may exhibit larger 

IJ'p at high IJ'1 . I n addition IJ'1 and IJ's relati.onships (Figure 25) show 

that Deschampsia has a statistically significant steeper decline i.n 

IJ'
1 

with decreasing IJ' than Geum. These results combined with the IJ' s -- p 

and IJ'
1 

relatio ns hips suggest that fo r the alpine species and possibly 

for the arctic species a decrease in IJ' would pro duc e a larger decline 
s 

in IJ' in the wet site spe ci es than in the wider ranging species. 
p 

lf the ~J measurements in this study trul y reflect stornatal 
p 

turgor behavior, this may be one mechanism which may explain the 

maintenance of lower rs in Geu~ as compared with Deschampsia 
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Figure 25. ~land ~s regressions for Geum rossii, Dupontia 
fischeri, Carex aquatilis, and Deschamps i a 
£a~spitosa with r values of .83, .98, .93 and 
.84, respectively. All regressions are 
statistically significant at the .99 level. 
The regression for Geum is statistically 
different from Deschampsia at the .9 9 level. 
The other species regressions do not 
statistically differ from each other. The 
number of observations for each regression 
ranged from 16 to 20. 
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and possibly also for Carex as compared with Dupontia. As moisture 

stress increases, Deschampsia and possibly Dupontia would experience 

larger declines inf than the wider ranging species and would p 

result in a larger degree of stomatal occlusion in these wet 

site species. 

Since it is generally agreed that growth rate is promoted by 

an increase in turgor (e.g., Cleland, 1971; Ray, Green, and 

Cleland, 1972), the wet site species besides exhibiting earlier 

stomatal closure would likely show earlier declines in their 

growth rates than the wider ranging species with decreasing f. 
s 

This trend may be offset by the ability of the wet site species 

to maintain a higher f and hence a higher growth rate than the 
p 

wider ranging species at high~. As a result, at high f the 
s s 

wet site species would likely exhibit a higher growth rate than 

the wider ranging species. However, with decreases in f the wet 
s 

site species may exhibit larger declines inf and consequently 
p 

growth rate than the wider ranging species. The field results of 

Johnson and Caldwell (1974) working with the same two alpine 

tundra species suggest that at high f the wet site species, 
s 

Deschampsia, exhibited higher leaf relative growth rates than the 

wider ranging species, Geum. 

Differences in the relationship between turgor pressure and 

water stess have been noted by a number of authors (e.g., Wadleigh 

and Gauch, 1948; Brown, 1975). These differences in turgor 

pressure response may be associated with differences in cell wall 

elasticity which have been determined for a number of species 
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(Warren Wilson, 1967; Noy-Meir and Ginzburg, 1969; Tyree and 

Hammel, 1972). These differences in cell wall elasticity may likely 

affect the amount of change in turgor pressure for a given change 

in leaf hydration. As a result, for a given amount of water loss 

from a turgid cell, an elastic cell would tend to decrease in volume 

and thereby maintain turgor within the cell. In contrast a rigid, 

inelastic cell would tend to retain the same volume, and thus, 

would experience a relatively greater reduction in turgor. 

Cell wall elasticity, e, or coefficient of enlargement as 

Brayer (1952) prefers, can be calculated using the following 

equation derived by Warren Wilson (1967b): 

e = 
(1 + 1 ) - [(1n + 1 ) + 1] 

nt mt t mt P 

1 - R 
(bars) 

where (1 + 1 ) is the combined osmotic and matric potential 
nt mt 

(6) 

component at full leaf turgor and 1 and R represent the pressure 
p 

potential component and the relative leaf water content at some 

leaf hydration less than full turgor, respectively. 

Assuming that the rnatric potential component in plants is 

negligible compared to the osmotic potential component (Wiebe, 1966) 

and that the osmotic potential component is directly proportional 

to the solute concentration (Gardner and Ehlig, 1965): 

R = 
(1n + 1m) 

t t 
(1 + 1) n m (7) 

where (1 + 1) is the combined osmotic and matric potential component 
TI m 

at some leaf hydration less than full turgor. Then, substituting 

in eq uation 6: 
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(\J' + \jl ) - [ ('¥ + \jl ) + '¥ ] 
7T m 7T mt p (bars) (8) e t t t 

1 - ('¥ 1T + '¥ ) 
t mt 

('¥ 
7T 

\jl ) 
m 

As Noy-Meir and Ginzburg (1967) discuss, equations similar 

to equation 8 assume that plant tissue is a single phase of dilute 

ideal solution, enclosed by elastic wall which are either very thin 

or have no affinity to water. Furthermore, they point out that 

these assumptions may not hold true for highly complex and heterogenous 

leaf tissues because of their non-ideal solute behavior, non-linearity 

of leaf turgor with leaf water content, and possibly appreciable 

matric potentials. However, after considerable theoretical 

consideration, Noy-Meir and Ginzburg (1967) conclude that even 

though all of the above assumptions may not be entirely correct, 

present methods of partitioning water potential components of leaf 

tissue can still be considered as a first approximation. 

Table 2 shows cell wall elasticity, e, as calculated from 

equation 8 for the four tundra species. Values for the parameters 

used in calculation of e were taken from regressions of '¥
1

, '¥7T, 

and \J' and are also listed in Table 2. High values of e reflect 
p 

a relatively rigid, inelastic cell wall, whereas small e indicate 

a somewhat elastic cell wall. These calculations suggest that 

Geum and Carex, the wider ranging species, have more elastic cell 

walls as compared with the rather rigid, inelastic cell walls in the 

wet site tundra species, Deschampsia and Dupontia. As a result, 

for a given amount of water loss from a turgid cell, an el a stic 

cell as suggested for the wider ranging speci es would ten d t o dec re ase 



in volume and thereby maintain~ within the cell. In contrast, 
p 

a rigid, inelastic cell wall as suggested for the wet site 

species would tend to retain the same volume and thus would 

experience a relatively greater reduction in~. 
p 

Table 2. Cell wall elasticity, e, for De;schampsia caespitosa, 
Geum rossii, Dupontia fischeri, and Carex aquatilis. 
The values for the parameters used in calculating 
e were taken from regressions of ~

1
, ~, and~. 

7T p 

IP + ~ IP ~ + ~ e 
7T m p 7T m t t 

Species (bars) (bars) (bars) (bars) 

Descham2sia -13. 4 4. 7 -14. 7 52 
Geum - 9.5 1.2 -11. 2 8 
Du2ontia -12.9 4.0 -14.0 50 
Carex -11. 8 3.8 -13. 8 27 
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Cell wall elasticity may have a regulatory effect of partitioning 

declines in IP
1 

between IP and ~1 as suggested by Noy-Meir and 
p 7T 

Ginzburg (1969). They suggest that this mechanism may be an 

attribute if it diverts most of the drop in ~l to that component 

which damages the plant the least. For example, the relatively 

elastic cell walls suggested for the wider ranging species, _Geum 

and Carex, produce a rather small reduction in~ and necessarily 
p 

produce a larger reduction in~. As a result, Geum and Carex 
7T 

may be more sensitive to declines in~ than to increasing solute 
p 

concentration. In contrast, the rather rigid, inelastic cell 

wAlls sugeested fo, neschampsia and Dupontia would !'esult in a 



steeper decline inf than compared to~ and consequently may 
p TI 

be more sensitive to declines of fTI than to reductions of fp. 

The results of this study show that tundra plants have 

differential attributes with respect to moisture stress and 

suggest that these attributes may be important contributing 

factors indetermining the local distribution of these species. 
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However, it must be emphasized that on a long term survival basis 

these attributes may be tempered or even masked by the vast array of 

other biotic and abiotic factors which constitute the environmental 

complex of the plant. 



CHAPTER VI 

CONCLUSIONS 
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1. Although not all habitats within the alpine tundra area of Niwot 

Ridge in Colorado are constantly under moisture stress, moisture 

stress may develop in at least the more exposed fellfield sites. 

2. The photosynthetic capacity of Deschampsia caespitosa and 

Dupontia fischeri, tundra species restricted mainly to wet 

meadow areas, were higher under conditions of low moisture 

stress than those of the more widely distributed tundra 

species, Geu~ rossii and Carex aquatilis. 

3. The wider ranging tundra species were able to maintain greater 

photosynthetic capacity as soil moisture stress increased 

than the species typically restricted to wet meadow areas. 

4. Although the depression of net photosynthesis with water stress 

in these four tundra species was partially attributed to 

reduced stomatal aperture, with decreased soil water potential 

most of the decline in photosynthesis was due to a greater 

non-stomatal or residual resistance, indicating a direct impact 

of water stress on the photosynthetic apparatus. 

5. Although photorespiration may have increased with enhanced 

water stress, greater mitochondrial respiration is unlikely 

involved in the depression of photosynthesis in these four 

tundra species. 



6. The species mainly restricted to wet meadow tundra areas 

typically exhibited higher phooosynthesis/transpiration 

ratios than species having a wider ranging microsite distri

bution at high soil water potentials; however, as soil water 

potentials decreased, the more widely distributed tundra 
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species generally maintained higher photosynthesis/transpiration 

ratios. 

7. At high soil water potentials stomata of the species restricted 

typically to wet meadow tundra areas did not appear to 

undergo a closing response until the bulk leaf water potential 

decreased; however, reduced stomatal aperture of the tundra 

species with a wider distribution was noted before leaf water 

potential dropped. 

8. Although the stomatal mechanism of the tundra species restricted 

typically to wet meadow areas exhibited lower degrees of 

stomatal occlusion than the wider distributed tundra species 

at high soil water potentials, the wider ranging species 

exhibited lower levels of stomatal occlusion than the species 

restricted to wet meadow areas as soil water potential decreased. 

9. Geum rossii was able to maintain a lower liquid phase water 

transfer resistance from the soil to the leaf than the other 

tundra species. 

10. As moisture stress increased, Deschampsia caespitosa experienced 

a larger decline in bulk leaf turgor pressure than Geum rossii. 

11. Calculations of cell wall elasticity indicated that the wider 

ranging tundra species have more elastic cell walls as compared 



with the relatively more inelastic cell walls in the species 

restricted to wet meadow tundra areas. 
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