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ABSTRACT Ultra-dense network (UDN) is considered as a promising technology in 5G wireless networks.
In an UDN network, dynamic traffic patterns can lead to a high computational complexity and an excessive
communications overhead with traditional resource allocation schemes. In this paper, a new resource
allocation scheme presenting a low computational overhead and a low subband handoff rate in a dynamic
ultra-dense heterogeneous network is presented. The scheme first defines a new interference estimation
method that constructs network interference state map, based on which a radio resource allocation scheme is
proposed. The resource allocation problem is a MAX-K cut problem and can be solved through a graph-
theoretical approach. System level simulations reveal that the proposed scheme decreases the subband
handoff rate by 30% with less than 3.2% network throughput degradation.

INDEX TERMS Ultra-dense HetNets, graph theory, femtocell, MAX-K cut.

I. INTRODUCTION
The demand for ubiquitous availability of reliable and high
data rate mobile services is ever increasing. Mobile data traf-
fic demand has been predicted to have a 1000-fold increase
in the next 20 years [1], [2]. To meet the explosive capacity
increase of mobile communication systems, Ultra-dense Net-
working (UDN) has been widely considered as a promising
technology [3]. In addition, studies predict that more than
50% of voice calls and more than 70% of data traffic in the
future wireless networks originated from indoors [4]. Thus,
indoor femtocells (FCs) will play a significant role in the
5G network access, especially for low velocity or stationary
users [5]. Ultra-dense deployed FCs overlaid with traditional
macrocells (MCs) lead to a more advanced network, namely,
Ultra-Dense Heterogeneous Network (UDHN).

With the enormous growth of mobile devices capacity and
cloud computing, the latency of the communication, reliabil-
ity of the services, and pervasive availability of the networks
are among the most important performance metrics when
deploying 5G UDHNs. According to the METIS project,
there are mainly five features of 5G communication systems:
1) amazingly fast, 2) great service in a crowd, 3) ubiquitous

things communicating, 4) best experience follows you, and
5) super real-time and reliable connections [6]. In UDHNs,
there are a number of technical challenges [7], among which
one of the most important challenges is how to efficiently
allocate and utilize subband resources to improve the spec-
trum efficiency and mitigate interference. Furthermore, in
a dynamic UDHN, subband resource allocation should be
rather stable and any subband handoff should be swift.

There have been extensive ongoing researches on subband
resource allocation [8]–[10], which are mainly classified
into centralized approaches and decentralized approaches.
However, most of the existing schemes used in the traditional
heterogeneous networks(HetNets) will not be suitable in the
UDHN mainly due to two reasons. i) Existing decentralized
approaches converge slowly due to a large number of nodes
in the UDHN and thus real-time and reliable requirements
of UDHN are difficult to achieve. ii) Traditional centralized
approaches can achieve optimal/near-optimal performance
while the huge computational overhead stays as a concern.
Thus an efficient resource allocation scheme that provides
rapid and stable resource allocation decisions for a dynamic
UDHN is urgently needed.
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Lately extensive work have been done on dynamic interfer-
ence mitigation in UDHNs. In [11]–[17], the authors worked
on the resource allocation problem using a clustering based
graph scheme. In [11], clustering based resource allocation
scheme was investigated in a densely deployed femtocell
network. In that paper, the resource allocation problem is
formulated as a mixed integer non-linear program, and the
proposed scheme can achieve near optimal performance with
a reduced computational complexity. Anjum et al. [12] con-
sidered the real time interference and traffic characteristics
jointly in heavily overlapped femtocells by using a cluster-
ing scheme. In [13], a suboptimal subband assignment and
interference management algorithm was designed based on
an adaptive graph coloring approach and fractional frequency
reuse scheme. [11]–[13] can achieve a good performance
in controlling co-tier interference and cross-tier interference.
However they are less effective in handling dynamic network
conditions in an UDHN. In [14]–[17], dynamic network con-
ditions were investigated. In [14], a dynamic graph based
scheme was proposed to coordinate dynamic interference.
In that scheme, a two tier clustering scheme is used to divide
femtocells and UEs into several small groups. While the
proposed scheme can achieve a near optimal performance,
its potential high communication overhead is not evaluated.
In [15], a multi-cluster based dynamic subband assignment
method is discussed in UDNs. The scheme divides the entire
spectrum into two groups, namely dynamic group and static
group. Static UEs can get a stable transmit experience. But
the spectrum partition actually lowers down the spectral effi-
ciency. Further, the scheme presents a high computational
complexity. Yoon et al. [16] proposed an interference weight
calculation algorithm to reduce the computational complexity
of the dynamic cell clustering scheme. The computational
complexity can be reduced to half compared to the traditional
clustering based scheme, but the feasibility of this algorithm
in dynamic UDHNs is not discussed. In [17], an interference-
separation clustering based scheme is used to lower down
the communication overhead and computational complexity
in dynamic UDHNs. In this scheme, massive small cells are
divided into different small groups with different priorities to
reduce the complexity. This scheme can achieve a real time
resource allocation, while the spectral efficiency is low.

Subband handoff between different time slots has all been
ignored in the above papers. Unnecessary subband handoff
leads to a high latency, a high computation overhead, and a
low reliability of the services. To tackle this problem, in this
paper a new fast subband allocation schemewith low subband
handoff rate is proposed based on the graph clustering theory.
Further, a more flexible UFR approach is used to offer a
higher spectral efficiency in this paper. The proposed scheme
first presents the system model and proposes a potential
interference estimation method between different users in
HetNets, including intra-tier and inter-tier interference esti-
mation. A network Interference State Map (ISM) is con-
structed to compare the network state information between
different subband allocation time slots (TSs). Afterwards,

an advanced cluster-based subband allocation algorithm in
a universal spectrum reuse scheme is discussed and a fast
subband allocation scheme (FAS) based on the ISM and
subband allocation algorithm is presented.

The main contributions of this paper are summarized in the
following. First, a new fast subband allocation scheme with a
low subband handoff rate is developed. Second, a new inter-
ference evaluation model in two-tier ultra-dense deployed
heterogeneous networks is defined. Third, a new ISM model
is proposed to represent the interference in HetNets.

The remainder of this paper is organized as follows. The
system model is shown in Section II. In Section III, the fast
subband allocation scheme is elaborated. Section IV evalu-
ates the performance of the proposed scheme via simulations.
Section V draws the conclusion of the paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION
A. SYSTEM MODEL
In a two-tier UHDN, an MBS with a coverage radius RM is
located at the center with a number of FBSs densely deployed
within the coverage of that MBS. Two different UEs are con-
sidered, namely MUEs served by the MBS and FUEs served
by FBSs. Both MUEs and FUEs are uniformly distributed
with respective densities as λm and λf [18]. FBSs constitute
the femto-tier and the coverage area of each FBS is a circular
region with a radius of Rf . In an UDHN, different FBSs can
have overlapped coverage areas due to the high density of
FBSs. So the actual service area of FBSs induces a Voronoi
tessellation [19], as shown in Fig. 1.

FIGURE 1. The Voronoi Femtocell topology (1 stands for an FBS).

In the considered UDN, time domain consists of time slots
and the resource allocation decision is made every time slot.
Further, in each time slot t , n(m,t) MUEs and n(f ,t) FUEs
can join, leave or change their locations in the network. Each
cell, either an MC or a FC, constitutes an independent agent
that performs autonomous radio resource allocation decisions
with the objective of improving UE signal to interference
plus noise ratio (SINR) while guaranteeing UE quality of
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service (QoS). All the system configuration information is
accessible at the MBS. These information can include geo-
graphic locations of MUEs, FBSs and FUEs, the channel
fading parameters, and dynamic system information.

FIGURE 2. Proposed dense framework for Subband assignment.

As shown in the green marked part in Fig. 2, wireless links
and their respective received powers in this UHDN can be
classified into five types by following the same definitions
in [20]:
(1) Outdoor link from MBS to MUE m

Pk,tm = Pk,tB,mh
k,t
B,mG

k,t
B,m. (1)

(2) Outdoor-to-Indoor link from MBS to FUE jf

I k,tB,jf =
∑
m∈MMM

sk,tm Pk,tB,mh
k,t
B,jf G

k,t
B,jf . (2)

(3) Indoor link from FBS f to its serving FUE jf

Pk,tjf = Pk,tf ,jf h
k,t
f ,jf G

k,t
f ,jf . (3)

(4) Indoor-to-indoor link from FBSs in the different FCs to
FUE jf

I k,tF∗F∗F∗,jf
=

∑
f ∗∈F∗F∗F∗

∑
jf ∗∈Jf ∗Jf ∗Jf ∗

sk,tjf ∗P
k,t
f ∗,jf ∗

hk,tf ∗,jf G
k,t
f ∗,jf . (4)

(5) Indoor-to-Outdoor link from FBS to MUE m

I k,tFFF,m =
∑
f ∈FFF

∑
jf ∈JfJfJf

sk,tjf P
k,t
f ,jf h

k,t
f ,mG

k,t
f ,m. (5)

KKK = {k|k = 1, 2, ldots,K } stands for the set of total
subbands; MMM = {m|m = 1, 2, ldots,M} stands for the
set of MUEs located in the coverage area of the MBS;

FFF = {f |f = 1, 2, ldots,F} stands for the set of FBSs located
in the coverage of MBS; F∗F∗F∗ : {f ∗ ∈ F∗F∗F∗} stands for the set
of FBSs located in the coverage of MBS but exluding FBS f ;
JfJfJf : {jf ∈ JfJfJf } stands for the set of FUEs served by FBS f ;
JFJFJF : {JfJfJf ∈ JFJFJF } stands for the set of FUEs in the coverage
of the MBS; B stands for the MBS; Pk,tB,m (Pk,tf ,jf ) stands for
the transmit power from MBS (FBS f ) to MUE m (FUE jf )
on subband k in time slot t; hk,tB,m (hk,tf ,jf ) denotes the channel
gain from MBS (FBS f ) to MUE m (FUE jf ) on subband k
in time slot tand follows an exponential distribution; Gk,tB,m
(Gk,tf ,jf ) denotes the path loss from MBS (FBS f ) to MUE
m (FUE jf ) on subband k in time slot t . sk,tm is the subband
allocation indicator, i.e., sk,tm = 1 if subband k is assigned to
UEm in time slot t , while sk,tm = 0 otherwise. We assume the
same K channels are used in all the cells, including one MBS
and NF FBSs.
SINRk,tm represents the SINR for downlink transmission

from MBS to MUE m on subband k in time slot t and is
expressed as:

SINRk,tm =
Pk,tm

I k,tFFF,m + N0
. (6)

The SINR for downlink transmission from FBS f to FUE jf
on subband k in time slot t is given by:

SINRk,tjf =
Pk,tjf

I k,tB,jf + I
k,t
F∗F∗F∗,jf
+ N0

. (7)

I k,tFFF,m represents the interference from all co-channel FBSs to
MBS on channel k in time slot t; I k,tB,jf represents co-channel
interference from MBS to FBS jf on channel k in time slot t;
I k,tF∗F∗F∗,jf

represents co-channel interference from all other FBSs

to FBS jf on channel k in time slot t; N0 stands for the noise
level.

B. PROBLEM FORMULATION
FUEs in the serving area of each FBS are allocated orthogonal
resources from that FBS. Radio resources are allocated in
the unit of subband and each UE is assumed to be assigned
an equal number of subbands. Without loss of generality, it
is assumed that one subband is allocated to each UE. The
FAS scheme aims to construct a fast subband allocation while
minimizes unnecessary subband handoff among UEs. UEs
that stay in the same condition (including location, active/idle
state) in two consecutive time slots are defined as static
users (US ), which include static macro UEs (US

M ) and static
femto UEs (US

F ). Also, UEs that join, leave or change their
locations in two consecutive time slots are defined as dynamic
UEs (UD), including dynamic macro UEs (UD

M ) and dynamic
femto UEs (UD

F ). To save energy, FBSs serving no FUE are
turned off and they will only receive system control informa-
tion. If one off-FBS detects that there is any UE in its serving
area, this off-FBS will be turned on. The turned-off FBSs are
shown as white colored areas in Fig. 1. Only FBSs with active
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FUEs are allocated subbands. So the total number of FBSs
keep the same but the number of active FBSs may change
from time to time.

FIGURE 3. Network interference topology variation due to UE mobility.

Due to dynamics in the network, within two consecutive
time slots, the network interference topology can change.
Fig. 3.I is the network interference topology of red marked
area as shown in Fig. 2, where circles stand for UEs, solid
lines between different circles stand for co-channel interfer-
ence, and different colors stand for different subbands. The
corresponding interference matrix can be expressed as:

II =


iAA iAB · · · iAH

iBA
. . .

...
...

. . .
...

iHA · · · · · · iHH



=



1 1 1 0 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
0 1 1 1 1 0 0 0
0 0 0 1 1 1 1 1
0 0 0 0 1 1 1 0
0 0 0 0 1 1 1 1
0 0 0 0 1 0 1 1


. (8)

As UEs move, the network interference topology may
become Fig. 3.II and Fig. 3.III. The corresponding interfer-
ence matrix of II is:

III =



1 1 1 0 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 0 0 0 0 0
0 1 0 1 1 0 0 0
0 0 0 1 1 1 1 1
0 0 0 0 1 1 0 0
0 0 0 0 1 0 1 1
0 0 0 0 1 0 1 1


. (9)

Comparing interference matrices (8) and (9), one can see
that even though UEs A, C , D, and G change their respective
locations, the interference relationship between different UEs
still keep quite the same. Thus there is no need to change
the original subband allocations among UEs. In a different

scenario, as shown in Fig. 3.III, even though only UEs D
and E change their locations, the entire network interference
relationship changes and the corresponding new interference
matrix of III becomes:

IIII =



1 1 1 0 0 0 0 0
1 1 1 0 1 0 0 0
1 1 1 1 1 0 0 0
0 0 1 1 1 0 0 1
0 1 1 1 1 1 1 1
0 0 0 0 1 1 1 0
0 0 0 0 1 1 1 1
0 0 0 1 1 0 1 1


. (10)

From matrices (8) and (10), the network subbands need to
be re-allocated and we call this reallocation as subband hand-
off. The condition that triggers subband handoff is critical in
the FAS scheme. As such, subband handoff indicator (SSI) is
defined to represent the subband handoff. We have SSI tu = 0
when the following conditions are met.

sk,tu = sk
′,t−1
u ;

sk,tu = 1, ∀k, k ′ ∈ KKK , u ∈ UUU;
k = k ′.

(11)

Otherwise, SSI tu = 1. sk,tu (sk
′,t−1
u ) is the subband allocation

indicator. UUU = MMM ∪ JFJFJF is the set of all UEs in the coverage
area of MBS.

The objective of the proposed scheme is to minimize the
subband handoff frequency (SHF). The optimization problem
is formulated as:

min(

∑
t∈TTT SSI

t
u

|TTT |
),∀u ∈ UUU , (12)

where TTT is the set of time slots.

III. PROPOSED SOLUTION
A. INTERFERENCE ESTIMATION
In the FAS scheme, the subband resource allocation can be
decided based on the interferencematrix. InUDHNs, network
interference topology can be much more complicated than
what is shown in Fig. 3.

To further evaluate the total potential influence a UE
causes to the entire network when it uses a specific subband,
Accumulate Regional Average Interference Strength (AAS)
is defined. We use the coverage area as the evaluating area
of one FBS. The calculation method of AAS varies between
MUE and FUE. This paper follows the interference evalua-
tion method defined in [21] with some changes.

1) FUEs AAS
The total potential influence that a FUE causes to the entire
network in an UDN is defined in the same way in [21], which
is summarized in the following.

IAASf = ISAIf =

∑
f ∗∈F∗F∗F∗

1

1+ 2d2f ∗,fψf ∗
+

∑
m∈MMM

Pf dm,B2

PBdm,f 2
. (13)
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2) MUEs AAS
When an MUE uses a specific subband, the potential influ-
ence it causes to other MUEs needs to be evaluated. The AAS
from an MUE to other UEs is the AAS from MBS to all the
other MUEs and FBSs in the coverage of this MBS. Here
these two interference scenarios are discussed separately.
• AAS for Intra-tier Interference

IAAS(m∗,m) =
∑

m∗,m∈MMM
m∗ 6=m

1
SINRm∗

=
∑

m∗,m∈MMM
m∗ 6=m

1

PBd
−
α
2

m∗,B

Pm,Bd
−
α
2

m∗,Bλm∗,m

. (14)

In this paper, we assume the MBS equally divides its
transmit power among all subbands. So we have

IAAS(m∗,m) =
∑

m∗,m∈MMM
m∗ 6=m

λm∗,m, (15)

subject to: {
λm∗,m = 1, 2m = 2m∗;

$−1, 2m 6= 2m∗ .
(16)

$ stands for the antenna back loss; 2m stands for the
sector label of UE m.

• AAS for Inter-cell Interference
The total potential influence that a MUE makes to the
FBSs in an UDN is also defined in the sameway in [21]),
where the AAS for MUE m to FBSs is expressed as

I(FFF,m,AFAFAF ) = ISAIf

=

∑
f ∈FFF

PB

Pf
(
1+ 2d2f ,Bψf

) . (17)

df ,B stands for the distance between FBS f and MBS.

In summary, the AAS for MUEm, including both intra-tier
and inter-tier AAS, can be expressed as:

IAASm =

∑
m∗,m∈MMM
m∗ 6=m

λm∗,m +
∑
f ∈FFF

PB

Pf
(
1+ 2d2f ,Bψf

) . (18)

B. NETWORK INTERFERENCE STATE MAP
In this section we discuss the network interference state
map (ISM) construction process. The ISM covers an area of
2∗RM ∗

√
3RM with9 ∗0.866∗9 pixels, where the length of

one pixel ψ is the minimum distance between two different
users, 9 = 2RM

ψ
. The MBS locates at the center of the ISM

with a coordinate (0, 0). The coverage area of the MBS is
divided into three sectors, sector.0, sector.1 and sector.3. We
set the value of the pixels located outside the hexagonal MBS
coverage area as 0. The interference map includes two layers,
MUE layer and FBS layer, which are discussed separately in
the following.

1) ISM PIXEL WEIGHT FOR MUE LAYER
We first calculate the average interference weight hm(i, j) on
ISM pixel with coordinate (i, j). Without loss of generality,
sector.0 is used as the tagged sector for study.

IAASMMM =

∑
m∈MS0MS0MS0

IAASm . (19)

hm(i, j) =
IAASMMM

3 (2n− 1) nk
∑9

n=1
1

2n−1

. (20)

MS0MS0MS0 stands for the set of MUEs located at sector 0; nk is
the total number of pixels whose distance d from the center
point satisfies (n− 1) ψ < d ≤ nψ and d2 = i2 + j2. The
calculation of hn is detailed in Appendix. A. Thus ISM of
MUE layer can be constructed in Fig. 4. The ISM of MBS
tier changes from sector to sector. Within each sector, as long
as the number and locations of MUEs keep unchanged, the
ISM for that sector stays the same.

FIGURE 4. ISM for MUE layer.

2) ISM PIXEL WEIGHT FOR FBS LAYER
In an UDHN, the locations of FBSs in reality do not change
quite often. However, the active/idle state of each FBS can
vary from time to time. As each FBS has a Voronoi serving
area, the average interference weight hf (i, j) contributed by
FBS f to the ISM pixel in the coverage area of FBS f is:

hf (i, j) =
tf IAASf

nf
, (21)

nf =
Sf
ψ2 . (22)

tf is the FBS activation state indicator, i.e. tf = 1 if FBS f
is active (i.e., there are active FUEs in the serving area of
FBS f ), while tf = 0 otherwise. nf is the total number of
pixels in the coverage area of FBS f . Sf is the total coverage
area of FBS f . So the ISM of FBS layer can be constructed
in Fig. 5.
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FIGURE 5. ISM for FBS layer.

FIGURE 6. ISM.

When combining the ISMmaps fromMBS and FBS layers
one can get the ISM of the entire network, as shown in Fig. 6.

ISM (i, j) = hm(i, j)+ hf (i, j). (23)

C. ISM SIMILARITY CALCULATION
In the FAS scheme, similarity among ISMs in two con-
secutive time slots needs to be evaluated. Structural Simi-
larity (SSIM) has been proposed in [22] and [23] for that
purpose. Assume SSIM is calculated between t0 and t1.

SSIM (ISM t0 , ISM t1 )

= SSIM(0,1)

= S(0,1)
= l (t0, t1) · c (t0, t1) · s (t0, t1) , (24)

l (t0, t1) =
2µt0µt1 + C1

µ2
t0 + µ

2
t1 + C1

, (25)

c (t0, t1) =
2σt0σt1 + C2

σ 2
t0 + σ

2
t1 + C2

, (26)

s (t0, t1) =
σt0t1 + C3

σt0σt1 + C3
, (27)

µt0 =
1

H ∗W

H∑
i=1

W∑
j=1

ISM t0
(i,j), (28)

µt1 =
1

H ∗W

H∑
i=1

W∑
j=1

ISM t1
(i,j), (29)

σ 2
t0 =

1
H ∗W − 1

H∑
i=1

W∑
j=1

(
ISM t0

(i,j) − µt0

)2
, (30)

σ 2
t1 =

1
H ∗W − 1

H∑
i=1

W∑
j=1

(
ISM t1

(i,j) − µt1

)2
, (31)

σt0t1 =
1

H ∗W − 1

H∑
i=1

W∑
j=1

(
ISM t0

(i,j) − µt0

)
×

(
ISM t1

(i,j) − µt1

)
, (32)

subject to: 

C1 = (K1 × L)2 ,
C2 = (K2 × L)2 ,

C3 =
C2

2
,

K1 = 0.01,
k2 = 0.03,
L = ISMmax .

(33)

ISM t0
(i,j) stands for the interference weight of pixel (i, j) in the

ISM at t0; H stands for the height of the ISM, where H = 9;
W stands for the width of the ISM, where W = 0.8669;
ISMmax stands for the biggest interference weight on one
pixel. Normally ISMmax is attained in a highly dense situation,
where the distance between two nearest MUEs is defined as
dmin,m and the distance between two nearest FBSs is Rmin,f .
It is assumed that dmin,m = Rmin,f . The calculation of ISMmax
is provided in Appendix. B.

D. ADVANCED CLUSTER-BASED SUBBAND
ALLOCATION ALGORITHM(ASA)
The cluster-based subband allocation scheme has been dis-
cussed in [21]. Based on the T-HCDA algorithm proposed
in [21], in this paper we propose an advanced subband alloca-
tion algorithm that can better address dynamic conditions in
an UDN. In this scheme, the MBS makes the allocation deci-
sion, including the interference graph G(V ,E) construction
and subband resource allocation. The vertex set V includes
all the FBSs and all the MUEs, edge set E stands for the
interference relationship between different vertexes. KG is
the weight matrix to characterize the potential interference
between two vertexes. The calculation of KG is the same as
in [21].

Upon the construction of interference graph, the subband
allocation problem becomes a cluster based graph MAX-K
cut problem, in which UEs in the same cluster can share

1916 VOLUME 5, 2017



C. Niu et al.: Fast and Efficient Radio Resource Allocation in Dynamic UDHNs

the same subband. Assume that the number of subbands is
K = |KKK | and the weight between node i and node j is kgij. An
advanced cluster-based subband allocation algorithm (ASA)
is proposed to control the subband allocation process.

In the ASA algorithm, the nodes are partitioned into K dis-
joint setsDDD = DDD1 ∪DDD2 ∪ ...∪DDDK that maximize the weights
between the disjoint sets inG = (V ,E). We first assign every
node a certain interference weight label, where the weight
label of every node is:

LVLVLV = {lv|lv = IAASv , v ∈ VVV }. (34)

In the following process of ASA, there are two conditions:
• The initial cluster setDDD is empty.
We name this condition as original subband allocation
circulation (OSAC). OSAC consists of two steps. In Step
one, we first choose K nodes with the smallest label
as the cluster of K clusters. In Step two, the rest nodes
are assigned to the clusters one by one by following an
ascending label sequence. Only when the following con-
straints are satisfied can node v be assigned to cluster k:{

1KGk ≤ 1KGa, ∀a ∈ K ;
1KGk =

∑
u∈DDDk kgvu.

(35)

• The initial cluster setDDD is not empty.
We name this condition as a halfway subband allocation
circulation (HSAC). In the HSAC, the nodes that remain
in the cluster setDDDwill be assigned to the original cluster
that they stay in the last subband allocation time slot.
That means these nodes will not switch their subbands.
After that, the rest nodes that are not in DDD are assigned
to the clusters by following Step two of OSAC.

The pseudo-codes of the ASA algorithm are listed in
Algorithm 1.

E. FAST SUBBAND ALLOCATION SCHEME
We further propose a new Fast Subband Allocation (FAS)
scheme. It is assumed that the MBS will make the resource
allocation decisions and the MBS stores all the allocation
results. At each time slot, the FAS scheme consists of three
steps:

1) STEP 1: ISM CONSTRUCTION
In this step the MBS first constructs the ISM, defined as
ISM1, of the entire network, according to the method in
subsection.B. The ISM constructed in the previous time slot
is defined as ISM0.

2) STEP 2: ISM MATCHING
If ISM0

= ∅, go to Step 3 directly. Otherwise calculate SSIM
S(0,1) of ISM1 and ISM0. Compare the SSIM value with the
ISM Similarity Factor threshold Sth.
• If S(0,1) ≥ Sth,D0D0D0 is updated toDDD by keeping static UEs
inD0D0D0 and remove dynamic UEs fromD0D0D0.

• If S(0,1) < Sth,DDD is set to empty.

Algorithm 1 ASA Algorithms

Initialization: FFF ; MMM ;KKK ; VVV = FFF ∪ MMM ; KG =
[
kgij

]
N×N ,

N = |VVV |; NM = |MMM |, NF = |FFF |; NJf = |JfJfJf |, the number
of FUEs served by FBS is f ; LVLVLV is the label matrix of
every node; �v is the degree of vertex v;DkDkDk is the set of
nodes in cluster k .
function Label Process

2: Label every node v with lv, where lv = IAASv .
end function

4: function Cluster Process
ifDDD = ∅ then;

6: FromFromFrom LVLVLV ↓; ∀v ∈ VVV , k ∈ KKK ;
if cluster k is empty then

8: v→ DDDk ;
else

10: Calculate 1KGk =
∑

u∈DDDk kgvu;
k = argmin1KG;

12: v→ DDDk ;
end if

14: else
V ′V ′V ′ = {v|v /∈ DDD};

16: FromFromFrom LV ′ ↓; ∀v′ ∈ V ′V ′V ′, k ∈ KKK ;
if cluster k is empty then

18: v′→ DDDk ;
else

20: Calculate 1KGk =
∑

u∈DDDk kgv′u;
k = argmin1KG;

22: v′→ DDDk ;
end if

24: end if
end function

3) STEP 3: SUBBAND ALLOCATION
MBS assigns each UE to a cluster according to the ASA
algorithm and cluster set D1D1D1 is formed. The corresponding
variables are updated in the following.

• If S(0,1) ≥ Sth, bothD0D0D0 and ISM0ISM0ISM0 remain unchanged.
• If S(0,1) < Sth, update D0D0D0 and ISM0ISM0ISM0 with D1D1D1 and ISM1ISM1ISM1

respectively.

The corresponding algorithm flowchart of FAS scheme
is presented in Fig.7. The computational complexity of this
scheme consists of three parts. The first part comes from the
potential interference estimation, which has a computation
complexity O((ND)2), ND

= |UD
M ∪ U

D
FUD

M ∪ U
D
FUD

M ∪ U
D
F |. The second part

comes from ISM construction, which has a computational
complexity O(92) and is only a function of the network size.
The third part comes from the subband allocation, which
has a complexity of O( (N+N−N

D)(N−N+ND)
2 ) ≈ O((ND)2).

Thus the total computational complexity of the FAS scheme
is O((ND)2).
Since the cluster-based resource allocation is a roll polling

algorithm, in every polling circle, one UE is allocated to
a cluster. After N polling circles, the algorithm reaches
convergence. In this paper, we propose the FSA algorithm,
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FIGURE 7. FAS scheme flowchart.

FIGURE 8. Average UE throughput and Subband Handoff time (NHT) with
different similarity factor threshold Sth.

in which there are two kinds of polling process. In the com-
mon resource allocation polling process, N UEs join the
polling process. AfterN polling circles, the algorithm for sure
reaches convergence. In the fast resource allocation polling
process, ND dynamic UEs join the polling process. After ND

polling circles, the algorithm for sure reaches convergence.

TABLE 1. Simulation Parameters

TABLE 2. Path Loss Model

FIGURE 9. Average Subband Handoff frequency vs. dynamic UE ratio.

IV. SIMULATION RESULTS
In this section, the performance of the proposed FAS scheme
is evaluated via simulation. The simulation parameters are
listed in Table 1 by following 3GPP LTE specifications [24].

A 19 cell 57 sector cell configuration is used in the simu-
lation. For a better accuracy on interference evaluation, sim-
ulation results are only collected from the center 7 cells [25].
MUEs are randomly distributed over the MC areas and FUEs
are randomly distributed in the coverage area of FCs, both fol-
lowing PPP. The path loss model is introduced in Table 2 [26]
and the fading follows a Rayleigh distribution. The path-loss
from the BS (MBS or FBS) to an UE (MUE or FUE) depends
on whether that UE is indoor or outdoor, which is captured
by the indicator function. δ = 1 is for indoor and δ = 0 is
for outdoor. And in the following simulations, we define the
dynamic UE rate as: η = n(m,t)+n(f ,t)

|MMM |+|JFJFJF |
.
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FIGURE 10. Average throughput of UE vs. dynamic UE Rate. (a) Average MUE throughput. (b) Average FUE throughput.
(c) Average dynamic MUE throughput. (d) Average dynamic FUE throughput.

The performance of FAS scheme is compared with three
other schemes, namely optimal heterogeneous cluster-based
greedy scheme (OHCIG), interference-separation clustering-
based scheme (ISC) [17], and multi-cluster based dynamic
subband assignment (MC-DCA) [15]. As mentioned in
Section III, the total computational complexity of the FAS
scheme is O((ND)2). OHCIG scheme is a common polling
process. In every polling circle, N UEs join the polling
process. So the computational complexity of OHCIG is
O((N )2). Further, the computational complexity of ISC has
been proved by the authors [17], which is O((N )2). The total
computational complexity ofMC-DCA scheme, which is also
a common roll polling algorithm, is O((N )2) [15].
Fig. 8 shows the a Monte-Carlo experiment results of

optimal ISM Similarity Factor threshold Sth for the FAS
algorithm, where MU stands for all MUEs, FU stands for
all FUEs, MMU stands for dynamic MUEs, and MFU
stands for dynamic FUEs. As shown in Fig. 8.(a), when Sth
increases, the average throughput of MUEs increases slowly
and reaches a peak when Sth = 0.6. The average throughput
of MMUs increases with the increase of Sth and achieves
the biggest value when Sth = 0.8. Further, one can see

FIGURE 11. Average Subband Handoff frequency with different MUE
density.

from Fig. 8.(b) that the average throughput of FUEs can
reach two peaks at Sth = 0.6 and Sth = 0.8, respectively.
Fig. 8.(c) shows the subband handoff time (NHT) of each
UE averaged over 100 TSs. As Sth increases, NHT increases
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FIGURE 12. Average throughput of UE vs. MUE density. (a) Average MUE throughput. (b) Average FUE throughput.
(c) Average dynamic MUE throughput. (d) Average dynamic FUE throughput.

sharply and the value is 22.30 when Sth = 0.9, which means
on average a UE needs to switch its subband usage every 4
TSs. By taking both the average UE throughput and NHT
into considerations, Sth = 0.6 is selected in the following
simulation results.

Fig. 9 shows the average subband handoff frequency as a
function of dynamic UE rates. Fig. 10 presents the average
throughput of UEs with different dynamic UE rate. There are
two constraints that can affect the average subband handoff
frequency, the subband re-allocation in HMI and the num-
ber of static UEs in the entire network. Generally, as the
increase of Dynamic UE rate, the static UE rate decreases.
Since the average subband handoff frequency is a parameter
that indicates the unnecessary subband switch frequency of
static UEs, the value decreases with the increase of dynamic
UE rate, which is also proved in Fig. 9. Further, we can
see there is a peak when dynamic UE rate is 0.25. That is
because when the ratio of dynamic UEs is relatively low, the
subband re-allocation in HMI has a major influence on the
performance of average subband handoff frequency. Though
the re-allocation is not frequent, the influence is apparent, so
there is an increase trend when dynamic UE rate is smaller

FIGURE 13. Average Subband Handoff frequency vs. FUE density.

than 0.3. Also, we can see that when the dynamic UE ratio
varies, the performance of FAS scheme is better than the
other three schemes. When the dynamic UE rate is 0.4, the
average subband handoff frequency of FAS is 0.32, which
is only 70% of the OHCIG scheme. And at the same time,
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FIGURE 14. Average throughput of UE with different FUE density. (a) Average MUE throughput. (b) Average FUE
throughput. (c) Average dynamic MUE throughput. (d) Average dynamic FUE throughput.

as shown in Fig. 10(a), the average MUE throughput of FAS
scheme is only 0.75% worse than that of the OHCIG scheme
and the average FUE throughput of FAS scheme is only 0.5%
worse than that of the HCIG scheme. When it comes to the
dynamic UEs, the biggest gap of average UE throughput
between the FAS scheme and the OHCIG scheme appears
when the dynamic UE rate is 0.4, which is 2% for MMUE
and 0.5% for MFUE respectively.

Fig. 11 shows the average subband handoff frequency
with different MUE densities. Fig. 12 shows the average UE
throughput with different MUE Densities. From Fig. 11 we
can see that, when the MUE density changes, the subband
handoff restriction performance of the FAS scheme outper-
forms the other three schemes. When the MUE density is
6 ∗ 10−4 per m2, the subband handoff frequency of the FAS
scheme is 0.33 per TS, which is 30% better than the OHCIG
scheme, 19.5% better than ISC scheme and 42% better than
the DCA scheme. As a marginal trade-off of this performance
gain, as shown in Fig. 12, FAS has 0.2% MUE throughput
decrease and 0.23% FUE throughput decrease compared with
the OHCIG scheme. Dynamic MUE throughput shows the

biggest difference among different schemes. There is an aver-
age 1.4% decrease in dynamic MUE throughput in the FAS
scheme compared with the OHCIG scheme. When compared
with the other two schemes, ISC scheme and DCA scheme,
the FAS scheme presents an overall performance advantage
on all categories.

Fig. 13 shows the average subband handoff frequency with
different FUE densities. Fig. 14 shows the average throughput
of UEs with different FUEDensities. From Fig. 13 we can see
that, when the FUE density increases, the subband handoff
frequency of all the schemes deteriorates. When more FUEs
are located in the area under study, the more dynamics can
occur in that area, which leads to a more frequent subband re-
allocation. In general, the FAS scheme outperforms the other
three schemes. When the FUE density is 1.4 ∗ 10−3 per m2,
the subband handoff frequency of FAS scheme is 0.325 per
time slot, while the OHCIG scheme shows a value of 0.48 per
time slot. The trade-off of this 32.3% improvement is 3.2%
MUE average throughput degradation and 0.7% FUE average
throughput degradation for FAS. When compared with the
other two schemes, the FAS scheme has a lowerMUE average
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throughput performance than the DCA scheme but shows
better performance on other categories.

V. CONCLUSIONS
In this paper, a fast subband allocation scheme is proposed
to mitigate interference in an ultra dense dynamic hetero-
geneous network using cluster-based graph theory. In the
existing interference mitigation schemes, UEs are normally
assigned different subbands in different time slots, which
leads to a high subband handoff rate and a high computational
complexity. In this paper, a new subband allocation scheme
allows static UEs to keep their allocated subbands when the
network interference state meets certain conditions. Further,
the proposed scheme is more efficient and offers a higher
spectral efficiency than other frequency reuse schemes. The
proposed FAS has a computational complexity O((ND)2)
and achieves almost the same spectral efficiency compared
with the traditional UFR scheme, whose computational com-
plexity O(N 2) is much higher. The system level simulation
show that the FAS has advantageous performance on subband
handoff rate and latency while a reasonable trade-off on UE
throughput is noted.

APPENDIX A
For the calculation of hm(i, j):

IAASMMM =
3ω
πψ2 +

3ω

π
(
(2ψ)2 − (ψ)2

) + . . .
+

3ω

π
((
(nψ)2 − (n− 1) ψ

)2)
=

3ω
πψ2

9∑
n=1

1
2n− 1

, (36)

subject to: 
n = d

d
ψ
e,

ψ =
2R
9
.

One can get:

ω =
πψ2IAASMMM

3
∑9

n=1
1

2n−1

. (37)

So we have

hm(i, j) =
ω

π (2n− 1) ψ2nk

=
πψ2IAASMMM

3π (2n− 1) ψ2nk
∑9

n=1
1

2n−1

=
IAASMMM

3 (2n− 1) nk
∑9

n=1
1

2n−1

, (38)

where nk is the total number of pixels whose distance d with
the center point meets (n− 1) ψ < d ≤ nψ .

APPENDIX B
According to (19), we can get the limiting value of IAASf
whenwhen FBS f is within MBS’s coverage area.

IAASf ,max =
∑
f ∗∈F∗F∗F∗

1

1+ 2d2f ∗,fψf ∗
+

∑
m∈MMM

Pf dm,B2

PBdm,f 2
.

≈
NF − 1

1+ 2( ¯df ∗,f )2ψf ∗
+
NMPf
PB

, (39)

NF = |FFF |, (40)

NM = |MMM |, (41)

¯df ∗,f =
Rmin,f

∑N1
n1=1

∑N2
n2=1

√
(0.866n2)2+(n1−1+0.5n2)2

NF
,

(42)

subject to:

N1 = d
R1
Rmin,f

e, (43)

N2

2
=



min
(
2n1, d

R′

Rmin,f
e

)
,

n1 ≤
R

2Rmin,f
;

min
(
−2n1 + 4d

R
2Rmin,f

e, d
R′

Rmin,f
e

)
,

n1 >
R

2Rmin,f
;

(44)

Smin = 0.866R2min,f , (45)

NFSmin =
π

3
R21, (46)

2
√
3

3

√
R21 − (n1Rmin)

2
= R′. (47)

Then hf ,max can be expressed as

hf ,max =
IAASf ,maxψ

2

Smin
. (48)

According to (26), the limiting value of IAASm is derived
when FBS f is within MBS’s coverage area.

IAASm,max =
∑

m∗,m∈MMM
m∗ 6=m

λm∗,m +
∑
f ∈FFF

PB

Pf
(
1+ 2d2f ,Bψf

) (49)

≈ NM − 1+
NFPB

Pf
(
1+ 2 ¯df ∗,f

2
ψf

) , (50)

and

IAASMMM ,max = NM IAASm,max . (51)

Based on (28), hm,max can be found when n = 1.

hm,max =
IAASMMM ,max

3
∑9

n=1
1

2n−1

. (52)

Finally we have

ISMmax = hf ,max + hm,max . (53)
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TABLE 3. Frequently Used Notations (Ordered by Appearance)

APPENDIX C
See Table 3.
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