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Abstract The extent to which atmospheric nitrogen (N) deposition reflects land use differences and
biogenic versus fossil fuel reactive N sources remains unclear yet represents a critical uncertainty in
ecosystem N budgets. We compared N concentrations and isotopes in precipitation-event bulk (wet + dry)
deposition across nearby valleys in northern Utah with contrasting land use (highly urban versus
intensive agriculture/low-density urban). We predicted greater nitrate (NO3

�) versus ammonium (NH4
+)

and higher δ15N of NO3
� and NH4

+ in urban valley sites. Contrary to expectations, annual N deposition
(3.5–5.1 kgNha�1 yr�1) and inorganic N concentrations were similar within and between valleys. Significant
summertime decreases in δ15N of NO3

� possibly reflected increasing biogenic emissions in the agricultural
valley. Organic N was a relatively minor component of deposition (~13%). Nearby paired wildland sites
had similar bulk deposition N concentrations as the urban and agricultural sites. Weighted bulk deposition
δ15N was similar to natural ecosystems (�0.6 ± 0.7‰). Fine atmospheric particulate matter (PM2.5) had
consistently high values of bulk δ15N (15.6 ± 1.4‰), δ15N in NH4

+ (22.5 ± 1.6‰), and NO3
� (8.8 ± 0.7‰),

consistent with equilibrium fractionation with gaseous species. The δ15N in bulk deposition NH4
+ varied by

more than 40‰, and spatial variation in δ15N within storms exceeded 10‰. Sporadically high values of δ15N
were thus consistent with increased particulate N contributions as well as potential N source variation.
Despite large differences in reactive N sources, urban and agricultural landscapes are not always strongly
reflected in the composition and fluxes of local N deposition—an important consideration for regional-scale
ecosystem models.

1. Introduction

Atmospheric nitrogen (N) deposition derived from anthropogenic sources represents a significant N input to
most regions on Earth [Galloway et al., 2004]. Estimating these fluxes and ascertaining their sources over local
and regional scales is critical for assessing ecosystem impacts of N as well as for informing environmental pol-
icy and regulatory compliance. However, this endeavor is complicated by the presence of numerous biogenic
and/or anthropogenic sources—especially agricultural emissions from animal waste or fertilized soils, fossil
fuel combustion, and industrial emissions—that have heterogeneous spatial and temporal distributions.
Monitoring the chemical composition of precipitation represents a potentially effective strategy for assessing
spatial and temporal variations in atmospheric reactive N sources.

In the United States, the National Atmospheric Deposition Program (NADP) uses a network of precipitation
sampling sites explicitly located away from urban centers to estimate wet deposition of N at the national
scale [Bigelow et al., 2001]. Avoiding urban areas implicitly assumes that local urban emissions impact the
chemical composition of precipitation at a given urban site. It is generally assumed that urban areas domi-
nate oxidized N emissions, while agricultural areas dominate reduced N emissions to the atmosphere
[Hertel et al., 2012]. However, the impacts and relative importance of urban and agricultural emission hot
spots on the spatial and temporal distributions of N deposition remain understudied.

Discrepancies between estimated reactive N emissions and measured deposition fluxes suggest that existing
sampling networks have undersampled N deposition associated with urban and agricultural emission hot
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spots [Holland et al., 2005]. Total N deposition is typically higher in urban versus wildland areas [Fenn and
Bytnerowicz, 1997; Lovett et al., 2000; Fang et al., 2011; Bettez and Groffman, 2013; Rao et al., 2014]. Fossil fuel
combustion is concentrated in urban areas [Gurney et al., 2009] and represents the dominant source of
nitrogen oxides (NOx) to the atmosphere [Galloway et al., 2004]. Most NOx oxidizes to nitrate (NO3

�) within
hours [Beirle et al., 2011] and is subsequently removed by wet or dry deposition over time scales of minutes
to days [Hertel et al., 2012]. Several studies documented increased dry deposition and foliar N uptake adjacent
to roads due to vehicular NOx emissions [Ammann et al., 1999; Pearson et al., 2000; Redling et al., 2013].
Fertilized agricultural soils also represent a major NOx source, particularly in semiarid climates where low
moisture enhances microbial NO production [Davidson and Kingerlee, 1997; Hertel et al., 2012]. The impacts
of agricultural NOx on NO3

� deposition have received little attention in comparison with fossil fuel
combustion.

Ammonium (NH4
+) in soluble and particulate forms, in equilibrium with gaseous NH3 emitted to the atmo-

sphere, represents the other primary component of bulk N deposition. Together, these species (NHx) have
typical atmospheric residence times of hours to days; particulate NH4

+ has lower dry deposition velocities
and longer residence times [Hertel et al., 2012]. Agricultural regions with intensive livestock production and
fertilizer application are the primary source of global NH3 emissions [Galloway et al., 2004]. However, urban
areas increasingly represent a source of NH3 from vehicular fossil fuel combustion [Kean et al., 2000] in
addition to smaller sources from industry and other organic wastes (e.g., landfills and sewage treatment
plants) [Battye et al., 2003]. Organic N may contribute an important but highly variable component to total
deposition [Cape et al., 2011], although relationships between organic N and land use remain
poorly characterized.

Despite the strong association between land use and emissions of NOx and NH3 [Hertel et al., 2012], relatively
few studies have assessed impacts of intensive urban and agricultural land use on regional-scale (i.e., scales of
tens to hundreds of kilometers) patterns of bulk N deposition [Lohse et al., 2008; Tulloss and Cadenasso, 2015].
Previous studies often used forested urban to rural gradients, with natural or low-intensity agricultural land-
scapes as the end-member [Fenn and Bytnerowicz, 1997; Lovett et al., 2000; Fang et al., 2011; Bettez and
Groffman, 2013; Rao et al., 2014]. This work documented increased N deposition in proximity to urban centers,
usually by measuring N inputs in throughfall from forested canopies. Plant canopies can more effectively
scavenge atmospheric dry and fog deposition than a single planar surface (i.e., pavement or bare soil). The
presence of a plant canopy typically increases deposition fluxes relative to “bulk deposition,” defined here
as wet + dry deposition in the absence of overhanging plants [Fenn and Poth, 2004; Bettez and Groffman,
2013; Tulloss and Cadenasso, 2015]. Canopy throughfall deposition measurements clearly demonstrated
the potential importance of urban areas as hot spots of dry N deposition.

Despite the useful information gained from throughfall deposition measurements, this method is less
practical in heterogeneous urban and agricultural landscapes. First, plant species differ in their capacity to
scavenge atmospheric N [Lovett, 1994; Fenn and Bytnerowicz, 1997; Sparks, 2009], which can confound assess-
ments of land use impacts when vegetation covaries. Second, the deposition surface provided by a forest
canopy is not necessarily representative of the broader landscape, especially in semiarid environments with
few trees. Bulk deposition measurements provide a comparable metric for assessing regional differences in N
deposition [Lewis et al., 1984; Liu et al., 2013], despite their underestimation of dry N deposition to canopies.

The stable isotope (δ15N) compositions of NH4
+ and NO3

� complement measurements of N concentrations,
potentially providing insights into spatial and temporal variations in reactive N sources to the atmosphere.
Values of δ15N can reflect differences in sources and/or isotope fractionation during the production or emission
of atmospheric reactive N. Atmospheric NH3 from biogenic sources such as urine and manure, and also inorganic
fertilizer, often has low δ15N values (e.g.,�60–0‰ [Frank et al., 2004; Skinner et al., 2006; Felix et al., 2013, 2014]) as
a consequence of kinetic and equilibrium fractionation during NH3 volatilization. This isotopic variation arises both
from δ15N values of the source of mineralized NH3, as well as the extent of NH3 volatilization [Hogberg, 1997]. For
example, δ15N values in animal waste and fertilizer vary between 2–25‰ and�2–2‰, respectively [Bateman and
Kelly, 2007; Kendall et al., 2007], but can yield volatilized NH3 that is highly depleted in δ15N, e.g., �56 to �23‰
[Felix et al., 2013]. In contrast to biogenic or fertilizer sources, NH3 released or produced as a by-product of fossil
fuel combustion may have relatively higher δ15N values, e.g., �15 to �2‰ [Felix et al., 2013], given that kinetic
fractionation during a phase transition is less likely to be expressed. All else equal, greater values of δ15N of

Journal of Geophysical Research: Biogeosciences 10.1002/2016JG003354

HALL ET AL. N DEPOSITION, ISOTOPES, AND LAND USE 2341



NH4
+ in atmospheric deposition likely reflect greater contributions of combustion-derived NH3 relative to

biogenic/fertilizer NH3.

Variation in δ15N of NOx and atmospheric NO3
� has similarly been used to distinguish oxidized N

contributions from fossil fuel and biogenic sources [Elliott et al., 2007; Walters et al., 2015]. Median values
of δ15N of NOx from coal combustion (~10–20‰) are higher than median values of diesel and gasoline com-
bustion (~�20–5‰), which are both higher thanmedian soil NOx (~�30‰) [Li and Wang, 2008;Walters et al.,
2015]. When comparing regions with similar fossil fuel NOx sources, lower values of δ

15N in NO3
� likely reflect

an increasing biogenic emission contribution. In contrast to δ15N, values of δ18O in NO3
� may be

controlled by atmospheric conditions during NOx oxidation and provide less insight into NOx sources
[Michalski et al., 2003].

The capacity of δ15N observations in bulk deposition to assess and record the influence of local emission
sources on ecosystem N inputs remains largely unexplored. The origins of atmospheric NH3 and NO3

� are
of particular interest in the intermountain western United States because of their contribution to the
formation of fine atmospheric particulate matter (PM2.5). In this region, winter cold air pools facilitate the
accumulation of PM2.5 dominated by ammonium nitrate and ammonium sulfate, which represents a major
public health concern and a significant N source [Mangelson et al., 1997; Malek et al., 2006; Kelly et al.,
2013; Hall et al., 2014]. The isotopic compositions of NO3

� and NH4
+ in PM2.5 could provide insight into their

sources, i.e., from soil and biogenic processes versus fossil fuel combustion.

Here we collected bulk deposition samples on a precipitation-event basis at sites spanning two nearby
montane valleys in northern Utah, USA, with contrasting land use: the highly urban Salt Lake Valley and
the predominantly agricultural Cache Valley (Figure 1). Native vegetation is characterized by a patchwork
of grasses, shrubs, and bare soil; urban landscapes support a discontinuous and variable canopy of street
trees in a landscape dominated by pavement, lawns, and buildings; and agricultural areas consist of seasonal
or irrigated pastures and row crops and bare soil for much of the year. We asked: do bulk N deposition, N
speciation, or N isotope composition reflect land use differences within and between valleys and over time?
We predicted that bulk deposition in the urban Salt Lake Valley would contain more NO3

� relative to NH4
+ in

deposition as a consequence of greater vehicular and industrial NOx emissions in urban areas. We predicted
that bulk deposition in the agricultural Cache Valley would have higher NH4

+ concentrations due to the

Figure 1. Precipitation sampling locations in (a) the geographic context of the intermountain western United States, (b) the Salt Lake Valley, and (c) the Cache Valley.
The green squares represent the NADP sites, and the blue and red circles are the sites sampled for the present study. This color scheme is continued in the following
figures. The light-grey shaded areas of Figures 1b and 1c represent urban land use.
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prevalence of cattle feedlots and fertilized fields (which volatilize NH3 that is deposited as NH4
+ in acidic pre-

cipitation) and lower local fossil fuel NOx emissions. Similarly, we predicted that δ15N in NO3
� and NH4

+

would be higher in the Salt Lake Valley than in the Cache Valley due to increased fossil fuel versus
biogenic/fertilizer sources. To provide further context, we compared bulk deposition N concentrations with
wet deposition data from several regional NADP sites.

2. Materials and Methods
2.1. Study Area

The Salt Lake and Cache Valleys are characterized by a similar semiarid continental climate, with mean annual
temperature of 11 and 9°C and annual precipitation of 410 and 500mm, respectively, measured on the valley
floors. Precipitation consists mostly of winter snow and spring and fall rains, punctuated by occasional sum-
mer storms. The Salt Lake Valley (~25 × 50 km2) is a major metropolitan area with a human population>one
million, whereas the Cache Valley (~20 × 60 km2) is characterized by concentrated animal agriculture (cattle
feedlots and dairies), pasture, and row crops and has similar populations of cattle and people (approximately
100,000 each or >100 km�2; Utah State University Cooperative Extension, unpublished data). We assumed
that measurements of atmospheric N deposition at sites in these valleys would reflect local (within-valley)
emissions as well as an unknown regional contribution. There are no other major urban areas or hot spots
of concentrated feedlots/agriculture within hundreds of kilometers of these valleys. In the Salt Lake Valley,
within-valley fossil fuel combustion, and dilution and mixing with incoming cleaner air masses, can explain
themajority of the temporal variation in carbon dioxide (CO2) concentrations [Strong et al., 2011]. This finding
implies that local (as opposed to regional) emissions might also be strongly linked to atmospheric reactive N
concentrations in these valleys, especially given the shorter residence times of reactive N relative to CO2.
Montane valleys are an especially useful spatial scale of analysis in this region during winter, where tempera-
ture inversions allow mixing of local atmospheric emissions throughout the valleys over time scales of hours
to days [Pataki et al., 2005].

In each valley, site locations were chosen to characterize atmospheric inputs to intensively monitored water-
sheds in the iUTAH hydrologic observatory (www.iUTAHepscor.org). Salt Lake Valley sites (n= 6) were located
within or adjacent to the Red Butte Creek watershed, a focal iUTAH watershed. Five of these sites were
located in urban Salt Lake City and one in Red Butte Canyon Research Natural Area, an adjacent protected
area (Figure 1b). Cache Valley sites (n=5) were located within the Logan River watershed, another iUTAH
focal area. Three sites were located in the City of Logan (population~50,000), one along a roadside in an agri-
cultural landscape with pasture and row crops, and another in Logan River Canyon east of the Cache Valley.
We predicted that the deposition sampled in the urban Cache Valley sites would also reflect emissions from
the adjacent agricultural landscape, which stretched for 20–30 km to the south, west, and north of Logan. In
both valleys, urban sampling sites were located in fenced properties to prevent tampering with equipment.
Two Cache Valley urban sites were relocated to nearby locations in April 2014 due to logistical constraints.

In Salt Lake City and the City of Logan, the tree canopy consisted largely of deciduous species native to the
eastern United States and represented a relatively small portion of total land cover (~26%) [Nowak et al.,
1996]. The wildland sites sampled here had similarly sparse tree cover and were dominated by low-statured
(<1m) herbaceous vegetation and shrubs. The agricultural Logan Valley sites were characterized by annual
row crops and pasture.

2.2. Precipitation Sampling

Snow and rain samples in the Salt Lake Valley were collected on a precipitation event basis, whenever
possible, from December 2013 to February 2015 (total n= 324 samples). Samples were collected within
36 h of the end of precipitation events. In cases where samples could not be collected within this interval,
samples were discarded and a clean collection bottle was installed to minimize the potential for microbial
N immobilization. In the Cache Valley, snow and rain samples were collected from December 2013 to
February 2014 and from April 2014 to February 2015 (total n= 168 samples). Snow was collected from
acid-washed high-density polyethylene (HDPE) surfaces mounted on storm boards using acid-washed poly-
vinylchloride cores as described by Hall et al. [2014]. Rain was collected in HDPE funnels (20 cm diameter)
mounted 1m above the ground on steel posts, installed away from overhanging vegetation. Funnels were
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connected via Tygon tubing to HDPE bottles placed inside plastic cylinders buried beneath the soil. Funnel
necks were plugged with polyester fiber to reduce infiltration of debris and replaced following rainfall events.
Samples from March 2014 often represented a mixture of snow and rain and were separately collected in
acid-washed HDPE buckets (18.9 L). After collection, samples were weighed to calculate precipitation
amount, filtered through precombusted Whatman GF/F filters, and frozen until analysis. Daily time series
of precipitation amount were obtained from rain gauges on the University of Utah and Utah State
University campuses. Values of pH measured on a subset of samples were <6, indicating that NH3

volatilization was minimal.

Precipitation samples represented bulk (i.e., wet + dry) deposition, given that funnel and storm board
surfaces were exposed to the atmosphere between precipitation events. Our protocol contrasted with preci-
pitation sampling at National Atmospheric Deposition Program (NADP) National Trends Network sites, where
containers were exposed to the atmosphere only during precipitation events using an automated sampler.
To further investigate dry deposition contributions to bulk ion loading at our sampling sites, we rinsed the
funnel collectors with 18.2MΩ deionized water for ion analysis after periods of more than 2weeks without
rain. Given that there were only three such events during the study period, we added the ion fluxes from
rinsed samples to ion loads from the subsequent precipitation event for ease of interpretation.

We also compared our observations with five nearby (i.e., within several hundred of kilometers) NADP sites in
the intermountain western United States (Figure 1a): Pinedale, WY; Craters of the Moon National Monument,
ID; Great Basin National Park, NV; Green River, UT; and Logan, UT. The Logan NADP site was 10 km southwest
of our Logan collection sites, in close proximity (<100m) to animal feedlots. Samples from NADP sites were
collected over weekly intervals according to protocols detailed in the National Trends Network operations
manual (http://nadp.sws.uiuc.edu/cal/PDF/NTN_Operations_Manual_v_2-2.pdf). We analyzed the data
corresponding to our period of sample collection (detailed above).

2.3. Chemical and Isotope Analyses

All samples were analyzed for NO3
� and NH4

+ concentrations by ion chromatography (Metrohm Compact IC,
Riverview, FL). Analytical precision of ion measurements was assessed using the relative standard deviations
of certified standards analyzed as unknowns. Cumulative relative standard deviations of these standards
measured <3%. Mean-reported values of National Institute of Standards and Technology (NIST)-traceable
certified standards differed by <4% from measured values calculated using a separate set of NIST-traceable
standards. Total dissolved N concentrations were measured on a subset of samples (n= 45) with a Shimadzu
TOC-V analyzer (Columbia, MD). Dissolved organic N (DON) was calculated as the difference between total
dissolved N and inorganic N (NH4

+ +NO3
�+NO2

�; NO2
� was typically below detection limit and not dis-

cussed further). This approach occasionally yielded negative values (n=6), likely due to compounding analy-
tical variability in the three separate chemical determinations (NH4

+, NO3
�, and total dissolved N). The most

negative DON sample measured �0.11mg L�1; thus, we assigned all samples with DON absolute values
<0.11mg L�1 to zero to avoid positively biasing our results, as opposed to simply removing negative values.

A subset of precipitation samples (n=162) was analyzed for N isotope ratios (δ15N) of NH4
+ using an NH3 dif-

fusion method modified from Holmes et al. [1998]. Briefly, 30mL of sample was added to a 60mL HDPE bottle
along with 1.5 g NaCl (to decrease the osmotic potential of the solution). A glass-fiber filter acidified with
30μL of 4M H3PO4 was sandwiched between Teflon tape and added to the bottle. Then, 90mg of magne-
sium oxide was added to volatilize NH3, and the bottle was immediately capped and incubated for 7 days
on an orbital shaker/incubator at 40°C to allow NH3 to be completely trapped as NH4

+ on the acidified filter.
Filters were analyzed for δ15N values (precision <0.2‰) by combustion on an elemental analyzer coupled to
an isotope ratio mass spectrometer (FinniganMAT Delta S, San Jose, CA) at the Stable Isotope Ratio Facility for
Environmental Research Facility at the University of Utah (http://sirfer.utah.edu). To verify a lack of fractiona-
tion during recovery of NH4

+ on filter disks, we also similarly analyzed ammonium sulfate solutions with
known δ15N values. We obtained equivalent δ15N values (within 0.2‰) after diffusion of these standards.

Additionally, we analyzed a subset of precipitation samples (n= 53) for NO3
� isotopic composition (δ15N and

δ18O) using Pseudomonas aureofaciens and the denitrifier method [Casciotti et al., 2002] to generate N2O for
analysis on an isotope ratio mass spectrometer. We used U.S. Geological Survey (USGS) 32 and 34 reference
materials (for δ15N) and USGS 34 and 35 (for δ18O) to express the data in δ notation relative to atmospheric N2
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and Vienna SMOW for N and O, respectively. Mean accuracy was 0.34‰ for δ15N and 0.39‰ for δ18O,
assessed by comparing the difference between measured versus known values of USGS 35 (for δ15N) and
USGS 32 (for δ18O) analyzed as unknowns. Sample precision, determined by standard deviations of several
samples analyzed in triplicate, was 0.08‰ for δ15N and 0.26‰ for δ18O.
2.3.1. Nitrogen Isotope Ratios of PM2.5

We sampled PM2.5 between January and February of 2015 at sites in urban Salt Lake City and near Logan,
UT (in the Cache Valley), using calibrated high-volume air samplers at Utah Department of Air Quality
(DAQ) sampling stations. Samples were collected over 2–5 day intervals, for a total of six Salt Lake City
samples and four Logan samples. Salt Lake City samples were collected on 20 cm×25 cm quartz microfiber
filters (2500 QAT-UP, Pallflex Tissuquartz, Port Washington, NY). A subset of Salt Lake City samples and the
Logan samples were collected on Teflon filters on DAQ-operated PM2.5 samplers. Comparisons of δ15N of
NH4

+ extracted from quartz and Teflon filters sampled in Salt Lake City (see details below) showed no
significant differences. Prior to sampling, quartz filters were precombusted at 500°C for 4 h and stored in
aluminum foil inside sealed plastic bags. Blank filters were co-located inside aerosol samplers but not
exposed to gas flow. During PM2.5 sampling, larger particles were removed with slotted microquartz fiber
filters (TE-230-QZ, microquartz-slotted collection substrates, Tisch Environmental, Cleves, OH) on SA-230-F
impactor plates (TE-230-QZ, Tisch). After collection, filters and blanks were wrapped in aluminum foil, packed
into airtight plastic bags, and stored at �20°C. For isotope analysis of NO3

� and NH4
+ in PM2.5, filters were

immersed for 24 h in deionized water and solutions were filtered to 0.45μm. Values of δ15N and δ18O of
NO3

� were determined by the denitrifier method and δ15N of NH4
+ via diffusion as described above.

Bulk PM2.5 subsamples collected on quartz filters were also analyzed for total N content and δ15N with an
elemental analyzer (NA 1500 NC, Thermo Scientific, Waltham, MA) coupled to an isotope ratio mass
spectrometer (DeltaPlus, Thermo Fisher Scientific (Finnigan), Waltham, MA) at the Keck Carbon Cycle
Accelerator Mass Spectrometry Facility of University of California, Irvine. Data were corrected for the N mass
(1.4μg/cm2) and δ15N ratios (�6.8‰) of field blanks by isotope mass balance.

2.4. Data Analysis

We compared bulk ion concentrations between the Salt Lake and Cache Valleys using mixed-effect models,
where sampling sites were treated as random effects to account for temporal autocorrelations. We separately
tested for differences among sites in each valley using analysis of variance (ANOVA). We also binned the data
into two seasons (November–March and April–October) to allow for seasonal comparisons between valleys
while minimizing excessive post hoc comparisons over finer time scales (i.e., comparing all months). The
latter time period represents the predominant growing season in our study area. We did not statistically
compare our samples with NADP data given that they represent two different sample types (i.e., bulk versus
wet deposition) but rather report NADP data for heuristic comparisons. We assessed cumulative bulk N
deposition for 2014 as the product of precipitation amount and measured N concentrations at our sites;
missing values from a particular site were replaced by the means for each event in each valley. We did not
have a complete record of bulk deposition chemical composition in the Cache Valley sites from mid-
February to early April 2014. Total bulk deposition N concentrations were statistically equivalent between
valleys during the rest of our observation period (December 2013 to February 2015). Therefore, we estimated
cumulative bulk N loading for Cache Valley sites during the period of missing data as the product of precipi-
tation amount measured at Utah State University in Logan and mean N concentrations measured during this
period in the Salt Lake Valley. Gap-filled data were not used in statistical tests comparing sites or valleys.

We assessed temporal trends in precipitation ion concentrations during 2014 using generalized additive
models (GAMs) with a Gaussian link function, fitted using the mgcv package in R [Wood, 2006]. This method
allowed us to test for significant seasonal patterns and also to test whether the two valleys had significantly
different temporal patterns in N concentrations or δ15N—i.e., whether including a separate trend for each
valley or site was statistically optimal. We fit ion concentrations as a smooth function of time using regression
splines that were penalized according to their “wiggliness” during model fitting to achieve a statistically
optimum degree of curvature. Curvature was expressed in terms of degrees of freedom (d.f.) analogous to
the order of a polynomial, allowing for fractional d.f. The need to include differing smooth functions of time
for different groups of sites (i.e., Salt Lake Valley, Cache Valley, and NADP sites) was assessed by comparing
model Akaike information criterion.
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3. Results and Discussion
3.1. Spatial and Temporal Patterns in
Bulk Deposition Inorganic
N Concentrations

Contrary to our hypothesis that differences
in urban versus agricultural land use would
affect total bulk N deposition and specia-
tion, fluxes and concentrations of NH4

+

and NO3
� did not significantly differ

between Salt Lake and Cache Valley sam-
pling sites on an annual basis (Figure 2).
Ammonium concentrations in bulk deposi-
tion at the Salt Lake and Cache Valley sites
were 0.45 ± 0.02 and 0.51 ± 0.04mgN L�1

(means and standard errors), respectively,
and NO3

� concentrations were 0.45 ± 0.03
and 0.39± 0.04mgNL�1, respectively
(Figure 2). However, bulk deposition NO3

�

concentrations (but not NH4
+) differed

seasonally between valleys. During the
growing season (April–October), NO3

� was
significantly greater at the Salt Lake (0.65
±0.10mgNL�1) than the Cache Valley
(0.42± 0.08mgNL�1) sites (p< 0.01). This
pattern was predominantly driven by a peak
in NO3

� at the Salt Lake sites during June
and July that was not observed at the
Cache Valley sites (Figure 3).

Overall, concentrations of NH4
+ and NO3

�

did not significantly differ among sites in
a given valley, despite the inclusion of
paired wildland sites (ANOVA, p> 0.05).
Median N concentrations in bulk deposi-
tion at the Salt Lake and Cache Valley sites
were also of similar magnitude to median
wet deposition N concentrations at the

Green River NADP site (NO3
�=0.34, 0.27, and 0.25mgN L�1 and NH4

+ = 0.37, 0.40, and 0.38mgN L�1, res-
pectively; Figure 2). The Green River site was located 250–300 km southeast of these valleys in a relatively
small town (~1000 people). Together, these data suggest regional congruence of bulk deposition N inputs
to these northern Utah valleys as well as the nearby landscape, which were dominated by the wet
deposition component.

However, median bulk deposition N concentrations at the Salt Lake and Cache Valley sites greatly exceeded wet
deposition concentrations at several other more remote NADP sites in the region (Figure 2). This contrast sup-
ports the importance of local emissions in driving N deposition to the Salt Lake and Cache Valley sites, with
impacts that declined with distance. Salt Lake and Cache Valley bulk deposition inorganic N concentrations
exceeded wet deposition concentrations at the Great Basin NADP site (0.16 and 0.26mgNL�1 for NO3

� and
NH4

+, respectively; Figure 2) and were more than twofold greater than the Pinedale and Craters of the Moon
NADP sites (NO3

�=0.10 and 0.08mgNL�1 and NH4
+=0.12 and 0.20, respectively; Figure 2). In contrast to

the remote NADP sites, median NO3
� concentrations at the Logan NADP site (located in the Cache Valley) were

only slightly lower (0.23mgNL�1) than the bulk deposition values measured at the nearby sites sampled in this
study (0.27mgNL�1), despite the fact that they only reflected wet deposition. This finding suggests a relatively
minor year-round contribution of dry deposition to the bulk deposition fluxes that we measured, which

Figure 2. Concentrations of (a) NO3
� and (b) NH4

+ in weekly preci-
pitation samples (NADP sites; green boxes) and event-based bulk
deposition samples (Salt Lake and Cache sites from this study; red and
blue boxes, respectively). Sites are ordered by increasingmean NO3

�

concentrations from left to right. The boxes represent themedians and
the interquartile range, and data>1.5 times the range from the box to
the whiskers are denoted as outliers (circles).
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excluded the influence of plant canopies
on dry deposition capture. Intriguingly,
median Logan NADP wet deposition NH4

+

concentrations were approximately twofold
greater than our bulk deposition NH4

+

(0.79 versus 0.40mgNL�1); possible contri-
buting mechanisms are discussed in greater
detail below.

To reiterate, we found similar annual bulk
deposition N concentrations across dispa-
rate sites in the urban Salt Lake and agricul-
tural Cache Valleys, which in turn were
similar to wet deposition from the Green
River NADP site. This pattern contrasts with
previous work in California that documen-
ted increasing NO3

� deposition with proxi-
mity to urban versus agricultural emission
sources [Tulloss and Cadenasso, 2015].
However, our findings were similar to the
results of Lohse et al. [2008], who found no
significant differences in N deposition
among wildland and urban sites upwind
and downwind of Phoenix, AZ. Here overall
similarities in NOx production between the
Salt Lake and Cache Valleys, indicated by
similar boundary layer NOx concentrations,
may have contributed to patterns in bulk
deposition NO3

� concentrations among
our study sites. Tropospheric NOx typically
has a short lifetime (hours) prior to
oxidation to NO3

� [Beirle et al., 2011].
Mean NO2 concentrations measured 14
and 11 ppb at sites in the Salt Lake and
Cache Valleys, respectively, during 2014
(Utah Department of Air Quality; http://
www.airmonitoring.utah.gov/dataarchive/
QL2014-NO2.pdf). The 25th and 75th per-
centiles of NO2 were 5 and 22 ppb for the

Figure 3. Inorganic N concentrations in event-
based bulk deposition samples from sites in
the Salt Lake Valley (blue circles; six sites) and
Cache Valley (red circles; five sites) and weekly
wet deposition samples from regional NADP
sites (green squares; five sites). (a and b) Nitrate
and NH4

+ are shown, respectively. Samples
collected in this study spanned from December
2013 to February 2015. The black lines represent
the GAM fits for the Salt Lake and Cache Valley
bulk deposition samples, and the grey lines
represent the GAM fits for the NADP sites.
(c) Daily and (d) weekly cumulative precipita-
tions measured near our Salt Lake and Cache
Valley sites are shown.
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Salt Lake site and 4 and 16 ppb for the Cache Valley site. The difference in mean NO2 concentrations between
the valleys (~27% greater in Salt Lake) was very similar to the difference in median bulk deposition NO3

� con-
centrations between valleys (~26% greater in Salt Lake; Figure 2), despite the fact that these differences were
not statistically significant. Also, the greater peak in summertime NO2 concentrations at the Salt Lake relative
to the Cache Valley sites (indicated by the greater 75th percentile but similar 25th percentile NO2 value) may
have driven the significant summertime increase in bulk deposition NO3

� at the Salt Lake Valley sites
mentioned above.

Bulk deposition NH4
+ concentrations also significantly increased during summer according to the

temporal function fit by the GAM (Figure 3a) but did not differ between valleys on a seasonal basis.
The similarity in bulk NH4

+ concentrations between valleys was surprising given the large differences
between putative urban and agricultural NH3 sources—i.e., the prevalence of feedlots and fertilized
agriculture in the Cache Valley, which are thought to dominate NH3 emissions at the global scale
[Hertel et al., 2012]. A scale mismatch between the location of NH3 emission hot spots and our measure-
ment sites may have contributed to this result. For example, the median wet deposition NH4

+ concen-
tration at the Logan NADP site (0.79mgN L�1) was approximately double that of the median bulk
deposition NH4

+ concentrations at the other Cache Valley sites we measured in this study
(0.40mgN L�1), despite their similar median NO3

� concentrations. The Logan NADP site was located
within 1 km of several cattle feedlots, whereas the sites that we sampled were farther away (~10 km)
from this particular area.

These patterns suggest that local impacts of agricultural NH3 emissions on wet deposition NH4
+ may be man-

ifested over finer spatial scales (e.g., <10 km) than reflected by valley-scale measurements. Accordingly, the
sites we sampled may not have received a strong NH3 influence from animal production despite their close
proximity to other agricultural sources and the overall dominance of agricultural land use in the Cache Valley.
In support of this interpretation, other studies observed declining NH3 concentrations or bulk NH4

+ deposi-
tion fluxes within hundreds of meters of agricultural point sources [Fowler et al., 1998; Fahey et al., 1999].
Previous work in the Cache Valley showed that atmospheric NH3 concentrations varied approximately 2.5-
fold between rural and urban sites separated by approximately 15 km (R. Martin et al., Utah State
University, unpublished data), further implying highly localized emissions. Spatial heterogeneity in atmo-
spheric reactive N was also indicated by high spatial variation in deposition inorganic N concentrations
among sites in a given valley for a given storm event. The mean within-valley standard deviations for a given
sampling event (total n= 119) in either valley were 0.22mgN L�1 for NH4

+ and 0.13mgNL�1 for NO3
� but

reached as high as 2.26 and 0.94mgNL�1, respectively. For context, mean NH4
+ and NO3

� concentrations
measured 0.48 and 0.42mgN L�1, respectively.

Finally, in addition to patterns in emissions, the removal of atmospheric reactive N by plants [Davidson and
Kingerlee, 1997; Sparks, 2009] may also have contributed to variability in bulk deposition values and deviation
from expected land use trends. In particular, the presence of greater summer canopy cover from the row
crops and pasture in the Cache Valley, compared to the smaller street-tree canopy in the Salt Lake Valley sites,
may have facilitated greater net plant uptake of NH3 and NO2 in the former sites. This effect could have a
significant impact on atmospheric N concentrations in each airshed, not just in the vicinity of the canopy,
given the documented magnitude of foliar N uptake [Sparks, 2009] and a well-mixed atmospheric boundary
layer. Disparities in plant canopy cover may have contributed to observed seasonal differences in NO2

concentrations and bulk NO3
� deposition between valleys, while partially attenuating agricultural NOx and

NH3 emissions to the atmosphere.

As with inorganic N, annual bulk deposition DON concentrations were also similar between valleys, with
means of 0.14 ± 0.04 and 0.14 ± 0.05mgNL�1 in the Salt Lake and Cache Valley sites, respectively.
However, 49% of the samples measured had DON concentrations below the conservative detection limit
we adopted here. A global meta-analysis found that DON typically contributed between 17 and 43%
(interquartile range) of total precipitation N [Cape et al., 2011]. The data in our present study fell
below this range (~13% of total N), lower than these previous estimates. Thus, we found no evidence
that anthropogenic emissions from these valleys increased DON contributions to bulk deposition. If
anything, background DON contributions may have been diluted by inorganic N from regional
anthropogenic emissions.
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3.2. Wet Versus Dry Contributions to Bulk N Deposition

The Salt Lake and Cache Valley bulk deposition data showed a greater proportion of extreme NO3
� and NH4

+

and concentration values that were ≥1.5 times the interquartile range (denoted in Figure 2 as circles) as
compared with the NADP data, indicative of dry deposition inputs. Significant temporal differences in
NO3

� concentrations between the Salt Lake/Cache Valley bulk deposition samples and the NADPwet deposi-
tion samples were reflected by trends in the GAM smooth functions, which showed two large peaks in
June/July and October/November in our bulk deposition samples relative to the NADP samples (Figure 3).
These high values, especially for NO3

�, implied the importance of increased summertime dry deposition in
both valleys that was not captured by the NADP wet deposition sampling. The significant difference in
summertime NO3

� concentrations between valleys (described above) may have been driven by increased
dry deposition in the Salt Lake Valley sites, which showed a pronounced NO3

� peak in June and July. In
polluted Southern California airsheds with highly seasonal precipitation inputs, dry deposition to forested
canopies represents a dominant form of N inputs [Bytnerowicz and Fenn, 1996; Fenn and Bytnerowicz, 1997;
Fenn and Poth, 2004]. In our study area, the temporal distribution of precipitation is more uniform
(Figure 3), and significant dry NO3

� deposition to the funnel collector surfaces was only apparent sporadically
during summer and late fall.

Intriguingly, winter NO3
� concentrations were statistically similar between the bulk deposition data obtained

in this study and wet deposition data for the remote NADP sites. This suggests that little winter NO3
� dry

deposition was associated with local atmospheric reactive N emissions from the Salt Lake and Cache
Valleys, despite the high concentrations of NO3

�-rich PM2.5 aerosols in these valleys [Mangelson et al.,
1997; Kelly et al., 2013]. Previous work in the Salt Lake Valley showed that dry deposition of N to snow was
highly variable in space and time [Hall et al., 2014]. Dry deposition increased during periods of persistent cold
air pools, and dry deposition N inputs peaked at midelevation montane sites as opposed to the valley floor
[Hall et al., 2014], where most of the sites sampled in the present study were located. Our present data pro-
vide additional evidence that winter dry N deposition may be spatially limited or sporadic in the study area.

In contrast to the temporal patterns in NO3
� concentrations, summer NH4

+ concentrations were similar
between the Salt Lake/Cache Valley sites and the regional NADP sites (Figure 3). However, they diverged in
winter, when the Salt Lake and Cache Valley samples had slightly but significantly greater NH4

+ (note the
difference between the GAM fits; Figure 3). This difference may imply a greater and more widespread
influence of urban and agricultural NH3 emissions on NH4

+ deposition during winter, possibly due to seasonal
variation in atmospheric conditions. Stable atmospheric conditions often prevail in montane valleys in the
intermountain western United States during winter [Lareau et al., 2013], perhaps leading to increased
atmospheric NHx concentrations and NH4

+ deposition relative to wildland areas.

3.3. Bulk N Deposition Totals

Cumulative bulk N deposition was similar between valleys but was variable among sites, ranging between 3.5
and 5.1 kgNha�1 yr�1 (Figure 4). Bulk deposition rates peaked in July and August, and scaled relatively clo-
sely with cumulative precipitation amount, indicating a lack of strong seasonal variation in N inputs (Figure 4).
These N deposition rates are modest compared with sites impacted by urban emissions from Los Angeles, CA:
~30–90 kgNha�1 yr�1, measured using throughfall deposition under forested canopies [Fenn et al., 2003].
However, cumulative N deposition in our study equaled or exceeded measurements and estimates from
many remote wildland sites in the western United States (~1–4 kgNha�1 yr�1) [Williams and Tonnessen,
2000; Baron et al., 2011] and was comparable to wet + dry deposition measurements from the Phoenix, AZ,
metropolitan area [Lohse et al., 2008]. The bulk N deposition totals wemeasured here were similar to modeled
wet deposition estimates for our study region (4–6 kgNha�1 yr�1) from 2011 to 2013, derived by combining
sparse measurements with an atmospheric model [Schwede and Lear, 2014]. Our data suggest that local
differences in urban versus agricultural land use do not necessarily affect these regional wet-deposition
estimates. However, if N deposition was greater at our valley sites proximate to emission sources as
compared with more remote montane areas in the region (i.e., tens of kilometers away [Hall et al., 2014]),
our data suggest that this current model might overestimate wet deposition.

Although we saw significant evidence for summer dry deposition NO3
� inputs as described above, our data

did not reflect the very high dry deposition N inputs modeled for this region (>12 kgNha�1 yr�1; NADP total
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deposition maps; http://nadp.isws.illinois.
edu/committees/tdep/tdepmaps/preview.
aspx#n_wd). This discrepancy likely reflects
the fact that the HDPE funnel collectors
used here conservatively sampled dry
deposition relative to other more complex
natural surfaces but also suggests that the
model may have overestimated the total
area-weighted dry deposition for this
region, which has highly variable canopy
cover that changes with season, land use
type, and landscape position (valley versus
montane). Multilayered plant canopies
likely would have scavenged much more
dry N deposition from the atmosphere
than our funnel collectors [Fenn and Poth,
2004; Sparks, 2009], but we suggest that
our bulk deposition estimates provide a
useful metric for assessing total deposition
to the monolayered surfaces—bare soil,
rock, pavement, and rooftops—that repre-
sent a substantial portion of urban, agricul-
tural, and wildland landscapes in our
semiarid study region during much of
the year.

3.4. Stable Isotope Composition of
Inorganic N Deposition and PM2.5

Contrary to our hypothesis that differences
in biogenic and fossil fuel reactive N
sources would be reflected in N isotope
compositions in the Salt Lake and Cache
Valleys, we found no significant differences
in δ15N values between valleys for either
bulk deposition NH4

+ (Figure 5a) or PM2.5

(discussed below). Bulk deposition δ15N of
NH4

+ varied widely, between �17.4 and
24.1‰ (mean=�0.8 ± 0.5‰), but showed
no consistent seasonal trend according to
the GAM smooth function of δ15N values
over time (Figure 5a). We occasionally
observed extremely high variability in
δ15N of NH4

+ and NH4
+ concentrations

among sites within a valley during a single
storm event (exceeding 10‰ and

1mgN L�1, respectively). This variability is indicated by the vertical distance among points of the same color
on a given sampling date in Figure 5. This temporal variability is consistent with fine-scale spatial heteroge-
neity in NH3 sources as discussed above and variable contributions of particulate N (as discussed below). It
also likely reflects spatial and temporal variations in isotope fractionation during scavenging of NHx from
the atmosphere over the course of precipitation events [Heaton, 1987; Heaton et al., 1997; Xiao et al., 2012],
which can function analogous to a Rayleigh distillation. Biogenic NH3 is typically thought to have lower
δ15N values than fossil fuel NH3, but few measurements have constrained this variation. Importantly, δ15N
values of these sources potentially overlap [Frank et al., 2004; Skinner et al., 2006; Felix et al., 2013]. This source

Figure 4. (a) Cumulative N deposition and (b) precipitation measured
during 2014 at sites in the Salt Lake Valley (blue circles; six sites) and
Cache Valley (red circles; five sites).
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variability, along with the spatial heteroge-
neity of biogenic NH3 emissions and highly
localized deposition described above,
may have obscured isotopic differences
between valleys despite their probable
differences in NH3 sources.

In contrast to NH4
+, δ15N of NO3

� differed
between valleys on a seasonal basis
(Figure 5b). Values of 15N of NO3

� in bulk
deposition were significantly lower
(p< 0.01) in the Cache Valley (�4.5 ±0.8‰)
than in the Salt Lake Valley (�1.3 ±0.5‰)
during the growing season (April–October)
as assessedwith ANOVA, despite the fact that
a single GAM function for both valleys ade-
quately described the overall annual trend.
This summertime decrease is consistent with
an increased summertime biogenic NOx con-
tribution from fertilized Cache Valley agricul-
tural soils, as NOx derived from soil
microbes tends to have lower δ15N values
than most fossil fuel sources [Li and Wang,
2008;Walters et al., 2015]. On an annual basis,
δ15N of NO3

� measured 0.0± 0.5‰ and was
statistically equivalent between valleys.
Considering both valleys together, δ15N of
NO3

� showed a significant seasonal trend
(indicated by the GAM fit) with lower values
during the growing season (Figure 5b).
Freyer [1991] found a similar ~5‰
summertime decline in δ15N of NO3

� in
European precipitation and speculated that
temperature-dependent isotope exchange
reactions among atmospheric NOy species
and decreased contributions of particulate
NO3

� could also be responsible for seasonal
patterns in δ15N of NO3

�, in addition to
potential changes in NOx sources. Values of
δ18O in bulk deposition NO3

� varied
between 63.7 and 92.6‰ (mean 73.2
±0.9‰) and also displayed a significant sea-
sonal trend of lower values during the grow-
ing season (Figure 5c). This pattern is
consistent with seasonal variation in atmo-
spheric HNO3 formation pathways [Michalski
et al., 2003] and does not necessarily imply
variation in NOx sources to the atmosphere.

Mean δ15N values in bulk PM2.5 (15.6
± 1.4‰) and the NO3

� (8.8 ± 0.7‰) and
NH4

+ (22.5 ± 1.7‰) components of PM2.5

were significantly greater (p< 0.0001) than
bulk deposition δ15N of NO3

� and NH4
+

Figure 5. Values of δ15N in (a) NH4
+ and (b and c) NO3

� in a subset of
precipitation samples from the Salt Lake Valley (blue circles) and
Cache Valley (red circles).
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(Figure 6). The NH4
+ component of PM2.5 had espe-

cially high δ15N values. These measured 24.1 ± 2.3
and 20.1 ± 1.6‰ in the Salt Lake and Cache Valley
sites, respectively, but differences were not statisti-
cally significant. Values of δ15N of NO3

� in PM2.5

were much lower than NH4
+ of PM2.5 but were still

significantly greater than δ15N of NO3
� observed in

bulk deposition (Figure 6). In the Salt Lake and
Cache Valleys, δ15N of NO3

� in PM2.5 measured
9.5 ± 1.0 and 7.7 ± 0.5, respectively, and did not sig-
nificantly differ. Values of δ18O in NO3

� of PM2.5

measured 81.6 ± 2.7‰, similar to bulk deposition.
Annual mean concentrations of PM2.5 were similar
at monitoring sites in both study valleys during
2013 and 2014 (Utah Department of Air
Quality; http://www.airmonitoring.utah.gov/
dataarchive/).

The high δ15N values of PM2.5 are consistent with
an ~33‰ equilibrium fractionation between gas-
eous NH3 and particulate NH4

+ and ~21‰ for
ammonium nitrate relative to nitric acid vapor
[Heaton et al., 1997]. These fractionations lead to
much greater δ15N in PM2.5 relative to gaseous pre-
cursors. Individual PM2.5 samples varied between
17.3 and 31.4‰ in δ15N of NH4

+ and overlapped
with the most enriched values of δ15N of NH4

+ in bulk deposition (Figure 6). The bulk deposition δ15N values
>10‰ exceed most previous wet deposition measurements [Heaton, 1987; Fukuzaki and Hayasaka, 2009; Jia
and Chen, 2010; Xiao et al., 2012]. Concentrations of the ammonium sulfate portion of PM2.5 remain relatively
consistent throughout the year in our study area, despite the fact that ammonium nitrate and total PM2.5

mass increase during winter [Hand et al., 2012]. Thus, one plausible interpretation of the occasionally high
values of δ15N of NH4

+ observed in bulk deposition (Figure 6) was that they reflected an increasing contribu-
tion of particulate NH4

+ (i.e., NH4
+ derived from PM2.5 or larger aerosols), in addition to potential variation in

sources. Importantly, δ15N values of bulk deposition NH4
+ frequently exceeded 0‰, greater than many pre-

vious estimates of δ15N values for biogenic or fossil fuel NH3 sources described above. A variable contribution
of δ15N-enriched particulates thus provides a plausible explanation for sporadically high δ15N values of
deposition NH4

+, an interpretation that appears to have received little attention in the literature.

This interpretation is bolstered by contrasting our results with wet deposition δ15N data from China, Japan,
and South Africa [Heaton, 1987; Fukuzaki and Hayasaka, 2009; Jia and Chen, 2010; Xiao et al., 2012]. These
studies consistently found δ15N of NH4

+ values <0‰ for precipitation samples with no dry deposition com-
ponent. These studies were also located in areas impacted by mixtures of urban and agricultural NH3 sources,
as were our study sites; consequently, the large positive δ15N deviations we observed in some samples could
be parsimoniously explained by a variable contribution of dry particulate NH4

+ deposition collected in our
bulk samplers, which was not sampled in these wet deposition studies. Similarly, values of δ15N in bulk
deposition NO3

� occasionally reached as high as 8.7‰, similar to the mean values in PM2.5 (8.8 ± 0.7‰;
Figure 6). Therefore, our bulk deposition NO3

� δ15N values could also potentially be interpreted as a variable
mixture of δ15N-enriched particulate NO3

� and δ15N-depleted gaseous HNO3, in addition to a mixture of
isotopically variable NO3

� sources as discussed above.

Overall, the mass- and volume-weighted isotopic compositions and standard errors of δ15N in NH4
+ and

NO3
� in bulk deposition measured �1.6 ± 0.4 and 0.8 ± 0.5‰, respectively. Given that volume-weighted

mean concentrations of NH4-N and NO3-N measured 0.34 ± 0.01 and 0.24 ± 0.01mgN L�1, respectively,
weighted δ15N of total inorganic N measured �0.6 ± 0.7‰. Because relatively few comprehensive studies
of the isotope composition of bulk N deposition have been conducted, these measurements provide a useful

Figure 6. Boxplots comparing δ15N values in NH4
+ and

NO3
� of bulk deposition and PM2.5. Bulk N of PM2.5 repre-

sents the total N pool.
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constraint for ecosystem-scale N isotope models. For example, N isotope mass balance has been used to
estimate the importance of denitrification at the global scale, requiring an estimate of the N isotope compo-
sition of atmospheric deposition inputs [Houlton and Bai, 2009]. It is uncertain whether concentrated urban or
agricultural N emissions might alter the isotope composition of deposition measured in more remote ecosys-
tems. Previous studies in natural ecosystems had a median δ15N value of �1.3‰ [Houlton and Bai, 2009],
similar to our present data. These similarities imply that local urban or agricultural influences do not
necessarily impart a significant isotopic signature to bulk deposition N inputs on an annual basis.

4. Conclusions

Despite the strong impacts of land use on NOx and NH3 emissions documented elsewhere [Galloway et al.,
2004; Hertel et al., 2012], we conclude that substantial valley-scale differences in urban versus agricultural
land use in northern Utah were not strongly manifested in the mean speciation, isotope composition, or
fluxes of bulk atmospheric N deposition to our funnel collectors on an annual basis. Differences between val-
leys were only apparent during summer, when bulk deposition NO3

� concentrations increased at the Salt
Lake Valley sites, and δ15N of NO3

�was lower at the Cache Valley sites. Our data suggest that relatively coarse
regional estimates of these parameters may suffice for use in ecosystem-scale N cycling models, although
they may miss hot spots of NH3 emissions that are deposited very close to the source. Although median-
measured bulk deposition N concentrations exceeded wet deposition concentrations from several remote
NADP sites in the region, they were similar to wet deposition from another regional NADP site. It is well
known that plant canopies scavenge gaseous and particulate reactive N to a greater extent than the funnels
we used to collect bulk deposition [Fenn and Poth, 2004; Sparks, 2009; Bettez and Groffman, 2013]. However,
our bulk deposition estimates likely provide a useful metric for estimating total deposition to nonvegetated
surfaces—soil, rocks, pavement, and rooftops—that represent a substantial portion of wildland, urban, and
agricultural landscapes in the intermountain western United States, especially during fall and winter.

Values of δ15N in atmospheric deposition are complex to interpret because they not only represent a mixture
of reactive N sources varying in δ15N but also a variable mixture of phases (gas, particulate, and aqueous)
impacted by large isotope fractionations. Our data highlight the potential importance of the latter phenom-
enon. We found large differences between δ15N of bulk deposition and PM2.5, suggesting that temporal var-
iation in particulate contributions to bulk N deposition could potentially obscure initial isotope differences
among biological versus fossil fuel reactive N sources. Even where source δ15N values differ, spatial and tem-
poral heterogeneities in particulate contributions could decrease the power to detect these differences. Thus,
we recommend caution when interpreting atmospheric δ15N measurements solely in terms of mixtures of
sources. This is especially important when sampling schemes may selectively capture gaseous versus particu-
late N as opposed to the entire atmospheric reactive N pool, thus leading to physical isotope fractionation.
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