

Spacecraft Supercomputing Experiment For STP-H6 on ISS

SSIVP

Investigators and Students

<u>Sebastian Sabogal</u>, Patrick Gauvin, Brad Shea, Daniel Sabogal, Antony Gillette, <u>Christopher Wilson</u>, Ansel Barchowsky, Alan D. George – CHREC University of Pittsburgh Gary Crum, Tom Flatley – NASA Goddard Space Flight Center

Research Partners

DoD Space Test Program & CHREC Consortium Members

Research highlighted in this presentation was supported by CHREC members and by the I/UCRC Centers Program of the National Science Foundation under Grant No. IIP-1161022.

National Science Foundation's

Industry/University Cooperative Research (I/UCRC) Program

- Acknowledgements and Programs
- Technology and CSP Concept
- Mission Design & Architecture
 - \circ Goals and Objectives
 - Hardware & Software
- Mission Computing & Sub-Experiment
 - Parallel & Reliable Computing
 - GaN Sub-Experiment
- Conclusions

Acknowledgements & Programs

Acknowledgements

- SSIVP is a research mission at Pittsburgh CHREC Site
 - NSF Center for High-Performance Reconfigurable Computing (CHREC)
 - Founded in 2007
 - Comprises 4 university sites and over 30 industry and government partners
- SSIVP is collaborative effort
 - Builds on success and experience of STP-H5/CSP experiment
 - Key development partners:
 - DoD Space Test Program
 - NASA Goddard Space Flight Center
 - University of Pittsburgh's Mechanical Engineering and Materials Science Department & Electric Power Systems Laboratory

Universities Basic Research

CHREC

Applied R&D Industry & Government

See www.chrec.org for more info

Space Test Program

Space Test Program – Houston

- Provides sole interface to NASA for all DoD payloads on International Space Station (ISS)
- Provides timely spaceflight, payload readiness, management, and technical support for safety and integration

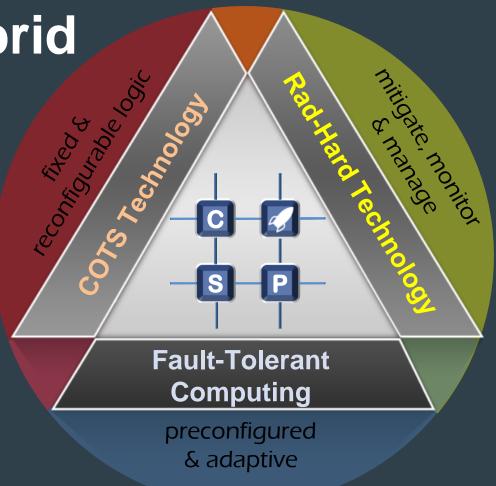
History of Mission Success

- Build upon successes of HREP, MISSE 6/7/8, STP-H3, STP-H4, STP-H5 while incorporating valuable lessons learned
- STP in-house contractor (MEI Technologies) expertise allows for aggressive 2-year build/integration schedule
- Aerospace Corp provides assistance to Houston team with leadership and mission assurance roles

Image Courtesy DoD Space Test Program

Technology and CSP Concept

CSP The Concept


Multifaceted Hybrid

Space Computing

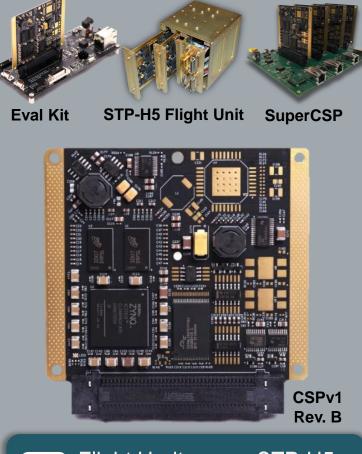
Hybrid processor (multicore CPU + FPGA subsystem)

Hybrid system (commercial + rad-hard)

Robust Design (Novel mix of COTS, rad-hard, & FTCA)

CHREC Space Processor (CSPV1)

Easy Development with CSP


- Selective component population scheme supports Engineering Model (EM) and Flight Design
- Rapid and cost-effective design prototyping using evaluation kit or Zedboard / Zybo / Pynq board
- Downloadable example software designs and configurations (Linux/RTEMs cFE etc...)

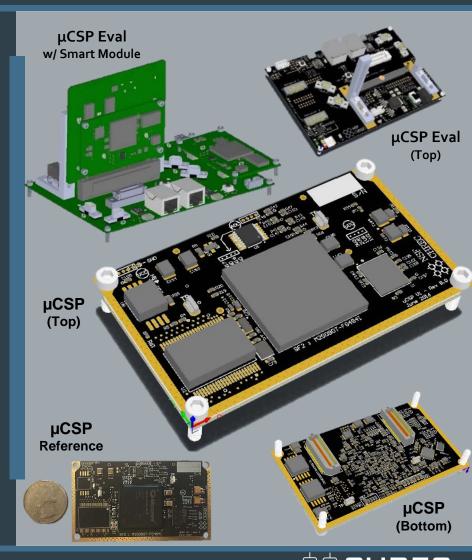
Specifications:

- Xilinx Zynq 7020 (ARM dualcore Cortex-A9 + Artix-7 FPGA)
 26 Configurable ARM GPIO Pins
- (1-4) GB NAND Flash
- (256 MB-1 GB) DDR3
- Dedicated Watchdog Unit
- Internal Power Regulation

ARM GPIO Pins

- 12 Single-Ended FPGA I/O Pins
- 24 High-Speed
 Differential Pairs

Flight Heritage on STP-H5, Radiation & Env. Tested

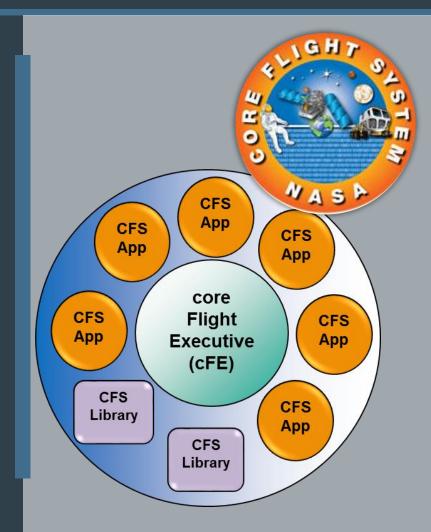

µCSP Rev. B Flight Computer

Even Smaller Solutions...

- Multifaceted hybrid processor at center of CSP Concept
- Even lower SWaP-C profile than CSPv1 for small spacecraft missions
- Provided template for "Smart Module" designs

Specifications:

- SmartFusion 2 (ARM Cortex-M3 + FPGA)
- 64 Mb NOR Flash
- •1 Gb LPDDR3
- Dedicated Watchdog Unit
- ADC for board temp and 2 ch. For flyleaded measurements


Core Flight Executive

Description

- NASA Goddard's **reusable** flight-software framework
- Open source version of cFE and cFS available at SourceForge
- Additional information at cfs.gsfc.nasa.gov and coreflightsoftware.org
- Perform local device management, software messaging, & event generation
- Flight heritage on multiple missions, but specifically STP-H5/CSP

Core Components

- Core Flight Executive (cFE)
 - Mission-independent software services
- Core Flight System (cFS)
 - Applications and libraries running on cFE

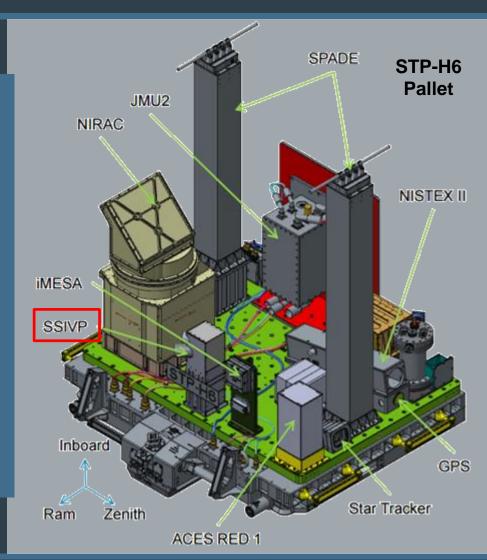
Mission Design & Architecture

RAFT

SSIVP Introduction

Motivation

Develop, demonstrate, and evaluate nextgen technologies for space supercomputing, featuring image and video processing


Run parallel jobs and apps from ground (just like those sent to HPC center), but to cluster in space instead

3U computing payload (5 CSPs, 1 μCSP, Power, Backplane) 2 image sensors

SSIVP will evaluate several GaN HEMTs and controllers

STP-H6 Location

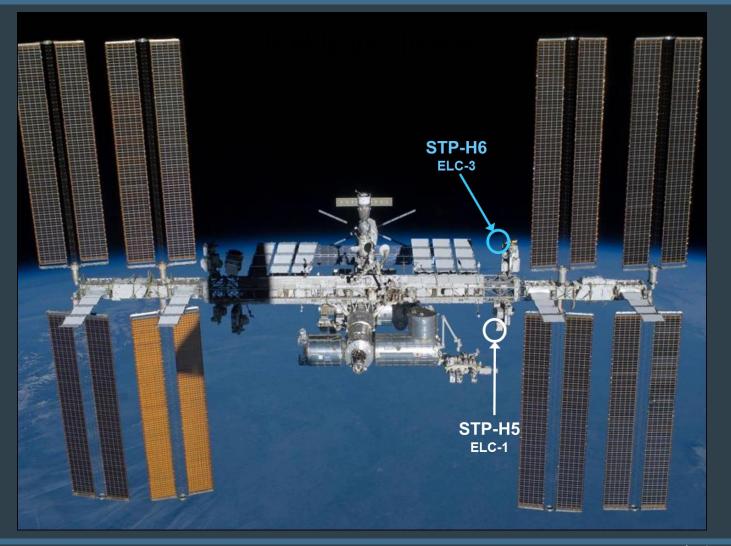


Image Courtesy DoD Space Test Program

SSIVP Specifications

30.22 W

26.10 W

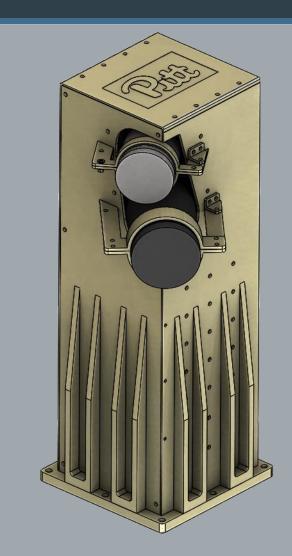
17.02 W

Main Assembly

• Mass: ~9.5lbs

Power Interface

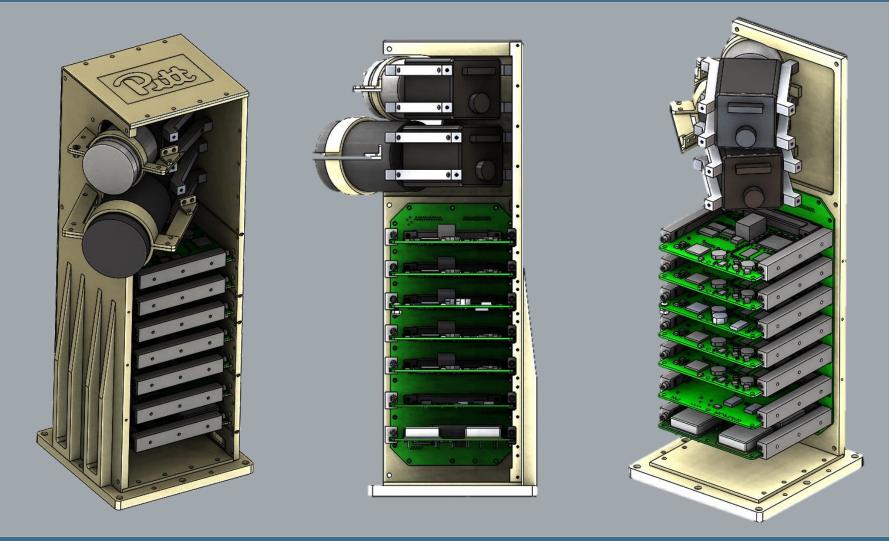
- Max SSIVP (All Cameras / Full Processing):
- Nominal Power:
- Min (Cameras Off):

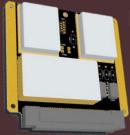

Data Interface

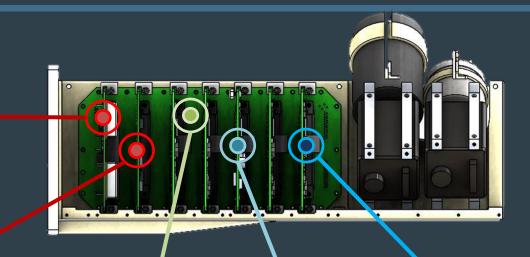
- Data rate:
- Average throughput:

931Kbaud / 737.28 kbps 737.28 kbps / 2 kbps

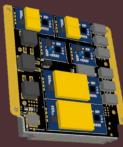
Debug Interface


 Capped for flight: Debug signals for 5 CSPv1s UART, 1 uCSP UART, Power Good, Heart beat and 2 JTAG Ports, 3 total connectors


Additional Views



SSIVP Hardware



Power Card

Design card to provide regulation to entire STP-H6/SSIVP flight unit

Smart Module

Prototype for Smart Module Designs, features GaN Sub-Experiment, accelerometer, RTDs and µCSP

SSIVP Backplane Design supports specific topology for 5 CSPv1 cards and smart module with µCSP

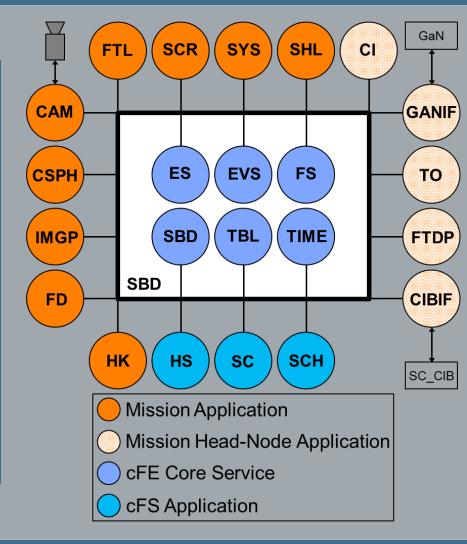
CSPv1 Rev. C

Even more radhard successor

CSPv1 Rev. B Original CSPv1 flight card

SSIVP Software

Flight Software


- CSPv1 flight software is Wumbo Linux, lightweight, custom operating system, based on Xilinx's Linux kernel fork and BusyBox
- Wumbo Linux is developed using Buildroot

CFS Applications

 Collection of adopted and custom cFS applications

SBD (Software Bus Distributed)

- Augmented version of cFE/SB
- Adds inter-node comm. support to cFE's messaging system
- Uses peer discovery and publish/subscribe msg features in OMG's RTPS protocol

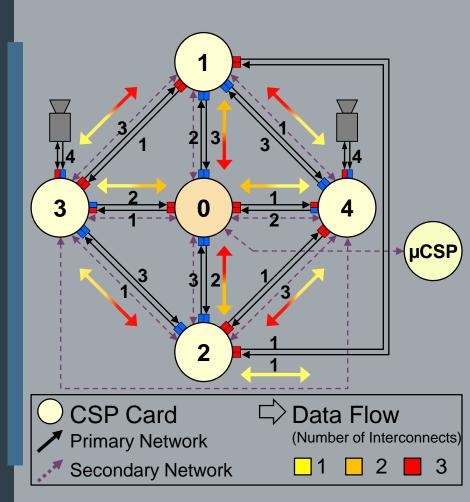
Mission Computing & Sub-Experiment

Network Topology

Two Network Architecture

- Primary network connects CSPv1 nodes with point-to-point differential signals
- Secondary network connects CSPv1 nodes with point-to-point, single-ended signals

Asymmetric Bandwidth


- Primary network is designed to optimize communication for scatter-gather applications
- Camera nodes have more transmission bandwidth
- Head node has more receiving bandwidth

Reconfigurable Network

Networking interface reside in Zynq FPGA and can be **reconfigured post-launch**

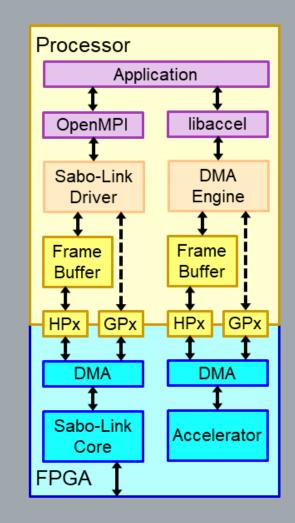
Custom Design

Custom networking interface, called Sabo-Link, leverages SerDes resources in Zynq FPGA for highperformance serial communication

Parallel Computing

Goal of SSIVP to enable Super Computing concepts with high-performance, parallel, and distributed computing

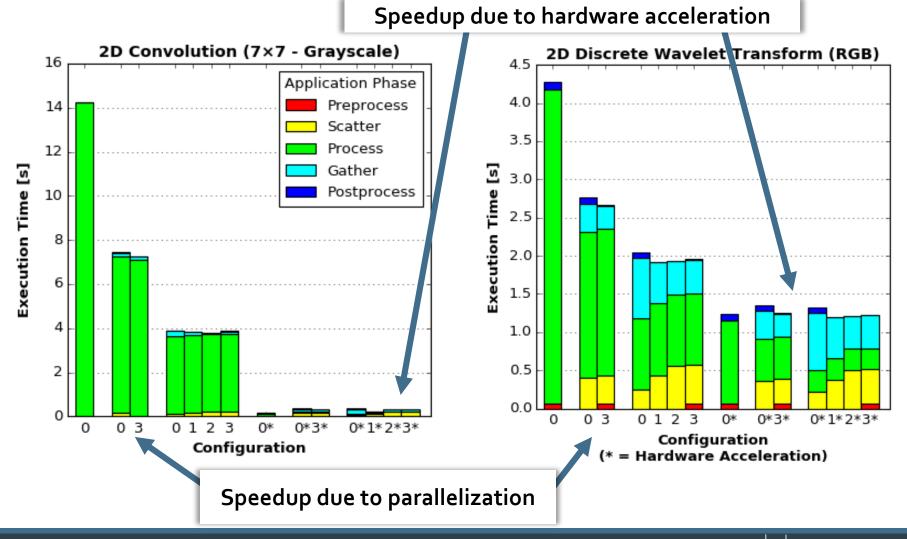
Enables High-Performance Computing

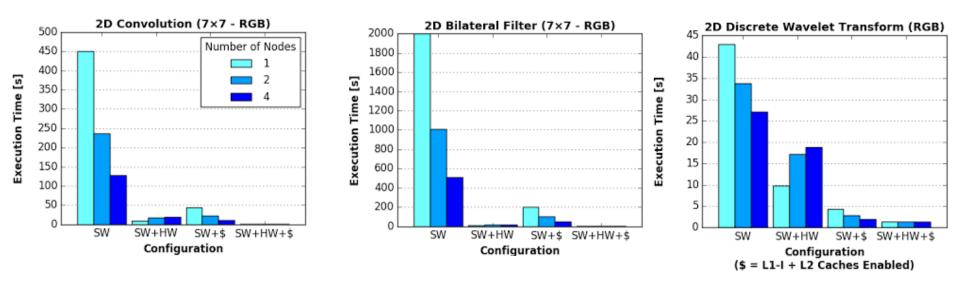

- Network driver support for native networking applications including OpenMPI
- Libraries and resources for **OpenMP** and **NEON**

Advanced Acceleration Framework

- Includes frameworks for inter-node communication and FPGAbased hardware acceleration
- Acceleration stack includes an FPGA-based image or video hardware accelerator, DMA-engine character device driver, and custom userspace library, called libaccel

Partial Reconfiguration


Partial Reconfiguration is used to alternate between FPGA sub-designs at runtime


Results by Application Phase

Results by Node Number

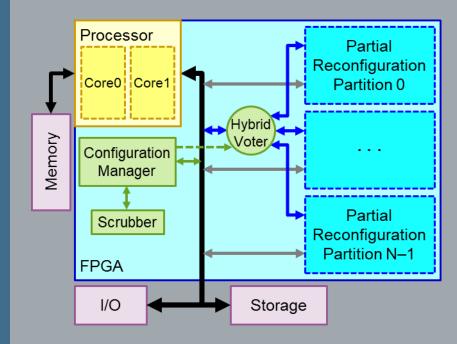
Near-linear speedup with number of nodes

Significant gains with hardware acceleration

Performance benefits with caches enabled (reliability trade-off consideration)

Dependable Computing

Hybrid Adaptive Reconfigurable Fault Tolerance

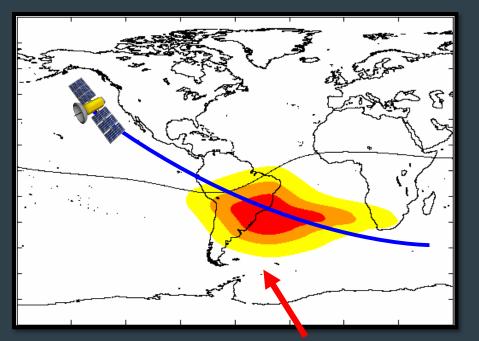

- Framework for Adaptive Fault-Tolerance on FPGA-based Hybrid SoCs
- Realize fault-tolerant strategy to apply over both fixed and reconfigurable architectures of SoC

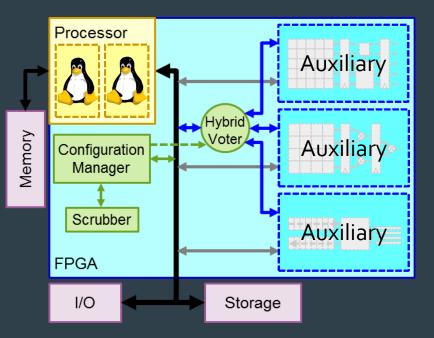
Modes in CPU and FPGA Subsystems

- Adapt processor cores for symmetric multiprocessing (SMP) or asymmetric multiprocessing (AMP)
- Adapt FPGA partial reconfiguration partitions with HW accelerators or soft processors in simplex, duplex, or triplex redundancy schemes

Environmentally Responsive

Adapt to dynamic upset rate by repurposing system resources for reliability or performance




Concept of Operation

Reliability Mode 2 HPS in AMP mode SPS has 1 triplex soft-core

South Atlantic Anomaly

GaN PoL Sub-Experiment

Why GaN?

Conclusions

• Major challenges lie ahead

- Escalating app demands in harsh environments
- Tightening constraints of platform, budget, process
- Necessitates adeptly doing more with less

• High-performance experiments on STP-H6

- Focus upon validating scalability of CSPv1 flight design
 - Submit compute intensive parallel jobs to onboard system
- Download exciting science and technology results
 - Record vital heath & status, images, and upset rates
- Push bounds of possibility in space
 - Demonstrate experimental technology and methods in space with secondary objectives

More information?

Dr. Alan D. George (PI), Department Chair, R&H Mickle Endowed Chair, Full Professor, and NSF CHREC Center Director

NSF Center for High-performance Reconfigurable Computing (CHREC) ECE Department, University of Pittsburgh 1238D Benedum Hall, 3700 O'Hara Street Pittsburgh, PA 15261 412-624-9664 Email: alan.george@pitt.edu or alan.george@chrec.org

Christopher Wilson, SSIVP Experiment Manager

Email: christopher.wilson@chrec.org

Gary Crum, Aerospace Technologist - Data Systems

Code 587 - Science Data Processing Branch NASA Goddard Space Flight Center Building 23, Room W315 Greenbelt, MD 20771 Office: (301) 286-3713 Email: gary.a.crum@nasa.gov

200 SOCO ++10

134 121 41

DNP ite.

E+ 18

IC IN

 \mathcal{L}

00

(P) In

2510 ISIC

ARM I.O B FP6A Bank 3 FP6A Bank 3

Call Call

e e