

...Big Performance, Smaller Satellites

On-Orbit Results from the CanX-7 Drag Sail Deorbit Mission

Brad Cotten Aug 9 2017 31st Annual Small Satellite Conference Logan, Utah

Space Debris Problem

- Space debris poses a major threat to the future of space operations
- IADC recommends that all LEO satellites are deorbited within 25 years of end-of-mission
- Deorbiting is particularly challenging for small satellites due to mass and volume constraints

CanX-7 Spacecraft

Payloads

Primary: Drag Sail Secondary: ADS-B Receiver

Bus Characteristics

- 3.6 kg
- 10 x 10 x 34 cm

Launch

Launch Details

Launch Vehicle: PSLV-C35 Date: Sept 26, 2016 Orbit Type: SSO Orbit Altitude: 680 km Orbit LTDN: 09:30

Photo Credit: ISRO

CanX-7 Drag Sail Deorbit Mission

Global ADS-B Data Collected by CanX-7

Aircraft tracked between Oct 2016 and April 2017 – 4.6 million messages

Regional ADS-B Data

CanX-7 Ballistic Coefficient Before & After Sail Deployment

CanX-7 Drag Sail Deorbit Mission

Initial Deorbit Performance

CanX-7 Drag Sail Deorbit Mission

Expected Deorbit Profile

CanX-7 Drag Sail Deorbit Mission

Drag Sail Technology

Design Characteristics

- Total mass: 200 g
- Dimensions: 10 x 10 x 3 cm
- 1 m² trapezoidal sail segment
- Aluminized polyimide thin film sail membrane
- Custom formed copper beryllium tape spring booms
- Built-in electronics and burn-wire release mechanism

SFL Next-Generation Monitoring and Observation Bus

2U CubeSat

CanX-7 Drag Sail Deorbit Mission

Mechanical Design

- Additively manufactured using
 Windform XT 2.0
 - Allows for a lightweight product
 - Allows for intricate features
- During secondary payload operations, the sail remains stowed within the cartridge assembly and the tape spring booms remain coiled around the reel assembly
- When a deployment command is received, the cartridge door is released allowing the booms unwind and unfurl the sail

Deployable Tape Spring Booms

- Copper beryllium tape spring booms are manufactured in-house
- The boom profile is controlled to achieve the desired unwinding torque
- Use of a non-magnetic material alleviates concerns regarding spacecraft
 magnetic cleanliness

Drag Sail Membrane

- The sail membrane is made from a 12.5 µm thick aluminized thin film polyimide
- Each 1 m² sail segment is packed into a 31 cm² volume

Deployment Telemetry

Drag Sail Deorbit Performance (4 m² Sail)

