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ABSTRACT 

Phonon Dispersion and Relaxation Time in Uranium Dioxide 

by 

Dallin C Parkinson, Master of Science 

Utah State University, 2017 

 

Major Professor: Dr. Nicholas Roberts 

Department: Mechanical Engineering 

 

Phonon dispersion branches are used to obtain an effective relaxation time to 

calculate thermal conductivity of Uranium Dioxide (UO2). The method presented closely 

follows that of Deskins’ [1] phonon-phonon interaction that uses a three-phonon process 

which satisfies momentum and energy conservation. All phonon branches including 

longitudinal acoustic, transverse acoustic, longitudinal optical and transverse optical are 

considered in the calculation of the relaxation time. 

After one phonon is identified, a scan is initiated to test all phonon combinations 

that will satisfy the conservation equations. When the scan identifies a valid three-phonon 

combination a relaxation time is calculated for that combination.  All the relaxation times 

from the possible combinations are summed using Mathias’ rule to obtain a total 

approximate relaxation time for that phonon.  

Thermal conductivity at equilibrium can be calculated at a specific temperature 

using the relaxation time approximation of the Boltzmann equation [2].  This 

approximation uses specific heat, relaxation time, group velocity and the Bose-Einstein 
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distribution.  

Eventually, the goal of this work is to apply the routine for calculating relaxation 

time from this work to a Monte Carlo simulation that will treat systems not in 

equilibrium. 

 
(23 Pages)  
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PUBLIC ABSTRACT 

 

Phonon Dispersion and Relaxation Time in Uranium Dioxide 

Dallin C. Parkinson 

Utah State University, 2017 

 

Phonons are lattice vibrations that are directly related to the thermal conductivity 

of materials. Work was done to model the thermal conductivity of Uranium Dioxide 

(UO2) at equilibrium using a relaxation time approximation of the Boltzmann equation.  

Phonon behavior depends on the polarization and the phase of each phonon.  The 

main branches of phonons are longitudinal acoustic, transverse acoustic, longitudinal 

optical and transverse optical.  For example, optical phonons have a higher frequency and 

consequently a higher energy and longitudinal phonons have a higher group velocity.  

Phonons are initialized and tested with a scanning routine to find all possible three-

phonon combinations that will satisfy both momentum and energy conservation. These 

three-phonon combinations will be considered in calculating the relaxation time.  

From the relaxation time approximation of the Boltzmann equation thermal 

conductivity can be determined as a function of temperature, specific heat, relaxation 

time and the Bose-Einstein distribution function. 
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INTRODUCTION 

Because of the large potential of UO2 to produce power, many experiments and 

studies have been conducted to better understand its properties to predict and improve 

performance in power production [3] [4]. Due to the radioactive and potentially 

hazardous nature of UO2 there are limited locations and personnel that are capable and 

permitted to conduct experiments and further studies. Because of the limitations to 

physical experiments, many studies have been done to produce and improve models that 

can predict thermal properties. The Boltzmann equation is one of the main methods for 

modeling phonon transport [5].  

𝜕𝑓

𝜕𝑡
+ 𝑉𝑔 ∙ ∆𝑓 =   [

𝜕𝑓

𝜕𝑡
]

𝑠𝑐𝑎𝑡
= ∑ [𝛷(𝑲, 𝑲′)𝑓(𝑲′) − 𝛷(𝑲′, 𝑲)𝑓(𝑲)]𝑲′   

1.1 Phonons  

A lot of previous work has gone to show how phonons, or lattice vibrations, are 

related to thermal conductivity [2] [6] [7]. To visualize phonons, one can imagine atoms 

with their respective bonds within a lattice as a continuous system of masses and springs 

[8]. As one atom vibrates it will interact with the rest of the atoms within the lattice. This 

way phonons are treated essentially as particles although they can also exhibit wavelike 

behavior.  

Phonons are the main contributors of thermal conductivity in non-conductive 

materials such as diamond. This example also proves that the phonon contribution to 

thermal conductivity is not negligible compared to the free electron contribution [8]. 

Having the ability to model phonon transport allows one to predict thermal conductivity 

[2]. There are two types of phonons, optical phonons and acoustic phonons. Phonons are 
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also classified by their polarization, the direction in which they vibrate, as either 

longitudinal or transverse. Phonons can scatter or interact with others through two main 

modes, Normal (N-process) scattering and Umklapp (U-process) scattering.  Normal 

phonon scattering allows heat to flow through the lattice unrestricted [9]. If N-process 

were the only process of phonon interaction thermal conductivity would be infinite [1] 

[10]. Thermal conductivity is negatively related to Umklapp phonon scattering and 

decreases as U-process scattering increases [11].   

1.2 BTE and the Monte Carlo Method 

As mentioned above the Boltzmann Transport Equation is used to describe 

phonon behavior. The Boltzmann Equation is especially useful because it can model 

phonons at an equilibrium or non-equilibrium state [5]. However, this equation is difficult 

to solve and very expensive computationally. This leads to the interest in the Monte Carlo 

method which has been used for decades to give solutions to the Boltzmann Equation [5] 

[10] [12].  Using the Monte Carlo method, many instances of phonons are simulated with 

scattering occurring randomly based on probabilities often based on relaxation time [1] 

[5].  If enough phonons are simulated then the Monte Carlo Method results approach real 

world behavior [5]. Although this work does not treat the Monte Carlo method, the 

phonon dispersion and relaxation time calculations can be used in the development of a 

Monte Carlo code or the modification of the existing one developed by Dr. Roberts. 

1.3 Relaxation time approximation 

Work done by Holland resulted in an equation for thermal conductivity at 

equilibrium based on the Boltzmann equation.  
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𝜅 =
4𝜋

3

1

(2𝜋)3
∑ ∫[𝑣𝐾𝑝

2

𝑝
𝜏(𝐾, 𝑝)𝐶𝑝ℎ(𝐾, 𝑝)𝑓(𝐾, 𝑝)]𝑑𝐾 

This equation uses the relaxation time approximation to determine the scattering events 

[2]. More will be said about this equation later, but it is one way the relaxation time can 

be utilized without needing to use Monte Carlo simulation.  
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PHONON DISPERSION BRANCHES 

To begin the treatment of phonon relaxation we need to know the phonon 

dispersion curves. Table 1 contains fitting parameters for each of the phonon 

polarizations to be used in a cubic equation. These fits were obtained from the work done 

by Dolling [13] and used in the study by Deskins [1]. Since phonons are lattice vibrations 

it is possible to obtain phonon dispersion data through several different methods 

including: neutron scattering [13] [14] [15], Raman spectroscopy [16] [17], and x-ray 

spectroscopy [18]. 

Table 1: Phonon dispersion branches.  For the LA and LO branches the second row 

of fitting parameters corresponds to 𝐊𝐫𝐞𝐝 > 𝟎. 𝟓 

 

These fits are used to calculate the frequency of each branch as a function of 

wavevector where 𝜔(𝐾) = 𝐴𝐾3 + 𝐵𝐾2 + 𝐶𝐾 + 𝐷 [1]. It may be noted that the 

longitudinal branches have two sets of fitting parameters. The first set of fitting 

parameters is for when the reduced wavevector is less than half of the maximum 

wavevector (i.e. 𝐾𝑟𝑒𝑑 < 0.5) the second set is for reduced wavevector values above 

Branch 𝐴

2𝜋
 

𝐵

2𝜋
 

𝐶

2𝜋
 

𝐷

2𝜋
 

LA −5.00578×10−19 −3.79652×10−8 1035.08298 0 

 1.77606×10−18 −9.37422×10−8 1450.4614 −9.77108×1011 

TA −1.82517×10−18 1.75603×10−8 318.904326 0 

LO 1.10738×10−18 −1.08783×10−7 0 1.34487×1013 

 1.64367×10−17 −3.25511×10−7 972.588976 1.20762×1013 

TO 2.11922×10−18 −3.65102×10−8 0 8.49391×1012 
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𝐾𝑟𝑒𝑑 = 0.5 where 𝐾𝑟𝑒𝑑 = 𝐾/𝐾𝑚𝑎𝑥. A branch switch function was created to set the right 

fitting parameters to each branch. The switch function is called for each phonon and 

assigns the fit values based on an input branch number and reduced wavevector and in 

turn sets the frequency. Figure 1 shows the dispersion curves for each of the branches as 

frequency as a function of the wavevector.  

 

Figure 1: Dispersion Branches as obtained from the cubic fit of work done by 

Dolling. 
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CONSERVATION EQUATIONS AND PHONON BEHAVIOR 

 Phonon energy is defined as ℏ𝜔 and, although phonons do not have actual 

physical momentum, ℏ𝐾 is considered an equivalent phonon momentum [1] [9]. Two 

equations govern the possible scattering of phonons which will end up determining the 

relaxation times for the three-phonon process [1] [11]. 

Momentum conservation:  

𝐾 + 𝐾′ ↔ 𝐾″ + 𝑏 (3.1) 

and Energy conservation: 

𝜔 + 𝜔′ ↔ 𝜔″ (3.2) 

where the term, 𝑏, is the reciprocal lattice vector. 

When the scattering is within the first Brillouin zone the reciprocal lattice vector 

is set to zero and is considered an N-process scattering event. The first Brillouin zone has 

been defined in this work as any value of the wavevector between 0 and 𝐾𝑚𝑎𝑥.  𝐾𝑚𝑎𝑥 =

2𝜋

𝑎𝑜
 with 𝑎𝑜 = 5.473Å. When the scan process results in a wavevector that exceeds the 

first Brillouin zone it becomes a U-process event. Phonon combinations falling outside 

the Brillouin zone can be seen in Figure 3 and Figure 5 as the curves arrive at 𝐾𝑚𝑎𝑥 then 

reflect. 

The conservation equations have a two-sided arrow that shows two phonons can 

combine to form one or that one phonon can decay into two separate phonons. The 

equations are not one directional. 
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SCAN ROUTINE 

This chapter details the scan routine that identifies all possible phonon 

combinations that follow the conservation equations detailed in the previous chapter. It 

follows closely the scan outlines by Deskins [1].  

A phonon is defined with a wavevector and branch number and its resulting 

frequency is calculated from the dispersion curves detailed in Chapter 1. The routine then 

initializes a secondary phonon loop and scans through all branches and wavevector 

values, adding them to the original phonon to obtain a third wavevector following the 

conservation equation 𝐾 + 𝐾′ = 𝐾″. During the scan of the secondary phonon the 

wavevector is used to calculate frequency with the cubic function 𝜔′(𝐾′). After the 

primary and secondary phonons have an assigned branch, wavevector and frequency and 

the third phonon has an assigned branch and wavevector the frequency for the third 

phonon is calculated, 𝜔″(𝐾″). 

If the third phonon falls outside the first Brillouin Zone the reciprocal lattice 

vector (𝑏) no longer equals zero, and the scattering combination is counted as a U-

process scattering event. Phonon combinations fall outside the Brillouin Zone when 𝐾 +

𝐾′ > 𝐾𝑚𝑎𝑥. The routine initializes 𝑏 to zero and checks during the scan that the third 

phonon wave vector, 𝐾″, is below 𝐾𝑚𝑎𝑥. When 𝐾″ > 𝐾𝑚𝑎𝑥 the reciprocal lattice vector is 

defined as: 

𝑏 = 𝐾 + 𝐾′ − 𝐾𝑚𝑎𝑥 

And the wave vector of the third phonon becomes: 

𝐾″ = 𝐾 + 𝐾′ − 𝑏 
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Conservation of energy is tested with equation 3.2. When the wavevectors and 

frequencies of the three phonons satisfy both conservations equations the resulting three-

phonon combination is possible and is counted in the relaxation time calculation. To test 

that conservation of energy is satisfied a temporary variable Δ𝜔 is defined as:  

Δ𝜔 = 𝜔 + 𝜔′ − 𝜔″ 

The scan routine keeps track of Δ𝜔 and tests for a change in sign. When the sign changes 

that means Δ𝜔 = 0 and the equation 3.2 is satisfied. 

Summarized, the steps are: 

1. Assign the primary phonon a frequency and wavevector. 

2. Scan through secondary phonon wavevector. 

a. Assign frequency of secondary phonon, 𝜔′(𝐾′). 

3. Add primary and secondary phonon wavevector to get third wavevector.  

𝐾 + 𝐾′ = 𝐾″ 

4. Assign frequency to third phonon, 𝜔″(𝐾″).  

5. Calculate Δ𝜔 and test for change in sign.  

6. When Δ𝜔 = 0 keep the corresponding frequency of the third phonon 𝜔″.  

 

The following figures show the results of the scan routine for the LA dispersion 

branch at 𝐾𝑟𝑒𝑑 = 0 and 𝐾𝑟𝑒𝑑 =
1

3
 as well as the TO dispersion branch at 𝐾𝑟𝑒𝑑 = 0 and 

𝐾𝑟𝑒𝑑 =
1

4
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. 

Figure 2: Scan results showing 𝚫𝝎 vs. 𝑲″of an LA phonon at 𝑲𝒓𝒆𝒅 = 𝟎 

 

Figure 3: Scan results showing 𝚫𝝎 vs. 𝑲″ of an LA phonon at 𝑲𝒓𝒆𝒅 =
𝟏

𝟑
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Figure 4: Scan results showing 𝚫𝝎 vs. 𝑲″ of a TO phonon at 𝑲𝒓𝒆𝒅 = 𝟎 
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Figure 5: Scan results showing 𝚫𝝎 vs. 𝑲″ of a TO phonon at 𝑲𝒓𝒆𝒅 =
𝟏

𝟒
 

These figures show the complete scan of every branch combination, however, not 

every three-phonon combination can satisfy both the conservation equations. To make the 

combinations that satisfy conservation clearer, the following figures eliminate the 

combinations that cannot satisfy the conservation equations.
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Figure 6: Scan results showing 𝚫𝝎 vs. 𝑲″ of an LA phonon at 𝑲𝒓𝒆𝒅 =
𝟏

𝟑
 with the 

non-contributing combinations omitted 
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Figure 7: Scan results showing 𝚫𝝎 vs. 𝑲″ of a TO phonon at 𝑲𝒓𝒆𝒅 =
𝟏

𝟒
 with the non-

contributing combinations omitted 
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CALCULATION OF RELAXATION TIME 

Relaxation time for a phonon is given by the equation [7]. 

1

𝜏𝑖
=

𝛾2ℏ𝐾′2

24𝜋𝜌𝑣𝑝ℎ
2 𝑣𝑔

′
𝜔𝜔′𝜔″[𝑓𝐾′(𝜔′) − 𝑓𝐾″(𝜔″)]. 

Where 𝛾 is the Grüneisen parameter which is set to 1.5.  The Grüneisen parameter is used 

in other works as the only necessary fitting parameter for the relaxation time calculation 

[19]. ℏ is the reduced Plank’s constant, 𝜌 is the crystal density, 𝑣𝑝ℎ is the phase velocity 

defined as 𝜔/𝐾. The frequencies  𝜔 𝜔′ 𝜔″ correspond to each of the phonons in the three-

phonon combination. The function 𝑓𝐾(𝜔) is the Bose-Einstein distribution function.  

𝑓𝐾(𝜔) =
1

exp (
ℏ𝜔
𝑘𝐵𝑇

) − 1
 

Group velocity 𝑣𝑔 is defined as 𝛿𝜔/𝛿𝐾 and is shown in Figure 8. It also can be seen in 

Figure 1 that the longitudinal phonons have a larger group velocity because they have 

more variation in frequency as the wave vector changes. 
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Figure 8: Group velocity for each of the 4 dispersion branches. 

  

 With a slight addition to the scan routine detailed above, the code can compute 

the relaxation time for each of the phonons as the scan is in progress. This is done by 

creating a loop outside the scan routine that will change the primary phonon wave vector 

and branch. The overall relaxation time is obtained through Mathiessen’s rule which 

sums all the contributing relaxation times. 

1

𝜏
=  ∑

1

𝜏𝑛
𝑛

 

When the scattering event becomes a U-process the equation for calculating relaxation 

time is modified slightly to become.  
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1

𝜏𝑖
=

𝛾2ℏ𝐾′2

24𝜋𝜌𝑣𝑝ℎ
2 𝑣𝑔

′
𝜔𝜔′𝜔″ [

1

2
{𝑓𝐾′(𝜔′) + 𝑓𝐾″(𝜔″) + 1}]. 

Taking this into consideration, it is possible to isolate the relaxation time contribution 

from each of the two types of scattering which may be beneficial in future work. 

However, with Mathiessen’s rule the total relaxation time includes both N-process and U-

process scattering. 
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RESULTS AND DISCUSSION 

 With each of the parts to the relaxation time equation in place the total relaxation 

time can be calculated at different temperatures. The figures below show the relaxation 

times of each phonon branch at 300K and 1000K. 

 

Figure 9: Relaxation time vs frequency of the phonon branches at 300K 
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Figure 10: Relaxation time vs frequency of the phonon branches at 1000K 

 

The relaxation time plots are comparable to the results obtained by Deskins [1] except for 

the longitudinal optical branch which cuts off near 5×1013.  This is likely because the 

routine in this paper neglects two higher frequency optical branches that are included in 

the routine performed by Deskins.  

 The relaxation times at both temperatures have the same general shape and 

behavior but there is a slight difference in location.  The relaxation time at 300K is higher 

than the relaxation time at 1000K. This makes sense because UO2 at 1000K will have a 

higher energy than UO2 at 300K and the phonons move more quickly. 
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With the relaxation time results it is possible to achieve thermal conductivity 

predictions of UO2 using a modified version of the Boltzmann equation which was 

mentioned in the introduction [2]. 

𝜅 =
4𝜋

3

1

(2𝜋)3
∑ ∫[𝑣𝐾𝑝

2

𝑝
𝜏(𝐾, 𝑝)𝐶𝑝ℎ(𝐾, 𝑝)𝑓(𝐾, 𝑝)]𝑑𝐾 

Where 𝑣𝐾𝑝 is phonon velocity, 𝜏 is the relaxation time 𝑓(𝐾, 𝑝) is the Bose-Einstein 

distribution 𝑝 is the polarization of the phonon 𝐾 is the wavevector and 𝐶𝑝ℎ is the 

specific heat given by, 

𝐶𝑝ℎ =
𝑘𝑥2𝑒𝑥

(𝑒𝑥 − 1)2
 

Where 𝑥 =
ℏ𝜔

𝑘𝑇
 and k is the Boltzmann constant. 
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SUMMARY AND CONCLUSION 

Building upon previous studies of phonon scattering in silicon and UO2 this work 

provides additional insight into the effect of optical phonons in the computation of 

relaxation time. Optical phonons become increasingly important in simulations of alloys 

and composite structures. Using the phonon dispersion branches, a scan identified all 

possible three-phonon combinations that satisfy conservation of momentum and energy.  

These combinations are then used along with other phonon properties, such as group 

velocity, to obtain an effective relaxation time which has applications in finding thermal 

conductivity as well as Monte Carlo simulations [9]. Relaxation time for each of the 

branches of UO2 is presented in the previous section. 

 A simulation based study such as this one is valuable when physical 

experimentation to find thermal properties is expensive, difficult or hazardous.  

Simulations based on phonon scattering can provide an accurate baseline to compare 

physical results and provide insight toward experiment design. 

 This treatment of phonon-phonon interaction also provides a good method for 

including optical phonons in the Monte Carlo code created by Dr. Roberts. The existing 

Monte Carlo simulation is for silicon and only considers acoustic phonons. The higher 

energy optical modes may cause more U-process scattering, and in turn help correct the 

calculation of thermal conductivity which tends to be too high. This is assumed because 

U-process scattering lowers thermal conductivity but has not yet been proven. 

This work has built on the existing work done to treat phonon behavior with the 

specific motivation to apply it toward Monte Carlo simulations of UO2. Future work 

includes applying the relaxation time to the Boltzmann equation to compute thermal 
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conductivity at equilibrium as well as developing a Monte Carlo simulation for UO2 and 

other materials based on their specific dispersion curves. 
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