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Earth Observing Constellations 
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EO Constellation Scheduling 

•  Existing tools: observation and downlink scheduling 
–  Planet Inc. algorithms 
–  Multi-Sat Multi-GS scheduling 

–  STK Scheduler 
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NASA,	
2013		

NASA	Edison	Demonstra1on	
of	Smallsat	Networks	(EDSN)	

•  Crosslink usage with tight-knit satellite clusters 
–  Task allocation (e.g. market based) 
–  Local or mesh networks 



ACCESS Architecture 
1.  Simulate a “spread-out” satellite constellation  
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Ground
Planner 

Onboard
Planner 

2.  Schedule with a centralized ground planning system 
–  Key: utilize long-distance crosslinks for low-latency bulk data routing 

3.  Distribute plans to sats via ground and crosslink network 
4.  Reactive observation replanning onboard sats 

–  Key: distribute updates through network 



Data Routing Approach 
•  Optimize metric: observation latency to downlink 
•  Implemented a greedy algorithm 

–  Downlink observations in temporal order 
–  Use earliest downlink possible each time 
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Data Routing Approach 
•  Optimize metric: observation latency to downlink 
•  Implemented a greedy algorithm 

–  Downlink observations in temporal order 
–  Use earliest downlink possible each time 
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Payload and Link Models 
•  High data rate EO 

payload 

–  5 spectral bands, 
optical and NIR 

–  127.5 Mbps 
compressed data 

–  60 s average flyover 
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•  X-band Downlink  

–  1 W Tx 
–  0.25U  
–  5.5 m Rx diam.  
–  Adaptive data rate 
–  25-45 Mbps   

•  Optical Crosslink 

–  1 W Tx  
–  1U 
–  8.5 cm Rx diam.  
–  Adaptive data rate 
–  10 Mbps @ 

4,300km range 



Simulation Cases 
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•  Set of 33 obs. targets 
•  3 orbital geometries 
•  3 GS networks 

•  24h window for routing Targets 

Orbits 

Networks 
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Routing Latency 

•  Routing Latency results 
–  For first 1 Gbit of data from each observation 
–  Average of latencies for all obs data packets 

• Do not yet consider satellite energy constraints 
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Routing Latency: 10 Sat SSO 

•  10 satellites in single 10:30 LTAN SSO 
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Latency	improves	
with	more	GS	

Xlnks	reduce	latency	50%	or	more.		
Latency	<	1h:	“desirable”	
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Better Latency: 30 Sat Walker 

•  30 satellites in a 3 plane Walker Delta pattern, 60° inc. 
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See	a	large	latency	
increase	in	downlink-
only	case	(121	min	
for	10	sats	SSO)	

Xlnks	reduce	latency	~80%	or	more.		
Latency	<	0.5h:	closing	in	on	

instantaneous		



Urgent Data Routing 

•  Same 33 targets  
•  Subset of targets designated “urgent” for ~2 h durations 

–  Downlinked before all other obs 
–  Simulates changing observation priorities 
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Urgent Latency, Downlink Only 

•  Plot with downlinks only, 9 GS 
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Latency	reduced		
more	than	half	when	

marked	urgent	

Urgent	latency	slowly	
degrades	as	more	
marked	urgent	
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With	xlnks,	latency	driven	
even	lower	for	urgent	obs	
		23.3	mins	to	15.9	mins	

•  Plot with downlinks and crosslinks, 9 GS 



Data Routing Execution Time 
•  Measured algorithm execution time  

–  Scheduling of obs, dlinks, xlinks; data packet routing 
–  Custom Python code 

•  For increasing constellation size 
•  For two planning window durations: 12 hours and 24 hours 
•  Run on a 2013 Macbook Pro laptop (2 GHz, 8 GB RAM) 

18	

Number of 
Satellites  

Execution Time (mins)  

12 Hour Window  24 Hour Window  

30  0.18 0.56 

60  0.94 2.92 

100 4.57 13.23 

Planning	execuDon	Dme	appears	
tractable	for	scalability.		
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Conclusion 

•  Summary of results 
–  Regular latency, Walker Delta with xlnks: 23 and 17 mins 
–  Urgent latency, Walker Delta with xlnks: 16 mins 
–  Execution time of 13 mins for 24 h window with 100 sats 

20	

•  Long range crosslinks promising for low latency bulk data 
delivery 

•  Future work 
–  Algorithm improvements: energy-aware planning, data routing 

optimization (utilizing e.g. MILP), onboard replanning. 
–  Additional metrics, sensitivity studies (particularly: crosslink 

range and data rate, simplex vs duplex) 
–  Incorporation in operations SW stack 
–  Open-sourcing 
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Backup 



The Problem: EO Data Delivery 

•  To effectively monitor events on Earth, we need “almost 
instantaneous data availability” 3,4 

–  0.5 to 1 hour 5 

–  Benchmark: 90min latency, Disaster Monitoring Constellation 3 
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Zhang	et	
al.	6	

Floods	 Erup1ons,	Fires	

Pergola	et	
al.	7	

Earthquakes	

Liu	et	al.	8	

and	more…	



Constellation Crosslinks 
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•  Inter-satellite crosslinks 
–  TLM and CMD 
–  Bulk data routing 

•  Crosslinks stress operations 
–  Energy usage 9 

–  Satellite scheduling complexity 
–  Constellation scheduling complexity 

Crosslinks	in	Iridium	
Constella1on	

Gupta,	2007	22	



Imaging Payload Details 
•  From commercial 6U CubeSat design by Tsitas and Kingston 

[x21] 
–  Designed to be competitive with DMC and RapidEye EO satellites 
–  600 km SSO, GSD of 6.5m and swath width of 26km 

•  Imager 
–  Questar 3.5 telescope (89mm aperture, 20.3cm length, 1.4 kg) 
–  Fairchild imaging CCD5061 (4000 pixels, 12 bit digitization) 

•  5 spectral bands, 255 Mbps uncompressed 
–  2:1 lossless compression -> 127.5 Mbps 
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Example Plot of Battery Level 

26	



Payload/Comm Energy Usage 
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Clements et al, 2016
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Future Work 

•  Deployment of global planner algorithm on ground 
software stack (e.g. Ball Aerospace’s COSMOS) 

•  Deployment local (satellite) planner algorithm on flight 
software stack (e.g. NASA Goddard’s cFS) 

•  Incorporate more versatile observation payload and 
satellite operations modeling 

•  Open source release of ACCESS software for use by the 
wider small sat community. 
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Earth Observing Constellations 

•  Advantages 1: 
–  Higher temporal resolution 
–  Multi-point instrument coordination 
–  Low-latency data availability 
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TROPICS	Mission,	
MIT	LL	2	



Large GS Network Deployment 

•  Ground Stations 
–  Expensive to deploy 
–  Lots of organizational/legal overhead 
–  Very hard to deploy across oceans 
–  For lasercomm, clouds can hinder downlink 
–  For commercial networks  

•  Still have to pay for usage 
•  Have to worry about schedule access 
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Latency: Both Geometries 

•  Combined latency plot of 10 sat SSO, 30 sat Walker 
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More revisits, lower latency 

•  What we need: 

 
•  How we get there 

–  5 
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Lower inter-revisit 
times to targets 

Less	Dme	from	data	
collecDon	to	delivery	

Larger 
constellations 

More ground 
stations 

Inter-satellite 
crosslinks 

• More frequent flyovers 
of targets 

•  lower wait time for downlink 
• more total volume to ground 

• route data to downlinks 
• distribute bandwidth over 
ground stations 



Scaling Operations 

Need an automated operations approach that: 
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Scales to many 
satellites  

(tens to hundreds) 

Efficiently balances 
data collection and 

routing 

Handles unique 
constraints of 

CubeSat platform 

•  Human-in-the-loop planning 
scales linearly with number of 
satellites [x3] 

•  EO Data rates of 100 MB to 
TB per orbit [x2,x4,x5]  

•  Often impossible to fully 
downlink all data 

•  Limited comm. availability 
•  Low energy generation, 

storage 
•  Multi-modal measurements 



ACCESS Design Goals 
•  Efficiently manage data collection and routing to ground 

–  Schedule observations, downlinks, and crosslink to balance fast  
downlink of key data with bulk data delivery 

–  “efficient” – not optimal scheduling, but close enough 
–  Key advantage: crosslink routing built directly into algorithms 

•  Allow scalability to 100s of satellites 
–  Scheduling divided based on constellation-level and satellite-level 

constraints 
–  Sacrifices some degree of optimality in scheduling for better 

tractability 
•  Enable reactive and federated constellation operations 

–  Satellites have some freedom to replan activities  
–  Allows reactivity for disaster monitoring, multi-constellation 

cooperation 
–  Key advantage: loose coupling of planning responsibility 

between ground and satellites 
 36	



ACCESS CubeSat Ops Model 
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ObservationDownlink

Crosslink

Ground 
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Target
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Dlnk    Xlnk
Obs Obs

time
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•  3 activities 
–  Observation 
–  Crosslink 
–  Downlink 

•  Power usage for activities 
added on base-level (“idle”) 



ACCESS Architecture 
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Telemetry and 
Command 
Manager

Satellite 1
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Communications 
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Ground. Considers:  
•  Data collection 
•  Data routing 

through xlnk, dlnk 

 

Satellite. Considers:  
•  Current sat state 
•  New observation 

opportunities 

 

Activity timings, 
weightings 



Background: Scheduling 

•  Algorithms and software exist for small satellite scheduling 
–  Manage activity timing and limited onboard resources 
–  e.g. Planet Inc. [x8], Multi-Sat Multi-GS scheduling [x9], ASPEN/

CASPER [x10], STK Scheduler [x6,x7] 
•  EO constellation management adds difficult logistics 

–  Tasking satellites with observation targets [x8] 
–  De-conflicting downlinks between satellites [x8,x9] 
–  Maintaining schedule synchronization across constellation 

[x11,x12,x13,x14,x15] 
•  Using crosslinks as data routes add more complexity 

–  At first glance, number of connections between satellites grows 
as N2 
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