



### Initial Results from ACCESS: an Autonomous CubeSat Constellation Scheduling System for Earth Observation

Andrew "Kit" Kennedy, Prof. Kerri Cahoy akennedy@mit.edu August 8, 2017

**SmallSat Session V - Ground Systems** 

# 1411





### Motivation

- Approach
  - EO Constellation Scheduling
  - ACCESS architecture
  - Data Routing
  - Simulation cases
- Results
  - Data Routing latency
  - Urgent Data Routing latency
  - Execution Time
- Conclusion



# Earth Observing Constellations







- Motivation
- Approach
  - EO Constellation Scheduling
  - ACCESS architecture
  - Data Routing
  - Simulation cases
- Results
  - Data Routing latency
  - Urgent Data Routing latency
  - Execution Time
- Conclusion



# **EO Constellation Scheduling**

- STAR Lab
- Existing tools: observation and downlink scheduling
  - Planet Inc. algorithms
  - Multi-Sat Multi-GS scheduling
  - STK Scheduler
- Crosslink usage with tight-knit satellite clusters
  - Task allocation (e.g. market based)
  - Local or mesh networks



NASA Edison Demonstration of Smallsat Networks (EDSN)







- 1. Simulate a "spread-out" satellite constellation
- 2. Schedule with a centralized ground planning system
  - Key: utilize long-distance crosslinks for low-latency bulk data routing
- 3. Distribute plans to sats via ground and crosslink network
- 4. Reactive observation replanning onboard sats
  - Key: distribute updates through network



## **Data Routing Approach**



- Optimize metric: observation latency to downlink
- Implemented a greedy algorithm
  - Downlink observations in temporal order
  - Use earliest downlink possible each time



## **Data Routing Approach**



- Optimize metric: observation latency to downlink
- Implemented a greedy algorithm
  - Downlink observations in temporal order
  - Use earliest downlink possible each time



### **Payload and Link Models**



High data rate EO payload

- 5 spectral bands, optical and NIR
- 127.5 Mbps compressed data
- 60 s average flyover

- X-band Downlink
   Optical Crosslink
  - -1WTx
  - 0.25U
  - 5.5 m Rx diam.
  - Adaptive data rate
  - 25-45 Mbps

- - 1 W Tx
  - 1U
  - 8.5 cm Rx diam.
  - Adaptive data rate
  - 10 Mbps @ 4,300km range





### **Simulation Cases**



- 24h window for routing
- Set of 33 obs. targets
- 3 orbital geometries
- 3 GS networks











- Motivation
- Approach
  - EO Constellation Scheduling
  - ACCESS architecture
  - Data Routing
  - Simulation cases
- Results
  - Data Routing latency
  - Urgent Data Routing latency
  - Execution Time
- Conclusion







- Routing Latency results
  - For first 1 Gbit of data from each observation
  - Average of latencies for all obs data packets
- Do not yet consider satellite energy constraints



## Routing Latency: 10 Sat SSO

• 10 satellites in single 10:30 LTAN SSO





# Better Latency: 30 Sat Walker



• 30 satellites in a 3 plane Walker Delta pattern, 60° inc.







# Urgent Latency, Downlink Only

• Plot with downlinks only, 9 GS



# Xlinks Reduce Urgent Latency

Plot with downlinks and crosslinks, 9 GS



# Data Routing Execution Time



- Measured algorithm execution time
  - Scheduling of obs, dlinks, xlinks; data packet routing
  - Custom Python code
- For increasing constellation size
- For two planning window durations: 12 hours and 24 hours
- Run on a 2013 Macbook Pro laptop (2 GHz, 8 GB RAM)

| Number of  | Execution Time (mins) |                |  |  |
|------------|-----------------------|----------------|--|--|
| Satellites | 12 Hour Window        | 24 Hour Window |  |  |
| 30         | 0.18                  | 0.56           |  |  |
| 60         | 0.94                  | 2.92           |  |  |
| 100        | 4.57                  | 13.23          |  |  |

Planning execution time appears tractable for scalability.





- Motivation
- Approach
  - EO Constellation Scheduling
  - ACCESS architecture
  - Data Routing
  - Simulation cases
- Results
  - Data Routing latency
  - Urgent Data Routing latency
  - Execution Time
- Conclusion





### Conclusion



- Summary of results
  - Regular latency, Walker Delta with xlnks: 23 and 17 mins
  - Urgent latency, Walker Delta with xlnks: 16 mins
  - Execution time of 13 mins for 24 h window with 100 sats
- Long range crosslinks promising for low latency bulk data delivery
- Future work
  - Algorithm improvements: energy-aware planning, data routing optimization (utilizing e.g. MILP), onboard replanning.
  - Additional metrics, sensitivity studies (particularly: crosslink range and data rate, simplex vs duplex)
  - Incorporation in operations SW stack
  - Open-sourcing



### References



#### Slide 5

- 1. Monmousseau, P., "Scheduling of a Constellation of Satellites : Improving a Simulated Annealing Model by Creating a Mixed-Integer Linear Model," Royal Institute of Technology (KTH), 2015.
- 2. Castaing, J., "Scheduling Downloads for Multi-Satellite, Multi-Ground Station Missions," 28th Annual AIAA/USU Conference on Small Satellites, SSC14-VIII-4, Logan, UT: AIAA/USU, 2014.
- 3. Fisher, W. A., and Herz, E., A Flexible Architecture for Creating Scheduling Algorithms as used in STK Scheduler, 2013.
- 4. Fisher, W. A., The Optwise Corporation Deconfliction Scheduler Algorithms (As used in STK/Scheduler), 2004.
- 5. Van Der Horst, J., "Market-Based Task Allocation in Distributed Satellite Systems," Ph.D. Dissertation, Univ.of Southampton, Southampton, England, U.K., 2012.
- 6. Van der Horst, J., and Noble, J., "Task Allocation in Networks of Satellites with Keplerian Dynamics," Acta Future, Vol. 5, 2012, pp. 143– 151.
- 7. Wu, X., Vladimirova, T., Sidibeh, K., and Gu, U. K., "Signal Routing in a Satellite Sensor Network Using Optimisation Algorithms," IEEE Aerospace Conference Proceedings, 2008.
- 8. Hanson, J., Chartres, J., Sanchez, H., and Oyadomari, K., "The EDSN Intersatellite Communications Architecture," 11th Annual Summer CubeSat Developers' Workshop, 2014.
- 9. Parham, J. B., Zosuls, A., Walsh, B., and Semeter, J., "Multipoint Measurements of the Aurora with a CubeSat Swarm," Proceedings of the 30th Annual AIAA/USU Conference on Small Satellites, pp. 1–7.
- 10. https://www.nasa.gov/directorates/spacetech/small\_spacecraft/edsn.html
- Slide 9
- 11. Clements, E., Aniceto, R., Barnes, D., Caplan, D., Clark, J., Portillo, I. del, Haughwout, C., Khatsenko, M., Kingsbury, R., Lee, M., Morgan, R., Twichell, J., Riesing, K., Yoon, H., Ziegler, C., and Cahoy, K., "Nanosatellite Optical Downlink Experiment: Design, Simulation, and Prototyping," Optical Engineering, vol. 55, 2016, p. 111610.
- 12. Tsitas, S. R., and Kingston, J., "6U CubeSat design for Earth observation with 6-5m GSD, five spectral bands and 14Mbps downlink," Aeronautical Journal, vol. 114, 2010, pp. 689–697.
- 13. Fernandez, M.; Latiri, A.; Dehaene, T.; Michaud, G.; Bataille, P.; Dudal, C.; Lafabrie, P.; Gaboriaud, A.; Issler, J.L.; Rousseau, F.; others. X-band Transmission Evolution Towards DVB-S2 for Small Satellites 2016.
- 14. Fernandez, M.; Guillois, G.; Richard, Y.; Issler, J.; Lafabrie, P.; Gaboriaud, A.; Evans, D.; Walker, R.; Koudelka, O.; Romano, P.; others. Game-changing radio communication architecture for cube/nano satellites 2015.





### **Backup**

#### 23

and more...

# The Problem: EO Data Delivery

- To effectively monitor events on Earth, we need "almost instantaneous data availability" <sup>3,4</sup>
  - 0.5 to 1 hour  $^{\rm 5}$
  - Benchmark: 90min latency, Disaster Monitoring Constellation <sup>3</sup>



Gupta, 2007<sup>22</sup>

### **Constellation Crosslinks**

- Inter-satellite crosslinks
  - TLM and CMD

- Bulk data routing
- Crosslinks stress operations
  - Energy usage <sup>9</sup>
  - Satellite scheduling complexity
  - Constellation scheduling complexity

#### Crosslinks in Iridium Constellation





## Imaging Payload Details



- From commercial 6U CubeSat design by Tsitas and Kingston [x21]
  - Designed to be competitive with DMC and RapidEye EO satellites
  - 600 km SSO, GSD of 6.5m and swath width of 26km
- Imager
  - Questar 3.5 telescope (89mm aperture, 20.3cm length, 1.4 kg)
  - Fairchild imaging CCD5061 (4000 pixels, 12 bit digitization)
- 5 spectral bands, 255 Mbps uncompressed
  - 2:1 lossless compression -> 127.5 Mbps

| Altitude<br>and orbit       | Nadir<br>GSD | Swath | Spectral<br>bands                                                                                   | Optical<br>MTF                 | Imager<br>MTF                                 | Digitisation                              | SNR                                 |
|-----------------------------|--------------|-------|-----------------------------------------------------------------------------------------------------|--------------------------------|-----------------------------------------------|-------------------------------------------|-------------------------------------|
| 600km<br>Sun<br>synchronous | 6·5m         | >25km | 440-510nm (Blue)<br>520-590nm (Green)<br>630-685nm (Red)<br>690-730nm (Red edge)<br>760-850nm (NIR) | @ 1/2 Nyquist<br>@ Nyquist (0∙ | t (0·7 field) ><br>7 field) > 20<br>@ Nyquist | 12 bits<br>- 55%<br>%<br>(0·7 field) ≥ 7% | 154<br>168-4<br>142<br>117<br>174-6 |

# **Example Plot of Battery Level**





## Payload/Comm Energy Usage



Clements et al, 2016

### **Motivation**



- What if there were a low cost way for a CubeSat to downlink 100 Gb/day?
  - Most CubeSats downlink << 10 Gb/day (UHF or S-band systems) <sup>[1]</sup>
- Radio frequency (RF) downlinks challenged by resource constraints
  - E.g., ground station size, transmitter power, or spectrum
- Lasercom is less resource constrained and could scale to Gbps<sup>[3]</sup>
  - More power-efficient for given size, weight, and power (SWaP)
  - More bandwidth available
  - Many groups working on it: MIT, Aerospace
     Corporation, Sinclair, UF, DLR, JAXA, ...



Wallops CubeSat Comm. Antennas<sup>[2]</sup>



MIT Lasercom Ground Station

## **NODE Space Terminal Overview**



| Scope                   | CubeSat Low-Cost Payload (<\$15k parts)                                                                                                                       | Beacon                                                              |  |  |  |  |
|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|--|--|--|--|
| Architecture            | Direct detection MOPA<br>COTS telecom parts (1550 nm)                                                                                                         | 11 cm                                                               |  |  |  |  |
| Downlink<br>data rates  | 10 Mbps (30 cm amateur telescope)<br>100 Mbps (1 m OCTL)                                                                                                      |                                                                     |  |  |  |  |
| Power                   | 0.2 W (transmit power),<br>15 W (consumed power)                                                                                                              | Fiber Tray                                                          |  |  |  |  |
| Beamwidth               | 1.3 mrad half power (initial demo)                                                                                                                            | (under tray)                                                        |  |  |  |  |
| Modulation              | РРМ                                                                                                                                                           | PCBs                                                                |  |  |  |  |
| Coding                  | RS(255,239)                                                                                                                                                   | Fast steering mirror (FSM)<br>M. <u>Khatsenko</u> , J. <u>Hevns</u> |  |  |  |  |
| Mass, Vol.              | 1.0 kg, 1 U                                                                                                                                                   | 2 ~9.6 cm <b>↑</b>                                                  |  |  |  |  |
| Control<br>architecture | <ul> <li>Bus coarse pointing (&lt;0.5°)</li> <li>FSM fine steering (+/- 2.5°)</li> <li>Beacon receiver (976 nm) for pointing knowledge (20 arcsec)</li> </ul> | Beacon<br>receiver                                                  |  |  |  |  |
| Current<br>Status       | <ul> <li>Pointing control testing</li> <li>Component-level environmental tests</li> <li>Functional testing</li> <li>End-to-end over the air demo</li> </ul>   | COTS<br>Collimator                                                  |  |  |  |  |





- Deployment of global planner algorithm on ground software stack (e.g. Ball Aerospace's COSMOS)
- Deployment local (satellite) planner algorithm on flight software stack (e.g. NASA Goddard's cFS)
- Incorporate more versatile observation payload and satellite operations modeling
- Open source release of ACCESS software for use by the wider small sat community.

# Earth Observing Constellations

- Advantages <sup>1</sup>:
  - Higher temporal resolution
  - Multi-point instrument coordination
  - Low-latency data availability



TROPICS Mission, MIT LL <sup>2</sup>

# Large GS Network Deployment

- Ground Stations
  - Expensive to deploy
  - Lots of organizational/legal overhead
  - Very hard to deploy across oceans
  - For lasercomm, clouds can hinder downlink
  - For commercial networks
    - Still have to pay for usage
    - Have to worry about schedule access

### Latency: Both Geometries

Combined latency plot of 10 sat SSO, 30 sat Walker











Need an automated operations approach that:



CubeSat platform

- Human-in-the-loop planning scales linearly with number of satellites [x3]
- EO Data rates of 100 MB to TB per orbit [x2,x4,x5]
- Often impossible to fully downlink all data
- Limited comm. availability
- Low energy generation, storage
- Multi-modal measurements



### **ACCESS Design Goals**



- Efficiently manage data collection and routing to ground
  - Schedule observations, downlinks, and crosslink to balance fast downlink of key data with bulk data delivery
  - "efficient" not optimal scheduling, but close enough
  - Key advantage: crosslink routing built directly into algorithms
- Allow scalability to 100s of satellites
  - Scheduling divided based on constellation-level and satellite-level constraints
  - Sacrifices some degree of optimality in scheduling for better tractability
- Enable reactive and federated constellation operations
  - Satellites have some freedom to replan activities
  - Allows reactivity for disaster monitoring, multi-constellation cooperation
  - Key advantage: loose coupling of planning responsibility between ground and satellites

## ACCESS CubeSat Ops Model

- 3 activities
  - Observation
  - Crosslink
  - Downlink







### **ACCESS Architecture**







- Algorithms and software exist for small satellite scheduling
  - Manage activity timing and limited onboard resources
  - e.g. Planet Inc. [x8], Multi-Sat Multi-GS scheduling [x9], ASPEN/
     CASPER [x10], STK Scheduler [x6,x7]
- EO constellation management adds difficult logistics
  - Tasking satellites with observation targets [x8]
  - De-conflicting downlinks between satellites [x8,x9]
  - Maintaining schedule synchronization across constellation [x11,x12,x13,x14,x15]
- Using crosslinks as data routes add more complexity
  - At first glance, number of connections between satellites grows as N<sup>2</sup>