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ABSTRACT 

Maternal Diabetes, Related Biomarkers and Genes, and Risk of Orofacial Clefts 

by 

Tiwaporn Maneerattanasuporn, Doctor of Philosophy 

Utah State University, 2017 

 

Major Professor: Dr. Ronald G. Munger 
Department: Nutrition, Dietetics, and Food Sciences 

Orofacial clefts (OFCs) are among the most common congenital birth defects and 

are characterized by incomplete development of the lip or the palate or both. The lip and 

palate develop separately at different times during the first trimester of pregnancy. The 

etiology of OFCs is multifactorial and includes a combination of genetic and 

environmental factors. This project aims to examine the role of maternal diabetes mellitus 

in orofacial clefts through studies of medical histories, biomarkers, and genes. 

Firstly, the association between maternal pre-pregnancy weight and maternal 

diabetes mellitus and the risk of orofacial clefts (OFCs) in a population-based case-

control study of birth certificate data in Utah was examined. The study found that 

maternal obesity increased the risk of OFCs with or without birth defects (non-isolated 

and isolated). Underweight mothers had a reduced risk of cleft lip only (CLO), and an 

increased risk of cleft palate only (CPO). Pre-existing diabetes and gestational diabetes 

mellitus (GDM) increased the risk of non-isolated OFCs. Mediation analysis indicated 
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that obesity had a direct effect of increasing the risk of OFCs without the mediating effect 

of known maternal diabetes.  

Secondly, the association between maternal medical history and maternal 

biomarkers of metabolic syndrome and OFCs was examined using case-control interview 

and clinical examination data from the Utah population. This study was limited to 

isolated OFCs. Mothers having GDM in any pregnancy had an increased risk of OFCs. 

Mothers of children with cleft palate with or without cleft lip (CP/L), compared to 

controls, had higher mean levels of plasma glucose, insulin, triglycerides, waist 

circumference and systolic blood pressure, and lower HDL; these associations were not 

seen for mothers of children with CLO.  Plasma IL-8 and leptin levels were associated 

with CP/L but not with CLO. Metabolic syndrome indices were associated with CP/L; 

these scores were not associated with CLO. 

Finally, the association between genes related to GDM and the risk of OFCs was 

examined using data from a large scale genome-wide association study of European and 

Asian populations. Many genes previously known to be related to GDM were associated 

with OFCs through genetic effects alone and gene-environment interaction effects with 

periconceptional maternal multivitamin use, maternal smoking, and environmental 

tobacco smoke. These results support the hypothesis that GDM may be causally related to 

OFCs via multiple GDM susceptibility genes and interactions with environmental factors. 

Individuals with OFCs face both physical and mental health problems, which 

require multi-specialty team care. OFC prevention and prediction are important to public 

health. This dissertation reported that maternal diabetes mellitus, maternal pre-pregnancy 
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weight and genes related to GDM had an association with the risk of OFCs. Mothers 

having an OFC child had an increased risk of developing metabolic abnormalities later in 

life. Potential risk factors that are reported in this dissertation may be useful for OFC 

prevention. This dissertation also reported potential biomarkers for predicting OFCs. 

Moreover, mothers having an OFC child require regular monitoring for maternal 

metabolic abnormalities later in life. 

(442 Pages) 
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PUBLIC ABSTRACT 

Maternal Diabetes, Related Biomarkers and Genes, and Risk of Orofacial Clefts 

Tiwaporn Maneerattanasuporn 

Orofacial clefts (OFCs) are among the most common congenital birth defects and 

are characterized by incomplete development of the lip or the palate or both. The lip and 

palate develop separately at different times during the first trimester of pregnancy. The 

etiology of OFCs is multifactorial and includes a combination of genetic and 

environmental factors. This project aims to examine role of maternal diabetes mellitus in 

orofacial clefts through studies of medical histories, biomarkers, and genes. 

In a study of Utah birth certificates, mothers with pre-existing diabetes and 

gestational diabetes mellitus (GDM) had an increased risk of OFCs, and obese mothers 

also had an increased risk. Mothers of children with OFCs were more likely than mothers 

of unaffected children to develop obesity, metabolic syndrome and gestational diabetes 

mellitus later in life. These result were more strongly related to cleft palate than cleft lip. 

Many genes related to GDM were associated with OFCs through genetic effects alone 

and gene-environment interaction effects with periconceptional maternal multivitamin 

use, maternal smoking, and environmental tobacco smoke. These results support the 

hypothesis that GDM may be causally related to OFCs via multiple GDM susceptibility 

genes and interactions with environmental factors. 

Individuals with OFCs face both physical and mental health problem, which 

require multi-specialty team care. OFC prevention and prediction are important to public 
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health. This dissertation reported that maternal diabetes mellitus, maternal pre-pregnancy 

weight and genes related to GDM had an association with the risk of OFCs. Mothers 

having an OFC child had an increased risk of developing metabolic abnormalities later in 

life. Potential risk factors were reported in this dissertation that may be useful for OFC 

prevention. This dissertation also reported potential biomarkers for predicting OFCs. 

Moreover, mothers having an OFC child may require regular monitoring of metabolic 

abnormalities later in life. 
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CHAPTER 1 
 

INTRODUCTION 
 
 

1.1 Background 

Orofacial clefts (OFCs) are among the most common congenital birth defects and 

are characterized by incomplete development of the lip or the palate or both. The lip and 

palate develop separately at different times during the first trimester of pregnancy. 

Globally, approximately 1 in 700 newborns suffer from OFCs (1). The prevalence of 

OFCs is different among varying ethnic and racial groups; the highest rate was found in 

Asians and Native Americas (2 per 1000 births) (2). In the United States, Utah has a high 

rate of clefts (2.25 per 1000 births) (3).   

Even though OFCs are not a major cause of death, they have an adverse effect on 

affected children and their families. Children with OFCs have difficulty in feeding, 

speaking, hearing, and socializing. The difficulties faced by children with OFCs include 

the need of multidisciplinary team clinical care (plastic surgery, speech therapy, 

audiology, otolaryngology, dentistry, orthodontics, and psychology) over their lifetime 

(4). Moreover, the parents of affected children have a greater risk of financial and mental 

health problems (5, 6).  

The etiology of OFCs is multifactorial and includes a combination of genetic and 

environmental factors. The environmental factors that may increase the risk of OFCs 

include smoking, alcohol consumption, and certain medications during pregnancy and 

prior to pregnancy. Other environmental factors including maternal nutritional status, 

supplement intake, and eating behavior have also been associated with the incidence of 

OFCs (4). Moreover, some dietary patterns may have a protective effect on the rate of 
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OFCs such as the DASH (Dietary Approach to Stop Hypertension diet) and 

Mediterranean diet patterns (7, 8). 

Insulin resistance and obesity are considered as risk factors of metabolic diseases 

and may be related to the risk of OFCs. Some studies have reported that mothers with 

high body mass index (BMI) have a higher rate of OFCs when compared with mothers 

with normal BMI (9). Moreover, an association between pre-gestational diabetes mellitus 

and OFCs has been reported, but has not been studied in detail (10).  

The genetic factors of OFCs have been studied by many methods such as linkage 

studies and genome-wide association studies (GWAS). The gene-disease associations 

appear different among different ethnic groups (1, 11). The linkage study aims to identify 

genetic markers related to the disease in a family. These studies found have associations 

between non-syndromic orofacial clefts and genes related to growth factors, transcription 

factors, xenobiotic metabolism, immune response and one-carbon metabolism (12). 

GWAS have provided some similar and some different genetic markers associated with 

non-syndromic orofacial clefts but the data are limited. However, no study has reported 

the correlation between genes related to diabetes and metabolic syndrome and the risk of 

OFCs.   

Due to the adverse effect of orofacial clefts on children and their family, studies 

of the complex etiology of OFCs are needed in order to reduce the incidence of OFCs. 

Moreover, studies of the health problems of mothers near the time of conception are 

needed to reduce the incidence of OFCs which occur in the first trimester of pregnancy. 
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1.2 Objectives 

The overall objective is to examine role of maternal diabetes mellitus in orofacial 

clefts through studies of medical histories, biomarkers, and genes. The specific objectives 

and hypothesis are: 

Aim 1: To determine the association between maternal diabetes mellitus and 

gestational diabetes mellitus and the risk of orofacial clefts using data from Utah birth 

certificates, Intermountain Healthcare (IHC) and University of Utah medical records, 

and the Utah Clefts 2  case-control study. 

Hypothesis: Diabetes is more common among mothers of children with orofacial 

clefts compared to controls before, during, and after the index pregnancy. 

Aim 2: To determine the association between the occurrence of maternal diabetes 

and maternal biomarkers of metabolic syndrome and isolated orofacial clefts (OFCs) 

using data from the Utah Cleft 2 case-control study. 

Hypothesis: Mothers of children with orofacial clefts have a higher prevalence of 

maternal diabetes and abnormal biomarkers associated with metabolic syndrome 

compared to controls. 

Aim 3: To determine the association between genes related to diabetes and 

obesity and risk of orofacial clefts  

Hypothesis: Genes associated with diabetes mellitus and obesity are associated 

with the risk of orofacial clefts 

 

 



4 
 

1.3 Structure of the Dissertation 

This dissertation consists of six chapters. The first chapter introduces the recent 

problems related to OFCs and the way of the dissertation can contribute to solve these 

problems. The second chapter provided and overview of epidemiology, etiology, and 

risk factors of OFCs, diabetes mellitus, and metabolic syndrome. This chapter also 

presented biomarkers and genes related to diabetes and metabolic syndrome. The 

third chapter presented the finding of first aim, which is to determine the association 

between maternal diabetes mellitus and gestational diabetes mellitus and the risk of 

orofacial clefts. The fourth chapter presented the finding of second aim, which is to 

determine the association between maternal biomarkers of metabolic syndrome and 

orofacial. The fifth chapter showed the finding of third aim, which is to determine the 

association between genes related to diabetes and obesity and risk of orofacial clefts. 

The sixth chapter concludes the results from three aims, provides the public health 

significance, and gives suggestion for further research. The references for each 

chapter were listed at the end of each. 

1.4 Study Design 

The study in this dissertation used the data from Utah Birth Defect Network 

(UBDN), the Utah Cleft 2 case-control study, and the International Genetic 

Epidemiology study of Oral Clefts. 

The UBDN, operated by the Utah Department of Health (UDOH) is a statewide 

population-based surveillance system, identifies all prenatal or postnatal major structural 

birth defects in fetuses and neonates. The OFC classifications used in the data analyses 
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were based on the final UBDN diagnoses, which were reviewed by a medical geneticist. 

OFC cases were divided into cleft lip alone, cleft palate alone, cleft lip without cleft 

palate, and cleft lip with cleft palate and classified as isolated, syndromic, or multiple 

birth defect cases. The case mothers of a child with an OFC during 1995-2011 were 

linked to the Utah Population database (UPDB). The UPDB provides information for 

research on genetics, epidemiology, demography, and public health, which receives 

annual updates from birth and death certificates, hospitalization and ambulatory surgery 

records, and driver licenses. Controls were randomly selected from Utah birth certificates 

at a ratio of 4:1 to live-born cases matched by birth month and year. The anonymized 

identification numbers of cases and controls from UPDB were linked to the Utah Birth 

Certificate database. In addition, the UPDB provided information on OFC cases noted in 

fetal and neonatal death records. In total, 1,611 OFC live-born cases and 6,444 controls 

linked to the birth certificate records, in which 1,451 cases and 5,804 controls provided 

complete data, were used for analysis.  

The Utah Cleft 2 study, a collaboration of Utah State University (USU), the 

University of Utah Health Sciences Center and the Utah Department of Health (UDOH), 

is a study of orofacial clefts in Utah. Cases and controls were selected from the 

participants in the Utah Cleft 1 case-control study (13) and the National Birth Defects 

Prevention Study (NBDPS) in Utah (14). In the Utah Cleft 1 study, case‐mothers having 

a child with OFCs between January 1995 and June 2005 were recruited from UDOH, and 

control mothers were randomly selected, frequency matched by birth month and year, and 

gender of case child at ratio 1:1 by using Utah birth certificate files. The NBDPS in Utah, 
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also a state-wide population-based case-control study, recruited case mothers having a 

child with OFCs between 2005-2011 from UDOH database, and randomly selected 

control mothers from birth certificates. The OFC cases were limited to isolated OFCs; 

cases with multiple birth defects were excluded.   

The International Genetic Epidemiology study of Oral Clefts, a part of the Gene-

Environment Association Studies Initiative (GENEVA) of the National Institutes of 

Health (NIH). This study is a multi-center, international study of trios from Europe, the 

U.S., including Utah, China, Taiwan, Singapore, Korea, and the Philippines, which aims 

to investigate genes associated with oral clefts. Families were recruited from treatment 

centers or population-based registries. OFC cases were examined by either a clinical 

geneticist or an experienced clinician to minimize misclassification of the OFCs. All 

cases with cleft palate with or without cleft lip (CP) were analyzed together based on 

evidence that maternal obesity and diabetes have a specific effect on palate development. 

Trios having CL/P and CP (cleft palate with or without cleft lip) were analyzed in this 

study separately. For Asians, 892 CL/P and 910 CP trios, and for Europeans, 665 CL/P 

and 644 CP trios were analyzed in this dissertation. 
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CHAPTER 2 

 

LITERATURE REVIEW 

 

 

2.1  Orofacial Clefts 

Orofacial clefts (OFCs) are craniofacial birth defects which can be divided into 

cleft lip only (CLO), cleft lip with cleft palate (CLP), cleft lip with or without cleft palate 

(CL/P), cleft palate only (CPO), and cleft palate with or without cleft lip (CP/L). The 

other terminology is used to describe OFCs: syndromic and non-syndromic (isolated). 

Isolated or non-syndromic OFCs refers to OFCs without other congenital malformations 

or anomalies. Syndromic OFCs means the OFCs with other known patterns of anomalies. 

OFCs with other deformations, which cannot classify to existing syndromes, are multiple 

birth defect OFCs. About 70% CL/P are isolated. Isolated OFCs are not typically a cause 

of mortality, but individuals with OFCs face difficulty with feeding, speaking, hearing, 

and socializing.  

2.1.1 Classification 

Orofacial clefts have many classification systems depending on the purpose. The 

systems are divided into an anatomic system for surgeons and an embryology-based 

system for genetic counselling and research. 

a) Anatomic system 

The common form of CLP involves disruption of tissue planes above the 

lip extending into the nares and/or the hard and/or soft palate. For example, 

the Iowa system (1) classified OFCs into 5 groups  

group 1: cleft of the lip only (either unilateral or bilateral cleft lip) 
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group 2: secondary palate cleft only 

group 3: clefts of the lip, alveolus, and secondary palate (complete cleft 

lip and palate)  

group 4: cleft of lip and alveolus (primary palate cleft and cleft lip)  

group 5: miscellaneous 

Additionally, Millard (2) suggested the ICPR system classifying OFCs 

into 3 groups  

group 1: clefts of the primary palate (lip and/or alveolus) 

group 2: clefts of the primary and secondary palate (lip and/or alveolus 

and palate) 

group 3: clefts of the secondary palate (hard palate and/or soft palate) 

b) Syndromic clefts and multiple birth defects 

This system divides orofacial clefts into syndromic and non-syndromic clefts. 

Syndromic clefts are the orofacial clefts occurring with other birth defects related 

to known genetic syndromes such as Van der Woude syndrome, Treacher Collins 

Syndrome, and Apert Syndrome. Cases with multiple birth defect OFCs have 

OFCs with other congenital deformations, which cannot classify to existing 

syndromes. Non-syndromic clefts have no other structural or functional 

anomalies. 

2.1.2 Embryological development of OFCs 

OFCs results from non-closure of facial structures associated with lip and palate 

formation during the fourth through the twelfth week of pregnancy. The development of 
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face and jaws involves cell migration from the cranial neural crest, proliferation, 

differentiation and apoptosis (3).  

The lip develops between the fourth and eighth week of pregnancy, which 

correlates with the formation of the frontonasal prominence, the paired maxillary 

processes, and the paired mandibular process. By the end of the fourth week of gestation, 

migrating neural crest cells of the first pharyngeal arch form the frontonasal prominence. 

The lower portion of the frontonasal prominence is divided into paired medial and lateral 

nasal processes. By the end of the sixth week of embryogenesis, the medial nasal 

processes merge with each other and with the bilateral maxillary processes to form the 

upper lip and the primary palate, giving rise to the premaxilla (central upper lip, 

maxillary alveolar arch and four teeth, and hard palate anterior to the incisive foramen). 

A cleft lip results from a failure to maintain an epithelial bridge due to lack of 

mesodermal penetration and proliferation from the maxillary and nasal processes.  

The development of the secondary (soft) palate occurs after the primary palate 

(alveolar ridge and a triangular area of the anterior hard palate) during weeks 6-12. 

During the sixth week of development, the maxillary processes of paired palatal shelves 

initially rise vertically down the sides of the developing tongue, and grow to a horizontal 

position above the tongue and come into contact and fuse to form a midline epithelial 

seam during the seventh week. The palatal shelves also fuse in the midline with the 

primary palate anteriorly and with the nasal septum dorsally. These fusion processes are 

complete by the tenth week of pregnancy, separating the oral and nasal cavities, 

permitting simultaneous respiration and mastication.   Clefts of the secondary palate are 
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due to lack of fusion of the palatal shelves.  Normal development occurs sequentially; 

thus a cleft lip may or may not be associated with a cleft palate. 

2.1.3 Epidemiology of OFCs 

Orofacial clefts (OFCs) remains a health issue in both developed and developing 

countries. OFCs occur in every 0.4 to 2 per 1000 births depending on geographic 

location, racial and ethnic groups, maternal age, environmental exposures, and 

socioeconomic status (4, 5). The global average prevalence of OFCs is 1.43 in 1000 live 

births (6, 7). The Centers for Disease Control and Prevention (CDC) reported the 

incidence during 2004-2006 of CL/P was 1.06 in 1000 live births and 0.64 in 1000 live 

births for CP (8). National Birth Defects Prevention Network reported the prevalence of 

OFCs during 2002-2006 of CL/P was 1.33 per 1000 live births, and 0.73 per 1000 live 

births for CP, which is higher than The US prevalence during 1999-2001 (1.05 and 0.64 

per 1000 live births for CL/P and CP respectively) (9). International data from 57 

registries for 1993–98 suggest a variation in prevalence at birth of cleft lip with or 

without cleft palate of 0.34-2.29 per 1000 births, and an even more pronounced variation 

for isolated cleft palate, with prevalence of 0.13-2.53 in 1000 births (10).  Asians and 

Native Americas present the highest rate (2 in 1000 births), Europeans present at a rate 

around 1 in 1000, and Africans have the lowest rate (0.4 in 1000 births) (11). The 

National Center on Birth Defects and Developmental Disabilities updated the prevalence 

of CL/P and CP in the United States during 2006-2010 showing that Alaska (2.01 and 

1.77 per 1000 births respectively), North Dakota (1.58 and 1.51 per 1000 births 

respectively), Oklahoma (0.80 and 1.33 per 1000 births respectively), Utah (1.37 and 0. 
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65 per 1000 births respectively), Washington (1.14 and 0.88 per 1000 births 

respectively), and Colorado (1.17 and 0.82 per 1000 births respectively) are the five 

states with the highest prevalence of CL/P and CP (1.14 and 1.10 per 1000 births 

respectively for overall prevalence in the United States)  (12). Butali and Mossey 

reported that prevalence of OFCs differed among African populations (13), including; 

Uganda (0.75 per 1000 births in 1968), Kenya (1.65 per 1000 births during 1963-1964), 

South Africa (0.33 per 1000 births during 1983-1984), Nigeria (0.3 per 1000 births 

during 1976-1980), Tunisia (1.5 per 1000 births during 1983-1984), Zaire (0.46 per 1000 

births during 1977-1979), Malawi (0.67 per 1000 births during 1998-1999), and Sudan 

(0.9 per 1000 births during 1997-2000). Recent studies also reported the different 

prevalence among regions of Africa, including; 0.313 per 1000 births for South Africa 

during 2002-2006 (14), 0.5 per 1000 births  for Nigeria during 2006-2010 (15), 0.63 per 

1000 births  for Ghana in 2006 (16), 0.77 per 1000 births  for Uganda during 2005-2010 

(17). These studies showed that the prevalence of OFCs in South Africa, Nigeria and 

Uganda increased from the past. 

 The rate of CL/P differs by sex. The ratio of CL/P in males to females is 2:1; a 

ratio of 1:2 of males to females was found in populations of isolated cleft palate. In white 

populations, the male to female ratio for cleft lip with or without cleft palate is about 2:1 

(18). In Japanese populations, CL/P shows a significant excess for males, but this excess 

is not seen for cleft lip alone (19). These findings are similar to studies done in China and 

Nigeria (15, 20). Moreover, among unilateral cleft lip cases, the left: right ratio is 2:1 

(18).  
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2.1.4 Risk factors of OFCs 

The etiology of orofacial clefts is not fully understood. The updated evidence 

suggests that there are the multiple factors for this defect including both genetic and 

environmental factors. 

a) Environmental factors 

i) Maternal smoking 

Maternal smoking has consistently been reported to increase the 

risk of both cleft lip with or without cleft palate and isolated cleft palate. 

An international population-based study, including Norway and the United 

States, reported that mothers with active smoking increased risk of all 

types of isolated clefts (odds ratio (OR): 1.38, 95% confidence interval 

(95% CI): 1.24-1.53 for all OFCs; OR: 1.42, 95% CI: 1.26-1.61 for CL/P, 

OR: 1.27, 95% CI: 1.08-1.51 for CP) (21). A case-cohort study from 

Denmark by Bille et al. (22) collecting first trimester maternal life style 

data found that maternal smoking increased the risk of orofacial clefts 

with statistical significance (OR: 1.50; 95% CI: 1.05-2.14). The meta-

analysis study, analyzing 22 case-control studies, also reported that 

maternal tobacco smoking increased the risk of both CL/P and CP 

(relative risk (RR):1.34, 95% CI: 1.25-1.44 for CL/P and RR: 1.22, 95% 

CI: 1.10-1.35) (23). Another study from Brazil by Leite et al. (24), 

however, did not present a statistically significant association between 

maternal smoking during the first trimester of gestation and orofacial 
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clefts (OR: 1.13, 95% CI: 0.81-1.57). The inconsistent association 

between maternal smoking and OFCs from the Brazil study may result 

from the small sample size and quality of data (recall bias from 

retrospective study).  

The effect of environmental tobacco smoke from passive exposure 

on the risk of OFCs still appears to be inconsistent. The study from Brazil 

(24) reported that maternal passive smoking during pregnancy associated 

with CL/P with statistical significance (OR: 1.39, 95% CI: 1.01-1.98), 

except for CP (OR: 1.67, 95% CI: 0.9-3.11). Case-control studies in 

different cities (Shenyang and Heilongjiang) in China stated that passive 

smoke exposure of mothers increased the risk of OFCs (Shenyang: OR: 

2.05, 95% CI: 1.47-2.87 for OFCs and Heilongjiang: OR: 2.52, 95% CI: 

1.90-3.33 for CL/P, OR: 1.87, 95% CI: 1.28-2.75 for CP) (20, 25). The 

slight association between maternal passive smoke and isolated OFCs and 

CL/P except CP was reported in the international population-based study 

(OR: 1.14, 95% CI: 1.03-1.25 for OFCs; OR: 1.14, 95% CI: 1.02-1.28 for 

CL/P, OR: 1.12, 95% CI: 0.95-1.31 for CP) (21). However, Honein et al. 

reported that environmental tobacco smoke exposure was not associated 

with CL/P and CP (26). 

ii) Alcohol consumption 

Maternal alcohol consumption has been advanced as a risk factor, 

although the evidence is still inconsistent. The study in Brazil by Leite et 
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al. (24) reported maternal alcohol consumption during first trimester was 

associated with CL/P and CP with statistical significance (OR: 2.08, 95% 

CI: 1.27, 3.41 and OR: 2.89, 95% CI: 1.25-8.30, respectively). A recent 

study in Brazil by Bezerra et al. (27) also found that alcohol drinking 

during pregnancy increased risk of non-syndromic OFCs (OR: 3.64, 95% 

CI: 1.6-8.3). The Danish National Birth Cohort (22) presented a slight 

positive association between alcohol consumption during the first 

trimester of gestation without statistical significance (OR: 1.11; 95% CI: 

0.79-1.55). A case-control study in Norway (28) which collected the data 

from 1996 to 2001 showed that mother consuming greater than or equal to 

5 drinks per setting (binge drinking pattern: high dose of alcohol 

consumption in short periods) had increased the risk of CL/P (OR: 2.2, 

95% CI: 1.1-4.2) and the risk of CP (OR: 2.6, 95% CI: 1.2-5.6). The Iowa 

case-control study reported that increased alcohol consumption increased 

risk of isolated CL/P except isolated CP (OR: 1.5, 95% CI: 0.9-2.4 for 1-3 

drinks/month; OR: 3.5, 95% CI: 0.8-15.4 for 4-10 drinks/month; OR: 4.0, 

95% CI: 1.1-15.1 for >10 drinks/month; p-trend 0.007) (29). Additionally, 

a meta-analysis evaluating data from 33 studies (23 case-control and 10 

cohort studies) reported that maternal alcohol consumption during 

pregnancy was not associated with the occurrence of OFCs (30). 

iii) Coffee and caffeine-containing beverages consumption 
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A Norwegian case-control study by Johansen et al. (31) reported a 

statistically significant correlation between coffee consumption and the 

risk of CL/P (OR: 1.39, 95% CI: 1.01-2.39) for 1-2 cups per day and (OR: 

1.59, 95% CI: 1.05-2.39) for 3 cups or more per day. There was no 

statistically significant association between coffee consumption and CP. 

Moreover, the study in Norway (31) presented a negative correlation 

between daily tea consumption of 3 or more cups and both CL/P and CP 

(OR: 0.55, 95% CI 0.32-0.95 and OR: 0.58, 95% CI: 0.31-1.07) when 

compared with no tea intake. However, the evidence for an association 

between coffee intake and orofacial clefts is still inconsistent. Kurppa et 

al. (32) reported that coffee intake of more than 4 cups a day was not 

associated with the risk of orofacial clefts (OR 1.0, 95% CI: 0.6-1.6). On 

the contrary, the cohort study in Denmark showed that daily coffee 

consumption of more than 5 cups reduced the risk of orofacial clefts by 37 

% (95% CI: 0.32-1.44) when compared with no coffee consumption, 

though the confidence intervals in this study are biased and included 1.0 

(22). 

iv) Maternal age 

A meta-analysis (23 published case-control studies) showed that a 

maternal age of 40 years or more increased the risk of CLP by 56% 

compared to a maternal age between 20 and 29 years (33). A population-

based case-control study in China supported the hypothesis of maternal 
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age being associated with OFCs (34). The study reported that mothers 

older than 35 years old experienced an increased risk of CL/P (OR: 2.12, 

95% CI: 1.26-3.57). 

v) Medication 

Therapy with anticonvulsant drugs, notably diazepam, phenytoin, 

and phenobarbital in maternal epilepsy increased the risk of both CL/P 

(OR: 7.77, 95% CI: 2.02-26.0) and CP (OR: 3.61, 95% CI: 0.08-26.5) (35, 

36). Use of valproic acid monotherapy in the first trimester of pregnancy 

increased the risk of cleft palate (OR: 5.2, 95% CI: 2.8-9.9) (37).  

Maternal amoxicillin use in the third month of gestation increased 

the risk of both CL/P and CP with OR: 4.3, 95% CI: 1.4-13.0 and OR: 7.1, 

95% CI: 1.4-36, respectively, and increased the risk of CL/P with OR 2.0, 

95% CI: 1.4-4.1 for the first trimester use of amoxicillin (38).  

The association between maternal corticosteroid use and risk of 

OFCs is still inconsistent. Maternal corticosteroid use had positive 

associations with OFCs (OR: 3.35, 95% CI: 1.97-5.69) (39).  The data 

from MADRE project, an international women’s human right 

organization, showed the association between corticosteroid use in the first 

trimester and the occurrence of CL/P (OR: 2.59, 95% CI: 1.18-5.67)(40). 

The case-control study in Norway presented the positive association of 

dermatologic corticosteroids with both CL/P (OR: 2.3, 95% CI: 0.71-7.7) 
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and CP (OR: 3.4, 95% CI: 0.87-13) (41), which is similar to the result 

from study  in Denmark (42).  

The population-based case-control study in China reported 

analgesics or antipyretics (aspirin, aminopyrine, and phenacetin) increased 

the risk of OFCs (OR: 7.85, 95% CI: 3.15-19.58) (20). 

The association between OFCs and medication used for depression 

and anxiety has been reported in many studies. A case-control study found 

maternal benzodiazepine use increased the risk of CLP (43). Shiono et al. 

reported that maternal diazepam use during the first trimester had no 

significant association with orofacial clefts (RR: 1.22, 95% CI: 0.17-8.95) 

(44). The National Birth Defect Prevention Study found the association 

between OFCs and venlafaxine use one month before conception and 

during early pregnancy (OR:1.5, 95% CI: 0.5-4.3 for CL/P and OR:3.3, 

95% CI: 1.1-8.8 for CP) (45). 

vi) Folate nutritional status 

Folate is a cofactor in the metabolism of one-carbon (the transfer 

and utilization of one-carbon-groups), the synthesis of DNA (donation of 

one-carbon units in the process of DNA -biosynthesis), and the 

remethylation of homocysteine to methionine (46). Maternal folate status 

has been suggested to influence the risk of OFCs (5). The case-control 

study in the Netherlands (47) found that the mothers of children with CL/P 

consumed dietary folate in quantities less than the mothers in the control 
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group. In addition, increasing quartiles of dietary folate intake was 

associated with decreased the risk of CL/P (quartile 1 is reference, quartile 

2 (OR: 0.74; 95% CI: 0.40-1.37), quartile 3 (OR: 0.73; 95% CI: 0.39-

1.35), quartile 4 (OR: 0.63; 95% CI: 0.32-1.23) quartile 5 (OR: 0.54; 95% 

CI: 0.27-1.05); p-trend 0.06). A recent case-control study in Brazil 

reported that low folate levels (< 7 ng/ml) increased risk of non-syndromic 

OFCs (OR: 2.18; 95% CI: 1.12-5.67) (27). 

The data from a Utah case-control study reported that plasma 

folate and erythrocyte folate levels in mothers of children with isolated 

clefts (CL/P and CP) were lower than the controls group with statistical 

significance (48). A report in the Philippines by Munger et al. also 

presented a similar association, and noted that the folate association 

depended on the background of vitamin B6 level (49). However, Bille et 

al. studied the effect of IgG and IgM autoantibodies on folate receptor 

alpha (FRalpha) in pregnant women and found that the levels of folate 

receptor antibody were not associated with increased risk of oral clefts 

(50). 

vii) Vitamin B6 nutritional status 

Vitamin B6, pyridoxine, is a co-factor required for amino acid, 

glucose, and lipid metabolism including the metabolism of folate and 

homocysteine (51).  Mouse studies reported the protective effect of 

vitamin B6 supplementation on incidence of corticosteroid-induced OFCs 
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(52-55) and dexamethasone-induced cleft palate (56). Davis et al. 

presented that mice with vitamin B6 deficiency resulted in birth defects 

including cleft palate (57). Another mouse study found that dietary 

vitamin B6 deprivation leaded to isolated cleft palate in 20% of the 

offspring (58). Moreover, animal studies reported that vitamin B6 

prevented the induction of OFCs by vitamin A excess (59), 

cyclophosphamide (60), and β-aminoproprionitrile (61).  

The association between vitamin B6 nutritional status and OFCs in 

human study is limited.  A case-control study in Netherland by Krapels et 

al. showed no association between dietary vitamin B6 consumption and 

risk of OFCs after adjustment for dietary folate intake (62). This study 

also reported increased dietary consumption of vitamin B6 significantly 

reduced risk of OFCs in periconceptional supplement group (quintile 1: 

1.07-1.51 mg/day is reference, quintile 2: 1.52-1.61 mg /day (OR: 0.69; 

95% CI: 0.24-1.99), quintile 3: 1.62-1.72 mg /day (OR: 0.49; 95% CI: 

0.16-1.54), quintile 4: 1.72-1.84 mg /day (OR: 0.20; 95% CI: 0.07-0.61), 

quintile 5: 1.84-2.42 mg /day (OR: 0.22; 95% CI: 0.08-0.64), p-trend = 

0.0006), but the association was not found in non-supplementary group . A 

human study in Philippines (49) reported the positive association between 

OFCs and maternal vitamin B6 activation coefficient (increased levels 

indicate poorer vitamin B6 status) in both sites (Negros Occidental: tertile 

1 is reference, tertile 2 (OR: 4.01; 95% CI: 1.09-14.75), tertile 3 (OR: 
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6.54; 95% CI: 1.93-22.24), p-trend = 0.002 and Davao: tertile 1 is 

reference, tertile 2 (OR: 2.65; 95% CI: 1.16-6.09), tertile 3 (OR: 6.01; 

95% CI: 2.53-14.30), p-trend < 0.001. A case-control study in Netherland 

(63) showed that mothers having pyridoxal-5’- phosphate (PLP) level ≤ 44 

nmol/L increased risk of OFCs (OR: 2.9; 95% CI: 1.2-7.1), and the risk 

increased in mothers without periconceptional supplement (OR: 16.4; 95% 

CI: 1.8-152.2).  However, the association between vitamin B6 status and 

OFCs was not found in a case-control study in Utah, the United States 

(48). 

viii) Vitamin B12 nutritional status 

Vitamin B12 (cobalamin) functions as a coenzyme in the synthesis 

of methionine by methylation of homocysteine to methionine and 

demethylation of N5-methyl-tetrahydrofolate to tetrahydrofolate. In 

addition, vitamin B12 is a coenzyme of methylmalonyl-CoA mutase. 

Vitamin B12 is involved in the metabolism of fatty acids and amino acids, 

and affecting DNA synthesis and regulation(46).   Lu et al. conducting a 

mouse study reported that vitamin B12 prevented the dexamethasone-

induced cleft palate (64). However, Zho et al. found no association 

between vitamin B12 and cleft palate induced by 2,3,7,8-

tetrachlorodibenzo-p-dioxin and dexamethasone (65).  

A case-control study in Netherland by Krapels et al. (62) found 

that increased dietary intake of vitamin B12 increased risk of OFCs with 
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marginally statistical significance (quintile 1: 2.20-4.13 μg/day is 

reference, quintile 2: 4.14-4.92 μg/day (OR: 0.88; 95% CI: 0.44-1.76), 

quintile 3: 4.92-5.53 μg/day (OR: 1.30; 95% CI: 0.66-2.54), quintile 4: 

5.53-6.24 μg/day (OR: 1.18; 95% CI: 0.60-2.35), quintile 5: 6.27-42.92 

μg/day (OR: 1.79; 95% CI: 0.90-3.56), p-trend = 0.06). Another case-

control study in Netherland by Van Aooil et al. (63) reported that that 

mothers having low serum vitamin B12 levels (≤ 185 pmol/L) increased 

risk of OFCs (OR: 3.1; 95% CI: 1.3-7.4 for total group and OR: 4.4; 95% 

CI: 1.1-18.2 for none periconceptional supplement. 

ix) Zinc nutritional status 

Zinc plays role in the absorption of folate by polyglutamate 

hydrolase, a zinc‐dependent enzyme, and is involved in the conversion of 

5‐methyltetrahydrofolate into tetrahydrofolate by the zinc‐ dependent 

methionine synthase enzyme.  Maternal zinc deficiency can disrupt the 

normal function of trophoblasts, the production and secretion of 

hormones, establishment of the maternal-fetal barrier, and the mediation 

of metabolic exchanges across the maternal-fetal barrier (66). A Dutch 

study (67) used a food frequency questionnaire to assess nutrient intake 

and compare it between mothers of OFCs children and the control group 

mothers. This study reported that zinc intake in mothers in the control 

group was statistically significantly higher than mothers of the OFCs 

group.   
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A case-control study in Philippines (68) showed the correlation 

between poor maternal zinc nutritional status and increased risk of OFCs. 

The mean level of plasma zinc concentration in the control group was 

higher (10.11.6 μmol/l) than in the group of mothers with CL/P children 

(9.61.2 μmol/l) with statistical significance and the group of mothers 

with CP children (9.41.1 μmol/l) without statistical significance. In 

addition, after adjusting for potential  confounding factors, increasing 

quartile of plasma zinc was associated with a decreased the risk of both 

CL/P (quartile 1: ≤8.9 μmol/l is reference, quartile 2: 9.0-9.8 μmol/l (OR: 

0.95; 95% CI: 0.38-2.35), quartile 3: 9.9-10.9 μmol/l (OR: 0.81; 95% CI: 

0.33-1.97), quartile 4: ≥ 11.0 μmol/l (OR: 0.32; 95% CI: 0.11-0.92); p-

trend 0.037) and CP (quartile 1: ≤8.9 μmol/l is reference, quartile 2: 9.0-

9.8 μmol/l (OR: 0.65; 95% CI: 0.16-2.68), quartile 3: 9.9-10.9 μmol/l 

(OR: 0.27; 95% CI: 0.05-1.45), quartile 4: ≥ 11.0 μmol/l (OR: 0.07; 95% 

CI: 0.01-0.73); p-trend 0.007). The case-control study in Poland and the 

Netherlands presented a similar correlation between concentrations of zinc 

and risk of OFCs (69, 70). However, the study in Utah with a much higher 

level of zinc status did not present the association between maternal 

plasma zinc concentration and OFCs (71). 

x) Maternal supplement use 

Maternal use of multivitamin supplements in early pregnancy has 

been linked to decreased risk of OFCs; in a meta-analysis on overall 25% 
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reduction in birth prevalence of OFCs with multivitamin use was reported 

(72). Johnson and Little reported the negative association between 

maternal multivitamin use and both CL/P (OR: 0.75, 95% CI: 0.65-0.88) 

and CP (OR: 0.88, 95% CI: 0.76-1.01) (73).  

Folic acid supplementation has been recommended to reduce the 

risk of OCFs although the evidence is still controversial. A case-control 

study in the Netherlands reported that higher folate supplementation 

lowered risk of CL/P (quartile 1: 152 µg/day is reference, quartile 2: 178 

µg/day (OR: 0.74; 95% CI: 0.40-1.37), quartile 3: 196 µg/day (OR: 1.73; 

95% CI: 0.39-1.35), quartile 4: 213 µg/day (OR: 0.63; 95% CI: 0.32-1.23), 

quartile 5: 242 µg/day (OR: 0.54; 95% CI: 0.27-1.05); p-trend 0.06) with 

marginal statistical significance (47). Data from the Hungarian Congenital 

Anomaly Registry showed that the high dose of folic acid (6 mg) in the 

first month of gestation reduced only the risk of CP (OR: 0.50, 95% CI: 

0.68-0.96 for CP and OR: 0.89, 95% CI: 0.67-1.20 for CL/P) (74). Studies 

in China from different cities (Heilongjiang and Xuzhou) reported the 

protective effect of folic acid (Heilongjiang Province: OR: 0.43, 95% CI: 

0.21-0.88 for CL/P and OR: 0.69, 95% CI: 0.28-1.69 for CP and Xuzhou 

city: OR: 0.23, 95% CI: 0.10-0.55 for OFCs) and multivitamin 

(Heilongjiang Province: OR: 0.0.4, 95% CI: 0.01-0.11 for CL/P and OR: 

0.08, 95% CI: 0.02-0.25 for CP and Xuzhou city: OR: 0.16, 95% CI: 0.04-

0.58 for OFCs) supplement during preconception period on OFCs  (25, 
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75). These studies found a weaker association between high dose of folic 

acid containing multivitamin in the second month and risk of OFCs (OR: 

0.82, 95% CI: 0.64-1.03 for CL/P and OR: 0.70, 95% CI: 0.48-1.02 for 

CP). The protective effect of folic acid containing multivitamin on risk of 

OFCs was supported by a case-control study in Norway (76) and the 

United States (77). However, later data from the National Birth Defects 

Prevention Study (NBDPS) found no association between maternal use of 

supplement containing folic acid and risk of CL/P (OR: 1.01; 95% CI: 

0.82-1.24) and CP (OR: 1.02; 95% CI: 0.77-1.34) (78).  

Moreover, a study in the United States presented that food 

fortification programs with folic acid decreased the prevalence of orofacial 

clefts (prevalence ratio 0.94, 95% CI: 0.92-0.96) (79). A retrospective 

population-based study in Canada reported food fortification program, 

cereal grain products fortified with folic acid, did not decrease the 

prevalence of orofacial clefts (prevalence ratio 1.06, 95% CI: 0.86-1.30) 

(80). 

xi) Maternal obesity 

A cohort study in Sweden presented a positive association between 

maternal obesity and the occurrence of OFCs. Maternal BMI greater than 

29 increased the risk of OFCs 31 % after adjusting the potential variables 

(81). Blomberg and Kallen provided a similar correlation between 

maternal overweight (BMI 25-29.9) and obesity (BMI ≥ 30) and orofacial 
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clefts (adjusted OR: 1.15, 95% CI: 1.04-1.28 and adjusted OR: 1.26, 95% 

CI: 1.09-1.95; respectively) (82). The international consortium of case-

control studies, Utah, Iowa, Norway, and the U.S. National Birth Defects 

Prevention Study, found that maternal obesity (pre-pregnancy BMI >35) 

increased the risk of isolated CLP and CP except CL (OR: 1.30, 95% CI: 

1.05-1.60 for CLP, OR: 1.29, 95% CI: 1.02-1.64 for CP, and OR: 1.03, 

95% CI: 0.78-1.37 for CL) when compared to mothers with normal weight 

(83).  These studies found increased BMI increased risk of all cleft palate 

(p-trend = 0.004) but not isolated cleft lip. A study in Washington State 

also reported the same BMI result as the former studies (adjusted OR: 

1.26, 95% CI: 1.03-1.55) (84). Moreover, the meta-analysis from 18 

articles showed that maternal obesity increased risk of both cleft palate 

(OR: 1.23, 95% CI: 1.03-1.47) and cleft lip and palate (OR: 1.20, 95% CI: 

1.03-1.40) (85). 

xii) Diabetes mellitus (pre-gestational and gestational) 

Many studies have reported the association between maternal 

diabetes and the risk of orofacial cleft in offspring. Spilson et al. 

investigated the 1996 National Center for Health Statistics States Natality 

database and reported that diabetic mothers increased the risk of CL/P, 

(adjusted OR 1.35, 95% CI: 1.00-1.82; P<0.05) (86). Carinci et al. 

reported the positive association between familial diabetes and isolated 

cleft palate (P=0.0014) (87). Data from a large international consortium 
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from the U.S., Denmark, and Norway confirmed that maternal diabetes 

increased the incidence of OFCs (OR 1.33, 95% CI: 1.14-1.55) after 

adjusting for maternal age, education levels, multivitamin use, maternal 

BMI categories, and history of smoking (88). A few studies reported that 

maternal diabetes increased birth defects including orofacial clefts. The 

Atlanta Birth Defects Case-Control Study (89) evaluated the risk of 

malformations from diabetic pregnancy. The study showed that being an 

insulin-dependent diabetic mother increased the risk of cleft palate (RR: 

23.7, 95% CI: 3.1-183.1). Correa et al. analyzed the data from the National 

Birth Defect Prevention Study (NBDPS) and reported an association 

between maternal diabetes mellitus and both isolated defects and multiple 

defects of CL/P and CP (90). Both pre-gestational (type 1 or 2) and 

gestational diabetes mellitus increased the risk of isolated CL/P (OR: 2.93, 

95% CI: 1.45-5.87 and OR: 1.45, 95% CI: 1.03-2.04, respectively) and CP 

(OR: 1.80, 95% CI: 0.67-4.87 and OR: 1.54, 95% CI: 1.01-2.37, 

respectively). 

Data from the a case-control study of Utah births during 1995-

2005 (83) showed that GDM increased the risk of both isolated (OR: 2.63, 

95% CI: 1.30-5.34) and non-isolated clefts (OR: 2.66, 95% CI: 1.02-6.97). 

b) Established Genetic factors  

Jugessur et al. reported that the majority of OFCs are isolated OFCs 

(around 70% of all CLP cases and around 50% of all CPO) (91). Syndromic and 
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multiple birth defects make up the minority of OFCs. Around 75% of syndromic 

orofacial clefts can be described by known genetic conditions including: Van der 

Woude syndrome, Bamforth–Lazarus syndrome, Kabuki syndrome, Pierre Robin 

syndrome, and Treacher Collins syndrome (7).  

Genetic studies have reported genes related to syndromic OFCs and 

provided clear associations between cleft phenotypes and the mutations of genes. 

However, some published genes for isolated OFCs often remain with questions of 

genetic etiology and there is need for more research to confirm and explain these 

associations (91).  

i) IRF6 (Interferon regulatory factor 6) 

Nine interferon regulatory factors have been identified in humans. 

Interferon regulatory factor family relates to innate immunity and 

interferon signaling, while IRF6 is essential for normal epidermal 

differentiation and development. In both vitro and vivo studies found that 

IRF6 suppressed growth and promoted differentiation of keratinocytes, 

cell type in the epidermis, and mammary carcinoma cells (92).   

IRF6 has been reported the association with both syndromic and 

isolated OFCs. IRF6 was found to be the cause of Van der Woude 

syndrome and Popliteal Pterygium syndrome (93). Zucchero et al. (94) 

confirmed the association between IRF6 and non-syndromic CL/P in a 

large study of 10 populations with ancestry in Asia, Europe, and South 

America. Subsequent candidate gene studies confirmed the correlation of 
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IRF6 with non-syndromic CL/P in Belgian (95), Taiwanese (96), and 

Norwegian populations (97). The results from genome-wide linkage 

studies (98) and genome-wide association studies (99-101) also reported 

similar result with candidate gene studies. 

Mouse models have also demonstrated the role of IRF6 showing 

that Irf6 mutant mice presented a hyper-proliferative epidermis causing 

failure to undergo terminal differentiation. The hyper-proliferative 

epidermis causes multiple epithelial adhesions which can occlude the oral 

cavity and lead to a cleft palate (102, 103). 

ii) MAFB (v-maf musculoaponeurotic fibrosarcoma oncogene 

homolog B) 

MAFB gene encodes a basic leucine zipper transcription factor 

which regulates lineage-specific hematopoiesis. MAFB is expressed in the 

palate shelves and the medial edge epithelia during palate formation (101). 

Moreover, MAFB regulates the functions of establishing, differentiating, 

and developing the function of cells, tissues and organs, including 

pancreatic alpha and beta islets (104), which may be related to diabetes.  

 Genome-wide association studies in Chinese Han (105), Hispanic 

(106), European and Asian (101) populations reported an association 

between MAFB and non-syndromic orofacial clefts. However, no 

association was found in a Brazilian population (107). 
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iii) ABCA4 (ATP-binding cassette, sub-family A (ABC1), member 4) 

ABCA4 gene is a member of ATP-binding cassette (ABC) family. 

The ABCA4 gene plays an obvious role in retina photoreceptor cells. 

ABCA4 accelerates the clearance of all-trans-retinal to all-trans-retinol by 

translocating all-trans-retinal from the luminal to the cytoplasmic side of 

the disk membrane. ABCA4 mutation had strong association with vision 

disease such as Stargardt disease, cone-rod dystrophy, and autosomal 

recessive retinitis pigmentosa (108). The function of ABCA4 in other 

organs is unknown.  

The genome-wide association study in the GENEVA Cleft 

Consortium provided the statistical evidence of linkage and association 

between ABCA4 and non-syndromic CL/P (101). This evidence was 

supported with other genome-wide association studies in other populations 

such as Hispanic (106) and Brazilian (107) populations. However, the 

genome-wide association study in a Chinese Han population was not 

associated with the risk of non-syndromic orofacial clefts (105). 

iv) 8q24 

8q24 is a 640-kb region on chromosome 8 with no well-annotated 

genes in this interval. 8q24has been associated with non-syndromic CL/P 

and many types of cancer such as breast (109, 110), prostate (111-113), 

bladder (114), colon (115-117), lung (118), ovarian (119), pancreatics 
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(120), and brain (121) cancer. The 8q24 gene was strongly associated with 

non-syndromic CL/P in GWAS (99, 100). 

v) FOXE1 (Forkhead box E1) 

FOXE1, a member of the forkhead family, is a thyroid-specific 

transcription factor. FOXE1 is essential for the development and 

differentiation of thyroid, and the maintenance of thyroid differentiated 

state in adults (122). FOXE1 expression was observed in the rostral 

epithelium of the oral pharynx, the caudal epithelium of the nasal and 

maxillary processes, and epithelium involved in the fusion between the 

medial nasal and maxillary processes, which represents the role of FOXE1 

in lip development (123). FOXE1 mutation is also associated with thyroid 

agenesis, cleft palate, and choanal atresia (124). Moreno et al. reported 

that FOXE1 had a significant association with non-syndromic orofacial 

clefts (123). This association was confirmed by the subsequent candidate 

gene study in European (125, 126), Thai (127), Arab (128) populations. 

The GWAS in the Hispanic population also reported the association (106). 

vi) VAX1 (Ventral anterior homeobox 1) 

VAX1 is a transcription factor containing a DNA-binding 

homeobox domain in developing anterior ventral forebrain (129).  Mouse 

studies found that VAX1 related to forebrain development and neuronal 

differentiation (129), and VAX1 mutations affected the development of 

basal forebrain and the formation of visual system (130).  
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With GWAS, Mangold et al. and the GENEVA Cleft Consortium 

reported the association between VAX1 and risk of non-syndromic CL/P 

(101, 131). Figueiredo et al. reported VAX1 was associated with the risk 

of orofacial clefts in the Southeast Asian population, but not in the African 

population (132). An animal study found that the mouse knockout for 

Vax1 developed cleft palate and VAX1 was expressed in developing 

craniofacial structures (130) 

vii) Other genes 

The associations between the risk of orofacial clefts and the gene 

related to folate metabolism (MTHFR: Methylenetetrahydrofolate gene, 

MTHFD: Methylenetetrahydrofolate dehydrogenase gene, MTR: 5-

Methytetrahydrofolate-homocysteine methyltransferase, MTRR: 

Methionine synthase reductase, RFC1: Reduced folate carrier 1, FOLR: 

Folate receptor, BHMT: Betaine-homocysteine methyltransferase, and 

CBS: Cystathionine beta-synthase) is still controversial (133). In addition, 

no GWAS has reported the association between OFCs and diabetes-related 

genes. Published genes associated with OFCs have various function, only 

MAFB gene has function on pancreatic alpha and beta cells, which may 

related to diabetes. 

c) Gene-environment interaction  

Many studies have suggested that the development of CL/P and CP 

results from interaction of genetic and maternal environmental exposures. 
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Indeed, interaction between maternal exposures and specific allelic variants 

may have more significant relevance for the occurrence of CL/P and CP than 

studies in maternal exposures or genes alone. 

Maternal smoking has been associated with the increased risk of CL/P due 

to interference of genes in the metabolic pathways related to CLP. GSTT1 

(glutathione S-transferase theta), NOS3 (nitric oxide synthase 3), MSX1 (Msh 

homeobox homolog1), TGFA (transforming growth factor alpha) and TGFB3 

(transforming growth factor beta 3) genes influence the risk of orofacial clefts in 

infants of mothers who smoked during the peri-conceptual period (134-138). 

Beaty et at. (139) reported GRID2 (glutamate receptor, ionotropic, delta 2) and 

ELAVL2 (ELAV like neuron-specific RNA binding protein 2) provided the 

strong evidence for a gene-smoking interaction among European maternal smoker 

but those did not show significant evidence of genotypic effects alone.  Infants 

with allelic variants at the MSX1 (Msh homeobox homolog1) site had 

significantly elevated risk of CL/P with maternal alcohol consumption (> or = 4 

drinks/month) and CP with maternal smoking (> or = 10 cigarettes/day) (140). 

Offspring polymorphism of BMP4T538C (bone morphogenetic protein 4) was 

associated with an increased risk of non-syndromic CL/P for maternal passive 

smoking, and a decreased the risk of CL/P for maternal multivitamin use (141). 

Jia et al. (142) stated that IRF6 (Interferon regulatory factor 6) provided a similar 

result to BMP4T538C. The presence of ADH1C (alcohol dehydrogenase 1C) is 

associated with risk of orofacial clefts that mothers consume alcohol (143). 
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Moreover, CBS and MTHFD2L in Asian population and DHFR, MMAA, MTR, 

and TCN2 in European population show association between orofacial clefts and 

maternal multivitamin use (144). 

2.2 Diabetes Mellitus 

2.2.1 Overview 

Diabetes Mellitus is a disorder of the regulation of blood glucose. Hyperglycemia 

is a characteristic of diabetes mellitus resulting from a defect in insulin secretion or 

insulin action or both.  Diabetes mellitus can be divided into four groups as follows 

(145): 

a) Type 1 diabetes mellitus 

Type 1 diabetes mellitus, accounts for around 5% of all diabetes cases, and 

results from a cellular-mediated autoimmune destruction of β-cells of the pancreas. 

Patients with type 1 diabetes mellitus are typically diagnosed as children or young 

adults. 

b) Type 2 diabetes mellitus 

Type 2 diabetes mellitus is the most common type of diabetes (90-95%). This 

type of diabetes results from insulin resistance or insulin deficiency or both, which is 

caused by genetic and lifestyle factors. The most significant factors leading to type 2 

diabetes mellitus are overweight, abdominal obesity, and physical inactivity. Many 

patients with type 2 diabetes mellitus are undiagnosed for many years because of no 

significant signs and symptoms during the early stages of the disease.   
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c) Gestational diabetes mellitus (GDM) 

GDM is defined as glucose intolerance that begins or is first recognized during 

pregnancy. The cause of GDM is not clear, but it has been suggested that it is from 

the effect of placental and adipose tissue hormones. Placental hormones such as 

human placental lactogen, progesterone, cortisol, placental growth hormone and 

prolactin decreases phosphorylation of insulin receptor substrate 1, which leads to 

insulin resistance. Decreased adiponectin and increased tumor necrosis factor-α 

(TNF-α) and leptin during pregnancy are also associated with insulin resistance 

during pregnancy. 

d) Other specific types 

In addition to the causes of type 1 and type 2 diabetes mellitus and gestational 

diabetes mellitus, there are many causes that can lead to diabetes mellitus.  

i) Genetic defects of β -cells function result in impaired insulin secretion 

because β-cells lose the function to convert pro-insulin to insulin. (e.g. 

maturity-onset diabetes of the young (MODY), mitochondrial disorders, 

et al.). 

ii) Genetic defects in insulin action result from the mutation of insulin 

receptor, which leads to hyperinsulinemia and hyperglycemia. (e.g. 

Leprechaunism, congenital lipoatrophic disorders). Moreover, other 

genetic syndromes associated with diabetes include chromosomal 

abnormalities such as Prader-Willi syndrome, Wolfram’s syndrome, 

Turner syndrome, etc.). 
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iii) Diseases of the exocrine pancreas such as pancreatitis, trauma, 

pancreatectomy, neoplasia, fibrocalculous pancreatopathy, pancreatic 

carcinoma, et al., result in damaged β-cells. Decreased β-cells in the 

pancreas lead to reduced insulin secretion. 

iv) Endocrinopathies related to an excess amount of hormones antagonizing 

insulin action such as growth hormone, cortisol, glucagon, epinephrine, 

etc. (e.g. acromegaly, Cushing’s syndrome, thyrotoxicosis). 

v) Drug- or chemical-induced diabetes occurs when drugs and chemicals 

impair insulin action or damage β-cells. (e.g. glucocorticoids, thiazides, 

phenytoin, antiretroviral therapy). 

vi) Infections, especially viral infections, destroy β-cells. (e.g. congenital 

rubella, Cytomegalovirus, HIV/AIDS, coxsackievirus B, mumps, et al.). 

Uncommon forms of immune-mediated diabetes are the autoimmune disorder 

interfering with the insulin receptor, such as anti-insulin receptor antibodies. 

2.2.2 Criteria for diagnosis of type 2 diabetes mellitus 

The American Diabetes Association updated the criteria for the diagnosis of type 

2 diabetes mellitus in 2010 (145). Persons having HbA1c ≥ 6.5% or Fasting Plasma 

Glucose (FPG) ≥ 126 mg/dl (7.0 mmol/l) or 2-hr plasma glucose ≥ 200 mg/dl (11.1 

mmol/l) during an oral glucose tolerance test (OGTT) or random plasma glucose ≥ 200 

mg/dl with hyperglycemic symptoms is diagnosed as having diabetes mellitus. In 2006 

the World Health Organization (WHO) and the International Diabetes Federation 

(IDF)(146) recommended Fasting Plasma Glucose (FPG) ≥ 126 mg/dl (7.0 mmol/l) or 2-
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hr plasma glucose ≥ 200 mg/dl (11.1 mmol/l) as the diagnostic criteria for diabetes. 

Moreover, HbA1c ≥ 6.5% was recommended in 2011 by WHO for diagnosing diabetes 

mellitus (147). WHO/IDF suggested Fasting Plasma Glucose (FPG) ≥ 126 mg/dl (7.0 

mmol/l) and 2-hr plasma glucose ≥ 140 and 200 mg/dl (7.8-11.1 mmol/l) as the 

diagnostic criteria for Impaired Glucose Tolerance (IGT), and Fasting Plasma Glucose 

(FPG) > 110-125 mg/dl (6.1-6.9 mmol/l) for Impaired Fasting Glucose (IFG) (146). 

2.2.3 Criteria for diagnosis of GDM 

The American Diabetes Association (148) proposed one-step and two-step 

approaches for diagnosing GDM.  The one-step approach is based on a 75 gram OGTT at 

24-28 weeks of gestation with fasting. The diagnosis of GDM is made when the plasma 

glucose level ≥ 92 mg/dl (5.1 mmol/L) when fasting, or ≥ 180 mg/dl (10.0 mmol/L) at 1 

hour after loading, or ≥ 153 mg/dl (8.5 mmol/L) at 2 hours after loading. In addition, the 

two-step approach is based on 50 gram at 24-28 weeks of gestation with non-fasting. If 

the plasma glucose level at 1 hour after glucose loading is equal to or over 140 mg/dl (7.8 

mmol/L), 100 gram OGTT is required. The diagnosis of GDM is made if at least two of 

the four measured plasma glucose levels meet the criteria. The GDM criteria for 100 

gram OGTT is ≥ 95 mg/dl (5.3 mmol/L) at fasting, ≥ 180 mg/dl (10.0 mmol/L) at 1 hour 

after loading, ≥ 155 mg/dl (8.6 mmol/L) at 2 hours after loading, and ≥ 140 mg/dl (7.8 

mmol/L) at 3 hours after loading. By the 2006 WHO criteria for diabetes (149), the 

diagnosis of GDM is made if at least one criteria is met ≥ 126 mg/dl (7.0 mmol/L) at 

fasting, and ≥ 140 mg/dl (7.75 mmol/L) at 2 hours after 75 gram OGTT loading. 
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2.2.3 Epidemiology of diabetes mellitus 

The International Diabetes Federation (IDF) reported that the global prevalence of 

diabetes was 366 million in 2011 and estimated that the prevalence will be 552 million in 

2030 (150). Additionally, the IDF estimated the global prevalence of diabetes in 2035 

will be 600 million, which will be a 57% increase over the projection of  382 million for 

2013 (151).  Studies from China, Japan, and Sweden, supported the projected increase in 

the prevalence of diabetes (152-154). Men show a higher prevalence of diabetes than 

women in some but not all studies (198 million for men and 184 million for women) 

(155). The Chinese study by Wang C also reported that the prevalence of diabetes was 

higher in males (42.75%) compared to females (26.9%) in 2012 (153). However, a study 

done in Southern Iraq reported the prevalence of diabetes in women to be slightly higher 

than for men (52.6% for women and 47.3% for men) (156).  

The National Diabetes Statistics Report (157) released in June 2014 stated that in 

2012, 29.1 million or 9.3% of the American population had diabetes, which is a 12.8% 

increase over 2010. Moreover, it is estimated that 8.1 million (27.8%) people have 

undiagnosed diabetes. In the American population, Indians/Alaskan Natives have the 

highest rate of diabetes (15.9%) followed by non-Hispanic blacks (13.2%) and Hispanics 

(12.8%). The IDF (151) reported that the western pacific region has the highest number 

of people with diabetes, but the diabetic population in Africa, the Middle East and North 

America, and South-East Asia will increase 100%, 96%, and 71% respectively by 2035. 

The Hispanic Community Health Study/Study of Latinos (HCHS/SOL) reported that the 

prevalence of diabetes was 10.2% in South Americans and 13.4% in Cubans, increasing 
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to 17.7% in Central Americans, 18.0% in Dominicans and Puerto Ricans, and 18.3% in 

Mexicans. The prevalence of diabetes is negatively associated with educational levels and 

household incomes (158).  

The percentage of women suffering from GDM is close to type 2 diabetes 

mellitus prevalence. The IDF (151) reported the global prevalence of hyperglycemia in 

pregnancy is 16.9%. The International Association of Diabetes and Pregnancy Study 

Groups (IADPSG), an international consensus group with representatives from multiple 

obstetrical and diabetes organizations, including the American Diabetes Association 

(ADA) also reported more than 200,000  GDM cases each year, or around 7% of all 

pregnancies (ranging from 1 to 14%, depending on the population and the diagnostic 

criteria) were diagnosed with GDM (159). The South-East Asian regions have the highest 

prevalence (25%) while the lowest prevalence is found in North America and the 

Caribbean (10.4%).  In addition, the prevalence of GDM in Haryana, India, was 13.9%, 

which is higher than the prevalence in the United States (8.5%) during 2009-2010 (160). 

The GDM prevalence in Australia in 2000-2009 was 5.1% for the indigenous population 

and 4.5% for the non-indigenous, an increase from 1999 (154). The results of these 

studies show that the majority of cases of hyperglycemia during pregnancy occurred in 

low- and middle-income countries. 

2.2.4 Risk factors of diabetes mellitus 

a) Age 

A Turkish study reported on the positive correlation between maternal age 

and the incidence of type 2 diabetes. The incidence of individuals over age 50 
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developing type 2 diabetes is higher than it is for individuals between the ages of 

20-49 years old (OR: 4.53, 95% CI: 1.98-10.33, P 0.0003) (161). The TromsØ 

study reported that increased age increased the risk of diabetes (OR: 1.3, 95% CI: 

1.1-1.5) (162). 

A positive correlation between age and risk of GDM has been reported, 

similar to the correlation seen in type 2 diabetes. IDF reported that the age of the 

mother is associated with the prevalence of hyperglycemia in pregnancy; mothers 

over 45 years old having the highest prevalence (47.7%) (151). The Nurses’ 

Health Study II presented similar results (163). Increased maternal age increased 

the risk of GDM (age ≥ 40 years vs 25-29 years, RR: 2.24, 95% CI 1.26-3.98, p-

trend <0.01).  A Chinese study by Yang H reported that, when compared to 

mothers less than 30 years ole, mothers age 30 years or older had an increased 

risk of GDM (OR: 2.18, 95% CI: 1.88-2.52) (164). This is similar to the results of 

a study done in Iran (OR: 3, 95% CI: 1.8–5) (165). 

b)  Family history 

A study in Japan examined the incident risk of type 2 diabetes over a 7 

year period. The study showed that participants with a family history of diabetes 

had an increased risk of diabetes when compared with participants without a 

family history of diabetes (HR 1.82; 95% CI: 1.36-2.43) (166). Moreover, 

participants with only the mother having diabetes showed a higher rate of type 2 

diabetes than those with a family history of diabetes (HR: 2.6; 95% CI: 1.71-

3.97). The MONICA (Monitoring of Trends and Determinants in Cardiovascular 
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Disease) Augsburge cohort study reported a significant association between 

family history of diabetes and the risk of diabetes (167). 

A family history of diabetes has also been reported as a risk factor for 

GDM (168). Pregnant women with a history of diabetes in their family have a 

higher risk of GDM when compared to women without a family history of 

diabetes (RR: 1.68, 95% CI: 1.39-2.04) (163). Moreover, data from the National 

Health and Nutrition Examination Survey III, provided similar results (169) . 

Women with maternal, paternal, or sibling histories of diabetes had an increased 

risk of developing GDM (OR: 3.0, 95% CI: 1.2- 7.3; OR: 3.3, 95% CI: 1.1-10.2; 

OR: 7.1, 95% CI: 1.6 -30.9, respectively). A history diabetes in family increased 

risk of type 2 diabetes and GDM. 

c)  Body weight 

Many studies have reported the positive correlation between body weight 

and risk of type 2 diabetes. The Nurses’ Health Study reported that both 

overweight (BMI 25-30 kg/m2) and obese (BMI ≥ 30 kg/m2) individuals showed a 

statistically significant increase in the risk of type 2 diabetes (170). The Finnmark 

study followed subjects for 12 years and found that increased BMI increased risk 

of type 2 diabetes in both genders (BMI ≤ 27 as a reference, BMI ≥ 35 kg/m2 RR: 

27.89; 95% CI: 12.27-63.42 for men; RR: 11.07, 95% CI: 4.63-26.46 in women) 

(171). Studies in Lebanon and Qatar also found that mother having BMI ≥ 30 

kg/m2 increased the risk of type 2 diabetes (OR: 2.29, 95% CI: 1.74-3.02, and OR: 

1.5, 95% CI: 1.2-1.9, respectively) (172, 173).  
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Pre-pregnancy bodyweight has been shown to have a strong association 

with the risk of GDM. A meta-analysis study (174) pooling the data from 70 

studies, also revealed that when compared with women of normal weight (20-

24.9kg/m2), the odds ratio for overweight (25-29.9≤ 30 kg/m2), moderate obesity 

(30-34.9kg/m2), morbid obesity (≥ 35 kg/m2) were  1.97 (95% CI 1.77- 2.19), 

3.01 (95% CI 2.34-3.87) and 5.55 (95% CI 4.27- 7.21) respectively. Moreover, 

the study also presented a protective effect of being underweight (≤ 20 kg/m2) on 

the incidence of GDM (OR: 0.75, 95% CI: 0.69-0.82). A retrospective study in 

Poland (175) reported that increased BMI significantly increased the risk of GDM 

(BMI > 35 kg/m2 vs BMI 18.5-20.9 kg/m2, OR 9.01, 95% CI 3.47-23.3, p-trend 

0.027). Many studies have been confirmed that high pre-pregnancy BMI increases 

the risk of GDM (164, 165, 168, 176-179). Nevertheless, a study in Thailand 

(180) reported the obese women did not have an increased risk of GDM when 

compared with normal weight women (RR: 0.9, 95% CI: 0.6-1.4). Individuals 

with overweight or obesity have a tendency to increase risk of type 2 diabetes and 

GDM. 

d)  Hypertension 

The 8 year follow up of the San Antonio Heart Study, reported that 

participants who converted to non-independent diabetes mellitus had higher 

systolic blood pressure than subjects without diabetes in both men and women, 

the results were statistically significant (181). The Augsburge study showed a 

similar correlation between high blood pressure and the risk of diabetes. The 
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study stated that diabetic subjects had both higher systolic and diastolic blood 

pressure than non-diabetic subject (167). A study in Norway showed that subjects 

developing diabetes had higher systolic blood pressure than non-diabetics (162). 

A study from Qatar reported the positive association of type 2 diabetes with 

systolic blood pressure (SBP) (OR = 1.5, 95% CI = 1.2 – 2.0 for SBP 120–

139 mmHg, OR = 2.2, 95% CI = 1.6-3.1 for SBP 140–159 mmHg, and OR = 3.2, 

95% CI = 2.0 – 5.3 for SBP > 160 mmHg) (172). In addition, the study in Western 

Asia, Lebanon, also suggested that hypertension is a predictor of type 2 diabetes 

(OR: 1.75, CI: 1.54-2.00, p-value < 2 × 10-16) (173). The association between high 

blood pressure and GDM has not been reported. Hypertension is strongly 

associated with diabetes. Both hypertension and type 2 diabetes are related to 

metabolic syndrome, and have common risk factors (obesity, diet, and inactivity). 

e)  Smoking 

Many cohort studies have reported the positive association between 

smoking and the risk of type 2 diabetes and GDM. The studies showed that 

tobacco smoking was correlated with the impairment of glucose metabolism, 

insulin sensitivity, and insulin secretion (182, 183).  Willi et al. (184) analyzed 25 

cohort studies and reported that current smoking increases the risk of type 2 

diabetes (OR: 1.44, 95% CI: 1.31-1.58). Moreover, heavy smokers (≥ 20 

cigarettes/day) showed the highest incidence of diabetes (OR: 1.61, 95% CI: 1.43-

1.80) when compared to lighter smoking (<20 cigarettes/day) (OR: 1.29, 95% CI: 

1.13-1.48) and former smokers (RR: 1.23, 95% CI: 1.14-1.33). The high 
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incidence of type 2 diabetes in heavy smokers was confirmed by studies in Japan 

(OR: 1.37, 95% CI: 1.05-1.80)(185), Finland (OR: 1.57, 95% CI: 1.34-1.84 in 

men and OR: 1.87, 95% CI: 1.36-2.59 in women) (186), and China (OR: 1.25, 

95% CI: 1.00-1.56) (187). In addition, Kim et al. reported that early onset of 

smoking increased the risk of type 2 diabetes in both Korean and US populations 

(188). 

However, some studies showed that the risk of type 2 diabetes increased 

after 3-5 years of smoking cessation (189-191). As a consequence, smoking 

cessation was associated with increased body weight, which is a risk factor of 

type 2 diabetes. However, increased duration of smoking cessation significantly 

decreased the risk of type 2 diabetes (191). A meta-analysis analyzing 4 cohort 

studies reported that passive smoking increased the risk of type 2 diabetes (OR: 

1.28, 95% CI: 1.14-1.44)(192). 

A prospective study in the United States (163) reported that women who 

smoked cigarettes had an increased risk of GDM (RR: 1.43, 95% CI: 1.14-1.80). 

A prospective cohort study in Massachusetts (193) showed that women who 

smoked prior to pregnancy had an increased risk of GDM when compared with 

non-smokers, but the results did not show statistical significance. 

f)  Gestational diabetes mellitus (GDM) and subsequent risk of DM 

Women with previous GDM show increased risk of type 2 diabetes 17-

63% in 5-16 years after diagnosis of GDM (194). A study in northwestern Ontario 

(195) reported that 70% of the women diagnosed with GDM developed type 2 
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diabetes, and the average duration from diagnosis of GDM to type 2 diabetes was 

three years. Sivaraman et al. (196) showed that women diagnosed with GDM had 

a significantly increased risk of type 2 diabetes, finding 6.9% at five years (95% 

CI: 3.8%-9.9%) and 21.1% at ten years (95% CI: 14.1%-27.5%) after diagnosis of 

GDM. Lui et al. (197) showed that increased postpartum body weight (>7 kgs) 

increased the risk of diabetes by 86% and pre-diabetes, impaired glucose 

tolerance or impaired fasting glucose, by 32%, whereas decreased postpartum 

body weight reduced the risk of pre-diabetes by 45%. 

g)  Dietary intake 

The association between food intake and incidence of diabetes has been 

showed to have both positive and negative effects.  The Nurses’ Health Study 

(198) reported the inverse association between dietary fiber intake and risk of type 

2 diabetes (RR=0.72, 95% CI, 0.58-0.90, P trend=.001), this was confirmed by 

the Health Professionals Follow-up Study (199), the Iowa Women’s Health Study 

(200), and the Black Women's Health Study (201). The protective effect of fiber 

intake against GDM was reported in the Nurses’ Health Study II, showing that the 

risk of GDM was 0.67 (RR: 0.67, 95% CI: 0.51-0.9) when comparing the highest 

quintile with the lowest quintile of total daily fiber intake (202). Moreover, each 

10 g/day increase in total fiber intake decreased the risk of GDM 26% (RR: 0.74, 

95% CI: 0.51-0.91). A study focusing on the association between fruit intake and 

the risk of GDM reported that whole fruit consumption reduced the GDM risk 

without statistical significance (203). 
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The association between total carbohydrate intake and the risk of type 2 

diabetes is controversial (198, 199, 204-206). The Nurses’ Health Study (207) 

reported a positive correlation between glycemic index and the risk of type 2 

diabetes (p-trend 0.001), and no association between glycemic load and the risk of 

type 2 diabetes. However, the Health Professionals Follow-up Study (199), the 

Japan Public Health Center-based Prospective Study (208), and a study in China 

(204) reported that both glycemic index and glycemic load increased the risk of 

type 2 diabetes. A cohort study in a US population, The Health Professionals 

Follow-up Study and the Nurses’ Health Study I and II, stated that the high white 

rice intake (≥ 5 serving per week) increased the risk of type 2 diabetes (OR: 1.17, 

95% CI: 1.02-1.36), while high brown rice intake (≥ 2 serving per week) reduced 

the risk of type 2 diabetes (OR: 0.89, 95% CI: 0.81-0.97) (209). This result 

demonstrated the adverse effect of high glycemic index foods and the benefit of 

fiber on the incidence of type 2 diabetes. The correlation between carbohydrate 

intake and GDM was reported on a study by Bao W. and colleagues. The study 

found that a low carbohydrate dietary pattern, with high protein and fat from 

animals, has a negative association with the risk of GDM (p-trend 0.03) (210). 

Additionally, the association between dietary fat intake (total, saturated, 

polyunsaturated, and monounsaturated fat) and occurrence of diabetes is 

inconsistent. The 14 year follow up of the Nurses’ Health Study (211) reported 

the protective effect of polyunsaturated fat on type 2 diabetes; on the contrary, the 

Health Professionals Follow-up Study (199) reported no correlation between 
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polyunsaturated fat intake and the risk of type 2 diabetes. Bowers K. and 

colleagues (212) reported that increased total fat intake, especially animal fat 

increased the risk of GDM (p-trend 0.05). Analyzing the association between fatty 

acid intake and GDM risk revealed that MUFA and cholesterol significantly 

increased the risk of GDM (p-trend 0.04 for both MUFA and cholesterol). The 

Alpha Case-Control Study (213) also showed an association between 

consumption of cholesterol and the risk of GDM (Q4 (≥294 mg/day) vs Q1 (<151 

mg/day) OR: 2.35, 95% CI: 1.35, 4.09, p-trend 0.021).  

High fiber and low carbohydrate intake reduce the risk of both type 2 

diabetes and GDM. The association dietary fat intake and risk of diabetes is 

controversial.  

h)  Dietary pattern 

The Multi-Ethnic Study of Atherosclerosis, MESA, (214) reported that a 

dietary pattern characterized by high intake of tomatoes, beans, refined grains, 

high-fat dairy, and red meat was associated with increased the risk of type 2 

diabetes (OR: 1.18, 95% CI: 1.06-1.32, p-trend 0.004). This study showed that the 

pattern characterized by high intake of whole grains, fruit, nuts/seeds, green leafy 

vegetables, and low-fat dairy decreased the risk of type 2 diabetes (OR: 0.85, 95% 

CI: 0.76-0.95, p-trend 0.005). The insulin Resistance Atherosclerosis Study 

followed non-diabetics for five years and reported that food intake pattern (high 

intake of dried beans, low-fiber bread and cereal, fried potatoes, tomato 
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vegetables, red meat, eggs, and cheese and including low intake of wine) was 

associated with the risk of the type 2 diabetes (215). 

A cohort study in the US showed an association between the western 

dietary pattern or a prudent dietary pattern and the risk of type 2 diabetes. The 

study showed that the western dietary pattern increased the incidence of type 2 

diabetes (OR: 1.59, 95% CI: 1.32-1.93), while the prudent dietary pattern 

decreased the occurrence of type 2 diabetes (OR: 0.84, 95% CI: 0.70-1.00) (216). 

The effect of prudent dietary pattern on the risk of type 2 diabetes was confirmed 

by a study in Finland (217). The MESA study (218) reported that the 

Mediterranean dietary pattern (high consumption of monounsaturated fatty acids, 

fruits, vegetables, and whole grains as well as low fat dairy products intake) 

reduced insulin levels, but had no significant association with incidence of 

diabetes. 

The effect of dietary pattern on the risk of GDM has been shown to be 

similar to the effect seen on type 2 diabetes risk (protective effects:  Prudent diet 

and Mediterranean diet and negative effect: Western Diet).  The Nurses’ Health 

Study II (219) reported a protective effect of the prudent pattern (high intake of 

fruit, green leafy vegetables, poultry and fish) on the GDM risk (p-trend 0.018). 

In addition, the western dietary pattern, which is characterized by high intakes of 

red meat, processed meat, sugary desserts, high-fat foods, and refined grains, is 

positively associated with the risk of GDM (P-trend 0.0011). Tobias DK. and 

colleagues (220) examined the association between GDM risk and dietary 
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patterns, namely the alternate Mediterranean (aMED), Dietary Approaches to 

Stop Hypertension (DASH), and alternate Healthy Eating Index (aHEI). When 

comparing the highest with the lowest quartile of dietary pattern score, aMED, 

DASH, and aHEI significantly decreased the risk of GDM (RR: 0.76, 95% CI: 

0.60-0.95, P-trend = 0.004 for aMED; RR: 0.66, 95% CI: 0.53-0.82, P-trend = 

0.0005 for DASH; RR: 0.54, 95% CI: 0.43-0.68, P-trend < 0.0001 for aHEI). The 

cohort study in China (221) reported the protective effect of a vegetable dietary 

pattern on the risk of GDM (T3 vs T1: RR: 0.79, 95% CI: 0.64-0.97, p-trend 

0.036). Moreover, sweets and seafood dietary patterns increased the risk of GDM 

(T3 vs T1: RR: 1.23, 95% CI: 1.02-1.49, p-trend 0.01). 

Dietary patterns characterized by high fiber intake (whole grain, fruit, and 

vegetable), and low animal fat such as Prudent diet, DASH diet, and 

Mediterranean diet reduces risk of type 2 diabetes and GDM.  The Western 

dietary pattern (low intake of fiber (fruit and vegetable) and high intake of red 

meat, high-fat foods, processed meat and sugar) increased the risk of diabetes.   

i)  Physical inactivity 

Several studies have reported the protective effect of physical activity and 

the adverse effect of sedentary behaviors on the incidence of type 2 diabetes. The 

Nurses' Health Study (222) showed that sedentary behaviors increased the risk of 

type 2 diabetes. The studies showed that increased duration of sitting while 

watching television increased the risk of diabetes (0-1 hr/week is reference, OR: 

1.22; 95% CI: 1.06-1.42 for 2-5 hrs/week), OR: 1.42; 95% CI: 1.24-1.63 for 6-20 
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hrs/week, OR: 1.65; 95% CI: 1.41-1.93 for 21-40 hrs/week, OR: 1.94; 95% CI: 

1.51-2.49 for >40 hrs/week; p-trend <0.001), whereas increased standing or 

walking around at home decreased the risk (0-1 hr/week is reference, OR: 0.99; 

95% CI: 0.79-1.24 for 2-5 hrs/week), OR: 0.87; 95% CI: 0.70-1.08 for 6-20 

hrs/week, OR: 0.78; 95% CI: 0.63-0.97 for 21-40 hrs/week, OR: 0.77; 95% CI: 

0.61-0.97 for >40 hrs/week; p-trend <0.001). A survey in Lebanon (173) showed 

that physical inactivity significantly increased the risk of type 2 diabetes. In 

addition, physical activity significantly decreased the risk of type 2 diabetes (OR: 

0.55, 95% CI: 0.37-0.81 for moderate activity, OR: 0.46, 95% CI: 0.24-0.88 for 

heavy activity). The study in urban Shanghai, China (187) also showed a 

significant inverse association between the incidence of type 2 diabetes and 

metabolic equivalent values (METs), which is used to estimate intensity of 

physical activity. Physical activity reduces the incidence of type 2 diabetes by 

decreasing insulin resistance and improving insulin sensitivity (223). 

However, the effect of physical activity on GDM development is 

controversial. The Nurses' Health Study II (224) reported that the physical activity 

score was inversely associated with the risk of GDM (p-trend 0.01). The study 

showed that brisk or very brisk walking 4 hours a week decreased the risk of 

GDM when compared with casual walking of the same duration (RR: 0.66, 95% 

CI: 0.46-0.95). However, the Australian Longitudinal Study found no association 

between physical activity and GDM risk (225). A case-control study determining 

the relation between recreational physical activity and risk of GDM (226) showed 
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an effect similar to brisk walking. For distances of ≤ 2 miles/day, brisk walking 

significantly reduced the GDM risk when compared with casual walking, but 

there was no significant protective effect in distances over 2 miles a day for either 

intensity. This study also reported that women participating in recreational 

physical activity during the year before pregnancy and during the first 20 weeks 

of pregnancy reduced the risk of GDM (OR: 0.45, 95% CI: 0.28-0.74 and OR: 

0.52, 95% CI: 0.33-0.80 respectively). Physical activity can prevent diabetes both 

type 2 diabetes and GDM while physical inactivity increases the risk of diabetes. 

2.3 Metabolic Syndrome  

2.3.1 Overview  

Metabolic syndrome is a major public health issue because it increases the risk of 

cardiovascular diseases (CVD), type 2 diabetes mellitus, stroke, etc. Metabolic syndrome 

is the grouping of visceral obesity, insulin resistance, hyperglycemia, dyslipidemia 

(hypertriglyceridemia and hypo-HDL cholesterolemia), and hypertension. The definitions 

of metabolic syndrome have been proposed by the World Health Organization (WHO), 

the National Cholesterol Education Program, Adult Treatment Panel III (NCEP/ATP III), 

the International Diabetes Federation (IDF), the American Heart Association/National 

Heart, Lung and Blood Institute (AHA-NHLBI), the American Association of Clinical 

Endocrinology (AACE), and the European Group for the Study of Insulin Resistance 

(EGIR) (Table 3.1). AACE proposed the definition of metabolic syndrome by using 

insulin resistance syndrome. The definition given by AACE can be applied to the 
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diagnosis of metabolic syndrome; relying on clinical judgment in non-diabetic patients. 

Genetic, hormonal, and lifestyle factors lead to the development of the syndrome. 

Risk of metabolic syndrome among obese persons can be split into two groups: 

metabolically healthy obesity (MHO) and metabolically unhealthy obesity (MUHO) 

(227). Metabolically healthy obesity (MHO) means obese people without metabolic 

abnormalities and have normal blood pressure, normal glucose tolerance, and normal 

lipid profiles. MHO results from the interaction between genetic, environmental, dietary, 

and behavioral factors associated with the accumulation and distribution of fat and insulin 

resistance (228). Subcutaneous adipose tissue of MHO individuals has the propensity to 

accumulate peripheral fat rather than visceral fat depots in MUHO which leads to insulin 

resistance (227). A study of weight-discordant monozygotic twins  (229) reported that the 

obese co-twins in the  ≥ 2% liver fat group presented significantly higher adipocyte 

volume, AUC insulin and glucose, LDL-cholesterol, leptin, and CRP and lower HDL- 

cholesterol than the non-obese co-twins. In the group with different liver fat <2%, obese 

co-twin had higher adipocyte volume and leptin than lean co-twins. This study stated that 

the MHO group (those with a low percentage of liver fat), had less inflammation, while 

the excess liver fat group presented with insulin resistance, dyslipidemia, and 

inflammation. This study of discordance among monozygotic twins indicates a role for 

non-genetic factors influencing the risk of metabolic syndrome.      

Metabolically unhealthy obesity is characterized by abdominal visceral fat 

disposition, visceral and ectopic fat accumulation, and insulin resistance (228). Visceral 

fat is intra-abdominal fat and a marker of ectopic fat which means the fat accumulating in 
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and around the organs in abdominal cavity including the heart (230). Abdominal obesity 

has an effect on metabolic processes by the intra-abdominal visceral fat which has higher 

lipolysis rate than any other depots. Abdominal adipose tissue elevates free fatty acids 

(FFA), cytokines (tumor necrosis factor alpha (TNF-𝛼) and interleukin-6 (IL-6)), 

adipokines, and angiotensin II.  Excess FFA circulation induces insulin resistance, which 

results from reduced hepatic insulin clearance, decreased skeletal muscle insulin 

sensitivity, increased hepatic cholesterol production with elevated triglycerides and very 

low density lipoprotein (VLDL), and altered endothelial function. Elevated levels of 

cytokines also impair insulin sensitivity. A similar result is seen with decreased 

adiponectin level. Adiponectin has a protective effect by regulating lipid and glucose 

metabolism, controlling energy metabolism, and increasing insulin sensitivity (231, 232). 

Obesity increases not only adipose tissue but also the systemic renin angiotensin system, 

which increases angiotensin II circulation. Angiotensin II causes decreased insulin 

sensitivity and vasoconstriction (233). 
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Table 2.1 Definition of metabolic syndrome 

Criteria 

WHO1(234) NCEP/ATP III2(235) IDF3(236) 

Abnormal glycemia plus 2 or more 

other criteria 

3 or more criteria Abdominal obesity plus 2 or 

more other criteria 

Abdominal obesity BMI > 30 kg/m2 and/or Waist to hip 

ratio > 0.9 (men)  

> 0.85 (women) 

Waist circumference 

> 102 cm (men)  

> 88 cm (women) 

Waist circumference for US 

population > 94 cm (men) 

> 80 cm (women) 

Glucose  Insulin resistance or impaired 

glucose regulation or diabetes 

Fasting plasma glucose > 110 

mg/dL or previous diabetes 

Fasting plasma glucose > 100 

mg/dL or previous diabetes 

HDL-C < 35 mg/dL (men)  

< 39 mg/dL(women) 

< 40 mg/dL (men)  

< 50 mg/dL(women) 

< 40 mg/dL (men) 

< 50 mg/dL(women) 

Hypertension ≥ 140/90 mmHg ≥ 130/85 mmHg ≥ 130/85 mmHg 

Triglyceride ≥ 150 mg/dL ≥ 150 mg/dL ≥ 150 mg/dL 

Other microalbuminuria (urinary albumin 

excretion rate ≥ 20 µg/min or 

albumin:creatinine ratio ≥ 30 mg/g) 
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Table 2.1 Definition of Metabolic Syndrome (Cont.) 

Criteria 

AHA-NHLBI4(237) AACE5(238) EGIR6(239) 

3 or more criteria No specific number of criteria for 

diagnosis; based on clinical judgment 

(only for non-diabetic subjects) 

Insulin resistance plus 2 or more 

criteria (only for non-diabetic 

subjects) 

Abdominal 

obesity 

Waist circumference 

> 102 cm (men) 

> 88 cm (women) 

BMI ≥ 25 kg/m2 Waist circumference 

> 94 cm (men) 

> 80 cm (women) 

Glucose  Fasting plasma glucose > 110 

mg/dL or mediation treatment for 

controlling glucose 

Fasting plasma glucose 110-125 

mg/dL or 2 hr post glucose challenge 

140-200 mg/dL 

Insulin resistance or impaired glucose 

regulation (but not diabetes) 

HDL-C < 40 mg/dL (men) 

< 50 mg/dL(women) 

< 40 mg/dL (men) 

< 50 mg/dL(women) 

< 39 mg/dL  

Hypertension ≥ 130/85 mmHg ≥ 130/85 mmHg ≥ 140/90 mmHg 

Triglyceride ≥ 150 mg/dL ≥ 150 mg/dL ≥ 150 mg/dL 

Other  Other features of insulin resistance  
1World Health Organization 
2 National Cholesterol Education Program, Adult Treatment Panel III  
3International Diabetes Federation 
4American Heart Association/National Heart, Lung and Blood Institute 
5 American Association of Clinical Endocrinology, American College of Endocrinology 
6European Group for the Study of Insulin Resistance 
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Figure 2.1 The difference between metabolically healthy and unhealthy obesity (227, 

228) 

 

BP, blood pressure; LDL, low density lipoprotein; TG, triglyceride; HDL, high density 

lipoprotein; TNF-α, tumor necrosis factor alpha; IL-1, interleukin 1; IL-1B, interleukin 1 

beta; IL-6, interleukin 6  
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Figure 2.2 Mechanism of metabolic unhealthy obesity 

FFA, free fatty acid; VLDL, very low density lipoprotein: TNF-α, tumor necrosis factor 

alpha; IL-6, interleukin 6  

 

2.3.2 Epidemiology of metabolic syndrome 

Global prevalence of metabolic syndrome is around 10% to 84%, which depends 

on region, sex, age, and the definition of metabolic syndrome used (232). The prevalence 

of metabolic syndrome in the United States was 27% during 1999-2000, and increased to 

34.2% during 1999-2006 (240), 36.1% during 2007-2008, 34.2% during 2009-2010, and 

34.7% during 2011-2012 (241). The MARE consortium collaborating among 10 

countries in Europe (Lithuania, Greece, Spain, Germany, Netherlands, United Kingdom, 

Italy, Portugal, Belgium, and Sweden) and the United States reported that overall 

prevalence of metabolic syndrome is 24.3% (24.6% in women and 23.9% in mem) (242). 
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This study also found that Lithuania had the highest prevalence of metabolic syndrome 

(around 63%) and Italy presented the lowest prevalence (around 7%). Misra and Khurana 

reported the prevalence of metabolic syndrome in developing countries (33.5% in South 

Africa, 16.3% in Morocco, 21% for Oman, 33.4% in Turkey, 31.2% in Venezuela, 25.4 

in Brazil, and 33.7% in Iran.) (243). The China Health and Nutrition Survey in 2009 

presented that metabolic syndrome prevalence is 21.3% (95%CI: 20.3-22.2) for NCEP 

ATPIII criteria and 18.2% (95%CI: 17.3-19.1) for IDF criteria after adjustment for age 

(244). The prevalence of metabolism of rural women in Bangladesh and India is also as 

high as the prevalence in other developing and developed countries (36.4% in India and 

31.25% in Bangladesh) (245, 246).   

Higher prevalence of metabolic syndrome in women than in men has been 

reported in the United States, Germany, France, Greece, Finland, and Sweden (241, 242, 

247) , but not in Northeast of China, Spain, Netherlands, Portugal (242, 247, 248). Data 

from the National Health and Nutrition Examination Survey (NHANES) (2003-2012) in 

the United States reported that the highest prevalence of metabolic syndrome was 38.6% 

in Hispanic population, and 37.4% in Non-Hispanic Whites, 35.5% in Blacks, and 23.4 in 

other races (241). 

2.3.3 Risk factors of metabolic syndrome 

a) Age 

The NHANES (2003-2012) reported that prevalence of metabolic 

syndrome increased when ages increased (18.3% among ages 20-39 years, and 

46.7 among ages 60 years or over (241). The prevalence of metabolic syndrome is 
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considered to increase with age. The LATIN America METabolic Syndrome 

(LATINMETS) multicenter study in Brazil reported that increased age groups 

increases risk of metabolic syndrome (20-29 years: OR:1.3, 95% CI: 0.5-3.2; 30-

39 years: OR:5.6, 95% CI: 0.8-11.9; and ≥ 40 years: OR:26.3, 95% CI: 4.5-48.1) 

(249). The Chinese survey in 2009 (244) reported that risk of metabolic syndrome 

increased three time in age ≥ 60 years (OR: 36.7, 95% CI: 34.7-38.7) when 

compare with age 18-39 years (OR: 12.4, 95% CI: 10.9-13.9-38.7).    

b) Body weight 

A national Survey in the United States (1988-1994) (250) reported that 

increased BMI increased the incidence of metabolic syndrome in both men and 

women (BMI 18.5-24.9 is a reference, for men: BMI 25-29.9 kg/m2 (OR: 5.2, 

95% CI: 3.9-6.9), BMI 30-34.9 kg/m2 (OR: 25.2, 95% CI: 19.3-32.9), BMI ≥ 35 

kg/m2 (OR: 67.7, 95% CI: 40.5-113.3); for women: BMI 25-29.9 kg/m2 (OR: 5.4, 

95% CI: 3.7-7.9), BMI 30-34.9 kg/m2 (OR: 14.0, 95% CI: 9.1-21.4), BMI ≥ 35 

kg/m2 (OR: 34.5, 95% CI: 22.6-52.7)).  Xi et al. found that overweight and 

obesity significantly increased risk of metabolic syndrome (BMI < 25 kg/m2 is 

reference; BMI 25-27.49 kg/m2: OR: 4.32, 95% CI: 3.77-4.95; BMI ≥ 27.5 kg/m2: 

OR: 11.24, 95% CI: 9.53-13.26) (244). 

c) Smoking 

Smoking is associated with abdominal obesity and insulin resistance 

(251). Studies in Norway and Korean found that smoking more than 20 cigarettes 

per day increased risk of metabolic syndrome (HR:  1.25, 95% CI: 1.02-1.53, and 
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OR: 1.79, 95% CI: 1.10-2.91, respectively) when compared with non-smoker 

(252, 253). A population based cross-sectional study in China found that 

increased smoking increased risk of metabolic syndrome (never is reference; OR: 

0.79, 95% CI: 0.51-1.25 for ≤ 7.5 packs/year; OR: 1.12, 95% CI: 0.69-1.79 for ≤ 

20 packs/year, and OR: 1.81, 95% CI: 1.15-2.84 for > 20 packs/year; p-trend 

0.045) (251). A study in Iran also reported the protective effect of smoking on 

metabolic syndrome. (254)A study in China reported that high incidence of 

metabolic syndrome in heavy smoker (≥11 cigarettes/day) (OR: 1.33, 95% CI: 

1.04-1.71) when compare to lighter smokers (≤ 10 cigarettes/day) (244). 

However, the study in Japan and Portugal that smoking had no association with 

metabolic syndrome (255, 256). 

d) Alcohol consumption 

Light or moderate alcohol consumption can reduce risk of coronary heart 

disease and stroke, but excessive consumption is toxic to many organs (257). The 

association between alcohol consumption and risk of metabolic syndrome is 

inconsistent. A meta-analysis study, analyzing 14 observational studies, found 

that both men having alcohol consumption 0.1-39.9 g/day and women having 

alcohol consumption 0.1-19.9 g/day had a lower prevalence of metabolic 

syndrome when compared with non-drinkers (OR: 0.84, 95% CI: 0.75-0.94 for 

men and OR: 0.75, 95% CI: 0.64-0.89 for women) (258). The Third National 

Health and Nutrition Examination Survey in the United States also reported the 

protective effect of alcohol consumption on the incidence of metabolic syndrome 
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(< 1 drink/month is reference, OR: 0.65, 95% CI: 0.54-0.79 for 1-19 

drinks/month: OR: 0.34, 95% CI: 0.26-0.47 for ≥ 20 drinks/month, p-trend = 

0.0001) (259). A study in China (251) also reported the protective effect of 

alcohol consumption (0 g/day is reference, OR: 0.81, 95% CI: 0.63-1.05 for ≤ 5.7 

g/day: OR: 0.72, 95% CI: 0.56-0.94 for ≤17.7 g/day; OR: 0.73, 95% CI: 0.56-0.95 

for > 17.7 g/day; p-trend <0.0001). However, a survey in China demonstrated that 

increased alcohol intake increased metabolic syndrome risk (<1 time/month is 

reference; 1-3 times/month (OR: 1.82, 95% CI: 1.21-2.75; 1-2 times/week (OR: 

2.03, 95% CI: 1.35-3.05); 3.4 times/week (OR: 2.07, 95% CI: 1.31-3.27); 1 

times/day (OR: 2.16, 95% CI: 1.45-3.22)) (244). A cross-sectional study in 

Portugal reported no association between alcohol consumption and metabolic 

syndrome (255). 

e) Dietary intake 

The NHANES (1988-1994) found that high carbohydrate intake increased 

risk of metabolic syndrome in men (OR: 1.7, 95% CI: 1.2-2.5 in men and OR: 

1.1, 95% CI: 0.8-1.4 in women) (250). A cross-sectional study in Finland found 

that increased fish consumption reduced risk of metabolic syndrome (tertile 1 is 

reference, tertile 2 (OR: 0.52, 95% CI: 0.32-0.83), tertile 3 (OR: 0.63, 95% CI: 

0.4-1.0), p-trend 0.04 (260). This study also reported the protective effect of the 

consumption of berries, legumes and nuts on the incidence of metabolic 

syndrome. Many studies also reported the inverse association between fish 

consumption and risk of metabolic syndrome (261-263). A study in France 
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presented that increased consumption of cereal grains, and dairy products 

decreased risk of insulin resistance (quintile 1 is reference, for cereal grains: 

quintile 2 (OR: 1.24, 95% CI: 0.76-2.00), quintile 3 (OR: 0.79, 95% CI: 0.47-

1.33), quintile 4 (OR: 0.55, 95% CI: 0.30-0.98), quintile 5 (OR: 0.76, 95% CI: 

0.39-1.48), p-trend 0.05; for dairy products: quintile 2 (OR: 0.76, 95% CI: 0.46-

1.23), quintile 3 (OR: 0.64, 95% CI: 0.39-1.07), quintile 4 (OR: 0.49, 95% CI: 

0.28-0.83), quintile 5 (OR: 0.64, 95% CI: 0.37-1.09), p-trend 0.03) (262). This 

study also found that meat consumption was positively associated with insulin 

resistance (quintile 1 is reference, quintile 2 (OR: 0.96, 95% CI: 0.56-1.64), 

quintile 3 (OR: 1.10, 95% CI: 0.64-1.88), quintile 4 (OR: 1.70, 95% CI: 0.99-

2.90), quintile 5 (OR: 2.29, 95% CI: 1.30-4.02), p-trend 0.0007). The protective 

effect of dairy consumption on insulin resistance was also reported in the 

Coronary Artery Risk Development in Young Adults (CARDIA) study (264). 

f) Physical activity 

Increased physical activity has a protective effect on metabolic syndrome 

because increased physical activity improves metabolic parameters by promoting 

weight reduction (251). A population based cross-sectional study in China, The 

Nantong Metabolic Syndrome Study (NMSS), reported that occupational physical 

activity reduced the incidence of metabolic syndrome (no or sedentary work is 

reference; light intensity (OR: 0.77, 95% CI: 0.55-0.88, moderate intensity (OR: 

0.55, 95% CI: 0.57-0.90), and vigorous intensity (OR: 0.76, 95% CI: 0.63-0.91), 

p-trend 0.005) (251). The Tromsø Study (252) reported that increased intensity of 
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physical activity significantly decreased risk of metabolic syndrome, which is 

similar to the result from NMSS. However, A study in Portugal reported no 

association between physical activity and metabolic syndrome (255). A study in 

Taiwan found that watching television ≥ 21 hours/week increased the incidence of 

metabolic syndrome when compared with watching television ≤ 5 hours/week 

(OR: 3.69, 95% CI: 1.05-12.95) (265).  The Third National Health and Nutrition 

Examination Survey in the United States (1988-1994) found that physical 

inactivity increase risk of metabolic syndrome (OR: 1.4, 95% CI: 1.0-2.0 for men 

and OR: 1.2, 95% CI: 1.0-1.4 for women) (250). 

2.3.4 Metabolic syndrome and risk of diabetes mellitus  

Pathogenic studies reported that obesity leads to insulin resistance, the 

impairment of insulin sensitivity in sites of glucose disposal, which can develop into type 

2 diabetes mellitus and GDM. Enlarged fat cells lead to increased free fatty acid level, 

which result in insulin resistance and impaired insulin secretion. Enlarged fat cells cause 

fat overflow to muscles, the liver, and the pancreas, which also affects insulin resistance 

and impairs insulin secretion (266). In a study focusing on the correlation between type 

of obesity and risk of diabetes, the presence of visceral fat, or the accumulation of fat in 

the central abdominal area, was associated with diabetes (267).  Moreover, other studies 

presented waist circumference, correlating it with the level of abdominal visceral fat, as a 

predictor of non-insulin independent diabetes mellitus (268-270). 

Metabolic syndrome is a cluster of cardio-metabolic risk factors which increase 

the risk of type 2 diabetes mellitus and cardiovascular disease. Many studies have 
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reported that metabolic syndrome increased the risk of type 2 diabetes mellitus, including 

the West of Scotland Coronary Prevention Study (RR: 7.26, 95% CI: 2.25-23.4 ) (271), 

the Beaver Dam Study (RR: 9.37, 95% CI: 2.22-39.59) (272), the San Antonio Heart 

Study (OR: 3.30, 95% CI: 2.27-4.80) (273), the Framingham Offspring Study (RR: 6.29, 

95% CI: 4.47-10.81) (274), Australian Diabetes, Obesity, and Lifestyle (AusDiab) study 

(RR:7.8, 95% CI: 5.5–11.0) (275), and the Insulin Resistance Atherosclerosis Study (OR: 

4.14, 95% CI: 2.79-6.16) (276). Insulin resistance and dyslipidemia in metabolic 

syndrome are important factors in type 2 diabetes mellitus development. Insulin 

resistance over time will develop to type 2 diabetes mellitus because of the inability of 

pancreatic beta cells to produce sufficient insulin to compensate for insulin resistance 

(232). Moreover, hypertriglyceridemia and hypo HDL-C as a risk factor for pancreatic 

beta cell dysfunction contribute to type 2 diabetes by reducing insulin secretion (277).   

Most studies have reported the development of metabolic syndrome after 

gestational diabetes mellitus (GDM). Studies reported the risk factors of GDM, 

including: high fasting plasma glucose, insulin resistance, high systolic blood pressure, 

high triglyceride level, low HDL-C level at the first trimester of pregnancy, and 

overweight or obesity pre-gestation (174, 278-280). These factors are used for the 

diagnosis of metabolic syndrome. Women with a history of GDM also have increased 

risk of metabolic syndrome. A meta-analysis study (281), analyzing 17 studies, showed 

that the risk of metabolic syndrome increased in women with a history of GDM (OR: 

3.96, 95% CI: 2.98-5.26). In addition, the subgroup analysis by ethnicity showed that 

Caucasian women have higher odds of developing metabolic syndrome after GDM than 
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Asian women (OR: 4.54, 95% CI: 3.78 -5.46 in Caucasian; and OR: 1.28, 95% CI: 0.64 

to 2.56 in Asian). The subgroup analysis by BMI showed that women with prior GDM 

had an increased risk of metabolic syndrome (OR: 5.39, CI: 4.47- 6.50). This result may 

be explained by a study which reported that women with a history of diabetic pregnancy 

had higher CRP levels and lower adiponectin levels compared to controls (282). 

Moreover, higher level of CRP and IL-6 were present in women with metabolic 

syndrome and a history of GDM compared with the control group and women with a 

history of GDM, but who did not have metabolic syndrome (283, 284). Therefore, 

inflammation and adipose tissue relating to insulin sensitivity may be the link between 

GDM and metabolic syndrome.  

 Metabolic syndrome is not only a consequence of, but a risk factor for gestational 

diabetes mellitus. A study in Greece by Chatzi et al. (285) found that women with 

metabolic syndrome in early pregnancy increased the risk of GDM (RR: 3.17, 95% CI: 

1.06-9.50). 

2.3.5 Biochemical markers related to diabetes mellitus and metabolic syndrome 

Biochemical markers are hormones, enzymes, antibodies, or other substances in 

urine, blood, tissue, or other body fluids. These biomarkers have been used to detect 

abnormality or disease. Fasting plasma glucose (FBG), oral glucose tolerance test 

(OGTT), glycated hemoglobin (HbA1c), and random plasma glucose are the common 

biochemical markers for screening and diagnosing diabetes (145). The association 

between first trimester biomarker and the risk of developing GDM has been studied in 

lipid profiles, inflammatory biomarkers, and ferritin levels. 
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a) Glucose and Insulin 

Plasma glucose is a parameter for diagnosing diabetes by the American 

Diabetes Association, WHO, and IDF (145, 146). The homeostatic model 

assessment (HOMA) was proposed to assess insulin resistance (HOMA-IR) and 

β-cells function (HOMA-B) (286). HOMA model has been used to predict type 2 

diabetes development. QUICKI (quantitative insulin sensitivity check index) was 

proposed later by Katz et al. in order to assess insulin sensitivity. Chen et al. 

determining the predictive accuracy of QUICKI concluded that QUICKI is an 

accurate index for assessing insulin sensitivity (287). 

HOMA-IR = [Fasting plasma glucose (mmol/L) x Fasting plasma insulin 

(mU/L)]/22.5 

HOMA-B = [20x Fasting plasma insulin (mU/L)]/ [Fasting plasma glucose 

(mmol/L)-3.5]% 

QUICKI = 1/[log(fasting plasma insulin (μU/ml))+log(fasting plasma glucose 

(mg/dl))] 

The Women’s Health Initiative Observation Study (288), a multiethnic 

cohort of women in the United States, found that diabetic cases had higher 

HOMA-IR and lower HOMA-B than controls. This study reported the strong 

association between diabetes and HOMA-IR and HOMA-B in all ethnic groups 

(HOMA-IR; RR: 3.05, 95% CI: 2.63-3.53 for overall; RR: 3.79, 95% CI: 2.94-

4.88 for Whites; RR: 2.59, 95% CI: 2.03-3.30 for Blacks; RR: 2.66, 95% CI: 

1.80-3.91 for Hispanics; RR: 4.18, 95% CI: 2.18-8.04 for Asians;  HOMA-B; RR: 
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0.52, 95% CI: 0.46-0.58 for overall; RR: 0.50, 95% CI: 0.42-0.59 for Whites; RR: 

0.48, 95% CI: 0.39-0.60 for Blacks; RR: 0.49, 95% CI: 0.35-0.68 for Hispanics; 

RR: 0.59, 95% CI: 0.37-0.93 for Asians). The association between type 2 diabetes 

and HOMA-IR and HOMA-B was reported in many population including 

Mexican-American (289), non-Hispanic White (289), African-American (290), 

Mexican (291), Japanese (292), and Chinese (293). Yokoyama et al. found that 

type 2 diabetic patients had higher QUICKI than the healthy participants (294).  A 

five year follow-up study in Finland (295) found that increased QUICKI 

increased risk of type 2 diabetes in obesity (tertile 1 is reference; tertile 2, OR: 

5.29, 95% CI: 1.39-20.24; tertile 3, OR: 7.77, 95% CI: 1.63-37.04; p-trend 0.002).  

Many studies found that pregnant women with GDM have higher HOMA-

IR and lower QUICKI and HOMA-B than pregnant women with normal glucose 

tolerant (296-299). Ozcimen et al. suggested the cut-point of HOMA-IR in the 

first trimester for predicting GDM is 2.60 (300).  However, a prospective cohort 

study in Turkey reported no association between HOMA-IR, HOMA-B, and 

QUICKI and risk of GDM (301). Therefore, HOMA and QUICKI have 

inconsistent correlations with the prevalence of type 2 diabetes and GDM. 

A study in India conducted by Bhatnagar et al. reported that metabolic 

syndrome group had higher both fasting and post-prandial plasma glucose and 

serum insulin including HOMA-IR than the control group (302).  
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b) Lipid profiles 

Both high triglyceride and low high-density lipoprotein levels are 

associated with a pre-diabetic state, or insulin resistance syndrome (303). The San 

Antonio Heart Study with an 8 year follow up, reported that participants who 

converted to non-insulin dependent diabetes mellitus had higher triglyceride 

levels and lower HDL levels than subjects without diabetes. These results were 

statistically significant for both men and women (181).  A longitudinal study in 

Norway also reported that both high triglyceride and low HDL had a significant 

association on the risk of diabetes (162). The Finnmark study with a 12 year 

follow up, presented a significant inverse correlation between HDL levels and the 

risk of diabetes mellitus only in women at not in men (HDL <1 mmol/l is 

reference, HDL 1.0-1.49 mmol/l :RR = 0.6), HDL ≥ 1.5 mmol/L: RR = 0.17), P-

trend <0.0001)(171). In addition, a positive correlation between total cholesterol 

and risk of diabetes was reported in the study from Qatar (total cholesterol ≥ 240 

mg/dl OR: 1.4, 95% CI: 1.0-1.9) (172). 

The triglyceride and HDL levels have an association with the development 

of GDM. Pregnant women developing GDM have lower HDL levels and higher 

triglyceride levels during the first trimester than control pregnancies when 

adjusted for maternal age, BMI, gestational age at sampling, smoking, ethnicity, 

parity, conception status, and previous GDM (279). Guanghui Li and colleagues 

(304) studied the association between lipid profiles during the first trimester and 

risk of developing GDM. The study reported on two groups, a lean group (BMI < 
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24 kg/m2) and an obese group (BMI ≥ 24 kg/m2). After adjustment for age, parity, 

gravidity, family history of diabetes, and level of education, the risk of developing 

GDM had a positive association with triglyceride, LDL, and LDL/HDL ratio in 

both groups. In addition, the negative correlation between HDL level and the risk 

of GDM was found only in lean women. The results of this study were supported 

by a meta-analysis study which found that higher triglyceride and LDL levels and 

lower HDL levels during first trimester were associated with development of 

GDM (305). 

c) Fatty acids 

Fatty acids have been used as biomarkers for dietary fat intake, obesity, 

insulin resistance and diabetes. The Melbourne Collaborative Cohort Study 

(MCCS), four year follow up, presented a positive association between the 

incidence of type 2 diabetes and some plasma fatty acid proportions such as total 

saturated fatty acid levels (OR: 3.76, 95% CI: 2.43- 5.81), stearic acid levels (OR: 

4.14, 95% CI: 2.65- 6.49), palmitoleic acid levels (OR: 5.61, 95% CI: 3.65-8.60), 

dihomo-γ-linolenic acid levels  (OR: 9.65, 95% CI: 5.48-16.97), and inverse 

association with linoleic acid levels (OR: 0.22, 95% CI: 0.14- 0.36), and trans 

fatty acid levels (OR: 0.20, 95% CI: 0.12- 0.32) when compared highest quintile 

with lowest quintile (306). 

d) Inflammatory markers: cytokines and adipokines 

Inflammatory markers and diabetes can be described with adipose tissue 

functions. Obesity causes adipose tissue to promote inflammatory response 
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(increased leptin, resistin, visfatin, chemerin, tumor necrosis factor alpha (TNF-

α), interleukin-1 (IL-1), interleukin-6 (IL-6), interleukin-8 (IL-8), plasminogen 

activator inhibitor 1, monocyte chemoattractant protein-1, and retinol binding 

protein-4, and decreased adiponectin and interleukin-10 (IL-10)) (307). 

Inflammatory markers have been proposed as predictors for the incidence 

of type 2 diabetes. A meta-analysis study conducted by Wang et al. found that 

interleukin-6 (IL-6) and C-reactive protein (CRP) had positive associations with 

the risk of type 2 diabetes (RR: 1.31, 95% CI: 1.17-1.46 and RR: 1.26, 95% CI: 

1.16-1.37, respectively) (308). The population-based MONItoring of trends and 

determinants in CArdiovascular disease (MONICA)/Cooperative Research in the 

Region of Augsburg (KORA) (309) studies found that increased interleukin-18 

(IL-18) raised the risk of type 2 diabetes. The MONICA/KORA studies, however, 

did not observe an association between type 2 diabetes and IL-6 and CRP. A year 

later, the MONICA/KORA studies published result on the novel inflammatory 

markers associated with type 2 diabetes, namely monocyte chemoattractant 

protein-1 (MCP-1), interleukin-8 (IL-8) and interferon-gamma-inducible protein-

10 (IP-10) (310). A cohort study in the United Kingdom found that Interleukin-1 

receptor antagonist (IL-1Ra) was positively associated with the risk of type 2 

diabetes (OR: 1.48, 95% CI: 1.21-1.80) (311). 

Adipokines have been reported to have an association with the incidence 

of type 2 diabetes. The data from the Third National Health and Nutrition 

Examination Survey (NHANES III) (312) showed that increases in leptin levels 
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significantly increased the incidence of diabetes mellitus in both genders (Q4 vs 

Q1; OR: 4.36, 95% CI: 2.15-8.85 for men, OR: 2.76, 95% CI: 1.32-5.77 for 

women, and OR: 3.79, 95% CI: 2.05-7.00 for overall) after adjustment for 

diabetes risk factors (age, sex, race/ethnicity, education, smoking, alcohol intake, 

hypertension, serum cholesterol and C-reactive protein). However, plasma leptin 

level had no association with diabetes mellitus after adjustment for diabetes risk 

factors and body mass index (Q4 vs Q1; OR: 1.07, 95% CI: 0.59–1.94 for men, 

OR: 0.86, 95% CI: 0.49–1.51 for women, and OR: 0.98, 95% CI: 0.56–1.72 for 

overall). A meta-analysis study (313) analyzing 24 articles presented that an 

increase in leptin levels of 1-log ng/ mL significantly increased the risk of type 2 

diabetes only in men (RR: 1.37, 95% CI: 1.13-1.66 in men, and RR: 0.96, 95% 

CI: 0.90-1.03 in women) after adjustment for type 2 diabetes risk factors and body 

mass index. The British Regional Heart Study (314) , a prospective study of 

cardiovascular disease in men aged 60-79 years, reported that type 2 diabetes 

mellitus had a negative correlation with adiponectin (RR: 0.33, 95% CI: 0.19-

0.56) and a positive correlation with leptin (RR: 4.98, 95% CI: 2.75-9.04) after 

adjusting for type 2 diabetes risk factors. The 10 year follow-up study in 

Aboriginal Canadian population (315) showed that type 2 diabetes mellitus had a 

positive association with leptin (OR: 1.50, 95% CI: 1.02-2.21) and a negative 

association with adiponectin (OR: 0.63, 95% CI: 0.48-0.83) and adiponectin-to-

leptin ratio (OR: 0.54, 95% CI: 0.37-0.77), after adjustment for age, sex, 

triglycerides, HDL cholesterol, hypertension, and impaired glucose tolerance. 
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However, only adiponectin significantly correlated with the risk of type 2 diabetes 

(OR: 0.68, 95% CI: 0.51-0.90) after additional adjustment with waist 

circumference and body mass index. 

Prospective studies have found that GDM is related to decreased 

adiponectin and anti-inflammatory cytokines (IL-4 and IL-10) and increased 

leptin and pro-inflammatory cytokines (IL-6 and TNF-α) (316). Pregnancies with 

GDM have higher IL-6 concentrations during the first trimester than pregnancies 

without GDM (317). Adiponectin levels during the first trimester have a negative 

correlation with the risk of developing GDM (OR: 1.13, 95% CI: 1.03-1.24 per 1 

µg/ml decrease) after adjustment for age and waist circumference (318). When 

compared to the highest quantile, pregnant women with first trimester adiponectin 

concentrations ranging in the lowest quantile were 10.2 times (95% CI: 1.13-78.7) 

more likely to develop GDM (319). Other studies confirmed that pregnant women 

developing GDM have lower adiponectin level and higher leptin and CRP levels 

than women in the control group (279, 320-323). Increased first trimester CRP 

concentration increased the risk of developing GDM after adjusting for age, 

race/ethnicity, parity, blood pressure, smoking, and gestational age (T3:T1, OR: 

3.6, 95% CI: 1.2-11.4, p-trend < 0.01) (324). Qui C and colleagues (323) reported 

that leptin levels during the first trimester of pregnancy were positively associated 

with the risk of developing GDM when adjusted for parity, family history of type 

2 diabetes, and pre-pregnancy BMI (T3:T1, OR: 4.90, 95% CI: 1.40-17.5, p-trend 

< 0.02) (325). 
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The positive association between CRP and risk of metabolic syndrome 

was found in studies in the United States (326), Spain (327), Korea (328), India 

(329), and Iran (330). A study in Poland (331) reported the increased hs-CRP, IL-

6, and TNF- α increased a number of metabolic syndrome components. This study 

also presented a negative association between adiponectin and a quantity of 

metabolic syndrome parameters. The Indian Atherosclerosis Research Study 

(IARS) (332) found that hs-CRP levels was associated with risk of developing 

metabolic syndrome (OR: 1.49, 95% CI: 1.14-1.95), but the association between 

IL-6 and metabolic syndrome was not found. A study in Japan by Matsushita et 

al. presented that increased TNF- α and CRP, including deceased adiponectin 

were associated with metabolic syndrome (OR: 1.27; 95% CI: 1.00-1.60, OR: 

1.49; 95% CI: 1.19-1.87, and OR: 2.03, 95% CI: 1.55-2.66, respectively) (333). A 

negative association of adiponectin and positive associations of leptin and CRP on 

metabolic syndrome were reported in a population-based cross-sectional study in 

Kuwait (334) and Spain (335). However, the Framingham Heart Study (336) 

reported no association between risk of metabolic syndrome and inflammatory 

biomarkers (CRP, IL-6, and TNF- α).  

e) Liver enzymes 

Liver functions maintain glucose levels during fasting and in the 

postprandial period. The liver enzymes are used to evaluate of liver function: 

aspartate aminotransferase (AST), alanine aminotransferase (ALT), and gamma-
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glutamyltransferase (GGT).  AST and ALT are considered as hepatocellular 

health markers while GGT can indicate biliary tract function (337). 

The correlation between liver enzymes and risk of type 2 diabetes has 

been reported for many decades, but the results are still inconclusive. The Insulin 

Resistance Atherosclerosis Study, a multicenter observational epidemiologic 

study (338) showed that AST had a significant positive association with the risk 

of type 2 diabetes (OR: 1.98, 95% CI: 1.23–3.17; Q4 vs Q1–Q3). The association 

between AST and incidence of type 2 diabetes was reported in the Mexico City 

Diabetes Study (339) and the cohort study in China (340), but not in a Korean 

(337),  Japanese (341), or English (342) study. The Namwon study (337) 

presented that after adjusting for diabetes risk factors, serum ALT concentration 

were associated with type 2 diabetes in both males (OR: 1.95, 95% CI: 1.18-3.21) 

and females (OR: 1.49, 95% CI: 1.03-2.16) when comparing the highest quartile 

(ALT ≥ 30 units/l) to the lowest quartile (ALT ≤ 20 units/l). Many studies also 

reported the association between ALT and incidence of type 2 diabetes (338, 340, 

342-345). However, studies of middle-aged Japanese men (341) and a Mexican 

population (339) reported no correlation between ALT and risk of type 2 diabetes 

after adjusting for other diabetes risk factors. The Mexico City Diabetes Study 

(339) reported that GGT was an independent predictor for type 2 diabetes when 

controlling for diabetes risk factors, plasma proinsulin and 2 hour glucose levels 

(OR:1.62, 95% CI:1.08–2.42). The study in Korea (337) also reported that 

females in the highest GGT quartile (GGT ≥ 55 units/l) had a significantly 
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increased risk of type 2 diabetes (OR: 1.85, 95% CI: 1.23-2.79) when compared 

with the lowest quartile (GGT ≤ 19 units/l). Many studies (342, 344-346) 

confirmed that increased GGT increased the risk of type 2 diabetes. The study in 

middle-aged Japanese men (341) reported that increased serum alkaline 

phosphatase significantly raised the risk of type 2 diabetes after adjustment for all 

diabetes risk factors (OR: 2.04, 95% CI: 1.39-3.00 for Q4 vs Q1, p-trend <0.001). 

A 5-year follow-up study in the United Stated (326) presented the 

association between incidence of metabolic syndrome and ALT and AST/ALT 

ratio (OR: 1.43, 95% CI: 1.15-1.77 and OR: 0.72, 95% CI: 0.57-0.90, 

respectively). Meta-analysis studies (347, 348) considering prospective cohort 

studies, reported that the highest category of GGT and ALT increased risk of 

metabolic syndrome when compared with the lowest category (RR: 1.63, 95% CI: 

1.43-1.82 and RR: 1.81, 95% CI: 1.49-2.14, respectively). These studies also 

found that risk of metabolic syndrome was 1.09 per 5U/l increment of GGT levels 

(95% CI: 1.06-1.13) and 1.13 per 5U/l increment of ALT levels (95% CI: 1.11-

1.16). 

f) Iron status 

Body iron stores have been reported as an independent predictor of the 

risk for type 2 diabetes. The EPIC (European Prospective Investigation of 

Cancer)-Norfolk Cohort Study (349) and a study in China (350) reported that a 

raised ferritin level increased the risk of type 2 diabetes during 5 years of follow-

up. Montonen et al. examined the association between body iron stores and risk of 
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type 2 diabetes among 27,548 participants during a 7 year follow-up. This study 

found that serum ferritin concentrations were positively associated with the risk of 

type 2 diabetes (RR: 1.73, 95% CI: 1.15- 2.6, p-trend 0.002), while there was no 

correlation between transferrin receptors and the risk of type 2 diabetes (351). The 

Camden study reported that first trimester serum ferritin levels were positively 

associated with the risk of GDM (OR: 2.35, 95% CI: 1.06- 5.22, p-trend <0.05) 

(322). 

g) Amino acid profiles 

The population-based Metabolic Syndrome in Men (METSIM) Study 

(4.7-year follow-up) reported that alanine (OR 1.02, 95% CI: 1.01-1.04), leucine 

(OR 1.05, 95% CI: 1.01-1.08), Phenylalanine (OR 1.06, 95% CI: 1.00-1.13), 

isoleucine (OR 1.10, 95% CI: 1.05-1.15), tyrosine (OR 1.12, 95% CI: 1.05-1.19), 

and glutamine (OR 0.97, 95% CI: 0.96-0.99) predicted the incidence of type 2 

diabetes (352).  Moreover, the increased level of alanine, leucine, isoleucine, 

valine, phenylalanine, and tyrosine and decreased level of glutamine and histidine 

increased fasting plasma glucose and 2 hour postprandial glucose, and decreased 

insulin sensitivity. 

2.3.6 Genes related to obesity and diabetes mellitus 

Four hundred and sixteen genes were found that were associated with type 2 

diabetes or GDM or obesity. These genes can be divided into two priority groups. 

Twenty-eight genes classified into the first group having association between OFCs and 

type 2 diabetes or GDM or obesity (Table 2.2). In the second group, three hundred and 
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eighty-eight genes have association with significant association with type 2 diabetes or 

GDM or obesity in human studies (Table 2.3). 

The association between gene polymorphisms and the risk of diabetes differs 

among populations. Polymorphisms in genes related to β-cell function, insulin sensitivity, 

glucose transport, glucose homeostasis, cytokine, and obesity have been found to be 

associated with the incidence of diabetes.  Genes related to obesity were associated with 

body mass index, waist circumference, waist-to-hip ratio, and fat distribution. Genes 

classified in first priority group were described more in term of mechanisms and the 

association with diabetes mellitus and obesity.   

a) ABCC8 (ATP-binding cassette, sub-family C (CFTR/MRP), member 8) 

ABCC8 influences the K-ATP channel function, which causes increased 

insulin secretion by pancreatic β-cells. Elbein et al. reported a ABCC8 gene 

mutation that decreased pancreatic β-cell compensation to reduced insulin 

sensitivity (353). 

A candidate gene study in the United States reported that the 

polymorphism of rs4148643 and rs1799854 was associated with the risk of both 

type 2 diabetes and GDM (354). A study in Turkish (355) and Finnish (354) 

populations found that the variation at rs1799854 and rs1799859 in ABCC8 were 

associated with type 2 diabetes. Additionally, the association between rs1799854 

polymorphism and type 2 diabetes mellitus was confirmed in a Japanese 

population (356). 
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b) ADIPOQ (adiponectin, C1Q and collagen domain containing) 

ADIPOQ gene has an influence on adiponectin concentration, which is 

involved in increased glucose uptake via glucose transporter 4 (GLUT-4), and 

increased fatty acid uptake and oxidation (357). Yamauchi reported that 

adiponectin stimulated phosphorylation of acetyl coenzyme A carboxylase, 

glucose uptake, lactate production, and fatty acid oxidation through activated 5-

prime-AMP-activated protein kinase (358). A human study found that low plasma 

adiponectin levels was associated with hyperinsulinemia and insulin resistance 

(359), and increased adiposity in children decreased insulin sensitivity (360).  

The Chennai Urban Rural Epidemiology Study (CURES) in India reported 

that ADIPOQ variation (rs17846866) was associated with type 2 diabetes (361). 

The correlation between two SNPs in ADIPOQ (rs1063537 and rs16861194) and 

the risk of type 2 diabetes was reported in a Chinese Han population (362, 363). 

The meta-analysis from Western Australian cohort studies provided additional 

SNPs (rs12637534, rs16861209, and rs17366568) associated with type 2 diabetes 

(364). The genetic studies in Chinese Han and Japanese populations reported that 

the SNPs rs2241766 and rs1501299 increased the risk of type 2 diabetes (365, 

366). However, the former study in China reported no correlation between the 

polymorphism in ADIPOQ (rs16861194, rs26672, rs12495941, rs2241766, 

rs1501299, rs12629945, rs6444175, rs267729, rs2275738, rs1342387, rs1029629, 

rs11061971, rs12342, and rs1044471) and the incidence of type 2 diabetes 

mellitus. The study in Korea presented no association between type 2 diabetes and 
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rs2241766 and rs1501299 (367).  The association between type 2 diabetes and the 

polymorphism at rs2241766, rs1501299, and rs822396 in ADIPOQ was 

controversial in a Japanese population (368). However, the study in Bulgaria 

(369) reported the association between GDM and ADIPOQ variant at rs266729, 

rs2241766 and rs1501299. On the contrary, the study in Malaysia (370), China 

(371) and Iran (372) reported that rs2241766 had correlation with GDM. 

The genetic association study in Indians presented that ADIPOQ variants 

at rs1501299, rs822396, and 2241767 had significant correlations with obesity 

(373). A study in France reported that obesity was related to rs266729 and 

rs1501299, but no association between obesity and rs17300539 and rs2241766 

was found (374). A meta-analysis study reported that ADIPOQ polymorphism 

(rs1501299, rs2241766, and rs17300539) had no correlation with obesity (375). 

c) ADRB3 (Adrenoceptor beta 3) 

ADRB3 is a member of beta adrenergic receptor family. Adrenergic 

receptors mediates catecholamine-induced activation of adenylate cyclase through 

G protein-coupled receptors (376). ADRB3 regulates energy balance through 

lipolysis in adipocyte, free fatty acid mobilization from adipose cells to portal 

vein and thermogenesis in skeletal muscle (377, 378). The mutation of ADRB3 

gene is associated with decreased resting metabolic rate, obesity, obesity-related 

diseases (diabetes and hypertension), calorigenic dysfunction, early onset of 

diabetes mellitus, and increased body weight with aging (378, 379).   
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The association of ADRB3 (rs4994) polymorphism on the risk of type 2 

diabetes was presented in the Chinese Han (365) and Japanese populations (380). 

Furthermore, the association between the similar SNP (rs4994) and GDM was 

reported in the study in Austria (381). A study in Chinese population (382) 

reported additional SNPs (rs72655364 and rs72655365) in ADRBP3 associated 

with type 2 diabetes. However, the study in Taiwanese (383) and Italian (384) 

populations reported that rs4994 variant had no correlation with GDM. In Asian 

populations (385-387) found that SNP (rs4994) was associated with obesity. 

Gagnon et al. analyzing the data from the Quebec Family Study (QFS) and the 

Swedish Obese Subjects (SOS) reported that rs4994 mutation had no association 

with obesity (377). 

d) CDKAL1 (CDK5 regulatory subunit associated protein 1-like 1) 

CDKAL1 is a marker of impaired insulin secretion, and increases risk of 

type 2 diabetes. The role of CDKAL1 gene in the function of pancreatic β-cells is 

unknown.  A mouse study showed that CDKAL1 knockout mice impaired 

conversion of proinsulin to insulin and decreased ATP generation in mitochondria 

after glucose stimulation (388). 

A genetic study in the Chinese Han population reported the association 

between type 2 diabetes and CDKAL1 variants at rs10946398, but there was no 

association at rs736425  and rs4712527 variant (389). The meta-analysis study 

(390) presented the significant correlation between type 2 diabetes and CDKAL1 

variant at rs7754840 and rs7756992 in Asian, Caucasian, African, and Arab 
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populations, which is similar to the study in Japanese and Lebanese populations 

(391-395). The association between rs10916398 and the diabetes in Asian, 

Caucasian, and African populations was also reported in the meta-analysis study 

(390). In addition, the study in a Caucasian population (the Wellcome Trust Case 

Control Consortium (WTCCC) and Finland-United States Investigation of 

NIDDM genetics (FUSION)) reported that the CDKAL1 variant (rs10916398) 

increased the incidence of type 2 diabetes (396, 397). Additional SNPs 

(rs4712524, rs9295475, and rs9460546) associated with type 2 diabetes were 

reported in East Asian and European populations (398). A GWAS of a Japanese 

population reported the association between type 2 diabetes and rs2237892 (399).  

Moreover, a GWAS of a Caucasian population found that rs7754840 variant 

increased the risk of type 2 diabetes (400). 

The polymorphisms in CDKAL1 at rs7756992 and rs7754840 increase 

risk of GDM (401). The association between the SNP in CDKAL1 (rs7754840) 

and GDM was confirmed in GWAS in a Korean population (402). However, the 

study in the Chinese population reported that the SNP rs7754840 had no 

association with GDM (403).  In addition, the study in Danish populations added 

more SNP (rs7756992) which have a correlation with GDM (404).  

The GWA study in a Japanese population reported the association between 

CDKAL1 (rs2206734) and BMI (405). The study in a Chinese population found 

that the polymorphism at rs10946398 was not associated with BMI (406). 
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e) CDKN2A/2B (Cyclin-dependent kinase inhibitor 2A/B) 

CDKN2A/2B gene is located on chromosome 9p2, which is located 

between CDKN2A and CDKN2B. CDKN2A and CDKN2B genes are involved in 

cell cycling control in tumor of lung, breast, brain, bone, skin, bladder, kidney, 

ovary, and lymphocyte (407, 408). The function of CDKN2A/2B on diabetes has 

not reported. 

A study of a Dutch population reported the association between the risk of 

type 2 diabetes and rs1412829 in CDKN2A/2B (409). A study of a Japanese and 

Malay populations (395, 410) reported an additional SNP (rs10811661) associated 

with type 2 diabetes. The association between type 2 diabetes and rs10811161 

mutation was found in the Chinese, Indian, Korean, and Han Chinese populations 

(394, 411-413), but not in the African American and Lebanese populations (392, 

414). Both WTCCC and FUSION studies reported that variation at rs10811661 

and rs564398 increased the risk of type 2 diabetes (396, 397). Moreover, the 

meta-analysis study also reported an association between type 2 diabetes and 

rs10811661 in Asian and Caucasian populations, and rs564398 in Caucasian 

populations (390). In GWA study, the association between type 2 diabetes and 

rs10811661 was found in Caucasian populations (400). 

Wang Y. reported the association of the CDKN2A/2B variant at 

rs2383208 with GDM in a Chinese population (403). The study found 

CDKN2A/2B variation (rs10811661) associated with GDM, which was 

confirmed by a study in a Korean population (401). However, no association 
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between GDM and rs10811661 (Danish population) (404) and rs10757261 

(Korean population) (402) was reported. 

f) FTO (Fat mass and obesity associated) 

Gerken et al. (415) reported that FTO shared sequence with iron- and 2-

oxoglutarate-dependent oxygenases, and FTO mRNA level found in 

hypothalamus was regulated by feeding and fasting. A mouse study by Gao et al. 

(416) found that mice with FTO mutation had postnatal growth retardation (lower 

body weight, shorter body length, and lower bonne mineral density) and 

decreased insulin-like growth factor 1 (IGF-1) levels. FTO variants disrupt AT 

rich interactive domain 5B (MRF1-like) (ARID5B)-mediated repression of 

iroquois homeobox 3 (IRX3) and iroquois homeobox 5 (IRX5). The depression of 

IRX3 and IRX5 leads to a cell-autonomous shift from white adipocyte browning 

and mitochondrial thermogenesis, which result in increased fat storage and body 

weight (417).  

The Wellcome Trust Case Control Consortium (WTCCC) and Finland-

United States Investigation of NIDDM Genetics (FUSION) reported that the 

variation in FTO (rs8050136) was associated with the risk of type 2 diabetes in 

European populations (396, 397). The correlation between type 2 diabetes and 

FTO polymorphism (rs8050136 and rs17817449, except rs1121980) was reported 

in a Lebanese Arab population (418). The meta-analysis study based on European 

and East Asian populations (419) found the association between type 2 diabetes 

and variation in FTO at rs9939609, which is similar to the study in Norwegian 
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and Swedish populations after adjusting for age, sex, and BMI (420).  In addition, 

polymorphism at rs9939609 increased the risk of GDM in the study in Spain 

(421). The study in a Chinese population reported additional SNPs associated 

with type 2 diabetes, namely rs6499640 and rs3751812 (422). However, the 

genetic studies reported no association between the diabetic risk and rs9939609 in 

a Japanese population (391), including rs8050136 in African American and 

Chinese populations (411, 414). The study in Denmark found that there was no 

association between the SNP rs9939609 and GDM (404). 

A large prospective study in the United States found the association 

between obesity and rs9939609 in white-Americans and rs1421085 in African-

Americans (423).A meta-analysis confirmed that polymorphism in the FTO gene 

at rs9939609 increased the risk of both overweight and obese subjects (424-426). 

The GWAS study of Scuteri A and colleagues found the correlation between 

obesity and many SNPs in FTO namely rs9930506, rs8050136, rs1121980, 

rs7193144, rs9939609, rs9926289, rs6602024, rs7907949, rs965670, rs1188445, 

and rs6965526 (427). Later GWAS in a European population provided another 

FTO variant (rs1421085) that was associated with obesity (428). 

g) GCK (Glucokinase) 

GCK gene has an important role in glucose homeostasis by censoring 

insulin release in pancreatic β cells (429). In mouse study, mice with isolated 

pancreatic islets of heterozygous GCK knockout had impaired glucose sensitivity 
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and impaired ability of β cells to secrete insulin for maintaining glucose 

homeostasis (430, 431). 

The association between rs2284779 variant and the risk of type 2 diabetes 

was stated in the genetic study of a population with Caucasian ancestry (432). The 

study of Finns reported other GCK polymorphism correlated with type 2 diabetes 

(rs2244164, rs12534623, rs2268573, and rs882020) (433).  

Moreover, studies in Sweden (434) and China (435) presented the 

association of the variant rs1799884 with risk of GDM. The HAPO 

(Hyperglycemia and Adverse Pregnancy Outcome) study, a collaboration among 

United Kingdoms, Australia and Thailand, confirmed the association between the 

SNP rs1799884 and GDM (436).  However, studies in the United States (437) and 

the United Kingdom (438), found no significant association between rs1799884 

mutation and GDM. The variation at rs4607517 has no association with GDM in a 

study of a Chinese population (403). 

h) GNPDA2 (Glucosamine-6-phosphate deaminase 2) 

GNPDA2 gene encodes an enzyme catalyzing the reversible action: 

converting D-glucosamine-6-phosphate into D-fructose-6-phosphate and 

ammonium (439). GNPDA2 is involved in nucleotide metabolic process of 

nucleotide sugar, amino sugar, carbohydrate, and N-acetylglucosamine (439).  

The association between GNPDA2 variant at rs10938397 and type 2 

diabetes was reported in the meta-analysis study in European and East Asian 
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population (419) and the study in a Chinese population (422). The association of 

GNPDA2 on the risk of GDM has not been presented. 

The candidate gene study in Chinese proposed the rs10938397 variant has 

significant association with central obesity (426).  The meta-analysis of GWA 

data reported that GNPDA2 (rs10938397) was associated with BMI (425).  The 

meta-analysis in African ancestry found the additional SNP (rs348465) to be 

associated with body mass index (440). 

i) HHEX (Haematopoietically expressed homeobox) 

HHEX gene encodes a transcription factor related to Wnt signaling for cell 

growth and development. A mouse study found that HHEX knockout mice had 

impaired forebrain, cardiovascular, thyroid, and liver development (441, 442). 

The variation at rs1111875, rs7923837, and rs5015480 in HHEX 

associated with both type 2 diabetes in Han Chinese, Korean, Chinese, and 

Japanese populations (389, 391, 394, 395, 410), and GDM in  a Korean 

population (401). A genetic study in India confirmed that rs1111875 variant 

increased the risk of type 2 diabetes (413). Moreover, the WTCC study reported 

that the SNP rs5015480 was associated with type 2 diabetes (396). Nevertheless, 

no correlation between HHEX (rs1111875) variation and type 2 diabetes was 

reported by the study in the Netherlands (409). The GWA study in French and 

Finnish, Caucasian populations reported the association between type 2 diabetes 

and the polymorphism in HHEX (rs1111875 and rs7923837) (397, 400, 443). 
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j) HNF1A (Hepatocyte Nuclear Factor 1 homeobox A) 

HNF1A, a homeodomain containing transcription factor, is expressed in 

liver, pancreas, intestine, and kidney (444). Mutation of HNF1A gene related to 

hepatic adenomas familial (HEPAF), maturity-onset diabetes of the young 3 

(MODY3), and insulin-dependent diabetes mellitus (IDDM).  According to 

HNF1A mutation, β-cell dysfunction in MODY3 results from impaired DNA 

binding, reduced transcriptional activation, and impaired subcellular localization 

of pancreatic β-cells (444, 445). 

HNF1A (rs1169288) variant was associated with both type 2 diabetes and 

GDM (434, 446, 447). The GWA study in a Hispanic population reported that two 

SNPs in HNF1A (rs7305618 and rs21573907) were associated with type 2 

diabetes (448). The Finnish case-control study reported additional SNP 

(rs2701175) variant increased the risk of type 2 diabetes (449). A study 

combining GWA data of European population found that that variant rs7957197 

increased the incidence of type 2 diabetes (450). 

k) HNF1B (Hepatocyte nuclear factor 1-beta) 

HNF1B, a member of homeodomain containing transcription factor, is 

expressed in liver, pancreas, bile ducts, thymus, genital tract, lung, and gut (451). 

Many studies reported functions of HNF1B including epithelial differentiation 

during human organogenesis (452), renal tubulogenesis regulation (453), hepatic 

insulin sensitivity control (454), and pancreatic endocrine cell generation (455). 
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Moreover, HNF1B gene is also associated with pancreatic β cell dysfunction and 

insulin resistance (454). 

The study in Caucasian reported the association between type 2 diabetes 

and five SNPs in HNF1B (rs6422978, rs11263755, rs2285741, rs10962, and 

rs3110641) (432). The genetic study in the United States found that the 

polymorphism in HNF1B (rs12450628 and rs1008284) was associated with type 2 

diabetes (433). The study in a Japanese population presented the association 

between type 2 diabetes and the SNPs rs1016991 and rs2688, not at rs757210, 

rs757211, rs718960, and rs2689 (356). The cohort study in the United States 

present no association between type 2 diabetes and the variation in HNF1B 

(rs11649743, rs4430796, and rs7501939) (456). However, the association 

between the SNP rs4430796 and type 2 diabetes was reported in the GWAS of a 

European population (450). Only polymorphism in rs7903146 is associated with 

GDM in a Danish population (404). 

l) IGF2BP2 (Insulin-like growth factor 2mRNA binding protein 2) 

IGF2BP2 is a family of mRNA-binding protein (IMP1, IMP2, and IMP3), 

which relates to RNA stability, localization, and translation.  IMPs are expressed 

in developing cells, especially in neuronal and epithelial cells in mid-gestation. 

IGF2BP2 mRNA is found in many organs (brain, gut, testis, liver, pancreas, bone 

marrow, kidney, lung, and muscle) during perinatal period and in adult tissues 

(457). IGF2BP2 variant was associated with impaired pancreatic β cell function 

(458, 459), and impaired insulin sensitivity (460). 
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Genetic studies presented the association between type 2 diabetes and the 

polymorphism in IGF2BP2 at rs4402960 and rs1470579 in Japanese, Chinese, 

Korean and Indian populations (391, 394, 395, 410, 461), and at rs7651090 in a 

Chinese population (411). The genetic study in East Asian and European 

populations found that the IGF2BP2 variation (rs4376068 and rs6769511) 

increased the risk of type 2 diabetes (398). However, The WTCC and FUSION 

study (396, 397) and the genetic studies in Dutch, Chinese Han, and Japanese 

populations (368, 389, 409) reported no association between type 2 diabetes and 

the SNP rs4402960. The correlation between the variant rs1470579 in IGF2BP2 

and type 2 diabetes was confirmed by the GWAS in a Japanese population (399). 

The GWAS in a Caucasian population also reported that type 2 diabetes was 

associated with the SNPs rs1470579 and rs4402960 (400). 

The association between the rs4402960 polymorphism and GDM was 

reported in the candidate gene approach in China (403) and Korea (462). The 

GWAS in the Korean population reported that the SNP in IGF2BP2 (rs1470579) 

was correlated with GDM (402). The association between rs4402960 and GDM 

was not significant in the Danish population (404). 

m) IL-10 (Interleukin-10) 

IL-10 gene encoded anti-inflammatory cytokine, a T helper 2 mediated 

cytokine, which inhibits cytokine production by t helper 1 cells (463). Il-10 gene 

expression is important for inflammatory response and disease progression. 

Dysregulation of IL-10 increased inflammatory response and risk of developing 
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autoimmune diseases such as Crohn’s disease, hepatitis, Systemic Lupus 

Erythematosus (SLE), and allergic asthma (464). A mouse study by Pennline et 

al. (465) found that IL-10 can prevented the onset of diabetes in non-obese 

diabetic (NOD) mice by inhibiting interferon-γ synthesis. This study reporter that 

NOD mice receiving IL-10 treatment reduce the severity of insulitis, prevent 

pancreatic islet cell infiltration, and promote normal insulin production. Esposito 

et al. (466) found that low IL-10 levels was associated with metabolic syndromes 

while high IL-10 concentration was associated with obesity. 

A meta-analysis study, based on Asian and European populations, 

presented that the variation at rs1800872 was associated with type 2 diabetes 

(467). The association between GDM and the polymorphism in IL-10 

(rs1800872) was reported in a Malaysian population (468). However, the genetic 

study in North Indian and Taiwanese population reported no correlation between 

type 2 diabetes and two SNPs in IL-10 (rs1800872 and rs1800871) (469, 470).  

A candidate gene study in Caucasians reported that the variant in IL-10 at 

rs1800872 was associated with increased BMI and waist-to-hip ratio (471). 

n) IRS (Insulin receptor substrate-1) 

IRS1 gene, the insulin receptor substrate protein family, encoded a 

signaling adapter protein. IRS1 has a key role in transmitting signals from the 

insulin and insulin-like growth factor 1 receptors to intracellular phosphoinositide 

3-kinase/protein kinase B pathway and extracellular signal-regulated kinases 

mitogen-activated protein kinase pathway (472). A mouse study found that IRS 
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knockout mice reduced insulin content of β-cells and decreased glucose-

stimulated insulin secretion leading to glucose intolerance (473).  

The genetic studies in Mexican (474), Indian (475) , and Dutch (476) 

populations reported the variant rs1801278 in IRS1 was associated with type 2 

diabetes. A meta-analysis study analyzing data from ten articles (3428 GDM and 

4637 controls) showed that the polymorphism in IRS1 (rs1801278) also related to 

GDM (477). This was also reported in Greek (478), Italian (384), and Saudi (479) 

populations. Moreover, the meta-analysis study in French found that the 

rs2943641 variant increased the risk of type 2 diabetes (480). However, there is 

no association between the IRS1 variation (rs1801278) and type 2 diabetes in the 

African-American population (481), and GDM in the Scandinavian population 

(482). A case-control study in the African-American population reported that the 

polymorphism in IRS1 at rs1801278 was associated with higher BMI (481). 

o) KCNJ11 (Potassium channel, inwardly rectifying subfamily J, member 

11) 

KCNJ11 gene is a family of the potassium channel gene. KCNJ11 gene 

encodes an inward-rectifier potassium ion channel (Kir6.2) protein, which is 

subunit of the ATP-sensitive potassium (KATP) channel. Increased glucose 

concentration increases potassium flow into cell through the KTAP channel, and 

ATP binds to Kir6.2 in order to increase intracellular potassium ion concentration. 

Increased intracellular potassium concentration activating calcium ion channel 

leads to increase intracellular free calcium ion levels which trigger other 
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components of insulin secretion pathway.  KCNJ11 gene mutation can lead to 

diabetes by disrupting Kir6.2 protein activity, reducing ATP sensitivity of KTAP 

channel activity and suppression of insulin secretion (483).  

The association between type 2 diabetes and KCNJ11 polymorphism at 

rs5215 was reported in the Chinese Han population (389) and at rs5219 in 

Chinese (411), Japanese (410), and Indian (461) populations. However, the study 

in Turkey reported no association between type 2 diabetes and the SNPs in 

KCNJ11 (rs5215, rs5219, rs5218, rs5216, and rs1800467) (355). The GWA study 

in a Caucasian population found that the variant rs5219 in KCNJ11 increased the 

incidence of type 2 diabetes (400). In addition, the GWA study in a Finnish 

population (397) confirmed the correlation between type 2 diabetes and the SNP 

rs5215. 

The variation at rs5219 also has a correlation with GDM in a Scandinavian 

population (482). However, the studies in Korea (401)  and Denmark (404) 

presented no significant association between GDM and two SNPs in KCNJ11 

(rs5215 and rs5219). 

p) KCNQ1 ((Potassium channel, voltage gated KQT-like subfamily Q, 

member 1) 

KCNQ1 encodes a pore-forming alpha-subunit of the voltage-gated K 

channel (KvLQT1). KCNQ1 is expressed in a wide variety of tissue including: 

heart, lung, liver, kidney, adipose tissue, brain, skeleton muscle and pancreas 

(484). KCNQ1 controls ventricular repolarization process, which lead to cardiac 
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conduction abnormality (485). A complex interaction between ATP-sensitive K+ 

(KATP) channels and voltage-dependent K+ (Kv) channels regulated insulin 

secretion from pancreas. The Electronic mechanism at KATP and Kv channels 

triggers and maintains glucose-stimulated insulin secretion. This effect may lead 

to impair pancreatic β-cell function (486). 

A meta-analysis of GWAS in African American population reported the 

association between two SNP (rs231356 and rs2283228) in KCNQ1 and type 2 

diabetes (487). A meta-analysis in Mexican-American population (448) and a 

GWAS in Japanese population (488) found that rs2237892 variation increased 

risk of type 2 diabetes. Another meta-analysis study including Japanese, Chinese, 

and Korean population also reported that rs2074196, rs2237892 and rs2237895 

polymorphisms (SNP) was significantly associated with type 2 diabetes (489). 

The association between rs2237895 and type 2 diabetes was reported in a GWAS 

in Han Chinese population (490) and the Punjabi cohort study (Indians living in 

India and the United States) (484). A case-control study in Lebanese population 

also found that KCNQ1 variation (rs2237892 and rs2237895) was associated with 

type 2 diabetes (418). 

A-meta-analysis study from multi-ethnic population (Korean, Chinese, 

French, Greek, Swede, Brazilian, Dane, Turkish, and American), reported that 

rs2237892 associated with GDM (491). A candidate gene study in Chinese 

population found that KCNQ1 polymorphism at rs2237895 and 2237896) 

increased risk of GDM but there is no association between rs2237892 had GDM 
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(492).  Candidate gene studies in Korean population presented that the KCNQ1 

polymorphism at rs2074196 and rs2237892 and rs2237895 increased risk of 

GDM (493, 494). 

q) LEP (Leptin) 

LEP gene encodes leptin hormone regulating body weight through leptin 

receptors. The more fat accumulates, the more leptin is produced because fat cells 

release leptin in proportion to their size. Leptin is involved in food intake 

inhibition, energy expenditure regulatory, energy and glucose homeostasis, bone 

formation, immune and inflammatory response, angiogenesis, hematopoiesis, and 

would healing. The activation of leptin receptor mediates transcriptional 

regulation of the melanocortin pathway in hypothalamus and downregulates 

endocannabinoid expression in order to control food intake and energy balance 

(495). The peripheral actions of leptin are inhibition of insulin synthesis and 

secretion in pancreatic β-cell insulin biosynthesis (496). A study found that 

obesity may result from downregulation of leptin receptor expression and 

unresponse of leptin signal. A mouse study reported that leptin deficient mice 

(obese mice and lipodystrophic mice) presented hyperinsulinemia leading to 

downregulate insulin receptor in liver and adipose tissue (497). 

LEP gene has correlation with obesity and BMI. Leptin regulates glucose 

uptake and fatty acid oxidation and inhibits insulin secretion. The study in Korean 

women showed that the polymorphism of LEP at rs10954173 and rs11761556 

increased the risk of type 2 diabetes (498). The LEP variation (rs7799039) had no 
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association with type 2 diabetes in a Chinese population (499). Enquobahrie DA 

and colleagues, analyzing genotype from placenta, reported the LEP expression in 

GDM group was significantly different from the control (500).  

A candidate gene study in South Africans found the association between 

BMI and LEP polymorphism (rs10954174 and rs6966536) (501). However, the 

study in Finland (502), and Italy (503) presented no association between 

rs2167270 and obesity. A meta-analysis study reported no association between 

obesity and rs2167270 and rs7799039 (375). 

r) LEPR (Leptin receptor) 

LEPR encoded a single transmembrane protein mediating the action of 

leptin. LEPR gene mutation causes impaired receptor signaling of leptin, and 

related to obesity, hyperleptinemia, and atherogenic lipid profiles (504). A study 

found that LEPR mutation in obese patients resulted in severe obesity, immune 

dysfunction, pituitary dysfunction, hyperphagia, and delayed puberty (505, 506).  

The meta-analysis study, analyzing data form 16 studies, presented the 

significant correlation between polymorphism at rs1137101 in LEPR and the risk 

of type 2 diabetes (507). The polymorphisms at rs1892534 and rs2211651 are 

associated with early onset type 2 diabetes mellitus in a Taiwanese population 

(508). No association between LEPR polymorphism was reported in Korean or 

Chinese Han populations (362, 498). Moreover, the correlation between LEPR 

and GDM has not been reported. 
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The gene association study found that BMI was significantly related to the 

polymorphism in LEPR at rs1137100, rs1137101, rs12033452, rs3790419, and 

rs7518632 (498). Other candidate gene studies in Caucasians presented the 

correlation between rs1137101 and rs9436746 and BMI (509, 510). Meta-analysis 

studies found that the LEPR gene (rs1137101, rs1137100, rs8179183, and 

rs62589000, rs10889567, rs3790437) was not associated with obesity (375, 510). 

s) MTNR1B (Melatonin receptor 1B) 

MTNR1B encodes melatonin 2 protein (MT2), a receptor for melatonin, 

which is expressed in β-cells. MT2 is involved in insulin secretion in β-cells 

because melatonin inhibits adenylate cyclase/cyclic the guanylate cyclase/cyclic 

adenosine monophosphate (AC/cAMP), guanosine monophosphate (GC/cGMP), 

and 1,4,5-trisphosphate (IP3) signal pathways (511). Many studies reported that 

MT2 receptor was associated with decreased glucagon secretion and alterative 

glucose metabolism (512-515). Therefore, MTNR1B polymorphisms affect 

pancreatic glucose sensing, insulin secretion, and glucose tolerance (513, 514).  

MTNR1B is associated with fasting plasma glucose levels in type 2 diabetes 

(514). 

A meta-analysis study reported the MTNR1B (rs10830963) increases the 

risk of type 2 diabetes (514). This SNP is also associated with GDM in a Czech 

Republic study (516). Other candidate gene approaches in Han Chinese (517) and  

Greek (518) populations found similar SNP results to the study from the Czech 

Republic. In addition, the study in the Korean population (519) showed that the 
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variation at rs10830963 and rs1387153 in MTNR1B was associated with GDM. 

This was  supported  by the results of a meta-analysis of ten articles (3428 GDM 

and 4637 controls) with the same SNPs (477).  The GWAS in the Korean 

population proposed the new SNP (rs10830962) associated with GDM (402). 

However, Wang Y presented no association between MTNR1B (rs10830963) and 

GDM (403). 

t) PPARG (Peroxisome proliferator-activated receptor gamma) 

The PPARG gene is associated with insulin action, adipocyte 

differentiation, lipid storage, and fat-specific gene expression (520). Kim et al. 

(521) reported that PPARG activates glucose transporter 2 and glucokinase in 

liver and pancreatic β-cells, which improves glucose homeostasis. Moreover, 

PPARG increases insulin sensitive in peripheral tissue and glucose sensitivity of 

liver and pancreatic β-cells. In a mouse study, PPARG knockout mice higher 

insulin-induced increase in glucose disposal rate and greater insulin-induced 

suppression of hepatic glucose production than in wildtype mice (522). 

The candidate gene studies in Chinese (411), Japanese (523), and Indian 

(461) populations and the GWAS in Finnish (397) and Caucasian populations 

(400) found that the PPARG variant (rs1801282) increased the risk of type 2 

diabetes.  However, a genetic study in the Chinese Han population reported no 

association between type 2 diabetes and PPARG variants at rs1801282, 

rs12636454, and rs11128597 (389). The WTCCC study in England, reported a 

controversial association between rs1801282 and type 2 diabetes mellitus (396). 
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The association between GDM and PPARG variant (Both rs1801282 and 

rs3856806) was found in the study in French (524). However, a candidate gene 

approach in Sweden, Denmark and Korea did not report the association between 

PPARG variation (rs3856806 and rs1801282) and GDM (401, 404, 525). The 

association between rs1801282 and total body fat mass was proposed in 

menopause women (526). 

u) SLC30A8 (Solute carrier family 30 (zinc transporter), member 8) 

SLC30A8, a member of zinc transporter (ZNT) family, encodes zinc 

transporter (ZnT8). ZnT proteins transport zinc out of cells when zinc is excess, 

and sequester cytoplasmic zinc into cell when zinc is replete. Zinc facilitates the 

formation of dense core granules for insulin crystallization in pancreatic β-cell 

and has a positive influence on insulin gene transcription (527). A mouse study 

(528) showed that ZnT8 knockout mice reduced zinc content in pancreatic β-cell 

insulin-secretory granules affecting insulin processing and crystallization. 

Reduced zinc concentration in the secretory granules leads to increased proinsulin 

to insulin ratio in blood circulation and decreased glucose-induced insulin 

secretion (527). 

Studies in Lebanese (418), Japanese (391) and Dutch (409) populations  

reported no association between  type 2 diabetes and the polymorphism in 

SLC30A8 (rs3802177 and rs13266634). Studies of Chinese, British and Indian 

populations (396, 411, 461) including the GWAS in French and Caucasian 

populations (400, 443) found that the polymorphism at rs13266634 was 



102 
 

 
 

1
0
2

 

associated with type 2 diabetes. This SNP was also associated with GDM in a 

Korean population (401). In addition, the genetic study of the Han Chinese 

population found an association between type 2 diabetes and SLC30A8 at 

rs3802177 rs11558471, and rs13266634 (389). However, the rs13266634 

mutation had no significant association with type 2 diabetes in an African 

American population (414). 

v) TCF7L2 (Transcription factor 7-like 2) 

The TCF7L2 gene encodes a high mobility group box-containing 

transcription factor related to blood glucose homeostasis. Yi et al. reported that 

TCF7L2 regulated proglucagon by repressing the glucagon gene in 

enteroendocrine cells via Wnt signaling pathway (529). TCF7L2 gene is related to 

pancreatic cells development and glucose-induced insulin secretion (530). A study 

in human found that patients with type 2 diabetes decreased TCF7L2 protein 

levels in pancreas when compared with healthy controls. This study proposed that 

interaction between TCF7L2 and glucagon-like peptide-1 (GLP1R) and glucose-

dependent insulinotropic polypeptide (GIPR) may regulate pancreatic β-cell 

function and survival (531). 

In Dutch, Han Chinese, British, Korean, Chinese, African American, 

Arabic and Indian populations, the polymorphism in TCF7L2 (rs7903146) 

increases the risk of type 2 diabetes (394, 396, 409, 412, 414, 461, 532) and 

increases in risk of GDM in Scandinavian (525), Korean (401), Danish  (404), and 

Czech (533) women. The study in China (389) also reported an association 
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between type 2 diabetes and two SNP (rs7903146 and rs6585205).  The 

association between the SNP rs10885409 and type 2 diabetes was reported in a 

North Indian population (413). However, a study in Netherland reported no 

correlation between the variant rs4430796 in TCF7L2 gene (450). The association 

between type 2 diabetes and rs7903146 was confirmed in the GWAS in French, 

Finnish and Caucasian population (397, 400, 443). Moreover, the Japanese 

GWAS reported that additional SNP rs7901695 increased the incidence of type 2 

diabetes (399). A Meta-analysis of GWAS in African American population found 

additional SNP (rs114748339) associated with type 2 diabetes (487).  

Candidate gene studies in Austria (534), Spain (421), and the Czech 

Republic (533) reported additional SNPs (rs12255372, rs4506565, and 

rs7901695, respectively) related to GDM. However, the same study in Korea 

(401) and Denmark (404) also showed that variation at rs12255372 in TCF7L2 

had no correlation with GDM. 

w) TNF-α (Tumor necrosis factor alpha) 

TNF-α encoded a cell signaling protein produced at inflammatory site. 

TNF-α also activates multiple protein kinases and phosphoprotein phosphatases. 

A mouse study found that TNF-α caused insulin resistance because TNF-α 

infusion activated protein kinase A, which inhibited the tyrosine kinase activity of 

insulin receptor (535). TNF-α is interferes insulin signaling in adipose cell, 

muscle, and liver. TNF-α inhibit glucose-induced insulin secretion (536). A cell 

study by Tsiotra et al. (537) found that TNF-α suppressed both basal and glucose-
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induced insulin secretion and proinsulin mRNA transcription. Hotamisligil et al. 

(535)described the mechanism of TNF-α-induced insulin resistance, TNF-α 

reduced GLUT4 mRNA levels in adipocyte and myocyte and inhibited insulin-

stimulated glucose transport.  

The study in a Finnish population reported that the polymorphism in TNF-

α at rs1800610 increased the risk of type 2 diabetes (449). Additional SNP 

(rs361525) associated with type 2 diabetes was found in a Mexican population 

(538), but not in Taiwanese and British populations (539, 540). The study in 

China (541) and Mexico (542) presented that GDM was associated with the 

variant rs1800629 in TNF-α. However, the study in Malaysia (468) and Brazil 

(543), reported no significant association between TNF-α variation (rs1800629) 

and GDM. Additionally, the study in Tunisia, Taiwan, and Mexico presented no 

association between the variant rs1800629 in TNF-α and type 2 diabetes mellitus 

(538, 539, 544). A meta-analysis study based on Asian and Caucasian population 

and the large-scale study in a British population confirmed the association 

between the SNP rs1800629 and the diabetes (540, 545).  

The study in a European population (Ireland and France) reported that the 

TNF-α polymorphism (rs1800629) increased the risk of obesity (BMI >30 kg/m2) 

(546). The association between rs1800629 and obesity was confirmed with a 

meta-analysis study (375).  However, other studies in Caucasian population 

presented no correlation between TNF-α variation and obesity (544, 547-549). 
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2.4 Genetic Study in Epidemiology 

2.4.1 Overview 

Genetic epidemiology aims to explain the role of genetic variation leading to 

disease risk in populations. The study of genetic epidemiology relies on biometrical work 

and statistical methods (segregation analysis, linkage analysis, association analysis, and 

simulation methods). Genetically influenced diseases can be divided into monogenic 

diseases (diseases resulting from a single gene mutation) and complex or multifactorial 

diseases (diseases occurring with genetic and environmental factors) and each uses a 

different method of analysis.  

When information about DNA was unavailable, scientists used the Mendelian 

laws of inheritance to study the correlation between genetic variation and diseases. 

Nowadays, with extensive data on the human genome, the genome scan and candidate 

genes approach have been used to analyze the association between complex diseases and 

genes. 

2.4.2 Genetic epidemiology approaches 

a) Candidate gene approaches 

i) Segregation analysis 

Segregation analysis is useful in the study of monogenic diseases. 

This approach uses phenotypic data within pedigrees to determine the 

pattern of inheritance of major genes influencing a phenotype and to 

estimate the parameters of the genetic model (recessive, dominant, co-

dominant), which is based on a probability calculation to observe the 
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phenotype on parameters in genetic models and on family structure. The 

most likely model nested within a general model is selected by likelihood-

ratio test.  Moreover, complex segregation analysis may be used for 

multifactorial disease. However, segregation analysis is not useful in the 

case of non-major genes and a few moderately influenced genes (550).  

ii) Linkage analysis 

Linkage studies assess on which part of the chromosome a disease 

gene is located. Linkage analysis investigates the association between a 

marker and a disease in related individuals. This approach aims to 

examine the linkage between a susceptible locus and disease, and 

estimates the recombination rate. There are two methods for linkage 

analysis namely model-based (parametric or “lod score”) and model free 

(nonparametric). The lod score method is based on the likelihood of the 

observed marker and disease in a family under the model for distribution 

of the unobserved disease gene. Nonparametric methods compare the 

proportion of alleles shared IBD (identical by descent) by pairs of affected 

relatives with the proportion expected based on their relationship.  The 

degree of complexity of the disease has an effect on the genetic model 

assumption (550).  

iii) Linkage disequilibrium (genetic association methods) 

Association studies investigate which allele or genotype of genes 

are associated with disease. The case-control study design compares allele 
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or genotype frequencies in a group of unrelated affected individuals with a 

group of unrelated unaffected individuals.  However, populations 

consisting of two or more subgroups with different allele frequencies, 

different confounding factors, and different baseline rates of disease, may 

cause increased false positive associations and biased relative risk 

estimation.  Therefore, matching or adjusting for race can be used to 

control for the problems arising from a variety in a population 

stratification. 

The family-based study design was created to determine the 

association between suspected alleles of diseases with internal control of 

confounding. There are two types of controls in family-based study 

designs; sibling controls or case-parent-trios (parental control or pseudo-

siblings). The data analysis is based on a standard conditional logistic 

regression model. The case-sibling study design asserts that affected 

individuals are cases and their unaffected siblings are controls.  In a case-

parent-trio study design, only cases and their parents are genotyped and 

form the set of hypothetical pseudo-sibling consisting of the three other 

genotypes which could have been transmitted from the parents. The case-

pseudo sibling sets are analyzed as 1:3 matched case-control design. The 

internal control in the model comes from the two parental alleles that are 

not transmitted to the affected child.  The common test for case-parent-trio 

study design is the Transmission Disequilibrium test (TDT), which 
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compares the transmitted alleles with non-transmitted alleles from 

heterozygous parents to child. The TDT is a test of both likage and 

association together. This design avoids possible bias from inadequate 

controls and population stratifications (550). 

b) Genome-Wide Association Studies (GWAS) 

GWAS is a standard approach for exploring the basis of complex genetic 

diseases from hundreds of thousands of single-nucleotide polymorphisms (SNPs) 

by the case-control, population-based prospective and cross-sectional study 

designs. Due to the ability to assay more than a million SNPs, GWAS has become 

a new and powerful tool in searching for novel biological insights to explain 

susceptibility for diseases (550). 

The power of GWAS to identify true genetic associations depends on the 

quality of the database. In the beginning of GWAS, the most associations 

discovered in GWAS were indirectly casual because a small fraction of the 

genetic variation in the genome was detected. With the extensive availability of 

genome variation data, GWAS can infer the genotypes for most of the common 

variants in the genome by using an imputation technique. However, many 

associations between SNPs and diseases are weak with the odd ratios around 1.2-

1.6. In order to avoid false positive claims, the genome-wide level of significance 

(p-value < 5 x 10-8) was calculated from the Bonferroni correction for one million 

SNPs. Moreover, ethnic variation in a population also may result in a biased 

interpretation. To help deal with this problem the STRUCTURE program (the 
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adjustment for an estimate of global ancestry from a finite set of founding 

populations using ancestry informative marker), and the EIGENSTRAT program 

(applying the principal components from all or subset of the markers) have been 

proposed to control for false positives in a heterogeneous population. Due to a 

limited genome database and statistic dependency, GWAS requires a large sample 

size and multiple replications of similarly large samples in order to effectively 

provide evidence of genetic association (215). 

The associations between genes and disease from GWAS explain a small 

proportion of the genetic causes of disease. Therefore, secondary analysis of 

GWAS data including targeted hypothesis testing, gene-gene interaction, and 

gene-environment interaction analysis may further our understanding of the 

etiology of genotype and phenotype and improve the ability to detect relevant 

genetic polymorphisms. 

c) Gene-Environment interaction 

The effects of genetic variants may depends on environment exposures or 

the effect of an environment factors depends on an individual genotype. G-E 

interaction model may increase the power to detect novel genes or environmental 

factors that influence the trait through the interaction. In term of statistics, G-E 

interaction is defined as a deviation from a model on a particular scale by using 

linear regression models for quantitative traits and logistic regression models for 

binary traits (551). 

 



110 
 

 
 

1
1
0

 

d) Gene-Gene (G-G) interaction 

G-G interaction may be analyzed by pathway-based approaches. Pathway 

analysis determines association between phenotype and sets of genes 

corresponding to biological pathways, which provide larger effects, the greater 

power of discovery, and natural connections to biological mechanisms. Pathway-

based approaches may determine environmental factors interacting with the set of 

genes, which leads to a complex phenotype (552). 

 

 

 

Figure 2.3 Guideline for pathway analysis (552). 
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Table 2.2 Summary of candidate genes with established associations with orofacial clefts found in dissertation literature review to 

have published links with  type 2 diabets, gestational diabetes mellitus, or obesity. 

 

Gene ID Gene name Chromosome OFCs1 T2DM2 GDM3 Obesity 

ADAMTS9 ADAM metallopeptidase with 

thrombospondin type 1 motif, 9 

3p14.1 (553)a (409, 418, 

554) 

- (555) 

CBS Cystathionine-beta-synthase 21q22.3 (556, 557)b (558) - (559) 

COMT Catechol-O-methyltransferase 22q11.21 (560, 561)b - - (562) 

CYP1B1 Cytochrome P450, family 1, 

subfamily B, polypeptide 1 

2p22.2 (563)b - - (564) 

ESR1 Estrogen receptor 1 6q25.1 (565)b (566) - - 

ETV5 Ets variant 5 3q28 (422, 567, 

568)b 

- - (569) 

F13A1 Coagulation factor XIII, A1 

polypeptide 

6p25.3-p24.3 (570-572)b - - (573) 

FAF1 Fas (TNFRSF6) associated factor 

1 

1p33 (574)a (575) - - 

GDF15 Growth differentiation factor 15 19p13.11 (576)b - (500) - 

GSTT1 Glutathione S-transferase theta 1 22q11.23 (134, 577)b (578) - - 

HLA-B Major histocompatibility 

complex, class I, B 

6p21.3 (579)b (487) - - 

KLF9 Kruppel-like factor 9 9q13 (580)b - - (405) 

LMX1B LIM homeobox transcription 

factor 1, beta 

9q33.3 (581)a - - (582) 

MAF V-maf avian musculoaponeurotic 

fibrosarcoma oncogene homolog 

16q22-q23 (139)b - - (428) 

MTHFR Methylenetetrahydrofolate 

reductase (NAD(P)H) 

1p36.3 (583-586)b (558, 587) - (559) 
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Table 2.2 Summary of candidate genes with established associations with orofacial clefts found in dissertation literature review to 

have published links with  type 2 diabets, gestational diabetes mellitus, or obesity (Cont.) 

 

1OFCs Orofacial clefts; 2T2DM, type 2 diabetes mellitus; 3GDM, gestational diabetes mellitus 

Genes associated with OFCs: a, animal study; b, human study  

Genes associated with T2DM, GDM, and obesity base on human study 

 

Gene ID Gene name Chromosome OFCs1 T2DM2 GDM3 Obesity 

MTR 5-methyltetrahydrofolate-

homocysteine methyltransferase 

1q43 (588, 589)b (558) - (558, 559) 

PAX6 Paired box 6 11p13 (590)b - - (569, 591) 

PCYT1A Phosphate cytidylyltransferase 1, 

choline, alpha 

3q29 (592, 593)b - - (594) 

PEMT Phosphatidylethanolamine N-

methyltransferase 

17p11.2 (592)b (587) - (594) 

RBP4 Retinol binding protein 4, plasma 10q23.33 (595)b - (596) - 

RPS7 Ribosomal protein S7 2p25 (597)b - (500) - 

SLC8A1 Solute carrier family 8 

(sodium/calcium exchanger), 

member 1 

2p22.1 (598)b (599) - - 

STK11 Serine/threonine kinase 11 19p13.3 (600)b (601) - - 

TCN2 Transcobalamin II 22q12.2 (602)b (558, 559) - (558, 559) 

TFAP2B Transcription factor AP-2 beta 

(activating enhancer binding 

protein 2 beta) 

6p12 (603)b - - (569, 591) 

TGFB1 Transforming growth factor, beta 

1 

19q13.1 (604-606)b - (541) (607) 

THADA Thyroid adenoma associated 2p21 (139, 608)b (609-611)   

VEGFA Vascular endothelial growth 

factor A 

6p12 (612)a - - (555) 
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Table 2.3 Summary 416 genes found in dissertation literature review to be associated with type 2 diabetes, gestational diabetes 

mellitus, or obesity  related to obesity and/or diabetes mellitus. 

 

Gene ID Gene name Chromosome T2DM1 GDM2 Obesity 

AATF Apoptosis antagonizing transcription factor 17q12 - - (573) 

ABCC1 ATP-binding cassette, sub-family C (CFTR/MRP), 

member 1 

16p13.1 
- - (573) 

ABCC8 ATP-binding cassette, sub-family C (CFTR/MRP), 

member 8 

11p15.1 
(354-356) (354)  

ACE Angiotensin I converting enzyme 17q23.3 (613) - (614, 615) 

ACTN2 Actinin, alpha 2 1q42-q43 (616) - - 

ADAM12 ADAM metallopeptidase domain 12 10q26 - (500) (573) 

ADCY10 Adenylate cyclase 10 (soluble) 1q24 (611, 617) - - 

ADCY3 Adenylate cyclase 3 2p23.3 - - (440) 

ADCY5 Adenylate cyclase 5 3q21.1 (618) - - 

ADD2 Adducin 2 (beta) 2p13.3 - (500) - 

ADIPOR1 Adiponectin receptor 1 1q32.1 (619) - - 

ADIPOQ Adiponectin, C1Q and  collagen domain  

containing 

3q27 
(361-366) (369-372) (373, 374) 

ADRB2 Adrenoceptor beta 2, surface 5q31-q32 (620) - (385) 

ADRB3 Adrenoceptor beta 3, surface 8p12 (365, 380, 

382) 
(381) (385, 386) 

AGPAT4 1-acylglycerol-3-phosphate O-acyltransferase 4 6q26 - (500) - 

AGRP Agouti related neuropeptide 16q22 - - (621) 

AGT Angiotensinogen (serpin peptidase inhibitor, clade 

A, member 8) 

142.2 (622) - (623) 

http://www.ncbi.nlm.nih.gov/gene/26574
http://www.ncbi.nlm.nih.gov/gene/4363
http://www.ncbi.nlm.nih.gov/gene/1636
http://www.ncbi.nlm.nih.gov/gene/88
http://www.ncbi.nlm.nih.gov/gene/55811
http://www.ncbi.nlm.nih.gov/gene/111
http://www.ncbi.nlm.nih.gov/gene/111
http://www.ncbi.nlm.nih.gov/gene/119
http://www.ncbi.nlm.nih.gov/gene/51094
http://www.ncbi.nlm.nih.gov/gene/154
http://www.ncbi.nlm.nih.gov/gene/183
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Table 2.3 Summary 416 genes found in dissertation literature review to be associated with type 2 diabetes, gestational diabetes 

mellitus, or obesity  related to obesity and/or diabetes mellitus (Cont.) 

 

 

  

Gene ID Gene name Chromosome T2DM1 GDM2 Obesity 

AGTR1 Angiotensin II receptor, type 1 3q24 (622) -  

AKAP1 A kinase (PRKA) anchor protein 1 17q22 - - (582, 624) 

ALX4 ALX homeobox 4 11p11.2 (418) -  

ANAPC13 Anaphase promoting complex subunit 13 3q22.2 - - (582) 

ANGPTL6 Angiopoietin-like 6 19p13.2 - - (625) 

ANKRD50 Ankyrin repeat domain 50 4q28.1 (616) - - 

ANXA4 Annexin A4 2p13 (449) (500) - 

AP3S2 Adaptor-related protein complex 3, sigma 2 

subunit 

15q26.1 (626) - - 

APCS Amyloid P component, serum 1q21-q23 - - (625) 

APLP2 Amyloid beta (A4) precursor-like protein 2 11q24 - - (582) 

APOC1 Apolipoprotein C-I 19q13.2 - - (582) 

APOE Apolipoprotein E 19q13.2 (627) - (607, 628) 

AQP3 Aquaporin 3 (Gill blood group) 9p13 - (500) - 

ARAP1 ArfGAP with RhoGAP domain, ankyrin repeat 

and PH domain 1 

11q13.4 (450) - - 

ARHGAP44 Rho GTPase activating protein 44 17p12 (599) - - 

ARID1B AT rich interactive domain 1B (SWI1-like) 6q25.1  - (582) 

ARL15 ADP-ribosylation factor-like 15 5p15.2 (575) - - 

AZGP1 alpha-2-glycoprotein 1, zinc-binding 7q22.1 - - (629) 

BCDIN3D BCDIN3 domain containing 12q13.12 - - (582) 

BCL11A B-cell CLL/lymphoma 11A (zinc finger protein) 2p16.1 (450) - - 

BCL2 B-cell CLL/lymphoma 2 18q21.3 (630) - - 

BCL2A1 BCL2-related protein A1 15q24.3 - - (426) 

http://www.ncbi.nlm.nih.gov/gene/185
http://www.ncbi.nlm.nih.gov/gene/8165
http://www.ncbi.nlm.nih.gov/gene/60529
http://www.ncbi.nlm.nih.gov/gene/25847
http://www.ncbi.nlm.nih.gov/gene/307
http://www.ncbi.nlm.nih.gov/gene/10239
http://www.ncbi.nlm.nih.gov/gene/334
http://www.ncbi.nlm.nih.gov/gene/341
http://www.ncbi.nlm.nih.gov/gene/360
http://www.ncbi.nlm.nih.gov/gene/116985
http://www.ncbi.nlm.nih.gov/gene/9912
http://www.ncbi.nlm.nih.gov/gene/57492
http://www.ncbi.nlm.nih.gov/gene/54622
http://www.ncbi.nlm.nih.gov/gene/144233
http://www.ncbi.nlm.nih.gov/gene/53335
http://www.ncbi.nlm.nih.gov/gene/596
http://www.ncbi.nlm.nih.gov/gene/597
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Table 2.3 Summary 416 genes found in dissertation literature review to be associated with type 2 diabetes, gestational diabetes 

mellitus, or obesity  related to obesity and/or diabetes mellitus (Cont.). 

 

 

  

Gene ID Gene name Chromosome T2DM1 GDM2 Obesity 

BDNF Brain-derived neurotrophic factor 11p13 (419, 631, 

632) 

- (426, 591, 

633, 634) 

BHLHE40 Basic helix-loop-helix family, member e40 3p26 - (500) - 

C15orf41 Chromosome 15 open reading frame 41 15q14 - - (582) 

C16orf62 Chromosome 16 open reading frame 62 16p12.3 - - (573) 

C1D C1D nuclear receptor corepressor 2p13-p12 - (500) - 

C2CD4A/4B C2 calcium-dependent domain containing 4A/4B 15q22.2 (450) - - 

CADM2 Cell adhesion molecule 2 3p12.1 - - (569) 

      

CALM1 Calmodulin 1 (phosphorylase kinase, delta) 14q32.11 - (500) (569, 591) 

CAPN10 Calpain 10 2q37.3 (475, 635) - (636) 

CARHSP1 Calcium regulated heat stable protein 1, 24kDa 16p13.2 - (500) - 

CASP9 Caspase 9, apoptosis-related cysteine peptidase 1p36.21 (617) - - 

CCDC102B Coiled-coil domain containing 102B 18q22.1 (617) - - 

CCDC80 Coiled-coil domain containing 80 3q13.2  - (573) 

CCL2 CD276 molecule 15q23-q24 - - (573) 

CD63 CD63 molecule 12q12-q13 - (500) - 

CD93 CD93 molecule 20p11.21 - (500) - 

CD96 CD96 molecule 3q13.13-q13.2 (599) - - 

CDH12 Cadherin 12, type 2 (N-cadherin 2) 5p14.3 - - (582) 

CDKAL1 CDK5 regulatory subunit  associated protein 1-

like 1 

6p22.3 (389-398, 

400, 405) 

(401, 402, 

404) 

 

CDKN2A Cyclin-dependent kinase inhibitor 2A 9p21 (461) - - 

http://www.ncbi.nlm.nih.gov/gene/8553
http://www.ncbi.nlm.nih.gov/gene/84529
http://www.ncbi.nlm.nih.gov/gene/57020
http://www.ncbi.nlm.nih.gov/gene/10438
http://www.ncbi.nlm.nih.gov/gene/388125
http://www.ncbi.nlm.nih.gov/gene/253559
http://www.ncbi.nlm.nih.gov/gene/801
http://www.ncbi.nlm.nih.gov/gene/11132
http://www.ncbi.nlm.nih.gov/gene/23589
http://www.ncbi.nlm.nih.gov/gene/8246343
http://www.ncbi.nlm.nih.gov/gene/6347
http://www.ncbi.nlm.nih.gov/gene/967
http://www.ncbi.nlm.nih.gov/gene/22918
http://www.ncbi.nlm.nih.gov/gene/10225
http://www.ncbi.nlm.nih.gov/gene/1010
http://www.ncbi.nlm.nih.gov/gene/1029
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Table 2.3 Summary 416 genes found in dissertation literature review to be associated with type 2 diabetes, gestational diabetes 

mellitus, or obesity  related to obesity and/or diabetes mellitus (Cont.). 

 

 

Gene ID Gene name Chromosome T2DM1 GDM2 Obesity 

CDKN2A/2B Cyclin-dependent kinase inhibitor 2A/2B 9p21 (390, 394-

397, 400, 

409-413) 

(401, 403) - 

CEBPA CCAAT/enhancer binding protein (C/EBP), alpha 19q13.1 - (500) - 

CES1 Carboxylesterase 1 16q22.2 - - (624) 

CFB Complement factor B 6p21.3 - - (637) 

CHCHD2P9 Coiled-coil-helix-coiled-coil-helix domain 

containing 2 pseudogene 9 

9q21.31 (450) - - 

CHDH Choline dehydrogenase 3p21.1 (558) - (558) 

CHRNA5 Cholinergic receptor, nicotinic, alpha 5 (neuronal) 15q24 (638) - - 

CHRNB2 Cholinergic receptor, nicotinic, beta 2 1q21.3 (638) - - 

CHRNB4 Cholinergic receptor, nicotinic, beta 4 15q24 (638) - - 

CIDEA Cell death-inducing DFFA-like effector a 18p11.21; 18 - - (573) 

CLDN7 Claudin 7 17p13.1 - (500) - 

CLMN Calmin (calponin-like, transmembrane) 14q32.13 - - (569, 573) 

CMIP C-Maf inducing protein 16q23 (639) - - 

CNGB3 Cyclic nucleotide gated channel beta 3 8q21.3 - - (582) 

CNPY2 Canopy FGF signaling regulator 2 12q15 - (500) - 

CNTN1 Contactin 1 12q11-q12 (599) - - 

CNTNAP4 contactin associated protein-like 4 16q23.1  - (582) 

COL13A1 Collagen, type XIII, alpha 1 10q22 (599) - - 

COL17A1 Collagen, type XVII, alpha 1 10q24.3 - (500) - 

COL8A1 Collagen, type VIII, alpha 1 3q12.3 (418) - - 

CPE Carboxypeptidase E 4q32.3 - - (621) 

http://www.ncbi.nlm.nih.gov/gene/1029
http://www.ncbi.nlm.nih.gov/gene/1050
http://www.ncbi.nlm.nih.gov/gene/1066
http://www.ncbi.nlm.nih.gov/gene/645345
http://www.ncbi.nlm.nih.gov/gene/55349
http://www.ncbi.nlm.nih.gov/gene/1138
http://www.ncbi.nlm.nih.gov/gene/1141
http://www.ncbi.nlm.nih.gov/gene/1143
http://www.ncbi.nlm.nih.gov/gene/1149
http://www.ncbi.nlm.nih.gov/gene/1366
http://www.ncbi.nlm.nih.gov/gene/79789
http://www.ncbi.nlm.nih.gov/gene/80790
http://www.ncbi.nlm.nih.gov/gene/54714
http://www.ncbi.nlm.nih.gov/gene/10330
http://www.ncbi.nlm.nih.gov/gene/85445
http://www.ncbi.nlm.nih.gov/gene/1308
http://www.ncbi.nlm.nih.gov/gene/1295
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Table 2.3 Summary 416 genes found in dissertation literature review to be associated with type 2 diabetes, gestational diabetes 

mellitus, or obesity  related to obesity and/or diabetes mellitus (Cont.). 

 

 

  

Gene ID Gene name Chromosome T2DM1 GDM2 Obesity 

CPEB4 Cytoplasmic polyadenylation element binding 

protein 4 

5q21 - - (555) 

CPVL Carboxypeptidase, vitellogenic-like 7p15.1 - (500) (573) 

CRTC2 CREB regulated transcription coactivator 2 1q21.3 (601) - - 

CSN3 Casein kappa 4q21.1 (599, 616) - - 

CTSA Cathepsin A 20q13.1 - - (629) 

CWC22 CWC22 spliceosome-associated protein 2q31.3 (599) - - 

CXCL12 Chemokine (C-X-C motif) ligand 12 10q11.1 - - (564) 

DAPK2 Death-associated protein kinase 2 15q22.31 - - (573) 

DARS Aspartyl-tRNA synthetase 2q21.3 - - (582) 

DBC1 Ddeleted in bladder cancer 1 chromosome: 

15 

(616) - (582) 

DBI Diazepam binding inhibitor (GABA receptor 

modulator, acyl-CoA binding protein) 

2q12-q21 - - (564) 

DNAJC15 DnaJ (Hsp40) homolog, subfamily C, member 15 13q14.1 - - (582) 

DNAJC27 DnaJ (Hsp40) homolog, subfamily C, member 27 2p23.3 - - (569) 

DRD2 Dopamine receptor D2 11q23 - - (640, 641) 

DUSP9 Dual specificity phosphatase 9 Xq28 (450) - - 

DYNLL1 Dynein, light chain, LC8-type 1 12q24.23 - (500) - 

DYT7 Dystonia 7, torsion (autosomal dominant) 18p (642) - - 

EFNA5 Ephrin-A5 5q21 - - (582) 

EGR2 Early growth response 2 10q21.1 (616) - - 

EIF4B Eukaryotic translation initiation factor 4B 12q13.13 - (500) - 

http://www.ncbi.nlm.nih.gov/gene/80315
http://www.ncbi.nlm.nih.gov/gene/54504
http://www.ncbi.nlm.nih.gov/gene/200186
http://www.ncbi.nlm.nih.gov/gene/57703
http://www.ncbi.nlm.nih.gov/gene/23604
http://www.ncbi.nlm.nih.gov/gene/1615
http://www.ncbi.nlm.nih.gov/gene/701794
http://www.ncbi.nlm.nih.gov/gene/1622
http://www.ncbi.nlm.nih.gov/gene/29103
http://www.ncbi.nlm.nih.gov/gene/51277
http://www.ncbi.nlm.nih.gov/gene/1813
http://www.ncbi.nlm.nih.gov/gene/1852
http://www.ncbi.nlm.nih.gov/gene/8655
http://www.ncbi.nlm.nih.gov/gene/1946
http://www.ncbi.nlm.nih.gov/gene/1959
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Table 2.3 Summary 416 genes found in dissertation literature review to be associated with type 2 diabetes, gestational diabetes 

mellitus, or obesity  related to obesity and/or diabetes mellitus (Cont.). 

Gene ID Gene name Chromosome T2DM1 GDM2 Obesity 

EIF4E3 Eukaryotic translation initiation factor 4E family 

member 3 

3p14 - - (582) 

EIF4EBP1 Eukaryotic translation initiation factor 4E binding 

protein 1 

8p12 - - (573) 

ENPP1 Ectonucleotide pyrophosphatase/ 

phosphodiesterase 1 

6q22-q23 (365, 449, 

643) 

- - 

EPB41L3 Erythrocyte membrane protein band 4.1-like 3 18p11.32 (616) - - 

ESRRG Estrogen-related receptor gamma 1q41 (599) - - 

ETV5 Ets variant 5 3q28 - - (569) 

EXT2 Exostosin glycosyltransferase 2 11p12-p11 (644) - - 

FABP2 Fatty acid binding protein 2, intestinal 4q28-q31 (645) - (628) 

FAIM2 Fas apoptotic inhibitory molecule 2 12q13 (419) - (569, 582, 

646) 

FAM129A Family with sequence similarity 129, member A 1q25 (599) - - 

FAM19A5 Family with sequence similarity 19 (chemokine 

(C-C motif)-like), member A5 

22q13.32 
- - (582) 

FANCL Fanconi anemia, complementation group L 2p16.1  - (569) 

FBXL17 F-box and leucine-rich repeat protein 17 5q21.3 (599) - - 

FERMT1 Fermitin family member 1 20p12.3 - (500) - 

FHIT Fragile histidine triad 3p14.2 (599) - - 

FHOD3 Formin homology 2 domain containing 3 18q12 - - (582) 

FLT1 Fms-related tyrosine kinase 1 13q12 - (500) - 

FOSL2 FOS-like antigen 2 2p23.3 - (500) - 

FOXA2 Forkhead box A2 20p11 - - (582) 

FOXN3 Forkhead box N3 14q31.3 (397) - (582) 

http://www.ncbi.nlm.nih.gov/gene/317649
http://www.ncbi.nlm.nih.gov/gene/1978
http://www.ncbi.nlm.nih.gov/gene/23136
http://www.ncbi.nlm.nih.gov/gene/2104
http://www.ncbi.nlm.nih.gov/gene/2169
http://www.ncbi.nlm.nih.gov/gene/23017
http://www.ncbi.nlm.nih.gov/gene/116496
http://www.ncbi.nlm.nih.gov/gene/25817
http://www.ncbi.nlm.nih.gov/gene/55612
http://www.ncbi.nlm.nih.gov/gene/2272
http://www.ncbi.nlm.nih.gov/gene/80206
http://www.ncbi.nlm.nih.gov/gene/2321
http://www.ncbi.nlm.nih.gov/gene/2355
http://www.ncbi.nlm.nih.gov/gene/3170
http://www.ncbi.nlm.nih.gov/gene/1112
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Table 2.3 Summary 416 genes found in dissertation literature review to be associated with type 2 diabetes, gestational diabetes 

mellitus, or obesity  related to obesity and/or diabetes mellitus (Cont.). 

 

Gene ID Gene name Chromosome T2DM1 GDM2 Obesity 

FTO Fat mass and obesity associated 16q12.2 (396, 397, 

418-420, 

422, 423) 

(421) (423-428) 

FXYD5 FXYD domain containing ion transport regulator 5 19q13.12 - (500) - 

GABRA4 Gamma-aminobutyric acid (GABA) A receptor, 

alpha 4 

4p12 (647) - - 

GALNT10 Polypeptide N-acetylgalactosaminyltransferase 10 5q33.2 - - (440) 

GALNT2 Polypeptide N-acetylgalactosaminyltransferase 2 1q41-q42 - (500) (440) 

GAS6 Growth arrest-specific 6 13q34 - - (564) 

GATAD2A GATA zinc finger domain containing 2A 19p13.11 (630) - - 

GBA Glucosidase, beta, acid 1q21 - (500) - 

GCK Glucokinase 7p15.3-p15.1 (432, 433) (434-436) - 

GCKR Glucokinase (hexokinase 4) regulator 2p23 (611, 618) - - 

GDNF Glial cell derived neurotrophic factor 5p13.1-p12 (616) - - 

GFM1 G elongation factor, mitochondrial 1 3q25 (599) - - 

GHRL Ghrelin/obestatin prepropeptide 3p26-p25 - - (621, 648) 

GIPR Gastric inhibitory polypeptide receptor 19q13.3 - - (405, 591) 

GLIS3 GLIS family zinc finger 3 9p24.2 (356, 639) - - 

GLP1R Glucagon-like peptide 1 receptor 6p21 - - (621) 

GNG7 Guanine nucleotide binding protein (G protein), 

gamma 7 

19p13.3 - (500) - 

GNPDA2 Glucosamine-6-phosphate deaminase 2 4p12 (419, 422) - (425, 426, 

440) 

GP2 Glycoprotein 2 (zymogen granule membrane) 16p12 - - (591) 

http://www.ncbi.nlm.nih.gov/gene/53827
http://www.ncbi.nlm.nih.gov/gene/55568
http://www.ncbi.nlm.nih.gov/gene/2590
http://www.ncbi.nlm.nih.gov/gene/54815
http://www.ncbi.nlm.nih.gov/gene/2629
http://www.ncbi.nlm.nih.gov/gene/2646
http://www.ncbi.nlm.nih.gov/gene/85476
http://www.ncbi.nlm.nih.gov/gene/2696
http://www.ncbi.nlm.nih.gov/gene/169792
http://www.ncbi.nlm.nih.gov/gene/2788
http://www.ncbi.nlm.nih.gov/gene/2813
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Table 2.3 Summary 416 genes found in dissertation literature review to be associated with type 2 diabetes, gestational diabetes 

mellitus, or obesity  related to obesity and/or diabetes mellitus (Cont.). 

 

Gene ID Gene name Chromosome T2DM1 GDM2 Obesity 

GPC5 Glypican 5 13q32 (599) - - 

GPRC5B G protein-coupled receptor, class C, group 5, 

member B 

16p12 - - (569) 

GRB10 Growth factor receptor-bound protein 10 7p12.2 (599) - - 

GRB14 Growth factor receptor-bound protein 14 2q22-q24 (626) - (555) 

GRIK1 Glutamate receptor, ionotropic, kainate 1 21q22.11 (616) - - 

GRIN2B Glutamate receptor, ionotropic, N-methyl D-

aspartate 2B 

12p12 - - (582) 

GRK5 G protein-coupled receptor kinase 5 10q26.11 (649) - - 

GRM3 Glutamate receptor, metabotropic 3 7q21.1-q21.2 - - (582) 

GYPC Glycophorin C (Gerbich blood group) 2q14-q21 (616) - - 

HADHA Hydroxyacyl-CoA dehydrogenase/3-ketoacyl-CoA 

thiolase/enoyl-CoA hydratase (trifunctional 

protein), alpha subunit 

2p23 - - (564) 

HCN4 Hyperpolarization activated cyclic nucleotide 

gated potassium channel 4 

15q24.1 - - (582) 

HDGF Hepatoma-derived growth factor 1q23.1 - (500) - 

HES1 Hes family bHLH transcription factor 1 3q28-q29 - - (564) 

HHEX Haematopoietically expressed homeobox 10q23.33 (389, 391, 

394-397, 

400, 410, 

413, 443) 

(401) - 

HMG20A High mobility group 20A 15q24 (626) - - 

HMGA2 High mobility group AT-hook 2 12q15 (450, 487) - - 

HNF1A HNF1 homeobox A 12q24.2 (446-450) (434) - 

http://www.ncbi.nlm.nih.gov/gene/2262
http://www.ncbi.nlm.nih.gov/gene/2887
http://www.ncbi.nlm.nih.gov/gene/2888
http://www.ncbi.nlm.nih.gov/gene/2897
http://www.ncbi.nlm.nih.gov/gene/2904
http://www.ncbi.nlm.nih.gov/gene/2869
http://www.ncbi.nlm.nih.gov/gene/2913
http://www.ncbi.nlm.nih.gov/gene/3030
http://www.ncbi.nlm.nih.gov/gene/10021
http://www.ncbi.nlm.nih.gov/gene/3068
http://www.ncbi.nlm.nih.gov/gene/10363
http://www.ncbi.nlm.nih.gov/gene/8091
http://www.ncbi.nlm.nih.gov/gene/3172
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Table 2.3 Summary 416 genes found in dissertation literature review to be associated with type 2 diabetes, gestational diabetes 

mellitus, or obesity  related to obesity and/or diabetes mellitus (Cont.). 

 

Gene ID Gene name Chromosome T2DM1 GDM2 Obesity 

HNF1B Hepatocyte nuclear factor 1-beta 17q12 (356, 432, 

433, 450) 

(404) - 

HNF4A Hepatocyte nuclear factor 4-alpha 20q13.12 (450, 626) - - 

HOXB1 Homeobox B1 17q21.3 - - (582) 

HOXB5 Homeobox B5 17q21.3 - - (650) 

HOXC13 Homeobox C13 12q13.3 - - (555) 

HPSE2 Heparanase 2 (inactive) 10q23-q24 (616) -  

HSPA1B Heat shock 70kDa protein 1B 6p21.3 - - (547) 

HTR2A 5-hydroxytryptamine (serotonin) receptor 2A, G 

protein-coupled 

13q14-q21 - - (621) 

IDE Insulin-degrading enzyme 10q23-q25 (651) (402) - 

IFI30 Interferon, gamma-inducible protein 30 19p13.1 - (500) - 

IGKC Immunoglobulin kappa constant 2p12 (652) - - 

IGF2BP2 Insulin-like growth factor 2mRNA binding protein 

2 

3q27.2 (391, 394, 

395, 398-

400, 410, 

411, 461) 

(402, 403, 

462) 

- 

IL10 Interleukin-10 1q31-q32 (467) (468) (471) 

IL18RAP Interleukin 18 receptor accessory protein 2q12 - - (564) 

IL1β Interleukin-1 beta 2q14 (653, 654) - - 

IL1R1 Interleukin 1 receptor, type I 2q12 - - (564) 

IL1RN Interleukin-1 receptor antagonist 2q14.2 (654, 655) - - 

IL4 Interleukin-4 5q31.1 (655, 656) - - 

IL6 Interleukin-6 7p21 (449, 544, 

657, 658) 

- (375, 544, 

659) 

http://www.ncbi.nlm.nih.gov/gene/3172
http://www.ncbi.nlm.nih.gov/gene/3172
http://www.ncbi.nlm.nih.gov/gene/3211
http://www.ncbi.nlm.nih.gov/gene/3215
http://www.ncbi.nlm.nih.gov/gene/3229
http://www.ncbi.nlm.nih.gov/gene/60495
http://www.ncbi.nlm.nih.gov/gene/3304
http://www.ncbi.nlm.nih.gov/gene/3356
http://www.ncbi.nlm.nih.gov/gene/3416
http://www.ncbi.nlm.nih.gov/gene/10437
http://www.ncbi.nlm.nih.gov/gene/3514
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Table 2.3 Summary 416 genes found in dissertation literature review to be associated with type 2 diabetes, gestational diabetes 

mellitus, or obesity  related to obesity and/or diabetes mellitus (Cont.). 

Gene ID Gene name Chromosome T2DM1 GDM2 Obesity 

IL6ST Interleukin 6 signal transducer 5q11.2 - - (564) 

INHA Inhibin, alpha 2q35 - (500) - 

INS Insulin 11p15.5 - (384) - 

IRF5 Interferon regulatory factor 5 7q32 - - (629) 

IRS1 Insulin receptor substrate-1 2q36 (474, 475, 

480) 

(384, 477-

479) 

(481) 

IVNS1ABP Influenza virus NS1A binding protein 1q25.1-q31.1 - - (573) 

JAZF1 JAZF zinc finger 1 7p15.2-p15.1 (409, 609, 

651) 

- - 

JUN Jun proto-oncogene 1p32-p31 - - (564) 

KCND2 Potassium channel, voltage gated Shal related 

subfamily D, member 2 

7q31 (599) - - 

KCNIP3 Kv channel interacting protein 3, calsenilin 2q21.1 (651) (500) - 

KCNJ11 Potassium channel, inwardly rectifying subfamily 

J, member 11 

11p15.1 (389, 397, 

400, 410, 

411, 461) 

(482) - 

KCNK16 Potassium channel, two pore domain subfamily K, 

member 16 

6p21.2-p21.1 (356, 639) - - 

KCNQ1 Potassium channel, voltage gated KQT-like 

subfamily Q, member 1 

11p15.5-p15.4 (489) (491-494) - 

KCTD15 Potassium channel tetramerization domain 

containing 15 

19q13.11 - - (569) 

KCTD8 Potassium channel tetramerization domain 

containing 8 

4p13 (611, 647) - - 

KIF1C Kinesin family member 1C 17p13.2 - (500) - 

http://www.ncbi.nlm.nih.gov/gene/3623
http://www.ncbi.nlm.nih.gov/gene/3630
http://www.ncbi.nlm.nih.gov/gene/3663
http://www.ncbi.nlm.nih.gov/gene/10625
http://www.ncbi.nlm.nih.gov/gene/221895
http://www.ncbi.nlm.nih.gov/gene/30818
http://www.ncbi.nlm.nih.gov/gene/83795
http://www.ncbi.nlm.nih.gov/gene/79047
http://www.ncbi.nlm.nih.gov/gene/386617
http://www.ncbi.nlm.nih.gov/gene/10749
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Table 2.3 Summary 416 genes found in dissertation literature review to be associated with type 2 diabetes, gestational diabetes 

mellitus, or obesity  related to obesity and/or diabetes mellitus (Cont.). 

 

Gene ID Gene name Chromosome T2DM1 GDM2 Obesity 

KLF9 Kruppel-like factor 9 9q13 - - (405) 

KLF14 Kruppel-like factor 14 7q32.3 (450) - - 

KLHL32 Kelch-like family member 32 6q16.1 - - (440) 

LEP Leptin 7q31.3 (498) (660, 661) (501-503) 

LEPR Leptin receptor 1p31 (507, 508) - (498, 509, 

510) 

LIMCH1 LIM and calponin homology domains 1 4p13 - - (582) 

LINGO2 Leucine rich repeat and Ig domain containing 2 9p21.2 (616) - (569) 

LPIN1 Lipin 1 2p25.1 - - (625) 

LPL Lipoprotein lipase 8p22 - - (628) 

LPP LIM domain containing preferred translocation 

partner in lipoma 

3q28 (575) - - 

LRP1B Low density lipoprotein receptor-related protein 

1B 

2q21.2 - - (569, 646) 

LTA Lymphotoxin alpha 6p21.3 (397, 662) - - 

LY86 Lymphocyte antigen 86 6p25.1 - - (555) 

LYPLAL1 Lysophospholipase-like 1 1q41 - - (555) 

MARCH4 Membrane-associated ring finger (C3HC4) 4, E3 

ubiquitin protein ligase 

2q35 - - (582) 

MAEA Macrophage erythroblast attacher 4p16.3 (663) - - 

MAGEA9 Melanoma antigen family A9 Xq28 - (500) - 

MAP2K5 Mitogen-activated protein kinase kinase 5 15q23 - - (569, 591) 

MAPRE2 Microtubule-associated protein, RP/EB family, 

member 2 

18q12.1 (664) - - 

MATN3 Matrilin 3 2p24-p23 - - (582, 591) 

http://www.ncbi.nlm.nih.gov/gene/136259
http://www.ncbi.nlm.nih.gov/gene/114792
http://www.ncbi.nlm.nih.gov/gene/22998
http://www.ncbi.nlm.nih.gov/gene/158038
http://www.ncbi.nlm.nih.gov/gene/23175
http://www.ncbi.nlm.nih.gov/gene/4023
http://www.ncbi.nlm.nih.gov/gene/4026
http://www.ncbi.nlm.nih.gov/gene/53353
http://www.ncbi.nlm.nih.gov/gene/4049
http://www.ncbi.nlm.nih.gov/gene/9450
http://www.ncbi.nlm.nih.gov/gene/127018
http://www.ncbi.nlm.nih.gov/gene/57574
http://www.ncbi.nlm.nih.gov/gene/10296
http://www.ncbi.nlm.nih.gov/gene/4108
http://www.ncbi.nlm.nih.gov/gene/5607
http://www.ncbi.nlm.nih.gov/gene/4148
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Table 2.3 Summary 416 genes found in dissertation literature review to be associated with type 2 diabetes, gestational diabetes 

mellitus, or obesity  related to obesity and/or diabetes mellitus (Cont.). 

 

 

  

Gene ID Gene name Chromosome T2DM1 GDM2 Obesity 

MBL2 Mannose-binding lectin (protein C) 2, soluble 10q11.2 - (665) - 

MCF2L2 MCF.2 cell line derived transforming sequence-

like 2 

3q27.1 (368) - - 

MC4R Melanocortin 4 receptor 18q22 (611) - (405, 428, 

440, 569, 

591, 666) 

MC5R Melanocortin 5 receptor 18p11.2 - - (667) 

MIF Macrophage migration inhibitory factor 

(glycosylation-inhibiting factor) 

22q11.23 - (500) - 

MINA MYC induced nuclear antigen 3q11.2 - - (582) 

MMADHC Methylmalonic aciduria (cobalamin deficiency) 

cblD type, with homocystinuria 

2q23.2 (611) - - 

MPHOSPH9 M-phase phosphoprotein 9 12q24.31 (575) - - 

MRC1 Mannose receptor, C type 1 10p12.33 - - (573, 629) 

MSH6 MutS homolog 6 2p16 (599) - - 

MSRA Methionine sulfoxide reductase A 8p23.1 (478, 668) - - 

MT1A Metallothionein 1A 16q13 (669) - - 

MTCH2 Mitochondrial carrier 2 11p11.2 - - (569) 

MTHFD1L Methylenetetrahydrofolate dehydrogenase 

(NADP+ dependent) 1-like 

6q25.1 (558) - (558) 

MTIF3 Mitochondrial translational initiation factor 3 13q12.2 - - (569) 

MTHFSD Methenyltetrahydrofolate synthetase domain 

containing 

16q24.1 (599) - - 

MTNR1A Melatonin receptor 1A 4q35.1 - (517) - 

http://www.ncbi.nlm.nih.gov/gene/4153
http://www.ncbi.nlm.nih.gov/gene/23101
http://www.ncbi.nlm.nih.gov/gene/4160
http://www.ncbi.nlm.nih.gov/gene/4161
http://www.ncbi.nlm.nih.gov/gene/4282
http://www.ncbi.nlm.nih.gov/gene/84864
http://www.ncbi.nlm.nih.gov/gene/27249
http://www.ncbi.nlm.nih.gov/gene/10198
http://www.ncbi.nlm.nih.gov/gene/4360
http://www.ncbi.nlm.nih.gov/gene/2956
http://www.ncbi.nlm.nih.gov/gene/4482
http://www.ncbi.nlm.nih.gov/gene/4489
http://www.ncbi.nlm.nih.gov/gene/23788
http://www.ncbi.nlm.nih.gov/gene/25902
http://www.ncbi.nlm.nih.gov/gene/219402
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Table 2.3 Summary 416 genes found in dissertation literature review to be associated with type 2 diabetes, gestational diabetes 

mellitus, or obesity  related to obesity and/or diabetes mellitus (Cont.). 

 

Gene ID Gene name Chromosome T2DM1 GDM2 Obesity 

MTNR1B Melatonin receptor 1B 11q21-q22 (514, 517, 

518) 

(402, 477, 

516, 519) 

- 

MYT1L Myelin transcription factor 1-like 2p25.3 - - (582) 

NAA25 N(alpha)-acetyltransferase 25, NatB auxiliary 

subunit 

12q24.13 - - (573) 

NAP5 Non-intrinsic ABC protein 5 chromosome: 

1 

- - (582) 

NCKAP5 NCK-associated protein 5 2q21.2 (599) - - 

NCOA1 Nuclear receptor coactivator 1 2p23 - - (564) 

NEGR1 Neuronal growth regulator 1 1p31.1 - - (569, 634) 

NEUROD1 Neuronal differentiation 1 2q32 (433, 449) - - 

NEUROG3 Neurogenin 3 10q21.3 (670) - - 

NFE2L3 Nuclear factor, erythroid 2-like 3 7p15.2 - - (555) 

NKX2-2 NK2 homeobox 2 20p11.22 (356) - - 

NKX6-1 NK6 homeobox 1 4q21.33 (356) - - 

NOTCH2 Notch 2 1p13-p11 (609, 610) - - 

NPC1 Niemann-Pick disease, type C1 18q11.2 - - (428) 

NPY Neuropeptide Y 7p15.1 - - (509, 623) 

NPY1R Neuropeptide Y receptor Y1 4q32.2 - - (621, 624) 

NPY2R Neuropeptide Y receptor Y2 4q31 - - (386, 671) 

NPY5R Neuropeptide Y receptor Y5 4q32.2 - - (621) 

NRF1 Nuclear respiratory factor 1 7q32 (672) - - 

NRP1 Neuropilin 1 10p12 (599) - - 

NRXN1 Neurexin 1 2p16.3 - - (582) 

NRXN3 Neurexin 3 14q31 - - (569, 582) 

http://www.ncbi.nlm.nih.gov/gene/23040
http://www.ncbi.nlm.nih.gov/gene/80018
http://www.ncbi.nlm.nih.gov/gene/843474
http://www.ncbi.nlm.nih.gov/gene/344148
http://www.ncbi.nlm.nih.gov/gene/257194
http://www.ncbi.nlm.nih.gov/gene/9603
http://www.ncbi.nlm.nih.gov/gene/4821
http://www.ncbi.nlm.nih.gov/gene/4825
http://www.ncbi.nlm.nih.gov/gene/4853
http://www.ncbi.nlm.nih.gov/gene/4864
http://www.ncbi.nlm.nih.gov/gene/4852
http://www.ncbi.nlm.nih.gov/gene/4886
http://www.ncbi.nlm.nih.gov/gene/4889
http://www.ncbi.nlm.nih.gov/gene/8829
http://www.ncbi.nlm.nih.gov/gene/9378
http://www.ncbi.nlm.nih.gov/gene/9369
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Table 2.3 Summary 416 genes found in dissertation literature review to be associated with type 2 diabetes, gestational diabetes 

mellitus, or obesity  related to obesity and/or diabetes mellitus (Cont.). 

 

Gene ID Gene name Chromosome T2DM1 GDM2 Obesity 

NUDT3 Nudix (nucleoside diphosphate linked moiety X)-

type motif 3 

6p21.2 - - (569) 

OLFM4 Olfactomedin 4 13q14.3 - - (646, 650) 

OR13D1 Olfactory receptor, family 13, subfamily D, member 

1 

9q31.1 (616) - (440) 

OSTF1 Osteoclast stimulating factor 1 9q13-q21.2 - - (582) 

OVCH2 Ovochymase 2 (gene/pseudogene) 11p15.4 - - (582) 

PALLD Palladin, cytoskeletal associated protein 4q32.3 - - (573) 

P2RX4 Purinergic receptor P2X, ligand gated ion channel, 4 12q24.32 - - (673) 

PANK4 Pantothenate kinase 4 1p36.32 (617) - - 

PARD3B Par-3 family cell polarity regulator beta 2q33.3 - - (582) 

PCDH20 Protocadherin 20 13q21 - - (582) 

PCK1 Phosphoenolpyruvate carboxykinase 1 (soluble) 20q13.31 (449) - - 

PCSK1 Proprotein convertase subtilisin/kexin type 1 5q15-q21 - - (591, 674, 

675) 

PCSK2 Proprotein convertase subtilisin/kexin type 2 20p11.2 (676) - - 

PDX1 Pancreatic and duodenal homeobox 1 13q12.1 (432) - - 

PEPD Peptidase D 19q13.11 (356, 639) - - 

PFKFB3 6-phosphofructo-2-kinase/fructose-2,6-

biphosphatase 3 

10p15.1 - - (629) 

PHLDB1 Pleckstrin homology-like domain, family B, 

member 1 

11q23.3 (616) - - 

PKHD1 Polycystic kidney and hepatic disease 1 6p12.2 - - (582) 

PKP1 Plakophilin 1 1q32 - - (582) 

http://www.ncbi.nlm.nih.gov/gene/10562
http://www.ncbi.nlm.nih.gov/gene/26578
http://www.ncbi.nlm.nih.gov/gene/341277
http://www.ncbi.nlm.nih.gov/gene/23022
http://www.ncbi.nlm.nih.gov/gene/117583
http://www.ncbi.nlm.nih.gov/gene/64881
http://www.ncbi.nlm.nih.gov/gene/5105
http://www.ncbi.nlm.nih.gov/gene/5126
http://www.ncbi.nlm.nih.gov/gene/5184
http://www.ncbi.nlm.nih.gov/gene/5314
http://www.ncbi.nlm.nih.gov/gene/5317
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Table 2.3 Summary 416 genes found in dissertation literature review to be associated with type 2 diabetes, gestational diabetes 

mellitus, or obesity  related to obesity and/or diabetes mellitus (Cont.). 

 

Gene ID Gene name Chromosome T2DM1 GDM2 Obesity 

PLA2G16 Phospholipase A2, group XVI 11q12.3 - (500) - 

PLA2G1B Phospholipase A2, group IB (pancreas) 12q24.31 - - (673) 

PLIN2 Perilipin 2 9p22.1 - (500) - 

PMEPA1 Prostate transmembrane protein, androgen induced 

1 

20q13.31-

q13.33 

- - (629) 

PMS2P3 PMS1 homolog 2, mismatch repair system 

component pseudogene 3 

7q11.23 - - (637) 

POC5 POC5 centriolar protein 5q13.3 - - (569, 582) 

POLG2 Polymerase (DNA directed), gamma 2, accessory 

subunit 

17q - (500) - 

PON1 Paraoxonase 1 7q21.3 (559) - (559) 

PPARA Peroxisome proliferator-activated receptor alpha 22q13.31 - (462) - 

PPARD Peroxisome proliferator-activated receptor delta 6p21.2 - - (677) 

PPARG Peroxisome proliferator-activated receptor gamma 3p25 (396, 397, 

400, 411, 

461, 523) 

(524) (526) 

PPARGC1A Peroxisome proliferator-activated receptor gamma, 

coactivator 1 alpha 

4p15.1 (365) - (625) 

PPIB Peptidylprolyl isomerase B (cyclophilin B) 15q21-q22 - (500) - 

PPP1R3A Protein phosphatase 1, regulatory subunit 3A 7q31.1 (652) - - 

PPP1R3B Protein phosphatase 1, regulatory subunit 3B 8p23.1 (652) - - 

PRC1 Protein regulator of cytokinesis 1 15q26.1 (450) - - 

PRKD1 Protein kinase D1 14q11 (647) - (569, 646) 

PRKG2 Protein kinase, cGMP-dependent, type II 4q13.1-q21.1 (599) - - 

PRLR Prolactin receptor 5p13.2 - (678) - 

http://www.ncbi.nlm.nih.gov/gene/11145
http://www.ncbi.nlm.nih.gov/gene/123
http://www.ncbi.nlm.nih.gov/gene/134359
http://www.ncbi.nlm.nih.gov/gene/11232
http://www.ncbi.nlm.nih.gov/gene/5465
http://www.ncbi.nlm.nih.gov/gene/10891
http://www.ncbi.nlm.nih.gov/gene/5479
http://www.ncbi.nlm.nih.gov/gene/5506
http://www.ncbi.nlm.nih.gov/gene/79660
http://www.ncbi.nlm.nih.gov/gene/9055
http://www.ncbi.nlm.nih.gov/gene/5593
http://www.ncbi.nlm.nih.gov/gene/5618
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Table 2.3 Summary 416 genes found in dissertation literature review to be associated with type 2 diabetes, gestational diabetes 

mellitus, or obesity  related to obesity and/or diabetes mellitus (Cont.). 

 

Gene ID Gene name Chromosome T2DM1 GDM2 Obesity 

PROCR Protein C receptor, endothelial 20q11.2 - (500) - 

PROX1 Prospero homeobox 1 1q41 (618) - - 

PSMD6 Proteasome 26S subunit, non-ATPase 6 3p14.1 (356, 449, 

639) 

- - 

PTBP2 Polypyrimidine tract binding protein 2 1p21.3 - - (569) 

PTDSS2 Phosphatidylserine synthase 2 11p15.5 - - (594) 

PTER Phosphotriesterase related 10p12 - - (428) 

PTPRD Protein tyrosine phosphatase, receptor type, D 9p23-p24.3 (490) - - 

PYY Peptide YY 17q21.1 - - (671) 

QPCTL Glutaminyl-peptide cyclotransferase-like 19q13.32 - - (569) 

RALGPS2 Ral GEF with PH domain and SH3 binding motif 2 1q25.2 (616) - - 

RASGRP1 RAS guanyl releasing protein 1 (calcium and 

DAG-regulated) 

15q14 (649) - - 

RAPGEF1 Rap guanine nucleotide exchange factor (GEF) 1 9q34.3 (672) - - 

RBFOX1 RNA binding protein, fox-1 homolog (C. elegans) 

1 

16p13.3 - - (679) 

RBMS1 RNA binding motif, single stranded interacting 

protein 1 

2q24.2 (680) - - 

RFNG RFNG O-fucosylpeptide 3-beta-N-

acetylglucosaminyltransferase 

17q25 - (500) - 

RIMS1 Regulating synaptic membrane exocytosis 1 6q12-q13 (599) - - 

RNASE4 Ribonuclease, RNase A family, 4 14q11 - (500) (573) 

RNF13 Ring finger protein 13 3q25.1 - - (629) 

RNF138 Ring finger protein 138, E3 ubiquitin protein ligase 18q12.1 (433) - (582) 

RNLS Renalase, FAD-dependent amine oxidase 10q23.31 (599) - - 

http://www.ncbi.nlm.nih.gov/gene/10544
http://www.ncbi.nlm.nih.gov/gene/5629
http://www.ncbi.nlm.nih.gov/gene/9861
http://www.ncbi.nlm.nih.gov/gene/58155
http://www.ncbi.nlm.nih.gov/gene/81490
http://www.ncbi.nlm.nih.gov/gene/9317
http://www.ncbi.nlm.nih.gov/gene/5789
http://www.ncbi.nlm.nih.gov/gene/54814
http://www.ncbi.nlm.nih.gov/gene/10125
http://www.ncbi.nlm.nih.gov/gene/54715
http://www.ncbi.nlm.nih.gov/gene/5937
http://www.ncbi.nlm.nih.gov/gene/5986
http://www.ncbi.nlm.nih.gov/gene/22999
http://www.ncbi.nlm.nih.gov/gene/6038
http://www.ncbi.nlm.nih.gov/gene/11342
http://www.ncbi.nlm.nih.gov/gene/51444
http://www.ncbi.nlm.nih.gov/gene/55328
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Table 2.3 Summary 416 genes found in dissertation literature review to be associated with type 2 diabetes, gestational diabetes 

mellitus, or obesity  related to obesity and/or diabetes mellitus (Cont.). 

 

 

  

Gene ID Gene name Chromosome T2DM1 GDM2 Obesity 

RORA RAR-related orphan receptor A 15q22.2 (616) - - 

RPL27A Ribosomal protein L27a 11p15 - - (569) 

RPS29 Ribosomal protein S29 14q - (500) - 

RSPO3 R-spondin 3 6q22.33 - - (555) 

SASH1 SAM and SH3 domain containing 1 6q24.3 (664) - - 

SAMD12 Sterile alpha motif domain containing 12 8q24.12 (599) - - 

SCG3 Secretogranin III 15q21 - - (637) 

SDCCAG8 Serologically defined colon cancer antigen  81q43 - - (666) 

SDF2L1 Stromal cell-derived factor 2-like 1 22q11.21 (616) - - 

SEC16B SEC16 homolog B, endoplasmic reticulum export 

factor 

1q25.2 - - (405, 440, 

569, 591, 

646) 

SGCG Sarcoglycan, gamma (35kDa dystrophin-

associated glycoprotein) 

13q12 (681) - - 

SH2B1 SH2B adaptor protein 1 16p11.2 (419) - (569, 634, 

682) 

SH3BGRL SH3 domain binding glutamate-rich protein like Xq13.3 - - (573) 

SIDT1 SID1 transmembrane family, member 1 3q13.2 (599) - - 

SLC15A4 Solute carrier family 15 (oligopeptide transporter), 

member 4 

12q24.32 (368) - - 

SLC24A3 Solute carrier family 24 

(sodium/potassium/calcium exchanger), member 3 

20p13 (616) - - 

SLC2A1 Solute carrier family 2 (facilitated glucose 

transporter), member 1 

1p34.2 (573, 683) - - 

http://www.ncbi.nlm.nih.gov/gene/6235
http://www.ncbi.nlm.nih.gov/gene/84870
http://www.ncbi.nlm.nih.gov/gene/401474
http://www.ncbi.nlm.nih.gov/gene/10806
http://www.ncbi.nlm.nih.gov/gene/23753
http://www.ncbi.nlm.nih.gov/gene/89866
http://www.ncbi.nlm.nih.gov/gene/6445
http://www.ncbi.nlm.nih.gov/gene/25970
http://www.ncbi.nlm.nih.gov/gene/6451
http://www.ncbi.nlm.nih.gov/gene/54847
http://www.ncbi.nlm.nih.gov/gene/121260
http://www.ncbi.nlm.nih.gov/gene/57419
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Table 2.3 Summary 416 genes found in dissertation literature review to be associated with type 2 diabetes, gestational diabetes 

mellitus, or obesity  related to obesity and/or diabetes mellitus (Cont.). 

 

Gene ID Gene name Chromosome T2DM1 GDM2 Obesity 

SLC2A2 Solute carrier family 2 (facilitated glucose 

transporter), member 2 

3q26.1-q26.2 (449, 672) - - 

SLC30A8 Solute carrier family 30 (zinc transporter), member 8 8q24.11 (389, 391, 

396, 400, 

409, 411, 

418, 443, 

461) 

(401) - 

SLC39A8 Solute carrier family 39 (zinc transporter), member 8 4q24 - - (569, 646) 

SLC44A3 Solute carrier family 44, member 3 1p21.3 (664) - - 

SMPD1 Sphingomyelin phosphodiesterase 1, acid lysosomal 11p15.4-

p15.1 

- (500) - 

SNHG11 Small nucleolar RNA host gene 11 20q11.23 - - (573) 

SOCS3 Suppressor of cytokine signaling 3 17q25.3 - - (621) 

SOD1 Superoxide dismutase 1, soluble 21q22.11 (684) - - 

SORBS1 Sorbin and SH3 domain containing 1 10q23.33 (616) - - 

SPCS3 Signal peptidase complex subunit 3 4q34.2 - (500) - 

SPECC1 Sperm antigen with calponin homology and coiled-

coil domains 1 

17p11.2 (599, 611) - - 

SPSB3 SplA/ryanodine receptor domain and SOCS box 

containing 3 

16p13.3 - - (573) 

SREBF1 Sterol regulatory element binding transcription 

factor 1 

17p11.2 - - (685) 

SRI Sorcin 7q21.1 - (500) - 

SRR Serine racemase 17p13 (490) (403) - 

SRRT Serrate, RNA effector molecule 7q21 - (500) - 

http://www.ncbi.nlm.nih.gov/gene/6514
http://www.ncbi.nlm.nih.gov/gene/64116
http://www.ncbi.nlm.nih.gov/gene/126969
http://www.ncbi.nlm.nih.gov/gene/6609
http://www.ncbi.nlm.nih.gov/gene/128439
http://www.ncbi.nlm.nih.gov/gene/6647
http://www.ncbi.nlm.nih.gov/gene/60559
http://www.ncbi.nlm.nih.gov/gene/90864
http://www.ncbi.nlm.nih.gov/gene/63826
http://www.ncbi.nlm.nih.gov/gene/51593
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Table 2.3 Summary 416 genes found in dissertation literature review to be associated with type 2 diabetes, gestational diabetes 

mellitus, or obesity  related to obesity and/or diabetes mellitus (Cont.). 

 

Gene ID Gene name Chromosome T2DM1 GDM2 Obesity 

ST3GAL6 ST3 beta-galactoside alpha-2,3-sialyltransferase 6 3q12.1 - - (573) 

ST6GAL1 ST6 beta-galactosamide alpha-2,6-sialyltranferase 1 3q27.3 (626) - - 

STAT3 Signal transducer and activator of transcription 3 

(acute-phase response factor) 

17q21.31 - - (621) 

STEAP4 STEAP family member 4 7q21.12 - (500) - 

STRIP1 Striatin interacting protein 1 1p13.3 - - (582) 

SV2C Synaptic vesicle glycoprotein 2C 5q13.3 - - (582) 

TAZ Tafazzin Xq28 - - (629) 

TCEB1 Transcription elongation factor B (SIII), polypeptide 

1 (15kDa, elongin C) 

8q21.11 (599) - (607) 

TCF7L2 Transcription factor 7-like 2 10q25.3 (389, 394, 

396, 397, 

399, 400, 

409, 412-

414, 443, 

461, 487, 

532) 

(401, 404, 

421, 525, 

533, 534) 

 

TFAP2B Transcription factor AP-2 beta (activating enhancer 

binding protein 2 beta) 

6p12 - - (569, 591, 

646) 

THSD7B Thrombospondin, type I, domain containing 7B 2q22.1 - - - 

TLE4 Transducin-like enhancer of split 4 9q21.31 (450) - - 

TMBIM6 Transmembrane BAX inhibitor motif containing 6 12q13.12 - - (436, 634) 

TMEFF2 Transmembrane protein with EGF-like and two 

follistatin-like domains 2 

2q32.3 (397, 616) - - 

TMEM101 Transmembrane protein 101 17q21.31 - - (573) 

http://www.ncbi.nlm.nih.gov/gene/10402
http://www.ncbi.nlm.nih.gov/gene/6480
http://www.ncbi.nlm.nih.gov/gene/79689
http://www.ncbi.nlm.nih.gov/gene/490117
http://www.ncbi.nlm.nih.gov/gene/22987
http://www.ncbi.nlm.nih.gov/gene/6901
http://www.ncbi.nlm.nih.gov/gene/6921
http://www.ncbi.nlm.nih.gov/gene/7091
http://www.ncbi.nlm.nih.gov/gene/7009
http://www.ncbi.nlm.nih.gov/gene/23671
http://www.ncbi.nlm.nih.gov/gene/84336
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Table 2.3 Summary 416 genes found in dissertation literature review to be associated with type 2 diabetes, gestational diabetes 

mellitus, or obesity  related to obesity and/or diabetes mellitus (Cont.). 

 

Gene ID Gene name Chromosome T2DM1 GDM2 Obesity 

TMEM154 Transmembrane protein 154 4q31.3 (575) - - 

TMEM160 Transmembrane protein 160 19q13.32 - - (569) 

TMEM163 Transmembrane protein 163 2q21.3 (686) - (582) 

TMEM18 Transmembrane protein 18 2p25.3 (419) - (569, 634, 

646, 666, 

687) 

TNF-α Tumor necrosis factor alpha 6p21.3 (449, 538, 

540, 545) 

(541, 542) (375, 546) 

TNNI3K TNNI3 interacting kinase 1p31.1 - - (569, 646) 

TP53 Tumor protein p53 17p13.1 (672) - - 

TP53INP1 Tumor protein p53 inducible nuclear protein 1 8q22 (450) - - 

TRPS1 Trichorhinophalangeal syndrome I 8q24.12 (599) - - 

TSPAN8 Tetraspanin 8 12q14.1-q21.1 (610) - - 

TUSC3 Tumor suppressor candidate 3 8p22 - (500) - 

UBE2E2 Ubiquitin-conjugating enzyme E2E 2 3p24.2 (399) (688) - 

UCK2 Uridine-cytidine kinase 2 1q23 - (500) - 

UCK3 None 3p24.2 - (500) - 

UCP1 Uncoupling protein 1  4q28-q31 - - (625, 689) 

UCP2 Uncoupling protein 2 (mitochondrial, proton 

carrier) 

11q13 - - (385, 628, 

685, 690) 

UTRN Utrophin 6q24 (616) - - 

UCP3 Uncoupling protein 3 (mitochondrial, proton 

carrier) 

11q13.4 (691) - (385, 628) 

UTS2 Urotensin 2 1p36 - (500, 692) - 

VLDLR very low density lipoprotein receptor 9p24 - - (624) 

http://www.ncbi.nlm.nih.gov/gene/201799
http://www.ncbi.nlm.nih.gov/gene/81615
http://www.ncbi.nlm.nih.gov/gene/129787
http://www.ncbi.nlm.nih.gov/gene/51086
http://www.ncbi.nlm.nih.gov/gene/94241
http://www.ncbi.nlm.nih.gov/gene/7227
http://www.ncbi.nlm.nih.gov/gene/7991
http://www.ncbi.nlm.nih.gov/gene/7325
http://www.ncbi.nlm.nih.gov/gene/7371
http://www.ncbi.nlm.nih.gov/gene/7350
http://www.ncbi.nlm.nih.gov/gene/7351
http://www.ncbi.nlm.nih.gov/gene/7402
http://www.ncbi.nlm.nih.gov/gene/7352
http://www.ncbi.nlm.nih.gov/gene/10911
http://www.ncbi.nlm.nih.gov/gene/7436
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Table 2.3 Summary 416 genes found in dissertation literature review to be associated with type 2 diabetes, gestational diabetes 

mellitus, or obesity  related to obesity and/or diabetes mellitus (Cont.). 

  

1T2DM, type 2 diabetes mellitus 
2GDM, gestational diabetes mellitus 

Genes associated with T2DM, GDM, and obesity base on human study 

Gene ID Gene name Chromosome T2DM1 GDM2 Obesity 

VPS13B Vacuolar protein sorting 13 homolog B (yeast) 8q22.2 - - (637) 

VPS26A VPS26 retromer complex component A 10q21.1 (626) - - 

WFS1 Wolfram syndrome 1 

 

4p16.1 (409, 418, 

693) 

- - 

WWOX WW domain containing oxidoreductase 16q23 (639) - - 

ZBED3 Zinc finger, BED-type containing 3 5q13.3 (450) - - 

ZC3H4 Zinc finger CCCH-type containing 4 19q13.32 - - (582) 

ZFAND3 Zinc finger, AN1-type domain 3 6p21.2 (356, 639) - - 

ZFAND6 Zinc finger, AN1-type domain 6 15q25.1 (450) - - 

ZNF169 Zinc finger protein 169 9q22.32 - - (405) 

ZNF608 Zinc finger protein 608 5q23.2 - - (569) 

ZNF718 Zinc finger protein 718 4p16.3 - - (582) 

http://www.ncbi.nlm.nih.gov/gene/9559
http://www.ncbi.nlm.nih.gov/gene/51741
http://www.ncbi.nlm.nih.gov/gene/84327
http://www.ncbi.nlm.nih.gov/gene/23211
http://www.ncbi.nlm.nih.gov/gene/60685
http://www.ncbi.nlm.nih.gov/gene/54469
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CHAPTER 3 

 

THE ASSOCIATION BETWEEN MATERNAL PRE-PREGNANCY WEIGHT AND  

 

MATERNAL DIABETES AND OROFACIAL CLEFTS IN THE UTAH POPULATION 

 

 

3.1 Abstract 

Background: The inconsistent association between pre-pregnancy weight and 

maternal diabetes and risk of orofacial clefts has been reported in a few studies. 

Objective: To determine the association between maternal pre-pregnancy weight 

and maternal diabetes mellitus and the risk of orofacial clefts (OFCs) in a population-

based case-control study of birth certificate data in Utah. 

Methods: Cases of OFCs during 1995-2011 were ascertained by the state-wide 

Utah birth defects registry. Controls were randomly selected from Utah birth certificates 

at a ratio of 4:1 to cases, matched by birth month and year. Odds ratios (ORs) and 95% 

confidence intervals (CIs) were calculated to estimate the relative risk for cleft subtypes 

associated with maternal pre-pregnancy weight and maternal diabetes. Multiple logistic 

regression analysis was used to adjust for the potential confounding effects of maternal 

age, education, body mass index (BMI), depression, and maternal diabetes. Pre-existing 

diabetes, gestational diabetes mellitus (GDM), and all diabetes were evaluated as 

mediating variables in the association between maternal obesity and risk of OFCs. 

Results: Results are based on 1,451 live-born cases with registry diagnoses. 

Obesity increased risk of both non-isolated and isolated OFCs (adjusted odds ratios 

(aOR): 1.41, 95%CI: 1.07-1.87 and aOR: 1.23, 95% confidence interval (CI): 1.01-1.50, 

respectively). Underweight mothers had a reduced risk of cleft lip only (CLO) (aOR: 
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0.46, 95%CI: 0.24-0.88), and an increased risk of cleft palate only (CPO) (aOR: 1.50, 

95%CI: 1.04-2.16). Maternal depression increased risk of all OFCs (aOR: 1.31, 95%CI: 

1.00-1.73). Pre-existing diabetes increased risk of all OFCs (aOR: 2.19, 95% CI: 1.18-

4.09) with a larger effect for non-isolated OFCs (aOR: 3.83, 95%CI: 1.71-8.58) vs 

isolated OFCs (aOR: 1.54, 95%CI: 0.70-3.41). GDM mothers had an increased risk of all 

OFCs (aOR: 1.48, 95%CI: 1.05-2.09) with a larger effect for non-isolated OFCs (aOR: 

2.29, 95%CI: 1.41-3.72) vs isolated OFCs (aOR: 1.15, 95%CI: 0.75-1.77). Mediation 

analysis indicated that obesity had a direct effect of increasing the risk of OFCs without 

the mediating effect of known maternal diabetes. 

Conclusion: Extremes of maternal pre-pregnancy weight were associated with 

risk of OFCs in Utah with obese mothers having an increased risk of all types of OFCs, 

while underweight mothers having a decreased risk of CLO and increased risk of CPO. 

Maternal depression was also associated with OFC risk.  Both pre-existing and 

gestational diabetes were associated with OFC risk, with strongest effects for non-

isolated OFCs. Both stratification and mediation analyses suggest an effect of obesity on 

OFCs apart from known maternal diabetes. The growing epidemics of obesity and 

diabetes and the challenge of early detection and treatment of GDM underscore the 

public health importance of further research in this area. 

3.2 Introduction 

Orofacial clefts (OFCs) are congenital deformations of the lip, palate, or both. 

Genetic and environmental factors and interaction between both have been reported as 

the causes of OFCs.  OFCs are an important health issue in both developed and 
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developing countries. The global incidence of OFCs is one in every 500-2500 births 

depending on geographic location, racial and ethnic groups, maternal age, environmental 

exposures, and socioeconomic status (1). OFCs affect on average one in every 750 births 

in the United States and the highest incidence among states with state-wide birth defect 

registers is in Utah (1 in 450 births) (2).  

Maternal obesity increases health risks for both mother and child (3, 4). Maternal 

obesity has been associated with fetal malformations such as neural tube defects, 

congenital heart defects, and orofacial clefts (4). Obesity-related birth defect mechanisms 

include hyperglycemia, insulin resistance, and poor folate status (4, 5). Case-control 

studies (6-8) and a meta-analysis study (9) reported a positive association between 

maternal obesity and the occurrence of OFCs while other studies have not (10-12). 

However, the associations with various cleft phenotypes and the role of maternal 

underweight are less well studied. An international consortium of OFC case-control 

studies found associations between both maternal obesity and underweight risk of cleft 

palate with or without cleft lip, but not with cleft lip alone (13).   

Diabetes mellitus is a disorder of the regulation of blood glucose. Hyperglycemia 

is a characteristic of diabetes mellitus resulting from a defect in insulin secretion or 

insulin action or both (14). Diabetes mellitus also stimulates the production of adverse 

metabolic factors including ketone bodies, branched chain amino acid and advanced 

glycation end products and these factors may disrupt normal embryonic development (15, 

16). Maternal diabetes leads to altered expression levels of specific genes and increases 
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the variation of gene expression levels which may also disrupt embryonic development 

(17, 18).  

Human studies have reported associations between maternal diabetes and the risk 

of OFCs. Data from a large international consortium from the U.S., Denmark, and 

Norway confirmed that maternal diabetes increased the incidence of OFCs after adjusting 

for maternal age, education levels, multivitamin use, maternal BMI categories, and 

history of smoking (19). The Atlanta Birth Defects Case-Control Study (20) showed that 

being an insulin-dependent diabetic mother increased the risk of cleft palate. The data 

from the National Birth Defect Prevention Study (NBDPS) found that both pre-

gestational (type 1 or 2) and gestational diabetes mellitus increased the risk of isolated 

cleft lip with or without cleft palate (CL/P) and cleft palate only (CPO) (21). Moreover, 

two large studies reported that maternal diabetes increased the incidence of OFCs (19, 

22). However, another study from NBDPS did not find an association between gestation 

diabetes mellitus (GDM) and risk of cleft lip with cleft palate or cleft lip only (23). 

 The inconsistent association between pre-pregnancy weight and maternal 

diabetes and risk of OFCs has been reported in a few studies. Few studies have presented 

the association between maternal obesity and diabetes and risk of OFCs based on 

subtypes of clefts (non-isolated vs isolated and combinations of lip and palate). 

Moreover, there is no previous study that has reported the effect of maternal obesity on 

risk of OFCs mediated by maternal diabetes. The investigation of maternal weight and 

diabetes may confirm or provide additional information regarding OFC associations. 

Thus, this study aims to determine the association between pre-pregnancy weight and 
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maternal diabetes and risk of OFCs in the Utah population using a complete sample from 

a state-wide birth defects registry linked to birth certificates. 

3.3 Subjects and Methods 

3.3.1 Study design, population, and data sources 

The study design is a case-control study.  The study protocol was reviewed and 

approved by the institutional review boards of Utah State University (USU), the 

University of Utah, and the Utah Department of Health. 

Cases of OFCs were ascertained by the Utah Birth Defect Network (UBDN), 

operated by the Utah Department of Health (UDOH). UBDN, a statewide population-

based surveillance system, identifies all prenatal or postnatal major structural birth 

defects in fetuses and neonates (24). The OFC classifications used in the data analyses 

were based on the final UBDN diagnoses based on a review by a medical geneticist. OFC 

cases resulting from pregnancy outcomes (live birth, stillbirth, or pregnancy termination) 

were divided into cleft lip alone, cleft palate alone, cleft lip without cleft palate, and cleft 

lip with cleft palate and classified as isolated, syndromic, or multiple birth defect cases. 

The case mothers of a child with an OFC during 1995-2011 were linked to the Utah 

Population database (UPDB) (24). The UPDB provides information for research on 

genetics, epidemiology, demography, and public health. The database represents Utah’s 

population appearing in administrative records from the late 18th century to the present 

and receives annual updates from birth and death certificates, hospitalization and 

ambulatory surgery records, and driver licenses. Controls were randomly selected from 

Utah birth certificates at a ratio of 4:1 to live-born cases matched by birth month and 
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year. The anonymized identification numbers of cases and controls from UPDB were 

linked to the Utah Birth Certificate database. In addition, the UPDB provided information 

on OFC cases noted in fetal and neonatal death records. 

Utah birth certificate forms were revised in 1991, 1997, 2003, and 2009 and these 

were used to collect data on cases and controls born during 1995-2011. The birth 

certificate data consists of information on newborns (sex, date of birth, birth weight and 

length, and birthplaces) and their parents (race/ethnicity, ages, and marital status, and the 

number of children born to the mother, etc.), including delivery complications, maternal 

medical risk factors, congenital malformations, and birth injuries. 

Relevant changes in birth certificates were in the classification of maternal and 

paternal education, maternal alcohol consumption, maternal smoking, maternal medical 

risk factors, and notation of congenital anomalies. In the years of 1991- 2008, maternal 

and paternal education levels were recorded as the number of highest grades completed, 

and changed to be eight categories of the highest degree of school completed in 2009 (8th 

grade or less, 9th-12th grade, high school graduate, some college credit but no degree, 

associate degree, Bachelor’s degree, Master’s degree, and Doctorate or professional 

degree). Maternal smoking and alcohol consumption were recorded as average number of 

cigarettes per day and average number of drinks per week in each trimester of gestation. 

In 2009, a question about maternal tobacco use three months before pregnancy was added 

and a question on maternal alcohol use was deleted. Questions on history of gestational 

diabetes mellitus and pre-existing diabetes were added in 1997 in order to replace a more 

general question on unspecified diabetes. Many medical risk factors were added in 2009 
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including depression. Cleft lip, cleft palate, and cleft lip and palate were separately coded 

after 2008 on birth certificate instead of cleft lip/palate in previous forms under the 

question of congenital anomalies of child. Medical risk factors were noted primarily by 

text fields and ICD-9-CM codes.  Due to the non-specific question on diabetes mellitus 

on birth certificate forms during 1995-1996, these years were excluded from analyses. 

3.3.2 Statistical analysis 

The Statistical Package for Social Sciences (IBM SPSS) statistics version 22 for 

Windows was used for data analyses.  Descriptive analyses were conducted to determine 

the distribution of maternal characteristics (age, body mass index (BMI), smoking status, 

education level, and diabetic status) by OFC case-control status. Chi-square testing was 

used to assess the association between OFCs and categorical variables. Multivariable 

logistic regression was used to determine the odds ratio estimating the association 

between maternal BMI categories, diabetes mellitus, gestational diabetes mellitus, and 

depression and the risk of orofacial clefts with adjustment for potentially confounding 

variables. Stratified analyses were conducted to evaluate effect measure modification.  

Mediation analysis was conducted using the approach introduced by Vanderweele 

et al. (25). This approach is based on the counterfactual framework of mediation analysis 

(26), and extends mediation analysis for a dichotomous outcome with exposure-outcome 

confounders, mediator-outcome confounders, and exposure-mediator interaction. Pre-

gestational diabetes mellitus, GDM and hyperglycemia combined during pregnancy were 

considered as mediators of the association between maternal overweight and obesity and 

risk of OFCs. 
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3.4 Results 

A total of 1,750 cases of OFCs were ascertained from the UBDN including live 

births (n=1596, 91.2%), stillbirths (n=59, 3.4%), terminations (n=81, 4.6%), and 

spontaneous abortions (n=14, 0.8%)). 1,611 OFC live-born cases were linked to the birth 

certificate records; 139 cases were excluded from the case-control study because they 

were not live-births (n=136) or non-Utah maternal residences (n=3). Overall prevalence 

of OFCs based on the UBDN registry data, trended to decline over the period 2000-2011 

(average 2.09 per 1000 live births) and the decline appeared to be due to a decline in 

isolated OFCs while the prevalence of non-isolated OFCs appeared relatively constant 

(Figure 3.1). Birth certificates reported 77.6% OFC cases (n=1,250) determined by the 

UBDN registry (n=1,611) and the completeness of reporting improved from 71.1% 

during 1995 to 91.9% during 2011. 

Among OFC cases born during 1997-2011, non-isolated OFCs accounted for 

29.8% (n=432), isolated OFCs accounted for 70.2% (n=1091) of all OFC cases; 34.3% 

were cleft palate only (CPO) (n=497), 25.3% were cleft lip only (CLO) (n=367), and 

40.5% were cleft lip with cleft palate (CLP) (n=587).  

Mean of maternal age at birth of non-isolated cases but not isolated cases was 

higher than controls (27.65.9 years vs 27.15.5 years). There was no significant 

difference between controls and all OFCs cases in the mean of paternal age at birth of 

index child or parity. Maternal age greater than 35 years increased risk of non-isolated 

OFCs when compared with mother age of 20-35 years (OR: 1.62, 95% CI: 1.18-2.23). 

The association between paternal age and risk of OFCs was not found. There was no 
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association between mothers and fathers of age nineteen or younger and risk of OFCs 

(Table 3.2). Mothers of all OFCs and isolated OFCs had higher mean BMI than control 

mothers (Table 3.1). The prevalence of depression, pre-existing DM and GDM in both 

non-isolated and isolated OFCs were higher than controls.  

Higher maternal and paternal education levels (higher than bachelor degree vs 

high school diploma or less) were associated with a decreased risk of both all and isolated 

OFCs (maternal education; OR: 0.85, 95% CI: 0.73-0.98, p-trend = 0.03 and OR: 0.82, 

95% CI: 0.69-0.98, p-trend = 0.03 respectively and paternal education: OR: 0.76, 95% 

CI: 0.63-0.92, p-trend = 0.01 and OR: 0.75, 95% CI: 0.60-0.95, p-trend = 0.01 

respectively) (Table 3.2). The education associations appeared stronger for isolated OFCs 

compared to non-isolated OFCs.   

The birth certificate data for maternal smoking and alcohol consumption after 

1999 had missing rates over than 90%, thus, these data after 1999 were excluded from 

analysis. Mothers with depression had an increased risk of all OFCs (OR: 1.38; 95% CI: 

1.06-1.80) and the estimates were similar, but with wider confidence intervals for the 

sub-groups of non-isolated OFCs (OR: 1.60; 95% CI: 1.60 -2.43) (Table 3.2).  

Obesity (BMI > 30 kg/m2) compared to normal weight increased risk of all OFCs, 

non-isolated, and isolated OFCs with p-trends < 0.0001, 0.01, and 0.01, respectively 

(Table 3.2). The adjusted odds ratio for obese mothers (BMI ≥ 30 kg/m2) was 1.29 (95% 

CI: 1.09-1.53) for all OFCs, 1.41 (95% CI: 1.07-1.87) for non-isolated OFCs, and 1.23 

(95% CI: 1.01-1.50) for isolated OFCs when compared to mothers with normal BMI. 

Maternal underweight was associated with a decreased risk of isolated CLO (aOR 
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(adjusted odds ratio): 0.42; 95% CI: 0.20-0.85) and increased risk of all CPO (aOR: 1.50; 

95% CI: 1.04-2.16) after adjustment for maternal age, education, depression, and all 

diabetes (Table 3.3). The associations between maternal obesity and all, non-isolated, and 

isolated OFCs were only slightly less after adjustment for maternal age, education, 

depression, and all diabetes (Table 3.4). Linear regression analysis showed that the slope 

of prevalence of maternal obesity during 1997-2011increased every year for both OFC 

groups and controls. The slope of the regression line of case mothers was significantly 

higher than the slope of control mothers (p-value = 0.028) (Figure 3.2). 

Mother with pre-existing diabetes had an increased risk of all OFCs (aOR: 2.19; 

95% CI: 1.18-4.09) with a stronger effect for non-isolated OFCs (aOR: 3.83; 95% CI: 

1.71-8.58) vs isolated OFCs (aOR: 1.54; 95% CI: 0.70-3.41) when adjustment for 

maternal age, maternal education, depression, and BMI (Table 3.5). Based on cleft 

subtypes, pre-existing diabetes increased risk of non-isolated CLP, CL/P (cleft lip 

with/without cleft palate) and cleft palate with or without cleft lip (CP/L) (aOR: 6.23; 

95% CI: 2.31-16.81, aOR: 4.64; 95% CI: 1.74-12.40, and aOR: 4.41; 95% CI: 1.96-9.90, 

respectively). GDM mothers had an increased risk of all OFCs (aOR: 1.48, 95%CI: 1.05-

2.09) with a larger effect for non-isolated OFCs (aOR: 2.29, 95%CI: 1.41-3.72) vs 

isolated OFCs (aOR: 1.15, 95%CI: 0.75-1.77) (Table 3.6). Associations between GDM 

and risk of non-isolated CPO and CP/L were found (aOR: 2.91; 95% CI: 1.59-5.32, and 

aOR: 2.22; 95% CI: 1.32-3.73, respectively). All diabetes had an increased risk of all 

OFCs (aOR: 1.52; 95% CI: 1.14-2.04) with a stronger effect for non-isolated OFCs (aOR: 

2.38; 95% CI: 1.58-3.59) vs isolated OFCs (aOR: 1.18; 95% CI: 0.82-1.71) (Table 3.7).  
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In addition, all diabetes increased risk of non-isolated CPO, CLP, CL/P, and CP/L (aOR: 

2.71; 95% CI: 1.59-4.62, aOR: 2.08; 95% CI: 1.06-4.07, aOR: 2.05; 95% CI: 1.13-3.72 

and aOR: 2.43; 95% CI: 1.58-3.74, respectively) 

Mediation analyses adjusting for maternal age and education indicated that there 

are direct effects of maternal obesity on all, non-isolated, and isolated OFCs not mediated 

through maternal diabetes (OR: 1.31; 95% CI: 1.11-1.55, OR: 1.45; 95% CI: 1.09-1.92, 

OR: 1.25; 95% CI: 1.03-1.53, respectively) (Table 3.8). There was no apparent 

interaction between obesity and maternal diabetes. The odds ratio for the indirect 

(mediation) effect of pre-existing diabetes was 1.02 (95% CI: 1.00-1.04) for all OFCs and 

1.06 (95% CI: 1.01-1.12) for non-isolated OFCs. However, there was no apparent 

mediation effect of GDM and all DM on risk of OFCs (all, non-isolated, and non-non-

isolated OFCs). Stratified analyses based on logistic regression with the same covariates 

revealed similar associations between obesity and OFC risk for both non-diabetic (aOR: 

1.33; 95%CI: 1.12-1.57) and diabetic (aOR: 1.38; 95%CI: 0.67-2.85). Moreover, 

maternal diabetes increased risk of OFCs in both normal weight and obese mothers (aOR: 

1.45; 95% CI: 0.83-2.52 and aOR: 1.37; 95% CI: 0.86-2.19, respectively)   

3.5 Discussion 

This study found that obese mothers had an increased risk of both non-isolated 

and isolated OFCs, while underweight mothers had a decreased risk of CLO and an 

increased risk of CPO. An association between maternal depression and risk of OFCs was 

also found in this study.  In addition, mothers with pre-existing diabetes had an increased 
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risk for having a child with non-isolated CLP, CL/P, and CP/L, and GDM mothers were 

associated with non-isolated CPO and CP/L.  

The study was population-based and relatively robust against selection bias. OFC 

cases were drawn from the state-wide Utah birth defects registry, which provided 

exhaustive case-finding from multiple sources and determination of OFC diagnosis by 

medical geneticist review. Birth certificates were obtained for 99.7 percent of live-born 

registry cases. OFC cases that were not live-born were excluded from the case-control 

analysis because of the difficulty of selecting appropriate controls but were included in 

the estimates of overall rates of OFCs in Utah. Cleft diagnoses from birth certificate 

records included 77.6% of cases found by the registry over the entire study period, 

however the completeness of cleft diagnoses from birth certificate records tended to 

improve over time thus birth certificate diagnoses may be used to analyze OFC 

occurrence in areas that lack registries but that have high-quality completion of birth 

certificates. Data on maternal medical conditions (diabetes mellitus, GDM, depression, 

and hypertension) and potential confounders were obtained from birth certificate records, 

and these conditions are likely under-reported. We found a large amount of missing data 

on smoking and alcohol use, thus we were unable to control for the potential confounding 

by these factors. The prevalence of OFCs has been decreasing, yet the rate of OFC risk 

factors including obesity, and diabetes have been increasing. This indicates that only one 

environmental risk factor cannot explore or predict the OFC occurrence. 

This study found that underweight mothers had a significantly decreased risk of 

CLO, but increased risk of CPO. To our knowledge the protective effect of maternal 
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underweight on risk of CLO has not been previously reported and is inconsistent with the 

previous study by Kutbi et al (27), which reported that maternal underweight marginally 

increased risk of isolated CLO and CPO. The characteristic of underweight mothers in 

OFCs requires further study. Moreover, we found an increased risk of CPO, CLP, CL/P, 

and CP/L with maternal obesity, which is consistent with a previous study by Kutbi et al 

suggesting that obesity has a specific effect on palate formation but not lip formation 

(27). A recent meta-analysis by Blanco et al also presented that maternal obesity 

increased risk of CPO and CL/P (28).  

The association between maternal diabetes and risk of non-isolated OFCs is 

consistent with limited previous studies (19, 21). Correa et al. using the data from the 

National Birth Defect Prevention Study (NBDPS) during 1997-2003 showed an 

association between both pre-existing diabetes (type 1 or 2) and GDM and risk isolated 

OFCs, while only pre-existing diabetes was associated with syndromic OFCs (21). 

Correa et al. also reported higher estimates of odds ratios and wider confidence intervals 

than our Utah study (non-isolated CPO, OR: 10.73, 95% CI: 3.99-28.86 and non-isolated 

CL/P, OR: 8.07, 95% CI: 3.05-21.39). Data from a large international consortium of 

case-control studies from the U.S., Denmark, and Norway (19) found an association 

between GDM and syndromic OFCs and CPO. A prospective study by Moore et al (10) 

reported suggestive associations between pre-existing (type 1 or 2) and GDM and risk of 

OFCs but also with very wide confidence intervals that included 1.0 (prevalence ratios 

(PR): 8.9, 95% CI: 0.85-46.5; and PR: 2.6, 95% CI: 0.82-8.5, respectively).  
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The data on pre-existing diabetes and GDM in our Utah study are based on the 

birth certificate record and may be underreported. A study by DeSisto et al. (29) 

comparing prevalence of GDM in the United States from birth certificates and the 

Pregnancy Risk Assessment Monitoring System (PRAMS) reported that prevalence of 

GDM in Utah from PRAMS (6.4%) was higher than the prevalence from birth certificates 

(4.0%) in 2010.  A study by Owen-Gary and War reported that only 44.8% of the 

confirmed GDM cases had a GDM diagnosis in their medical records (30). The 

discrepancies among birth certificates, PRAMS, and medical records may result from 

under diagnosis and from poor quality of transcription or documenting medical record 

data on birth certificates. The current gold standard for GDM screening, oral glucose 

tolerance tests (OGTT), is applied during 24th -28th week of gestation. However, there is 

no clear agreement on the diagnostic criteria for GDM using oral glucose tolerance tests 

(OGTT) because different organizations have provided different guidelines and 

thresholds (31). These reasons lead to under-diagnosing and unclear-documenting of 

GDM on birth certificates. Therefore, the association between GDM and risk of non-

syndromic OFCs may be underestimated because of underreported GDM on birth 

certificates.  

We found a direct effect of obesity and small indirect (mediating) effect of pre-

existing diabetes on risk of OFCs. Both stratification and mediation analyses indicated 

that the effect of obesity on increasing risk of OFCs apart from the presence of known 

maternal diabetes. However, mediation analysis may not be a powerful method when 
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there is a small sample size of pregnancies exposed to diabetes and the presence of 

undetected diabetes in the population.  

Based on stratified analysis, diabetic mothers with normal BMI (18.5-24.9 kg/m2) 

also have an increased risk of OFCs. This relevance of this further finding can be 

appreciated by considering studies of non-obese diabetics (BMI 18-24.9 kg/m2). A cohort 

study in the United States minority populations (32) found that about 13% of participants 

were normal weight diabetics (BMI 17-25 kg/m2); Asians had a five-times higher 

prevalence of diabetes in the normal weight group when compared to the obese group 

(17% vs 4%). This study also reported that normal weight diabetics had more rapid 

pancreatic beta cell failure than obese diabetics, which is also supported by the 

observation of  impaired pancreatic insulin secretion in normal weight diabetics from a 

prospective study in the United Kingdom (33). Moreover, a case-control study in 

Portugal (34) reported that normal weight diabetic patients had higher chemerin levels 

than controls. Chemerin is an adipokine regulating adipocyte development and 

differentiation and glucose metabolism in liver and skeletal muscle tissue. The 

pathophysiology of normal weight diabetes and the association between chemerin and 

other metabolic factors require further study. 

Due to the complex relationship between BMI and diabetes it is difficult to 

establish that BMI and diabetes are entirely independent causes of effects on OFCs. From 

stratified analysis, maternal underweight had a protective effect on the formation of lip 

alone which happens during 4th-8th week of gestation, while both maternal diabetes and 

obesity had an effect of an increased risk of cleft palate which occurs during 6th-12th week 
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of gestation. BMI and maternal diabetes might have effects on facial formation in a 

variety of pathways. BMI is a rather crude measurement of body composition and is not a 

precise indicator of fat mass, fat distribution, or metabolic status. Abdominal obesity has 

a higher lipolysis rate than peripheral fat depots and is associated with adverse conditions 

of the metabolic syndrome including elevated free fatty acids (FFA), cytokines, and 

adipokines (35, 36). In addition, obesity increases activity of cytochrome P450 (CYP) 

2E1, which may lead to poor folate status (37). Several epidemiological studies have 

reported that obesity increases the risk of inadequate folate status (38-41); BMI may have 

an adverse effect on cellular uptake and tissue distribution of folate. Obesity leads to 

insulin resistance, the impairment of insulin sensitivity in sites of glucose disposal, which 

can develop to type 2 diabetes mellitus and GDM (42). Many studies (43-45) reported 

that obese women increased risk of developing GDM. 

The mechanisms explaining the relationship between maternal diabetes and 

orofacial clefts are unknown. Elevated blood glucose and insulin stimulates the 

production of many adverse metabolic factors including ketone bodies, branched chain 

amino acid, inflammatory markers, advanced glycation end products, altered expression 

levels of specific genes, and increase the variation of gene expression levels (15-18). 

These factors may disrupt normal embryonic development.  

Our results suggest that in Utah maternal obesity, depression, and diabetes are 

associated with increased risk of OFCs, and underweight mothers had a decreased risk of 

CLO. Mechanistic studies are needed to understand the causal effects of maternal obesity, 

underweight, depression, metabolic abnormalities, and diabetes on OFCs risk. Effective 
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interventions are needed for promoting healthy body weight and metabolic status in 

reproductive age women in order to reduce the risk of OFCs.  Effective early screening 

for GDM risk is needed for the periconceptional period and in the first month of gestation 

in order to allow early interventions for controlling hyperglycemia, hyperinsulinemia and 

other associated metabolic abnormalities to prevent OFCs and other congenital 

malformations. 
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Table 3.1 Demographic characteristics of orofacial cleft cases and controls (1997-2011) 

Parameters Control 

N = 5804 

All_OFCs 

n = 1451 

Non-isolated OFCs 

n = 432 

Isolated OFCs 

n = 1091 

Age of father 29.66.0 29.66.2 29.75.9 29.56.2 

Age of mother 27.15.5 27.25.6 27.65.9* 27.05.5 

Number of previous live births now 

still live 
1.41.4 1.41.5 1.41.6 1.31.4 

Maternal BMIa 24.55.5 25.05.7** 25.05.9 24.95.6** 

Maternal BMIa category 

  Underweight (<18.5 kg/m2) 

  Normal (18.5-24.9 kg/m2) 

  Overweight (25-29.9 kg/m2) 

  Obese (≥30 kg/m2) 

 

348 (6.2%) 

3252 (58.2%) 

1212 (21.7%) 

777 (13.9%) 

 

78 (5.7%) 

757 (55.1%) 

293 (21.3%) 

245 (17.8%) 

 

27 (6.7%) 

219 (54.8%) 

73 (18.3%) 

81 (20.3%) 

 

51 (5.2%) 

538 (55.3%) 

220 (22.6%) 

164 (16.9%) 

Maternal Race/ethnicity 

  White, non-Hispanic 

  Black, non-Hispanic 

  Asian or Pacific Islander 

  American Indian 

  Hispanic 

  Unknown 

 

4668 (80.4%) 

45 (0.8%) 

118 (2.0%) 

71 (1.2%) 

833 (14.4%) 

58 (1.0%) 

 

1150 (79.3%) 

6 (0.4%) 

28 (1.9%) 

29 (2.0%) 

210 (14.5%) 

17 (1.2%) 

 

330 (76.4%) 

2 (0.5%) 

8 (1.9%) 

12 (2.8%) 

69 (16.0%) 

8 (1.9%) 

 

820 (75.2%) 

4 (0.4%) 

20 (1.8%) 

17 (1.6%) 

141 (12.9%) 

9 (0.8%) 

Paternal Race/ethnicity 

  White, non-Hispanic 

  Black, non-Hispanic 

  Asian or Pacific Islander 

  American Indian 

  Hispanic 

  Unknown 

 

4392 (75.7%) 

56 (1.0%) 

89 (1.5%) 

38 (0.7%) 

683 (11.8%) 

155 (2.7%) 

 

1089 (75.1%) 

7 (0.5%) 

20 (1.4%) 

15 (1.0%) 

168 (11.6%) 

31 (2.1%) 

 

308 (71.3%) 

1 (0.2%) 

8 (1.9%) 

7 (1.6%) 

59 (13.7%) 

11 (2.5%) 

 

781 (71.6%) 

6 (0.5%) 

12 (1.1%) 

8 (0.7%) 

109 (10.0%) 

20 (1.8%) 
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Table 3.1 Demographic characteristics of orofacial cleft cases and controls (1997-2011) (Cont.) 

Parameters Control 

N = 5804 

All_OFCs 

n = 1451 

Non-isolated OFCs 

n = 432 

Isolated OFCs 

n = 1091 

Maternal education 

  High school or less 

  Some college or bachelor 

  Higher than bachelor 

 

2402 (41.9%) 

1812 (31.6%) 

1520 (26.5%) 

 

633 (44.6%) 

447 (31.5%) 

340 (23.9%) 

 

184 (43.9%) 

129 (30.8%) 

106 (25.3%) 

 

449 (44.9%) 

318 (31.8%) 

234 (23.4%) 

Paternal education 

  High school or less 

  Some college or bachelor 

  Higher than bachelor 

 

1924 (36.4%)  

2526 (47.8%) 

831 (15.7%) 

 

502 (38.9%) 

623 (48.3%) 

165 (12.8%) 

 

149 (39.0%) 

183 (47.9%) 

50 (13.1%) 

 

353 (38.9%) 

440 (48.5%) 

115 (12.7%) 

Hypertensiona 373 (6.4%) 93 (6.4%) 31 (7.2%) 62 (6.1%) 

Depression 224 (3.9%) 76 (5.2%) 26 (6.0%) 50 (4.9%) 

Pre-existing diabetes mellitusb 29 (0.5%) 16 (1.1%) 8 (2.0%) 8 (0.8%) 

Gestational diabetes mellitusb 133 (2.3%) 49 (3.4%) 22 (5.2%) 27 (2.7%) 

All diabetes mellitusc 181 (2.8%) 69 (4.3%) 31 (6.5%) 38 (3.4%) 
a Hypertension refers to chronic hypertension, pregnancy induced hypertension, pre-eclampsia, eclampsia, and toxemia   
bBased on data during 1997-2011 
c All diabetes mellitus refers to combination between pre-existing DM and GDM 
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Table 3.2 Association between demographic factors and risk of OFCs  

Characteristic All OFCs  

(N=1451) 

Non-isolated OFCs  

(N=432) 

Isolated OFCs  

(N=1091) 

OR (95%CI) p-value OR (95%CI) p-value OR (95%CI) p-value 

Maternal age 

  Less than 19 years 

  20-35 years 

  More than 35 

 

0.89 [0.70-1.11] 

1 [Reference] 

1.21 [0.98-1.50] 

 

0.29 

 

0.08 

 

0.78 [0.52-1.19] 

1 [Reference] 

1.62 [1.18-2.23] 

 

0.25 

 

0.003 

 

0.93 [0.72-1.20] 

1 [Reference] 

1.04 [0.81-1.34] 

 

0.56 

 

0.77 

Paternal age 

  Less than 19 years 

  20-35 years 

  More than 35 

 

0.68 [0.44-1.06] 

1 [Reference] 

1.11 [0.94-1.30] 

 

0.09 

 

0.22 

 

0.39 [0.14-1.07] 

1 [Reference] 

1.06 [0.80-1.40] 

 

0.07 

 

0.68 

 

0.81 [0.50-1.31] 

1 [Reference] 

1.13 [0.94-1.36] 

 

0.38 

 

0.21 

Maternal BMIa 

  Underweight (<18.5 kg/m2) 

  Normal (18.5-24.9 kg/m2) 

  Overweight (25-29.9 kg/m2) 

  Obese (≥30 kg/m2)  

    

 

0.96 [0.74-1.25] 

1 [Reference] 

1.04 [0.89-1.21] 

1.36 [1.15-1.60] 

p-trend1 0.001 

 

0.77 

 

0.62 

<0.001 

 

1.15 [0.76-1.74] 

1 [Reference] 

0.89 [0.68-1.18] 

1.55 [1.19-2.02] 

p-trend1 0.01 

 

0.50 

 

0.42 

0.001 

 

0.89 [0.65-1.21] 

1 [Reference] 

1.10 [0.93-1.30] 

1.28 [1.05-1.56] 

p-trend1 0.01 

 

0.44 

 

0.29 

0.01 

Maternal education  

  High school or less 

  Some college or bachelor 

  Higher than bachelor 

 

1 [Reference] 

0.94 [0.82-1.07] 

0.85 [0.73-0.98] 

p-trend 0.03 

 

 

0.34 

0.03 

 

1 [Reference] 

0.93 [0.74-1.17] 

0.91 [0.71-1.17] 

p-trend 0.43 

 

 

0.54 

0.46 

 

1 [Reference] 

0.94 [0.80-1.10] 

0.82 [0.69-0.98]   

p-trend 0.03 

 

 

0.43 

0.03 

Father education  

  High school or less 

  Some College or bachelor 

  Higher than bachelor 

 

1 [Reference] 

0.95 [0.83-1.08] 

0.76 [0.63-0.92] 

p-trend 0.01 

 

 

0.40 

0.01 

 

1 [Reference] 

0.94 [0.75-1.17] 

0.78 [0.56-1.08] 

p-trend 0.15 

 

 

0.56 

0.13 

 

1 [Reference] 

0.95 [0.82-1.11] 

0.75 [0.60-0.95] 

p-trend 0.03 

 

 

0.50 

0.01 
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Table 3.2 Association between demographic factors and risk of OFCs (Cont.). 

Characteristic All OFCs  

(N=1451) 

Non-isolated OFCs  

(N=432) 

Isolated OFCs  

(N=1091) 

OR (95%CI) p-value OR (95%CI) p-value OR (95%CI) p-value 

Hypertension  1.00 [0.79-1.26] 0.97 1.13 [0.77-1.65] 0.66 0.95 [0.72-1.25] 0.69 

Depression 1.38 [1.06-1.80] 0.02 1.60 [1.05-2.43] 0.03 1.29 [0.94-1.76] 0.11 
a BMI (Body mass index) calculated as body weight (kg)/height (m2) 
1 excluding underweight 

Control = 5804 
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Table 3.3 Association between maternal underweight and risk of orofacial clefts (1997-2011)a 

Cleft Group  Odds Ratios and 95% Confidence Intervals by Cleft Subtypes 

OFCs CLO CPO CLP CL/P CP/L 

All Crude 0.96  

[0.74-1.25] 

0.50   

[0.27-0.92] 

1.45  

[1.01-2.08] 

0.89   

[0.60-1.32] 

0.73  

[0.52-1.03] 

1.14  

[0.86-1.50] 

 Model1 0.96  

[0.74-1.24] 

0.46  

[0.24-0.88] 

1.50  

[1.04-2.16] 

0.86  

[0.58-1.29] 

0.71  

[0.50-1.00] 

1.14  

[0.86-1.50] 

 Model2 0.95  

[0.74-1.24] 

0.46  

[0.24-0.88] 

1.50  

[1.04-2.16] 

0.86  

[0.58-1.29] 

0.71  

[0.50-1.00] 

1.14  

[0.86-1.50] 

Non-isolated Crude 1.15  

[0.76-1.74] 

0.67  

[0.16-2.81] 

1.46  

[0.86-2.46] 

0.91  

[0.44-1.90] 

0.85  

[0.44-1.64] 

1.22  

[0.80-1.88] 

 Model1 1.21 

 [0.80-1.85] 

0.80  

[0.19-3.42] 

1.54  

[0.91-2.62] 

0.91  

[0.44-1.91] 

0.89  

[0.46-1.73] 

1.26  

[0.82-1.95] 

 Model2 1.22 

 [0.80-1.85] 

0.80  

[0.19-3.41] 

1.54  

[0.91-2.63] 

0.92  

[0.44-1.92] 

0.89  

[0.46-1.73] 

1.27  

[0.82-1.96] 

Isolated Crude 0.89  

[0.65-1.21] 

0.47  

[0.24-0.93] 

1.44  

[0.90-2.32] 

0.88  

[0.56-1.40] 

0.70  

[0.47-1.03] 

1.09  

[0.78-1.53] 

 Model1 0.86  

[0.63-1.17] 

0.42  

[0.20-0.85] 

1.46  

[0.91-2.36] 

0.84  

[0.53-1.34] 

0.66  

[0.44-0.98] 

1.07  

[0.76-1.51] 

 Model2 0.86  

[0.63-1.17] 

0.42  

[0.20-0.85] 

1.47  

[0.91-2.36] 

0.84  

[0.53-1.34] 

0.66  

[0.44-0.98] 

1.07  

[0.76-1.51] 

OFCs: orofacial clefts; CL: cleft lip only; CP: cleft palate only; CLP: cleft lip with cleft palate; CL/P: cleft lip with/without cleft 

palate; CP/L: cleft palates with or without cleft lip.  
a All diabetes refers to combination between pre-existing DM and GDM 

Model1: Covariates in multiple logistic regression models included maternal age, maternal education levels, and depression. 

Model2:  Covariates in multiple logistic regression models included maternal age, maternal education levels, depression, and all 

diabetes. 
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Table 3.4 Association between maternal obesity and risk of orofacial clefts (1997-2011)a 

Cleft Group  Odds Ratios and 95% Confidence Intervals by Cleft Subtypes 

OFCs CLO CPO CLP CL/P CP/L 

All Crude 1.36  

[1.15-1.60] 

1.25  

[0.93-1.68] 

1.37  

[1.05-1.78] 

1.41  

[1.12-1.79] 

1.35   

[1.11-1.63] 

1.39  

[1.16-1.68] 

 Model1 1.33  

[1.12-1.57] 

1.27  

[0.94-1.72] 

1.33  

[1.01-1.74] 

1.36  

[1.07-1.73] 

1.33  

[1.09-1.61] 

1.35  

[1.12-1.63] 

 Model2 1.29  

[1.09-1.53] 

1.26  

[0.93-1.70] 

1.24  

[0.94-1.64] 

1.34  

[1.05-1.71] 

1.31  

[1.07-1.59] 

1.30  

[1.07-1.57] 

Non-isolated Crude 1.55  

[1.19-2.02] 

1.35  

[0.63-2.86] 

1.57  

[1.09-2.27] 

1.58  

[1.04-2.41] 

1.52  

[1.05-2.20] 

1.58  

[1.19-2.09] 

 Model1 1.55  

[1.18-2.03] 

1.47  

[0.68-3.17] 

1.59  

[1.09-2.31] 

1.51  

[0.99-2.32] 

1.50  

[1.03-2.19] 

1.56  

[1.17-2.07] 

 Model2 1.41  

[1.07-1.87] 

1.42  

[0.65-3.11] 

1.42  

[0.96-2.08] 

1.40  

[0.91-2.17] 

1.41  

[0.96-2.07] 

1.41  

[1.05-1.90] 

Isolated Crude 1.28  

[1.05-1.55] 

1.24  

[0.90-1.70] 

1.20  

[0.83-1.73] 

1.35  

[1.02-1.78] 

1.30  

[1.05-1.61] 

1.29  

[1.03-1.62] 

 Model1 1.24  

[1.02-1.51] 

1.25  

[0.90-1.72] 

1.13  

[0.78-1.64] 

1.30  

[0.98-1.73] 

1.28  

[1.03-1.60] 

1.23  

[0.98-1.56] 

 Model2 1.23  

[1.01-1.50] 

1.23  

[0.89-1.71] 

1.09  

[0.75-1.59] 

1.31  

[0.99-1.74] 

1.28  

[1.02-1.60] 

1.23  

[0.97-1.55] 

OFCs: orofacial clefts; CL: cleft lip only; CP: cleft palate only; CLP: cleft lip with cleft palate; CL/P: cleft lip with/without cleft 

palate; CP/L: cleft palates with or without cleft lip  
a All diabetes refers to combination between pre-existing DM and GDM 

Model1: Covariates in multiple logistic regression models included maternal age, maternal education levels, and depression. 

Model2:  Covariates in multiple logistic regression models included maternal age, maternal education levels, depression, and all 

diabetes. 
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Table 3.5 Association between pre-existing diabetes and risk of orofacial clefts (1997-2011) 

Cleft Group  Odds Ratios and 95% Confidence Intervals by Cleft Subtypes 

OFCs CLO CPO CLP CL/P CP/L 

All Crude 2.25 

[1.22-4.15] 

1.10 

[0.26-4.63] 

2.50 

[1.03-6.06] 

2.76 

[1.26-6.07] 

2.12 

[1.03-4.37] 

1.68 

[1.24-2.29] 

 Model1 2.24 

[1.21-4.15] 

1.07 

[0.25-4.52] 

2.49 

[1.03-6.05] 

2.76 

[1.25-6.09] 

2.11 

[1.02-4.35] 

2.63 

[1.02-4.35] 

 Model2 2.19 

[1.18-4.09] 

1.02 

[0.24-4.34] 

2.54 

[1.04-6.22] 

2.64 

[1.19-5.88] 

2.03 

[0.97-4.21] 

2.59 

[1.35-4.97] 

Non-isolated Crude 3.89 

[1.77-8.56] 

N/A 2.89 

[0.87-9.55] 

6.48 

[2.47-16.97] 

4.91 

[1.88-12.81] 

4.42 

[2.00-9.73] 

 Model1 3.81 

[1.72-8.42] 

N/A 2.88 

[0.87-9.58] 

6.30 

[2.39-16.64] 

4.75 

[1.81-12.47] 

4.34 

[1.96-9.62] 

 Model2 3.83 

[1.71-8.58] 

N/A 2.99 

[0.89-10.10] 

6.23 

[2.31-16.81] 

4.64 

[1.74-12.40] 

4.41 

[1.96-9.90] 

Isolated Crude 1.58 

[0.72-3.47] 

1.27 

[0.30-5.37] 

2.21 

[0.67-7.30] 

1.41 

[0.43-4.65] 

1.35 

[0.52-3.51] 

1.72 

[0.71-4.16] 

 Model1 1.59 

[0.72-3.49] 

1.24 

[0.30-5.25] 

2.20 

[0.66-7.26] 

1.43 

[0.43-4.74] 

1.36 

[0.52-3.53] 

1.73 

[0.72-4.19] 

 Model2 1.54 

[0.70-3.41] 

1.19 

[0.28-5.06] 

2.21 

[0.65-7.40] 

1.35 

[0.41-4.50] 

1.30 

[0.50-3.38] 

1.68 

[0.69-4.09] 

OFCs: orofacial clefts; CL: cleft lip only; CP: cleft palate only; CLP: cleft lip with cleft palate; CL/P: cleft lip with/without cleft 

palate; CP/L: cleft palates with or without cleft lip.  

Model1: Covariates in multiple logistic regression models included maternal age, maternal education levels, and depression. 

Model2:  Covariates in multiple logistic regression models included maternal age, maternal education levels, depression, and body 

mass index. 
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Table 3.6 Association between gestational diabetes mellitus and risk of orofacial clefts (1997-2011) 

Cleft Group  Odds Ratios and 95% Confidence Intervals by Cleft Subtypes 

OFCs CLO CPO CLP CL/P CP/L 

All Crude 1.50 

[1.08-2.10] 

1.32 

[0.71-2.47] 

2.09 

[1.33-3.29] 

1.13 

[0.66-1.94] 

1.20 

[0.79-1.84] 

1.57 

[1.09-2.26] 

 Model1 1.45 

[1.04-2.04] 

1.35 

[0.72-2.53] 

1.92 

[1.20-3.05] 

1.11 

[0.64-1.91] 

1.20 

[0.78-1.85] 

1.48 

[1.02-2.15] 

 Model2 1.48 

[1.05-2.09] 

1.41 

[0.75-2.65] 

2.07 

[1.29-3.32] 

1.04 

[0.59-1.83] 

1.18 

[0.76-1.83] 

1.50 

[1.02-2.20] 

Non-isolated Crude 2.33 

[1.47-3.70] 

2.65 

[0.82-8.61] 

2.94 

[1.66-5.19] 

1.41 

[0.57-3.50] 

1.71 

[0.83-3.54] 

2.29 

[1.40-3.74] 

 Model1 2.15 

[1.33-3.45] 

2.64 

[0.80-8.69] 

2.67 

[1.47-4.82] 

1.31 

[0.53-3.27] 

1.62 

[0.78-3.37] 

2.08 

[1.25-3.45] 

 Model2 2.29 

[1.41-3.72] 

2.78 

[0.83-9.32] 

2.91 

[1.59-5.32] 

1.37 

[0.55-3.46] 

1.70 

[0.81-3.57] 

2.22 

[1.32-3.73] 

Isolated Crude 1.17 

[0.77-1.77] 

1.11 

[0.54-2.29] 

1.45 

[0.73-2.87] 

1.03 

[0.54-1.97] 

1.06 

[0.65-1.75] 

1.19 

[0.73-1.94] 

 Model1 1.16 

[0.76-1.77] 

1.14 

[0.55-2.36] 

1.36 

[0.68-2.72] 

1.03 

[0.53-1.98] 

1.08 

[0.65-1.78] 

1.17 

[0.71-1.90] 

 Model2 1.15 

[0.75-1.77] 

1.18 

[0.73-2.94] 

1.46 

[0.73-2.94] 

0.92 

[0.61-1.72] 

1.03 

[0.61-1.72] 

1.13 

[0.68-1.88] 

OFCs: orofacial clefts; CL: cleft lip only; CP: cleft palate only; CLP: cleft lip with cleft palate; CL/P: cleft lip with/without cleft 

palate; CP/L: cleft palates with or without cleft lip  
1 based on data during 1997-2011 

Model1: Covariates in multiple logistic regression models included maternal age, maternal education levels, and depression. 

Model2:  Covariates in multiple logistic regression models included maternal age, maternal education levels, depression, and body 

mass index. 
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Table 3.7 Association between all diabetes and risk of orofacial clefts (1997-2011)a 

Cleft Group  Odds Ratios and 95% Confidence Intervals by Cleft Subtypes 

OFCs CLO CPO CLP CL/P CP/L 

All Crude 1.55 

[1.17-2.06] 

1.16 

[0.65-2.05] 

2.09 

[1.41-3.09] 

1.36 

[0.89-2.08] 

1.28 

[0.90-1.83] 

1.68 

[1.24-2.29] 

 Model1 1.52 

[1.14-2.02] 

1.18 

[0.66-2.10] 

1.95 

[1.31-2.91] 

1.35 

[0.88-2.08] 

1.29 

[0.90-1.85] 

1.63 

[1.19-2.22] 

 Model2 1.52 

[1.14-2.04] 

1.19 

[0.67-2.13] 

2.05 

[1.36-3.08] 

1.30 

[0.83-2.02] 

1.26 

[0.87-1.82] 

1.63 

[1.19-2.24] 

Non-isolated Crude 2.40 

[1.62-3.56] 

1.99 

[0.62-6.45] 

2.77 

[1.67-4.57] 

2.03 

[1.06-3.91] 

2.02 

[1.14-3.61] 

2.45 

[1.63-3.70] 

 Model1 2.27 

[1.52-3.39] 

1.98 

[0.61-6.46] 

2.55 

[1.52-4.29] 

1.97 

[1.02-3.81] 

1.97 

[1.10-3.53] 

2.30 

[1.51-3.50] 

 Model2 2.38 

[1.58-3.59] 

1.97 

[0.59-6.54] 

2.71 

[1.59-4.62] 

2.08 

[1.06-4.07] 

2.05 

[1.13-3.72] 

2.43 

[1.58-3.74] 

Isolated Crude 1.20 

[0.85-1.72] 

1.03 

[0.54-1.96] 

1.56 

[0.88-2.77] 

1.11 

[0.65-1.90] 

1.08 

[0.70-1.65] 

1.28 

[0.86-1.92] 

 Model1 1.21 

[0.84-1.73] 

1.05 

[0.55-2.01] 

1.49 

[0.84-2.66] 

1.12 

[0.66-1.92] 

1.10 

[0.72-1.68] 

1.27 

[0.84-1.91] 

 Model2 1.18 

[0.82-1.71] 

1.06 

[0.55-2.05] 

1.56 

[0.87-2.80] 

1.03 

[0.59-1.80] 

1.04 

[0.67-1.62] 

1.23 

[0.81-1.87] 

OFCs: orofacial clefts; CL: cleft lip only; CP: cleft palate only; CLP: cleft lip with cleft palate; CL/P: cleft lip with/without cleft 

palate; CP/L: cleft palates with or without cleft lip  
a All diabetes refers to combination between pre-existing DM and GDM 

Model1: Covariates in multiple logistic regression models included maternal age, maternal education levels, and depression. 

Model2:  Covariates in multiple logistic regression models included maternal age, maternal education levels, depression, and body 

mass index. 
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Table 3.8 Total, direct, and indirect effects with 95% CI of the association between 

maternal obesity and risk of orofacial clefts mediated through maternal diabetes  

 Pre-existing 

diabetes 

GDM All diabetesa 

 OR [95% CIs] OR [95% CIs] OR [95% CIs] 

All OFCs    

   Direct effect 1.33 [1.12-1.58] 1.30 [1.09-1.54] 1.31 [1.11-1.55] 

   Indirect effect 1.02 [1.00-1.04] 1.00 [0.98-1.03] 1.00 [0.97-1.04] 

   Total effect 1.35 [1.14-1.61] 1.30 1.10-1.54] 1.32 [1.11-1.56] 

Non-isolated OFCs    

   Direct effect 1.44 [1.08-1.92] 1.42 [1.07-1.89] 1.45 [1.09-1.92] 

   Indirect effect 1.06 [1.01-1.12] 1.00 [0.95-1.06] 1.01 [0.95-1.08] 

   Total effect 1.53 [1.15-2.04] 1.43 [1.08-1.89] 1.46 [1.11-1.93] 

Isolated OFCs    

   Direct effect 1.28 [1.05-1.57] 1.25 [1.02-1.53] 1.25 [1.03-1.53] 

   Indirect effect 1.00 [0.98-1.02] 1.00 [0.98-1.03] 1.00 [0.97-1.03] 

   Total effect 1.28 [1.05-1.57] 1.25 [1.03-1.52] 1.25 [1.03-1.52] 
a All diabetes refers to combination between pre-existing DM and GDM 
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Figure 3.1 Prevalence of OFCs during 1995-2011 (per 1000 live birth) 

All: coefficient = -0.023; 95%confidence interval = -0.043, -0.004; p-value= 0.02 

Non-isolated: coefficient = -0.002; 95%confidence interval = -0.013, 0.009; p-value= 

0.73 

Isolated: coefficient = -0.02; 95%confidence interval = -0.04, -0.003; p-value= 0.03  
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Figure 3.2 The regression line of maternal obesity (BMI ≥ 30 kg/m2) prevalence by year 

divided by OFC cases and controls. 

OFC cases 

Controls 

OFC cases 

Controls 

p-value = 0.028 
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CHAPTER 4 

 

THE ASSOCIATION BETWEEN MATERNAL DIABETES AND BIOMARKERS 

  

OF METABOLIC SYNDROME AND OROFACIAL CLEFTS 

 

  

4.1 Abstract 

 

Background: The evidence of the association between mothers having a 

congenitally malformed offspring and risk of developing diabetes and metabolic 

syndrome later in life is limited. This approach however may provide clues to the 

presence of undetected metabolic abnormalities involved in teratogenesis early in 

pregnancy. 

Objective: to determine the association between the occurrence of maternal 

diabetes and maternal biomarkers of metabolic syndrome and isolated orofacial clefts 

(OFCs) using data from the Utah Cleft 2 study.  

Methods: Cases and controls were selected from the participants in the Utah Cleft 

1 study (1995-2005) and the National Birth Defects Prevention Study (NBDPS) in Utah 

(2005-2011). Participants were interviewed by telephone, and physical examination and 

blood collection was completed in clinical visits. Laboratory assays of metabolic 

syndrome-related biomarkers were performed by Laboratory Corporation of America 

(Labcorp), Utah and Quansys Bioscience, Logan, Utah. Independent t-test and chi-square 

tests were used to assess the association between OFCs and continuous and categorical 

variables. Two-way ANOVA was performed to assess the differences of adipokines and 

cytokines. Multivariable logistic regression was used to estimate risk for OFCs while 

adjusting for the potential confounding effects of maternal age and smoking. 
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Results: Mothers having GDM in any pregnancy had an increased risk of OFCs 

(OR: 3.05, 95% CI: 1.61-5.80) and this was consistent for each type of OFC. OFC case-

mothers tended to be more obese than controls (OR: 1.45, 95% CI 0.99-2.13).  Mothers 

of children with cleft palate, compared to controls, had higher mean levels of plasma 

glucose, insulin, triglycerides, waist circumference and systolic blood pressure, and lower 

HDL; these associations were not seen for mothers of children with cleft lip 

only.  Similarly, mean plasma IL-8 and leptin levels were associated with cleft palate but 

not with cleft lip; risk analysis by tertile revealed a weaker association for IL-8 and cleft 

palates with or without cleft lip (CP/L) (OR for highest vs lowest tertile: 1.36, 95% CI 

0.81-2.30; p-trend 0.24) and a stronger association for leptin and CP/L (OR for highest 

vs. lowest tertile: 2.21, 95% CI 1.28-3.81; p-trend 0.004)  Metabolic syndrome indices 

were associated with cleft palate (NCEP/ATP III score OR: 1.60, 95% CI 1.00-2.56; IDF 

score OR: 1.64, 95% CI 1.04-2.59); these scores were not associated with cleft lip alone.  

Conclusion: Gestational diabetes mellitus was associated with risk of OFCs and 

this association may reflect a progression of metabolic syndrome abnormalities that are 

teratogenic yet undetected in the periconceptional period.  Individual metabolic syndrome 

biomarkers and indices were associated with cleft palate, but were not associated with 

cleft lip alone, this may reflect specific vulnerabilities of palate development which occur 

later than lip development.  IL-8 and leptin levels were also associated with cleft palate 

and not cleft lip alone and suggest that further studies of novel metabolic syndrome-

related biomarkers in the periconceptional period may be useful in understanding the 

causes and prevention of OFCs.  



298 
 

 

4.2 Introduction 

OFCs occur in every 0.4 to 2 per 1000 births depending on geographic location, 

racial and ethnic groups, maternal age, environmental exposures, and socioeconomic 

status (1, 2). The U.S. National Birth Defects Prevention Network reported the 

prevalence of OFCs during 2002-2006 of CL/P was 1.33 per 1000 live births, and 0.73 

per 1000 live births for CP (3). The prevalence of OFCs in Utah is higher than the overall 

prevalence in the United States (2.25 per 1000 births) (4) 

Metabolic syndrome is the grouping of visceral obesity, insulin resistance, 

hyperglycemia, dyslipidemia (hypertriglyceridemia and hypo-HDL cholesterolemia), and 

hypertension (5). In addition, metabolic syndrome increases the risk of cardiovascular 

diseases (CVD), type 2 diabetes mellitus, and stroke. Both type 2 diabetes mellitus and 

gestational diabetes mellitus, risk factors of OFCs, have associations with metabolic 

syndrome. Many studies have reported that metabolic syndrome increases the risk of type 

2 diabetes mellitus (6-9). A meta-analysis study showed that the subsequent risk of 

metabolic syndrome increased in women with a history of GDM (10). On the other hand, 

metabolic syndrome in early pregnancy increases the incidence of GDM (11). 

Biochemical markers are hormones, enzymes, antibodies, or other substances in 

urine, blood, tissue, or other body fluids. These biomarkers have been used to detect 

abnormality or disease. Besides HDL and triglyceride, liver function tests (ALT: alanine 

aminotransferase and GGT: gamma-glutamyltransferase) (12-14), cytokines (CRP: C-

reactive protein, IL-6: interleukin-6, and TNF- α: tumor necrosis factor alpha) (15-18), 

and adipokines (leptin and adiponectin) (16-18) also have association with metabolic 
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syndrome. The biomarkers associated with metabolic syndrome have been correlated 

with the risk of developing diabetes mellitus (13, 19-21). 

A few studies have reported that mothers having a congenitally malformed child, 

including OFCs increased risk of developing diabetes many years later (22, 23). Thus, we 

hypothesize that Utah mothers giving birth to children with orofacial clefts have an 

enhanced risk of diabetes and abnormal biomarkers associated with metabolic syndrome. 

This study aims to analyze biomarkers related to metabolic syndrome in mothers after 

giving birth to an OFC child compared to control-mothers of unaffected children.  

4.3 Subjects and Methods 

4.3.1 Study Design 

The Utah Cleft 2 study is a case-control interview and clinical study of orofacial 

clefts in Utah.  The study protocol was reviewed and approved by the institutional review 

boards of Utah State University (USU), the University of Utah, and the Utah Department 

of Health (UDOH). 

4.3.2 Study Participants 

Cases and controls were selected from the participants in the Utah Cleft 1 case-

control study (24) and the National Birth Defects Prevention Study (NBDPS) in Utah 

(25). In the Utah Cleft 1 study, case‐mothers having a child with OFCs between January 

1995 and June 2005 were recruited from UDOH, and control mothers were randomly 

selected, frequency matched by birth month and year, and gender of case child at ratio 

1:1 by using Utah birth certificate files. The NBDPS in Utah, also a state-wide 

population-based case-control study, recruited case mothers having a child with OFCs 
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between 2005-2011 from the UDOH database, and randomly selected control mothers 

from birth certificates. The OFC cases were limited to isolated OFCs; cases with multiple 

birth defects were excluded. 

4.3.3 Data collection 

Data from the Utah Cleft 2 case-control study were collected by trained 

interviewers after participants were contacted by either mail or telephone during 2011-

2015. Verbal consent was obtained by telephone before interviewing mothers about 

medical history, nutritional supplements, and prescription medicines. In clinical visits, 

mothers gave written informed consent and height, weight, waist circumference, and 

blood pressure were measured and a blood sample was taken. 

4.3.4 Laboratory analyses of biomarkers 

Blood samples from non-fasting subjects were obtained using Purple top (EDTA) 

and Blue-top (EDTA) tubes from mothers. Blood samples were centrifuged for 10 min at 

3600 rpm and divided into aliquots of plasma, buffy coats, and red blood cells. Aliquots 

for metabolic biomarkers were analyzed at the Laboratory Corporation of America 

(Labcorp), Utah. Samples for analyzing cytokines and adipokines were kept at -80oC, and 

shipped on dry ice to Quansys Bioscience, Logan, Utah. (Table 4.1) 

a) Hematology, metabolic profiles, and lipid profiles b)  

Labcorp (26) methods for metabolic biomarkers included Kinetic for liver 

function tests, enzymatic for glucose, carbon dioxide, total cholesterol, triglyceride, 

high-density lipoprotein (HDL), low-density lipoprotein (LDL), and very low-density 

lipoprotein (VLDL), electrochemiluminescence immunoassay (ECLIA) for insulin, 
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and Roche Tina Quant for hemoglobin A1c. Liver function tests included alanine 

aminotransferase (ALT/SGPT), aspartate aminotransferase (AST/SGOT), and 

alkaline phosphatase.  

b) Cytokines and adipokines 

Blood samples were collected from non-fasting participants and specimens were 

placed on wet ice then centrifuged within 2 hours after collection and kept at -80oC 

until analysis. Plasma was shipped on dry ice to Quansys Biosciences (27) (Logan, 

Utah) in order to analyze CRP, cytokines (IL-1a, IL-6, IL-8, and TNFa), and 

adipokines (adiponectin, leptin, and resistin). The serum specimens were analyzed by 

the multiplex enzyme-linked, immuunosorbent assay (ELISAs) technology, 

microscaled and multiplexed to simultaneously measure multiple proteins. 

4.3.4  Statistical analyses 

Descriptive analyses were conducted to determine the distribution of maternal 

biomarkers by OFC status. Metabolic syndrome protocols of NCEP/ATP III (28) and IDF 

(29) were used to classify metabolic syndrome status. Independent-sample t-tests and chi-

square tests were used to assess the association between OFCs and continuous and 

categorical variables respectively. Multivariable linear regression was used to adjust for 

the potential confounding effects of maternal age and smoking status in the comparison 

of continuous biomarkers of cases and controls. Multivariable logistic regression analysis 

was used to estimate odds ratios (ORs) with 95% confident intervals (95% CI) for 

evaluation of OFC risk. The linear trend test was analyzed to determine the trend of risk 

across levels of each biomarker. All multivariate analyses were adjusted for maternal age 
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and smoking. Due to wide range of undetected samples of cytokines and adipokines (0-

39.7%), two-way ANOVA was performed to estimate the difference of mean between 

OFC groups and the control group with models including covariates for detected-

undetected status and the measured values for detected samples. All statistical analyses 

were performed using the Statistical Package for Social Sciences (IBM SPSS) statistics 

version 22 for Windows. 

Table 4.1 Laboratory tests used in the Utah Cleft 2 case-control study  

Items Method Laboratory 

Lipid profiles (total cholesterol, 

triglyceride, lipoproteins) 

Enzymatic  Labcorp1 

Liver function test (alkaline 

phosphatase, alanine aminotransferase,  

and aspartate aminotransferase ) 

Kinetic Labcorp1 

Glucose Enzymatic Labcorp1 

Insulin  ECLIA2  

Hemoglobin A1c Roche Tina Quant Labcorp1 

C-reactive protein (CRP) Multiplex ELISAs3 Quansys Bioscience 

Cytokines and adipokines (interleukin-1 

alpha, interleukin-6, interleukin-8, 

leptin, resistin, tumor necrosis factor 

alpha, and adiponectin) 

Multiplex ELISAs3 Quansys Bioscience 

1 Labcorp: Laboratory Corporation of America  
2ECLIA: Electrochemiluminescence immunoassay 
3 ELISAs: Enzyme-Linked, Immuunosorbent Assay 

 

4.4 Results 

Efforts were made to recruit 1431 participants from the Utah Cleft 1 case-control 

study and 456 participants from the NBDPS. A total of 794 participants (435 (30.4%) 

from the Utah Cleft 1 case-control study and 359 (78.7%) from the NBDPS) were 

enrolled in this study; 612 participants (77.1%) completed telephone interviews, clinic 

visits and blood collection, and 157 (19.8%) completed the telephone interview only. 
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Refusals included 167 participants (116 (12.8%) controls and 51 (6.0%) cases) and 541 

participants (189 (20.9%) controls and 352 (41.1%) cases) were unable to be contacted or 

scheduled (table 4.2).  

The mean maternal age at birth and age at clinical visit was not different between 

cases and controls and the data collection for both groups was an average of 10 years 

after the index birth. Among 360 isolated OFC cases, cleft palate only (CPO) accounted 

for 25% (n=90), cleft lip only (CLO) accounted for 31.1% (n=112), and cleft lip with 

cleft palate (CLP) accounted for 42.5% (n=153). The mean body mass index (BMI) of 

cases and controls was not different. The rate of maternal smoking in three months before 

interview was greater in all OFC groups compared to controls (Table 4.3). Alcohol 

consumption in three months before interview was greater in OFC cases compared to 

controls (Table 4.3). Type 2 diabetes was less common than GDM and was not associated 

with OFC risk (Tables 4.3 and 4.4). Gestational diabetes (GDM) was associated with an 

increased risk of OFCs (OR: 3.05, 95% CI: 1.61-5.80) and this was consistent for each 

type of OFCs. OFC mothers tended to be more obese than controls (OR: 1.45, 95% CI: 

0.99-2.13) (Tables 4.3 and 4.4).  

When adjusted for maternal age and smoking, means of waist circumference, 

insulin, glucose and triglyceride in the CP/L (cleft palate with or without cleft lip) group 

were significant higher and mean HDL was lower than control mothers (Table 4.5); the 

mean values for the CLO group were not significantly different from controls. The odds 

ratios analyzed by tertiles generally showed similar finding, though the 95% CIs for most 

comparisons included 1.0.  
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OFC risk by level of the metabolic syndrome scores computed on the basis of 

NCEP/ATPIII and IDF criteria, and risk by the individual component scores appear in 

Table 4.8. Metabolic syndrome defined by NCEP/ATPIII criteria (≥ 3) was associated 

with an increased risk of CP/L (OR: 1.60, 95% CI: 1.00-2.56) but no higher risk of CLO 

(OR: 1.06, 95% CI: 0.54-2.05). Similarly, metabolic syndrome defined by IDF criteria 

was associated with a greater risk of all CP (OR: 1.64, 95% CI: 1.04-2.59) but no greater 

risk of CLO (OR: 1.16, 95% CI: 0.62-2.17). Elevated blood pressure, defined as systolic 

blood pressure ≥ 130 mmHg or diastolic blood pressure ≥ 85 mmHg was associated with 

CP/L (OR: 1.77, 95% CI: 1.02-3.09) but not CL only (OR: 1.03, 95% CI: 0.46-2.32). The 

other individual metabolic syndrome component scores did not appear to be associated 

with OFCs, underscoring the importance of combined metabolic syndrome indices rather 

than individual components in association with OFC risk. 

Mothers having CLO and cleft lip with/without cleft palate (CL/P) offspring had 

AST levels higher than mothers in the control group when adjusted for maternal age and 

smoking (adjusted p-value 0.05 and 0.05, respectively) (Table 4.7).  

The mean and median cytokine IL-8 (p-value=0.003) and the adipokine leptin (p-

value = 0.006) levels were higher in CP/L cases compared to controls (Table 4.6). The 

risk analysis by tertile revealed a weaker associated for IL-8 (OR for highest vs lowest: 

1.36, 95% CI: 0.81-2.30, p-trend 0.24) and a stronger association for leptin (OR for 

highest vs lowest: 2.21, 95% CI: 1.28-3.81, p-trend 0.004). IL-8 and leptin levels were 

not associated with CLO. When analyses were stratified by BMI level (normal weight, 

BMI 18.5 to 24.9 kg/m2; overweight, BMI 25 to 29.9 kg/m2; obese: BMI more than 30 
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kg/m2), IL-8 and leptin levels generally increased with increasing BMI levels, and 

significant differences emerged between CP/L vs controls. Based on BMI classification, 

obese mothers having CPO offspring had higher leptin levels than obese mothers in the 

control group when adjusted for maternal age and smoking (Figures 4.1).  

4.5 Discussion 

Mothers having GDM in any pregnancy had an increased risk of all types of 

OFCs. Mothers having CLO and CL/P offspring were associated with obesity later in life. 

Mothers having CP/L offspring had an increased risk of developing metabolic syndrome 

based on both NCEP/ATP III and IDF definitions. Mothers having CP/L offspring had 

higher IL-8 and leptin levels than control mothers. 

The association between gestational diabetes mellitus and risk of non-isolated 

OFCs is consistent with limited previous studies (30, 31). Correa et al. using the data 

from the National Birth Defect Prevention Study (NBDPS) during 1997-2003 showed an 

association between both pre-existing diabetes (type 1 or 2) and GDM and risk isolated 

OFCs, while only pre-existing diabetes was associated with syndromic OFCs (31). 

Correa et al. also reported higher estimates of odds ratios and wider confidence intervals 

than our study (non-isolated CPO, OR: 10.73, 95% CI: 3.99-28.86 and non-isolated 

CL/P, OR: 8.07, 95% CI: 3.05-21.39). Data from a large international consortium of 

case-control studies from the U.S., Denmark, and Norway (30) found an association 

between GDM and syndromic OFCs and CPO. A prospective study by Moore et al (32) 

reported suggestive associations between pre-existing (type 1 or 2) and GDM and risk of 

OFCs but also with very wide confidence intervals that included 1.0 (prevalence ratios 
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(PR): 8.9, 95% CI: 0.85-46.5; and PR: 2.6, 95% CI: 0.82-8.5, respectively). The 

mechanisms explaining the relationship between maternal diabetes and orofacial clefts 

are unknown. Elevated blood glucose and insulin stimulates the production of many 

adverse metabolic factors including ketone bodies, branched chain amino acids, 

inflammatory markers, advanced glycation end products, altered expression levels of 

specific genes, and increase the variation of gene expression levels (33-36). These factors 

may disrupt normal embryonic development. 

This study reported associations between CLO and CL/P and obesity, which is 

consistent with the findings of the Utah birth certificate study of pre-pregnancy weight 

reported in chapter 3. A large international consortium of U.S. and European population-

based studies by Kutbi et al (37) found that pre-pregnancy maternal obesity had an 

increased risk of CPO, CLP, and CP/L but not CLO; this study suggested that obesity has 

a specific effect on palate formation but not lip formation. A recent meta-analysis by 

Blanco et al also presented that maternal obesity increased risk of CPO and CL/P (38). 

Metabolic syndrome is a major public health issue because it increases the risk of 

cardiovascular diseases (CVD), type 2 diabetes mellitus, stroke, etc. We found that 

mothers of children with CP/L had an increased risk of developing metabolic syndrome 

later in life. A case-control study in Mexico (23) found that the prevalence of diabetes in 

mothers delivering a malformed child was higher than control group (controls: 4% and 

cases: 16.7, 40.4 5, and 53.1% when follow-up 0, 12, and 25 years after the index 

pregnancy, respectively). Another case-control study in the United Kingdom (22) 
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reported mothers having CPO or CL/P offspring had a higher prevalence of increased 

antagonism to insulin than control mothers (CPO: 75%, CL/P: 68.1%, and controls: 28%) 

This study found that using the IDF definition identified a higher prevalence of 

metabolic syndrome than using the NCEP/ATP III definition. Previous studies also 

reported that using IDF criteria for screening metabolic syndrome provided a higher 

prevalence than NCEP/ATP III criteria (39-42). The National Health and Nutrition 

Examination Survey (NHANES) 1999-2002 (39) found that prevalence of metabolic 

syndrome was 39.0±1.1 % based on IDF criteria, while 34.5±0.9 % based on NCEP/ATP 

III. Both metabolic syndrome criteria had similar associations with OFCs in the present 

study. 

Previous studies found the association between NCEP/ATP III definition and risk 

of carotid atherosclerosis (43, 44). However, recent studies suggested that metabolic 

syndrome definition proposed by IDF was a better predictor for cardiovascular risk than 

the definition by NCEP/ATP III. A cross sectional study in China presented that IDF 

definition was more strongly associated with CHD than NCEP/ATP III definition (45). A 

case-control study in Greece found that IDF definition for metabolic syndrome provided 

a higher odd ratio for acute coronary syndrome than NCEP/ATP III (OR: 3.26, 95% CI: 

2.12-5.00 vs OR: 2.32, 95% CI: 1.53-3.52) (46). A 13-year follow up study in Finns (42) 

found that metabolic syndrome defined by IDF was associated with risk of coronary heart 

disease (CHD) mortality (hazard ratio (HR): 1.42, 95% CI: 1.01-1.99), while the 

association between metabolic syndrome defined by NCEP/ATP III definition and CHD 

mortality was not significant (HR: 1.30, 95% CI: 0.94-1.81). However, this study also 
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reported a 1.35 fold (95% CI: 1.05-1.74) risk of CVD mortality was associated with 

metabolic syndrome according to NCEP/ATP III criteria, which was a bit higher than 

metabolic syndrome diagnosed by IDF (HR: 1.33, 95% CI: 1.03-1.77). A cross sectional 

analysis in a Greek population reported that NCEP/ATP III definition was more 

predictive of cardiovascular disease (CVD) risk than IDF definition (47). A prospective 

study in Austria (48) found metabolic syndrome defined by NCEP/ATP III definition was 

strongly predictive of vascular events than the IDF definition (HR: 1.58, 95% CI: 1.10-

2.26 vs HR: 1.06, 95% CI: 0.76-1.50). 

Both definitions use the same five components, but there are a few differences.  

The IDF definition requires the presence of central obesity plus two of the rest 

components while NCEP/ATP III definition makes central obesity one of the five equally 

weighted criteria. Moreover, the thresholds for waist circumference and fasting blood 

glucose by the IDF definition are lower than those of the NCEP definition. The 

thresholds of triglycerides and HDL cholesterol levels, and systolic and diastolic blood 

pressure are the same. IDF definition emphasizes waist circumference, an index of 

abdominal obesity which has an effect on metabolic processes by the intra-abdominal 

visceral fat which has higher lipolysis rate than any other depots. Abdominal adipose 

tissue elevates free fatty acids (FFA), cytokines (tumor necrosis factor alpha (TNF-𝛼) and 

interleukin-6 (IL-6)), adipokines, and angiotensin II. Excess FFA circulation induces 

insulin resistance, which results from reduced hepatic insulin clearance, decreased 

skeletal muscle insulin sensitivity, increased hepatic cholesterol production with elevated 

triglycerides and very low density lipoprotein (VLDL), and altered endothelial function. 
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Elevated levels of cytokines also impair insulin sensitivity (5, 49). In addition, enlarged 

fat cells causing fat overflow to muscles, the liver, and the pancreas lead to insulin 

resistance (50), which plays an important role in the development of metabolic syndrome 

(51). The IDF consensus group has mentioned other parameters that require further 

research into metabolic syndrome including tomographic assessment of fat distribution 

and liver fat, adipose tissue biomarkers (leptin and adiponectin), apolipoprotein B, small 

LDL particles, insulin resistance parameters (fasting insulin, proinsulin levels, 

homeostatic model assessment-insulin resistance (HOMA-IR), free fatty acid), oral 

glucose tolerance test, measurement of endothelial dysfunction, microalbuminuria, 

inflammatory markers (CRP, TNF-α, IL-6), thrombotic markers (plasminogen activator 

type 1, fibrinogen), and pituitary-adrenal axis (29).    

This study found that mothers having offspring with CP/L had higher insulin 

levels than control mothers. Insulin resistance is defined as a condition in which normal 

insulin levels are not adequate at maintaining a normal insulin response in peripheral 

target tissues (adipose, muscle, and liver), which causes pancreatic beta cells to secrete 

more insulin (hyperinsulinemia) to overcome the hyperglycemia condition (5). Elevated 

levels of inflammatory markers also impair insulin sensitivity (5, 49). An in vitro study 

by Hotanisligil et al found that TNF-α inhibits insulin receptor substrate 1 (IRS-1) 

signaling pathway, which leads to insulin resistance (52). A human study by Bastard et al 

reported that IL-6 level was associated with insulin resistance (53). This study 

hypothesized that IL-6 overproduction from adipose tissue activates extracellular signal 

regulated kinase (ERK) pathway and induces IRS-1, which inhibits insulin signaling. In 
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addition, insulin resistance is a risk factor for developing GDM. Prospective studies 

found that pregnant women having high fasting plasma insulin levels (FPI) in the first 

trimester of gestation had an increased risk of GDM (54-56). The association between 

insulin and OFCs requires further study. 

We found that mothers of children having CPO and CP/L had higher IL-8 and 

leptin levels than control mothers. IL-8 is a proinflammatory cytokine, which is produced 

by macrophages and monocytes (57). A case-control study by Bruun et al (58) found that 

plasma IL-8 levels were 38% higher in obese participants than in lean participants. In 

addition, in the obesity group, IL-8 levels had a positive correlation with fasting insulin 

levels and homeostasis model assessment for insulin resistance (HOMA-IR). A case-

control study by Zozulinska et al (59) reported that serum IL-8 levels in participants with 

type 1 and type 2 diabetes mellitus were higher than healthy participants (160.29 ± 34.81 

and 138.7 ± 32.8 pg/ml VS 39.93 ± 4.96 pg/ml).  

Serum leptin levels reflect the proportion of adipose tissue in the body, which is 

highly correlated with fat mass. During pregnancy, leptin is also produced by placenta, 

which has a pro-angiogenic effect in placental tissue (60) and an anti-apoptotic effect on 

trophoblast cells (61). A study by Pérez-Pérez et al reported increased leptin and leptin 

receptor gene expression in placentas from GDM pregnancies compared with normal 

pregnancies (62). Many studies reported that leptin levels were significantly higher in 

pregnancies with GDM compared with normal pregnancies (63-65). Studies focusing on 

the association between either hyperleptinemia or leptin expression and birth defects are 

limited. A study by Jones et al. (66) found that placental leptin RNA expression was 
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significantly increased in hypoplastic left heart syndrome (HLHS) cases compared to 

controls. However, a meta-analysis study reported that SGA (small for gestational age) 

infants had lower cord blood leptin levels than AGA (appropriate for gestational age) 

infants (67). An impact of increased leptin levels on placental nutrient transfer was 

proposed by a cell study by Araujo et al (68).  The study showed that there is no 

significant change of the steady-state intracellular accumulation of folic acid, while 

diabetic trophoblasts (DTB) cells from gestational diabetic pregnancies had higher rates 

of inward and outward transport of intracellular folic acid. The higher turnover of 

intracellular folic acid in DTB cells is required to maintain normal folic acid homeostasis. 

Moreover, hyperleptinemic condition leads to decreased folic acid uptake. These findings 

showed that leptin may act as a regulator of placental nutrient transport especially folic 

acid, and a regulator of fetal growth. However, the study of that effect of leptin on folic 

acid placental transport is limited.  

The leptin gene is transcriptionally activated in response to hypoxia (69). A 

mouse study by Webster et al. (70) showed that pregnant mice receiving phenytoin 

during the period of early facial development had cleft lip offspring because phenytoin 

causes bradycardia leading to a prolonged period of embryonic hypoxia. This study 

proposed additional exposures increase the risk of cleft lip in humans including maternal 

cigarette smoking, residence at high altitudes, and exposure to corticosteroids.  High 

leptin circulation decreases folic acid transportation (68), which may relate to not only 

GDM pregnancies, but also pregnancies exposed to prolonged hypoxia. The association 
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between increased leptin resulting from hypoxia and risk of birth defect requires further 

study.   

Our results suggest that gestational diabetes, maternal obesity, and metabolic 

syndrome are associated with an increased risk of OFCs. When compared with control 

mothers, mothers having cleft palate offspring had higher insulin, IL-8, and leptin levels. 

Therefore, insulin, IL-8, and leptin levels may be links between GDM, metabolic 

syndrome, and OFCs. Insulin, IL-8 and leptin might be performed as biomarkers for 

predicting OFC occurrence. Mechanistic studies are needed to understand the causal 

effects of maternal obesity, metabolic abnormalities, and gestational diabetes mellitus on 

OFCs risk. The potential of using insulin, leptin, IL-8 and related biomarkers as 

predictors of birth defect risk requires further study. 
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Table 4.2 Tracking status of orofacial cleft (OFC) cases and controls in the Utah Cleft 2 

Study. 

Status Controls 

n (%) 

OFC cases 

n (%) 

Completed interview, clinical visit, and 

blood collection 

344 (38.0) 268 (31.3) 

Completed interview, clinical visit, and no 

blood collection  

4 (0.4) 2 (0.2) 

Completed only interview, no clinical 

visit, and no blood collection 

74 (8.2) 83 (9.7) 

Completed clinical visit and blood 

collection, and no interview 

5 (0.6) 3 (0.4) 

Completed only blood collection 8 (0.9) 3 (0.4) 

Refuse 116 (12.8) 51 (6.0) 

Move out of state 135 (14.9) 70 (8.2) 

Out of clinic area 25 (2.8) 15 (1.8) 

Unable to contact or schedule 189 (20.9) 352 (41.1) 

Non-isolated OFCs 0 (0) 1 (0.1) 

Spanish speaking 5 (0.6) 8 (0.9) 

Deceased 0 (0) 1 (0.1) 

OFC: Orofacial cleft 

 

 

 

 

 

 



 
 

 

3
1
4
 

Table 4.3 Demographic characteristics of isolated orofacial cleft case and controls: The Utah Cleft 2 Study 

Characteristic Controls Orofacial cleft cases 

 All OFCs CLO CL/P CLP CPO CP/L 

 

Maternal age at birth 

of index child (SD) 

  p-value1 

n= 436 

27.8(5.3) 

n=358 

27.5(5.3) 

 

0.44 

n=112 

27.4(5.0) 

 

0.40 

n=268 

27.5(5.2) 

 

0.46 

n=156 

27.6(5.2) 

 

0.24 

n=90 

27.54(5.70) 

 

0.27 

n=246 

27.6(5.4) 

 

0.56 

 

Maternal age at blood 

collection (SD) 

  p-value1 

n=360 

37.7(7.0) 

n=274 

37.4(6.5) 

 

0.62 

n=90 

36.9(6.3) 

 

0.33 

n=211 

37.4(6.6) 

 

0.56 

n=121 

37.7(6.9) 

 

0.98 

n=63 

37.7(6.2) 

 

0.97 

n=184 

37.7(6.6) 

 

0.97 

 

Number of past 

pregnancies (%) 

  p-value1 

n=423 

4.5(2.21) 

n=349 

4.2(1.98) 

 

0.04 

n=109 

4.2 (1.9) 

 

0.27 

n=261 

4.3(2.0) 

 

0.18 

n=152 

4.3(2.1) 

 

0.34 

n=88 

3.9(1.9) 

 

0.01 

n=240 

4.2(2.0) 

 

0.05 

 

Number of live birth 

(%) 

  p-value1 

n=423 

4.1(6.7) 

n=349 

4.0(7.4) 

 

0.77 

n=109 

3.5(1.5) 

 

0.36 

n=261 

3.8(6.1) 

 

0.59 

n=152 

4.1(7.9) 

 

0.94 

n=88 

4.4(10.4) 

 

0.79 

n=240 

4.2(8.9) 

 

0.93 

 

Current weight (lb) 

  p-value1 

n=351 

163.8(40.5) 

n=269 

168.3(43.9) 

0.18 

n=89 

170.4(44.6) 

0.17 

n=208 

168.4(44.2) 

0.20 

n=119 

166.9(44.1) 

0.47 

n=61 

167.9(43.4) 

0.47 

n=180 

167.2(43.7) 

0.36 

 

Current height (cm) 

  p-value1 

n=351 

164.6(8.5) 

n=268 

164.4(7.6) 

0.75 

n=89 

164.6(8.0) 

0.98 

n=207 

164.6(8.0) 

0.96 

n=118 

164.6(8.0) 

0.96 

n=61 

163.9(6.4) 

0.49 

n=179 

164.3(7.50) 

0.69 

 

Current BMI (kg/m2) 

  p-value1 

n=351 

27.67.5 

 

n = 267 

28.37.5 

0.26 

n = 89 

28.57.0 

0.29 

n = 207 

28.37.3 

0.30 

n = 118 

28.17.6 

0.55 

n = 60 

28.36.9 

0.52 

n = 178 

28.17.4 

0.43 
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Table 4.3 Demographic characteristics of isolated orofacial cleft case and controls: The Utah Cleft 2 Study (Cont.) 

Characteristic Control Orofacial cleft cases 

 All OFCs CLO CL/P CLP CPO CP/L 

Type 1 diabetes 

mellitus 

  p-value2 

n=422 

3 (0.7) 

n=349 

2 (0.6) 

1.00 

n=109 

0 (0) 

1.00 

n=261 

0 (0) 

0.29 

n=152 

0 (0) 

0.57 

n=88 

2 (2.3) 

0.21 

n=240 

2 (0.8) 

1.00 

 

Type 2 diabetes 

mellitus 

  p-value2 

n=422 

5 (1.2) 

n=348 

7 (2.0) 

 

0.39 

n=109 

1 (0.9) 

 

1.00 

n=260 

6 (2.3) 

 

0.35 

n=151 

5 (3.3) 

 

0.14 

n=88 

1 (1.1) 

 

1.00 

n=239 

6 (2.5) 

 

0.22 

 

Gestational diabetes 

mellitus 

  p-value2 

n=422 

14 (3.3) 

n=348 

33 (9.5) 

 

<0.001 

n=109 

10 (9.2) 

 

0.02 

n=260 

24 (9.2) 

 

0.002 

n=151 

14 (9.3) 

 

0.007 

n=88 

9 (10.2) 

 

0.009 

n=239 

23 (9.6) 

 

0.001 

 

Maternal smoking in 

past 3 months (%) 

  p-value2 

n=423 

19 (4.5) 

n=349 

39 (11.2) 

 

0.001 

n=109 

10 (9.2) 

 

0.06 

n=261 

26 (10) 

 

0.007 

n=152 

16 (10.5) 

 

0.02 

n=88 

13 (14.9) 

 

0.001 

n=240 

29 (12.1) 

 

<0.001 

 

Second hand smoking 

(%) 

  p-value2 

n=420 

17 (4.0) 

n=347 

29 (8.4) 

 

0.01 

n=108 

7 (6.5) 

 

0.30 

n=259 

22 (8.5) 

 

0.02 

n=151 

15 (9.9) 

 

0.01 

n=88 

7 (8.0) 

 

0.16 

n=239 

22 (9.2) 

 

0.009 

 

Maternal alcohol 

consumption in past 3 

months (%) 

  p-value2 

n=422 

86 (20.4) 

 

 

 

n=349 

93 (26.7) 

 

 

0.04 

n=109 

28 (27.5) 

 

 

0.24 

n=261 

66 (25.3) 

 

 

0.13 

n=152 

38 (25.0) 

 

 

0.25 

n=88 

27 (31.0)  

 

 

0.05 

n=240 

65 (27.2) 

 

 

0.05 

 



316 

 
 

 

3
1
6
 

Table 4.3 Demographic characteristics of isolated orofacial cleft case and controls: The Utah Cleft 2 Study (Cont.) 

Characteristic Control Orofacial cleft cases 

 All OFCs CLO CL/P CLP CPO CP/L 

Frequency of alcohol 

consumption in past 3 

months (%) 

  Never 

   < 1 time/month  

  1-3 times/month 

  1-2 times/week 

  3-4 times/week 

  p-trend 

 

 

 

337 (79.7) 

30 (7.1) 

27 (6.4) 

21 (5.0) 

8 (1.9) 

 

 

 

256 (73.6) 

31 (8.9) 

36 (10.3) 

18 (5.2) 

7 (2.0) 

0.12 

 

 

 

61 (70.1) 

11 (12.6) 

7 (8.0) 

5 (5.7) 

3 (3.4) 

0.13 

 

 

 

195 (74.7) 

20 (7.7) 

29 (11.1) 

13 (5.0) 

4 (1.5) 

0.25 

 

 

 

114 (75.0) 

10 (6.6) 

20 (13.2) 

6 (3.9) 

2 (1.3) 

0.39 

 

 

 

81 (74.3) 

10 (9.2) 

9 (8.3) 

7 (6.4) 

2 (1.8) 

0.33 

 

 

 

175 (73.2) 

21 (8.8) 

27 (11.3) 

11 (4.6) 

5 (2.1) 

0.15 

OFCs: orofacial clefts; CPO: cleft palate only; CLO: cleft lip only; CLP: cleft lip with cleft palate; CL/P: cleft lip with or without cleft 

palate; CP/L: cleft palate with or without cleft lip. 
1 p-value for independent t-test for OFC group compared to controls. 
2 p-value for chi-square for OFC group compared to controls.   
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Table 4.4 Odds ratio analysis of maternal diabetes history and risk of orofacial clefts 

Diabetes history Odds ratios (95 percent confidence intervals) 

All OFCs CLO CL/P CLP CPO CP/L 

Type 2 diabetes 

mellitus 

  No 

  Yes 

 

 

1 [reference] 

1.71 [0.54-5.44] 

 

 

1 [reference] 

0.77 [0.09-6.68] 

 

 

1 [reference] 

1.97 [0.60-6.52] 

 

 

1 [reference] 

2.86[0.82-10.01] 

 

 

1 [reference] 

0.96 [0.11-8.31] 

 

 

1 [reference] 

2.15 [0.65-7.11] 

Gestational 

diabetes mellitus 

  No 

  Yes 

 

 

1 [reference] 

3.05 [1.61-5.80] 

 

 

1 [reference] 

2.94 [1.27-6.82] 

 

 

1 [reference] 

2.96 [1.50-5.84] 

 

 

1 [reference] 

2.98 [1.39-6.40] 

 

 

1 [reference] 

3.32 [1.39-7.94] 

 

 

1 [reference] 

3.10 [1.57-6.15] 

OFCs: orofacial clefts; CPO: cleft palate only; CLO: cleft lip only; CLP: cleft lip with cleft palate; CL/P: cleft lip with or without cleft 

palate; CP/L: cleft palate with or without cleft lip. 

History of GDM at any pregnancy 

History of type 2 diabetes at any time. 
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Table 4.5 Mean metabolic syndrome-related biomarkers by orofacial cleft case groups and controls: The Utah Cleft 2 Study 

Biomarker Control Orofacial cleft cases 

 All OFCs CLO CL/P CLP CPO CP/L 

 

Systolic BP (mmHg) 

  Unadjusted p-value 

  Adjusted p-value 

n = 353 

109.412.2 

 

n = 268 

110.512.0 

0.30 

0.71 

n = 89 

110.411. 7 

0.53 

0.58 

n = 208 

109.811.8 

0.74 

0.88 

n = 119 

109.411.9 

0.96 

0.48 

n = 60 

112.812.5 

0.05 

0.23 

n = 179 

110.512.2 

0.34 

0.96 

 

Diastolic BP (mmHg)    

  Unadjusted p-value 

  Adjusted p-value 

n = 353 

71.89.1 

 

n = 268 

72.510.4 

0.43 

0.88 

n = 89 

72.49.8 

0.59 

0.85 

n = 208 

72.110.5 

0.79 

0.64 

n = 119 

71.811.1 

0.98 

0.57 

n = 60 

73.89.8 

0.12 

0.16 

n = 179 

72.510.7 

0.49 

0.81 

 

Waist  (cm) 

  Unadjusted p-value 

  Adjusted p-value 

n = 352 

92.317.2 

 

n = 268 

94.418.0 

0.14 

0.06 

n = 89 

94.317.3 

0.32 

0.75 

n = 208 

93.917.9 

0.27 

0.16 

n = 119 

93.718.4 

0.44 

0.09 

n = 60 

95.818.6 

0.14 

0.07 

n = 179 

94.418.4 

0.19 

0.03 

 

Glucose (mg/dL) 

  Unadjusted p-value 

  Adjusted p-value 

329 

91.020.4 

 

n = 248 

93.425.7 

0.22 

0.07 

n = 82 

93.030.6 

0.49 

0.99 

n = 189 

93.026.0 

0.34 

0.13 

n = 107 

93.022.0 

0.39 

0.04 

n = 59 

94.624.6 

0.23 

0.21 

n = 166 

93.622.9 

0.21 

0.02 

 

Insulin (μlU/mL) 

  Unadjusted p-value 

  Adjusted p-value 

n = 316 

19.726.8 

 

n = 233 

21.624.4 

0.40 

0..01 

n = 78 

15.715.2 

0.21 

0.14 

n = 182 

20.421.6 

0.76 

0.68 

n = 104 

24.025.0 

0.16 

0.10 

n = 51 

25.832.3 

0.21 

0.14 

n = 155 

24.627.5 

0.07 

0.04 

 

HbA1c (%) 

  Unadjusted p-value 

  Adjusted p-value 

n = 324 

5.420.30 

 

n = 246 

5.440.53 

0.66 

0.58 

n = 83 

5.450.54 

0.49 

0.52 

n = 187 

5.430.45 

0.85 

0.54 

n = 104 

5.410.36 

0.74 

0.69 

n = 59 

5.470.73 

0.41 

0.88 

n = 163 

5.430.52 

0.81 

0.71 
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Table 4.5 Mean metabolic syndrome-related biomarkers by orofacial cleft case groups and controls: The Utah Cleft 2 Study (Cont.) 

Biomarker Control Orofacial cleft cases 

 All OFCs CLO CL/P CLP CPO CP/L 

 

Cholesterol (mg/dL) 

  Unadjusted p-value 

  Adjusted p-value 

n = 328 

177.533.6 

 

n = 247 

176.336.6 

0.70 

0.48 

n = 82 

173.232.2 

0.30 

0.66 

n = 188 

173.834.6 

0.23 

0.27 

n = 106 

174.236.6 

0.40 

0.22 

n = 59 

184.441.4 

0.16 

0.56 

n = 165 

177.838.6 

0.91 

0.51 

 

Triglyceride (mg/dL) 

  Unadjusted p-value 

  Adjusted p-value 

n = 329 

110.369.5 

 

n = 247 

118.281.3 

0.21 

0.03 

n = 82 

107.854.6 

0.76 

0.57 

n = 188 

113.472.5 

0.63 

0.19 

n = 106 

117.783.7 

0.37 

0.19 

n = 59 

133.4103.8 

0.10 

0.01 

n = 165 

123.391.4 

0.11 

0.02 

 

HDL (mg/dL) 

  Unadjusted p-value 

  Adjusted p-value 

329 

55.514.4 

 

n = 247 

54.214.3 

0.28 

0.02 

n = 82 

54.113.7 

0.40 

0.40 

n = 188 

54.113.9 

0.27 

0.06 

n = 106 

54.114.0 

0.38 

0.05 

n = 59 

54.615.9 

0.66 

0.08 

n = 165 

54.314.7 

0.37 

0.02 

 

LDL (mg/dL) 

  Unadjusted p-value 

  Adjusted p-value 

n = 328 

99.928.0 

 

n = 244 

98.631.3 

0.59 

0.64 

n = 82 

97.627.9 

0.50 

0.99 

n = 187 

97.030.6 

0.27 

0.45 

n = 105 

96.632.7 

0.31 

0.28 

n = 57 

103.833.10 

0.35 

0.63 

n = 162 

99.132.9 

0.78 

0.53 

 

VLDL (mg/dL) 

  Unadjusted p-value 

  Adjusted p-value 

n = 328 

21.813.2 

 

n = 244 

22.713.6 

0.44 

0.99 

n = 82 

21.611.0 

0.88 

0.61 

n = 187 

22.313.3 

0.70 

0.93 

n = 105 

22.815.0 

0.50 

0.79 

n = 57 

24.014.4 

0.26 

0.91 

n = 162 

23.214.7 

0.28 

0.79 

 

LDL/HDL ratio 

  Unadjusted p-value 

  Adjusted p-value 

n = 328 

1.920.75 

 

n = 244 

1.950.86 

0.60 

0.88 

n = 82 

1.920.72 

0.99 

0.81 

n = 187 

1.930.84 

0.91 

0.84 

n = 105 

1.930.93 

0.88 

0.91 

n = 57 

2.050.91 

0.26 

0.40 

n = 162 

1.970.92 

0.52 

0.78 
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Table 4.5 Mean metabolic syndrome-related biomarkers by orofacial cleft case groups and controls: The Utah Cleft 2 Study (Cont.). 

Biomarker Control Orofacial cleft cases 

 All OFCs CLO CL/P CLP CPO CP/L 

 

Alkaline 

phosphatase (IU/L) 

 Unadjusted p-value 

 Adjusted p-value 

n = 328 

64.318.7 

 

n = 247 

65.820.1 

 

0.36 

0.60 

n = 81 

64.418.9 

 

0.95 

0.72 

n = 188 

65.920.2 

 

0.35 

0.50 

n = 107 

67.121.1 

 

0.19 

0.21 

n = 59 

65.219.7 

 

0.73 

0.86 

n = 166 

66.420.6 

 

0.25 

0.37 

 

ALT (SGPT) (IU/L) 

 Unadjusted p-value 

 Adjusted p-value 

n = 328 

18.18.9 

 

n = 247 

19.210.4 

0.15 

0.18 

n = 81 

19.510.4 

0.20 

0.30 

n = 188 

19.611.2 

0.09 

0.11 

n = 107 

19.611.8 

0.15 

0.14 

n = 59 

18.17.1 

1.00 

0.96 

n = 166 

19.110.4 

0.26 

0.25 

 

AST (SGOT)(IU/L) 

Unadjusted p-value 

Adjusted p-value 

n = 328 

18.15.1 

 

n = 247 

19.413.2 

0.14 

0.08 

n = 81 

20.316.6 

0.25 

0.05 

n = 188 

19.914.8 

0.11 

0.05 

n = 107 

19.613.4 

0.26 

0.08 

n = 59 

17.95.8 

0.74 

0.94 

n = 166 

19.011.3 

0.34 

0.15 

OFCs: orofacial clefts; CPO: cleft palate only; CLO: cleft lip only; CLP: cleft lip with cleft palate; CL/P: cleft lip with or without cleft 

palate; CP/L: cleft palate with or without cleft lip. 

BP: blood pressure, WC: waist circumference, HbA1c: Hemoglobin A1c, HDL: high-density lipoprotein cholesterol, LDL: Low-

density lipoprotein, VLDL: Very low-density lipoprotein ALT: Alanine Aminotransferase, AST: Aspartate Aminotransferase. 

NCEP/ATP III: National Cholesterol Education Program, Adult Treatment Panel III  

IDF: International Diabetes Federation 

Unadjusted p-value for independent sample t-test 

Adjusted p-value form analysis of covariance model including maternal age and smoking (Model) 
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Table 4.6 Cytokine and adipokine levels of orofacial cleft cases and controls: The Utah Cleft 2 Study  

 Control 

(n = 241) 
Orofacial cleft cases 

All OFCs  

(n = 182) 

CLO 

(n = 60) 

CL/P 

(n = 138) 

CLP 

(n = 78) 

CPO  

(n = 44) 

CP/L 

(n = 122) 

Adiponectin 

(ng/ml)  

  %Undetected 

  Median1IQR 

  Mean2SD 

  p-valuea 

  p-valueb 

 

 

0 

89217379 

10937560 

 

 

0 

76898220 

10413644 

0.54 

0.70 

 

 

0 

736010204 

107921185 

0.91 

0.82 

 

 

0 

78938412 

10489749 

0.63 

0.79 

 

 

0 

85228223 

10256971 

0.54 

0.61 

 

 

0 

72308120 

101731327 

0.60 

0.81 

 

 

0 

82738083 

10226767 

0.45 

0.57 

CRP (ng/ml) 

  %Undetected 

  Median1IQR 

   

  Mean2SD 

   

  p-valuea 

  p-valueb 

 

1.2 

23324 

123764 

159345 

384310 

 

 

0 

33834 

115461 

152771 

427596 

0.59 

0.67 

 

0 

26365 

58834 

79971.1 

155579.0 

0.47 

0.41 

 

0 

30200 

73054 

147468 

469983 

0.88 

0.84 

 

0 

35225 

121045 

199388 

606773 

0.70 

0.72 

 

0 

50447 

241589 

169406 

255936 

0.11 

0.15 

 

0 

38130 

146133 

188575 

507720 

0.25 

0.29 

IL-1a (pg/ml) 

  %Undetected 

  Median1IQR 

  Mean2SD 

  p-valuea 

  p-valueb 

 

21.2 

3.514.50 

3.692.80 

 

 

17.6 

3.704.34 

3.852.63 

0.99 

0.94 

 

15.0 

4.194.14 

4.252.79 

0.32 

0.52 

 

17.4 

3.724.40 

3.932.70 

0.71 

0.88 

 

19.2 

3.464.50 

3.692.63 

0.74 

0.73 

 

18.2 

3.283.25 

3.582.38 

0.47 

0.54 

 

18.9 

3.354.27 

3.652.53 

0.52 

0.58 
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Table 4.6 Cytokine and adipokine levels of orofacial cleft cases and controls: The Utah Cleft 2 Study (Cont.) 

 

 Control 

(n = 241) 
Orofacial cleft cases 

All OFCs  

(n = 182) 

CLO 

(n = 60) 

CL/P 

(n = 138) 

CLP 

(n = 78) 

CPO  

(n = 44) 

CP/L 

(n = 122) 

IL-6 (pg/ml) 

  %Undetected 

  Median1IQR 

  Mean2SD 

  p-valuea 

  p-valueb 

 

11.6 

3.823.15 

3.873.22 

 

 

12.6 

4.023.55 

3.892.55 

0.93 

0.91 

 

11.7 

4.384.00 

4.272.94 

0.53 

0.54 

 

13.0 

4.363.56 

4.042.61 

0.35 

0.34 

 

14.1 

4.253.20 

3.862.32 

0.40 

0.38 

 

11.4 

3.103.49 

3.422.32 

0.10 

0.11 

 

13.1 

3.583.38 

3.702.32 

0.76 

0.83 

IL-8 (pg/ml) 

  %Undetected 

  Median1IQR 

  Mean2SD 

  p-valuea 

  p-valueb 

 

34.9 

2.851.59 

3.181.21 

 

 

33.5 

3.051.78 

3.451.88 

0.03 

0.02 

 

35.0 

2.691.53 

3.191.33 

0.88 

0.47 

 

37.7 

2.711.61 

3.221.35 

0.40 

0.60 

 

39.7 

2.831.72 

3.241.38 

0.16 

0.16 

 

20.5 

3.322.21 

4.162.89 

<0.001 

0.001 

 

32.8 

3.121.93 

3.572.09 

0.003 

0.003 

Leptin (ng/ml) 

  %Undetected 

  Median1IQR 

  Mean2SD 

  p-valuea 

  p-valueb 

 

0.8 

8.7915.36 

18.4023.16 

 

 

0 

10.1433.50 

26.8739.83 

0.04 

0.06 

 

0 

8.9923.68 

20.1426.67 

0.83 

0.71 

 

0 

9.6331.21 

26.4742.91 

0.13 

0.26 

 

0 

10.7834.68 

31.3451.73 

0.03 

0.05 

 

0 

11.0637.48 

28.1328.44 

0.01 

0.01 

 

0 

10.8735.14 

30.1844.64 

0.004 

0.006 

Resistin (ng/ml) 

  %Undetected 

  Median1IQR 

  Mean2SD 

  p-valuea 

  p-valueb 

 

1.7 

29243284 

22351602 

 

 

1.1 

26863283 

21931740 

0.74 

0.92 

 

3.3 

26863298 

23691947 

0.46 

0.45 

 

1.4 

26713239 

21321771 

0.54 

0.61 

 

0 

25163150 

19491611 

0.12 

0.16 

 

0 

28173368 

23861643 

0.66 

0.47 

 

0 

26893274 

21071630 

0.35 

0.50 
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Table 4.6 Cytokine and adipokine levels of orofacial cleft cases and controls: The Utah Cleft 2 Study (Cont.) 

 Control 

(n = 241) 
Orofacial cleft cases 

All OFCs  

(n = 182) 

CLO 

(n = 60) 

CL/P 

(n = 138) 

CLP 

(n = 78) 

CPO  

(n = 44) 

CP/L 

(n = 122) 

TNF-α (pg/ml) 

  %Undetected 

  Median1IQR 

  Mean2SD 

  p-valuea 

  p-valueb 

 

7.1 

12.077.61 

12.7611.09 

 

 

7.1 

12.528.36 

13.097.43 

0.50 

0.46 

 

5.0 

13.086.06 

14.128.05 

0.27 

0.31 

 

5.8 

12.687.99 

13.417.55 

0.43 

0.41 

 

6.4 

12.326.36 

12.877.14 

0.83 

0.75 

 

11.4 

12.079.38 

12.077.04 

0.98 

0.96 

 

8.2 

12.327.81 

12.587.09 

0.86 

0.74 

OFCs: orofacial clefts; CPO: cleft palate only; CLO: cleft lip only; CLP: cleft lip with cleft palate; CL/P: cleft lip with or without cleft 

palate; CP/L: cleft palate with or without cleft lip. 

CRP: C-reactive protein, IL-1a: Interleukin-1 alpha, IL-6: Interleukin-6, IL-8: Interleukin-8, TNF-α: Tumor necrosis factor alpha 
1 median and interquartile range (IQR) from all samples 
2 mean and standard deviation (SD)  
aUnadjusted p-value for test difference to control among detected group (two-way ANOVA) 
bAdjusted p-value for test difference to control among detected group with analysis of covariance model including maternal age and 

smoking (two-way ANOVA).  
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Table 4.7 Odds ratio analysis of body mass index and biomarkers related to metabolic syndrome and risk of orofacial clefts: The Utah 

Cleft 2 Study 

 Odds ratios (95 percent confidence intervals) 

 All OFCs CLO CL/P CLP CPO CP/L 

BMI (kg/m2) 

  Underweight 

  Normal 

  Overweight 

  Obese 

 

0.77 [0.22-2.61] 

Reference 

1.09 [0.72-1.63] 

1.45 [0.99-2.13] 

p-trend 0.06 

 

0.63 [0.08-5.18] 

Reference 

0.86 [0.45-1.66] 

2.01 [1.17-3.45] 

p-trend 0.012 

 

1.03 [0.30-3.52] 

Reference 

1.13 [0.73-1.75] 

1.53 [1.01-2.31] 

p-trend 0.048 

 

1.31 [0.33-5.15] 

Reference 

1.31 [0.78-2.20] 

1.19 [0.71-2.00] 

p-trend 0.47 

 

N/A 

Reference 

0.97 [0.49-1.93] 

1.24 [0.65-2.35] 

p-trend 0.54 

 

0.83 [0.21-3.22] 

Reference 

1.19 [0.76-1.86] 

1.21 [0.78-1.87] 

p-trend 0.39 

Glucose (mg/dl) 

  ≤ 84 

  85-93 

  ≥ 94 

 

1 (reference) 

1.13 (0.76-1.69) 

1.16 (0.78-1.75) 

p-trend 0.46 

 

1 (reference) 

0.92 (0.52-1.64) 

0.85 (0.47-1.54) 

p-trend 0.59 

 

1 (reference) 

1.18 (0.77-1.82) 

1.20 (0.77-1.86) 

p-trend 0.42 

 

1 (reference) 

1.47 (0.85-2.54) 

1.58 (0.92-2.74) 

p-trend 0.10 

 

1 (reference) 

0.99 (0.50-1.94) 

1.07 (0.54-2.09) 

p-trend 0.86 

 

1 (reference) 

1.27 (0.80-2.00) 

1.37 (0.86-2.17) 

p-trend 0.19 

HbA1c (%) 

  ≤ 5.30 

  > 5.30 - 5.50 

  > 5.50 

 

1 (reference) 

0.73 (0.49-1.08) 

0.87 (0.58-1.32) 

p-trend 0.41 

 

1 (reference) 

0.86 (0.49-1.52) 

0.96 (0.53-1.76) 

p-trend 0.85 

 

1 (reference) 

0.73 (0.47-1.12) 

1.04 (0.67-1.61) 

p-trend 0.98 

 

1 (reference) 

0.63 (0.36-1.08) 

1.09 (0.64-1.85) 

p-trend 0.90 

 

1 (reference) 

0.73 (0.39-1.35) 

0.45 (0.20-0.99) 

p-trend 0.04 

 

1 (reference) 

0.67 (0.43-1.04) 

0.83 (0.52-1.33) 

p-trend 0.33 

Insulin 

(μlU/mL) 

  ≤ 7.80 

  >7.80 -18.10 

  > 18.10 

 

 

1 (reference) 

1.07 (0.70-1.61) 

1.25 (0.83-1.90) 

p-trend 0.29 

 

 

1 (reference) 

0.91 (0.50-1.64) 

0.87 (0.47-1.61) 

p-trend 0.66 

 

 

1 (reference) 

1.06 (0.68-1.67) 

1.26 (0.80-1.97) 

p-trend 0.32 

 

 

1 (reference) 

1.23 (0.70-2.16) 

1.65 (0.95-2.86) 

p-trend 0.07 

 

 

1 (reference) 

1.07 (0.52-2.23) 

1.24 (0.60-2.56) 

p-trend 0.56 

 

 

1 (reference) 

1.17 (0.72-1.90) 

1.50 (0.93-2.41) 

p-trend 0.09 
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Table 4.7 Table 4.7 Odds ratio analysis of body mass index and biomarkers related to metabolic syndrome and risk of orofacial clefts: 

The Utah Cleft 2 Study (Cont.) 

 

 Odds ratios (95 percent confidence intervals) 

 All OFCs CLO CL/P CLP CPO CP/L 

Cholesterol 

(mg/dL) 

  ≤ 161 

  162-188 

  ≥189 

 

 

1 (reference) 

1.04 (0.70-1.56) 

1.09 (0.73-1.63) 

p-trend 0.67 

 

 

1 (reference) 

1.06 (0.59-1.88) 

0.88 (0.48-1.61) 

p-trend 0.69 

 

 

1 (reference) 

0.99 (0.64-1.53) 

0.92 (0.59-1.43) 

p-trend 0.72 

 

 

1 (reference) 

0.94 (0.56-1.61) 

0.95 (0.56-1.62) 

p-trend 0.86 

 

 

1 (reference) 

1.27 (0.61-2.64) 

1.85 (0.93-3.68) 

p-trend 0.07 

 

 

1 (reference) 

1.04 (0.65-1.65) 

1.21 (0.77-1.90) 

p-trend 0.42 

Triglyceride 

(mg/dL) 

  ≤ 70 

  71-120 

  ≥ 121 

 

1 (reference) 

1.07 (0.71-1.60) 

1.20 (0.80-1.79) 

p-trend 0.38 

 

1 (reference) 

1.13 (0.63-2.05) 

1.11 (0.62-2.02) 

p-trend 0.72 

 

1 (reference) 

0.95 (0.61-1.47) 

1.05 (0.68-1.62) 

p-trend 0.84 

 

1 (reference) 

0.82 (0.48-1.41) 

1.00 (0.60-1.69) 

p-trend 0.99 

 

1 (reference) 

1.64 (0.79-3.39) 

1.91 (0.94-3.89) 

p-trend 0.08 

 

1 (reference) 

1.03 (0.65-1.64) 

1.24 (0.79-1.95) 

p-trend 0.36 

HDL (mg/dL) 

  ≤ 48 

  49-61 

  ≥ 62 

 

1 (reference) 

0.79 (0.53-1.18) 

0.72 (0.48-1.08) 

p-trend 0.11 

 

1 (reference) 

0.71 (0.36-1.41) 

0.80 (0.41-1.55) 

p-trend 0.49 

 

1 (reference) 

0.82 (0.53-1.26) 

0.70 (0.45-1.09) 

p-trend 0.11 

 

1 (reference) 

0.72 (0.42-1.22) 

0.70 (0.41-1.18) 

p-trend 0.17 

 

1 (reference) 

0.96 (0.54-1.71) 

0.71 (0.38-1.30) 

p-trend 0.27 

 

1 (reference) 

0.72 (0.45-1.13) 

0.73 (0.46-1.15) 

p-trend 0.16 

LDL (mg/dL) 

  ≤ 86 

  87-109 

  ≥ 110 

 

1 (reference) 

0.88 (0.59-1.32) 

0.84 (0.56-1.27) 

p-trend 0.41 

 

1 (reference) 

1.05 (0.59-1.86) 

0.79 (0.43-1.46) 

p-trend 0.46 

 

1 (reference) 

0.84 (0.55-1.29) 

0.72 (0.46-1.12) 

p-trend 0.15 

 

1 (reference) 

0.70 (0.42-1.20) 

0.67 (0.39-1.15) 

p-trend 0.14 

 

1 (reference) 

1.07 (0.52-2.20) 

1.39 (0.69-2.77) 

p-trend 0.34 

 

1 (reference) 

0.80 (0.51-1.27) 

0.87 (0.55-1.37) 

p-trend 0.53 
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Table 4.7 Odds ratio analysis of body mass index and biomarkers related to metabolic syndrome and risk of orofacial clefts: The Utah 

Cleft 2 Study (Cont.) 

 Odds ratios (95 percent confidence intervals) 

 All OFCs CLO CL/P CLP CPO CP/L 

VLDL (mg/dL) 

  ≤ 14 

  15-24 

  ≥ 25 

 

1 (reference) 

1.10 (0.74-1.65) 

1.19 (0.79-1.78) 

p-trend 0.41 

 

1 (reference) 

1.22 (0.67-2.19) 

1.23 (0.68-2.23) 

p-trend 0.49 

 

1 (reference) 

0.94 (0.61-1.45) 

1.07 (0.70-1.65) 

p-trend 0.77 

 

1 (reference) 

0.76 (0.44-1.31) 

0.97 (0.58-1.64) 

p-trend 0.87 

 

1 (reference) 

1.92 (0.94-3.93) 

1.76 (0.85-3.65) 

p-trend 0.14 

 

1 (reference) 

1.05 (0.66-1.66) 

1.17 (0.74-1.84) 

p-trend 0.52 

LDL/HDL ratio 

  ≤ 1.50 

  > 1.50-2.13 

  > 2.13 

 

1 (reference) 

0.78 (0.52-1.18) 

0.99 (0.66-1.48) 

p-trend 0.97 

 

1 (reference) 

0.97 (0.53-1.77) 

1.19 (0.66-2.16) 

p-trend 0.56 

 

1 (reference) 

0.75 (0.48-1.17) 

0.95 (0.61-1.46) 

p-trend 0.80 

 

1 (reference) 

0.62 (0.36-1.07) 

0.80 (0.47-1.36) 

p-trend 0.39 

 

1 (reference) 

0.90 (0.44-1.82) 

1.16 (0.58-2.29) 

p-trend 0.67 

 

1 (reference) 

0.70 (0.44-1.12) 

0.91 (0.58-1.43) 

p-trend 0.67 

OFCs: orofacial clefts; CPO: cleft palate only; CLO: cleft lip only; CLP: cleft lip with cleft palate; CL/P: cleft lip with or without cleft 

palate; CP/L: cleft palate with or without cleft lip. 

BMI: body mass index, HbA1c: Hemoglobin A1c, HDL: high-density lipoprotein cholesterol, LDL: Low-density lipoprotein, VLDL: 

Very low-density lipoprotein, ALT: Alanine Aminotransferase, AST: Aspartate Aminotransferase.  

BMI: underweight, ≤ 18.5 kg/m2; normal, 18.5-24.9 kg/m2; overweight, 25.-29.9 kg/m2; obese, ≥ 30 kg/m2.  
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Table 4.8 Risk of orofacial clefts associated with NCEP/ATP III and IDF metabolic syndrome criteria and components. 

 Odds ratios (95 percent confidence intervals) 

 All OFCs CLO CL/P CLP CPO CP/L 

MET score 

(NCEP/ATP 

III) 

  < 3 

  ≥ 3 

 

 

 

1 [reference] 

1.42 [0.92-2.17] 

 

 

 

1 [reference] 

1.06 [0.54-2.05] 

 

 

 

1 [reference] 

1.31 [0.82-2.09] 

 

 

 

1 [reference] 

1.51[0.88-2.60] 

 

 

 

1 [reference] 

1.78 [0.91-3.49] 

 

 

 

1 [reference] 

1.60 [1.00-2.56] 

MET score (IDF) 

  WC < 80 cm 

  WC > 80 cm + 2 

more 

 

1 [reference] 

1.48 [0.98-2.24] 

 

1 [reference] 

1.16 [0.62-2.17] 

 

1 [reference] 

1.38 [0.89-2.18] 

 

1 [reference] 

1.58 [0.93-2.67] 

 

1 [reference] 

1.78 [0.92-3.42] 

 

1 [reference] 

1.64 [1.04-2.59] 

Systolic BP ≥ 130 or 

diastolic BP ≥ 85 

mmHg 

1.51 [0.91-2.53] 1.03 [0.46-2.32] 1.30 [0.73-2.29] 1.50 [0.78-2.89] 2.34 [1.10-4.96] 1.77 [1.02-3.09] 

WC > 88 cma 1.09 [0.79-1.50] 1.18 [0.74-1.89] 1.11 [0.79-1.57] 1.06 [0.70-1.61] 1.04 [0.58-1.75] 1.04 [0.73-1.50] 

WC > 80 cmb 1.13 [0.78-1.64] 1.03 [0.60-1.77] 1.16 [0.77-1.74] 1.27 [0.77-2.10] 1.04 [0.55-1.95] 1.18 [0.77-1.81] 

TG ≥ 150 mg/dL 1.05 [0.70-1.58] 0.77 [0.40-1.47] 1.00 [0.64-1.55] 1.18 [0.70-1.97] 1.24 [0.65-2.39] 1.20 [0.77-1.87] 

HDL < 50 mg/dL 1.22 [0.87-1.69] 1.16 [0.71-1.90] 1.21 [0.84-1.73] 1.25 [0.81-1.93] 1.23 [0.71-2.15] 1.24 [0.86-1.80] 

FPG > 110 mg/dLa 1.41 [0.70-2.84] 1.01 [0.33-3.10] 1.30 [0.60-2.81] 1.52 [0.63-3.67] 1.75 [0.62-4.98] 1.61 [0.75-3.42] 

FPG > 100 mg/dLb 1.20 [0.65-2.23] 0.87 [0.32-2.35] 1.13 [0.57-2.21] 1.32 [0.61-2.87] 1.46 [0.57-3.74] 1.37 [0.70-2.67] 

OFCs: orofacial clefts; CPO: cleft palate only; CLO: cleft lip only; CLP: cleft lip with cleft palate; CL/P: cleft lip with or without cleft 

palate; CP/L: cleft palate with or without cleft lip. 

BP: blood pressure, WC: waist circumference, TG: triglyceride, HDL: high-density lipoprotein cholesterol, FPG: fasting plasma 

glucose 

a National Cholesterol Education Program, Adult Treatment Panel III  
bInternational Diabetes Federation 

MET: metabolic syndrome 
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NCEP/ATP III: National Cholesterol Education Program, Adult Treatment Panel III [raised waist circumference (≥ 102 cm in males, 

≥ 88 cm in females), raised blood pressure (systolic blood pressure ≥ 130 mmHg or diastolic blood pressure ≥ 85 mmHg), raised 

triglyceride (≥ 150 mg/dL), reduced HDL cholesterol (<40 mg/dL in males, <50 mg/dL in females), raised fasting plasma glucose 

(fasting plasma glucose ≥ 110 mg/dL or previous diagnosed type 2 diabetes)] 

IDF: International Diabetes Federation [raised waist circumference (≥ 94 cm in males, ≥ 80 cm in females), raised blood pressure 

(systolic blood pressure ≥ 130 mmHg or diastolic blood pressure ≥ 85 mmHg), raised triglyceride (≥ 150 mg/dL), reduced HDL 

cholesterol (<40 mg/dL in males, <50 mg/dL in females), raised fasting plasma glucose (fasting plasma glucose ≥ 100 mg/dL or 

previous diagnosed type 2 diabetes)] 

WC: Waist circumference  

N/A: Not applicable 
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Table 4.9 Risk of orofacial clefts associated with cytokine and adipokine levels. 

Tertile Odds ratios (95 percent confidence intervals) 

 All OFCs CLO CL/P CLP CPO CP/L 

Adiponectin (mg/L) 

  ≤ 6199.51 

  > 6199.52-

10907.73 

  ≥ 10907.73 

 

1 (reference) 

0.73 (0.45-1.17) 

 

0.80 (0.50-1.27) 

p-trend 0.34 

 

1 (reference) 

0.79 (0.40-1.56) 

 

0.74 (0.37-1.48) 

p-trend 0.39 

 

1 (reference) 

0.73 (0.44-1.22) 

 

0.83 (0.50-1.38) 

p-trend 0.48 

 

1 (reference) 

0.68 (0.36-1.30) 

 

0.90 (0.49-1.66) 

p-trend 0.76 

 

1 (reference) 

0.72 (0.33-1.55) 

 

0.69 (0.31-1.52) 

p-trend 0.35 

 

1 (reference) 

0.70 (0.41-1.19) 

 

0.82 (0.49-1.39) 

p-trend 0.47 

CRP (mg/L) 

  ≤ 14061.55 

  > 14061.55-

71263.16 

  > 71263.16 

 

1 (reference) 

1.28 (0.80-2.05) 

 

1.17 (0.73-1.88) 

p-trend 0.51 

 

1 (reference) 

1.31 (0.68-2.54) 

 

0.72 (0.34-1.51) 

p-trend 0.43 

 

1 (reference) 

1.28 (0.77-2.11) 

 

0.98 (0.58-1.65) 

p-trend 0.96 

 

1 (reference) 

1.24 (0.66-2.33) 

 

1.21 (0.65-2.27) 

p-trend 0.55 

 

1 (reference) 

1.31 (0.55-3.08) 

 

1.96 (0.88-4.34) 

p-trend 0.09 

 

1 (reference) 

1.26 (0.73-2.18) 

 

1.45 (0.85-2.47) 

p-trend 0.18 

IL-1a (pg/ml) 

  ≤ 2.08 

  > 2.08-4.96 

  > 4.96 

 

1 (reference) 

1.12 (0.70-1.79) 

1.17 (0.73-1.87) 

p-trend 0.52 

 

1 (reference) 

1.26 (0.61-2.63) 

1.68 (0.84-3.39) 

p-trend 0.14 

 

1 (reference) 

1.02 (0.60-1.71) 

1.27 (0.77-2.11) 

p-trend 0.35 

 

1 (reference) 

0.87 (0.47-1.64) 

1.04 (0.56-1.92) 

p-trend 0.91 

 

1 (reference) 

1.44 (0.68-3.07) 

0.85 (0.36-1.98) 

P-trend 0.75 

 

1 (reference) 

1.06 (0.63-1.80) 

0.97 (0.57-1.67) 

p-trend 0.93 

IL-6 (pg/ml) 

  ≤ 2.78 

  > 2.78-5.01 

  > 5.01 

 

1 (reference) 

0.72 (0.45-1.16) 

1.00 (0.63-1.60) 

p-trend 1.00 

 

1 (reference) 

0.77 (0.38-1.56) 

1.10 (0.56-2.18) 

p-trend 0.77 

 

1 (reference) 

0.74 (0.44-1.25) 

1.13 (0.68-1.88) 

p-trend 0.62 

 

1 (reference) 

0.72 (0.38-1.38) 

1.15 (0.62-2.13) 

p-trend 0.63 

 

1 (reference) 

0.66 (0.31-1.42) 

0.67 (0.30-1.48) 

p-trend 0.30 

 

1 (reference) 

0.70 (0.41-1.20) 

0.96 (0.56-1.62) 

p-trend 0.86 
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Table 4.9 Risk of orofacial clefts associated with cytokine and adipokine levels (Cont.). 

Tertile Odds ratios (95 percent confidence intervals) 

 All OFCs CLO CL/P CLP CPO CP/L 

IL-8 (pg/ml) 

  ≤ 2.20 

  > 2.20-3.53 

  > 3.53 

 

1 (reference) 

0.93 (0.58-1.49) 

1.21 (0.76-1.93) 

p-trend 0.43 

 

1 (reference) 

1.06 (0.54-2.07) 

0.92 (0.45-1.87) 

p-trend 0.83 

 

1 (reference) 

0.82 (0.49-1.36) 

0.96 (0.58-1.60) 

p-trend 0.85 

 

1 (reference) 

0.65 (0.35-1.24) 

0.99 (0.54-1.81) 

p-trend 0.93 

 

1 (reference) 

1.57 (0.65-3.84) 

2.65 (1.14-6.14) 

p-trend 0.018 

 

1 (reference) 

0.86 (0.50-1.49) 

1.36 (0.81-2.30) 

p-trend 0.24 

Leptin (ng/ml) 

  ≤ 5.95 

  > 5.95-15.44 

  > 15.44 

 

1 (reference) 

1.07 (0.67-1.73) 

1.73 (1.07-2.77) 

p-trend 0.02 

 

1 (reference) 

0.81 (0.41-1.61) 

1.07 (0.54-2.12) 

p-trend 0.89 

 

1 (reference) 

0.97 (0.57-1.62) 

1.56 (0.94-2.60) 

p-trend 0.09 

 

1 (reference) 

1.13 (0.59-2.20) 

2.10 (1.12-3.93) 

p-trend 0.02 

 

1 (reference) 

1.55 (0.66-3.65) 

2.46 (1.07-5.63) 

p-trend 0.03 

 

1 (reference) 

1.27 (0.73-2.22) 

2.21 (1.28-3.81) 

p-trend 0.004 

Resistin (ng/ml) 

  ≤ 481.22 

  >481.22- 3328.74 

  > 3328.74 

 

1 (reference) 

1.20 (0.75-1.92) 

1.00 (0.62-1.60) 

p-trend 1.00 

 

1 (reference) 

1.43 (0.71-2.90) 

1.24 (0.61-2.51) 

p-trend 0.58 

 

1 (reference) 

1.06 (0.64-1.77) 

0.92 (0.55-1.53) 

p-trend 0.74 

 

1 (reference) 

0.86 (0.46-1.59) 

0.74 (0.40-1.38) 

p-trend 0.34 

 

1 (reference) 

1.81 (0.80-4.08) 

1.36 (0.59-3.14) 

p-trend 0.50 

 

1 (reference) 

1.11 (0.65-1.88) 

0.91 (0.53-1.54) 

p-trend 0.72 

TNF-α (pg/ml) 

  ≤ 9.54 

  > 9.54-14.48 

  > 14.48 

 

1 (reference) 

0.82 (0.51-1.31) 

1.09 (0.68-1.74) 

p-trend 0.72 

 

1 (reference) 

0.92 (0.45-1.89) 

1.39 (0.70-2.76) 

p-trend 0.34 

 

1 (reference) 

0.92 (0.55-1.54) 

1.11 (0.66-1.85) 

p-trend 0.69 

 

1 (reference) 

0.92 (0.50-1.70) 

0.92 (0.49-1.74) 

p-trend 0.80 

 

1 (reference) 

0.54 (0.23-1.25) 

1.04 (0.50-2.18) 

p-trend 0.93 

 

1 (reference) 

0.77 (0.45-1.32) 

0.97 (0.57-1.64) 

p-trend 0.89 

OFCs: orofacial clefts; CPO: cleft palate only; CLO: cleft lip only; CLP: cleft lip with cleft palate; CL/P: cleft lip with or without cleft 

palate; CP/L: cleft palate with or without cleft lip.  
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Figure 4.2 Medians of leptin levels divided by maternal body mass index 
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CHAPTER 5 

 

THE ASSOCIATION BETWEEN GENES RELATED TO GESTATIONAL 

 

 DIABETES MELLITUS AND THE RISK OF OROFACIAL CLEFTS  

 

 

5.1 Abstract 

 

Background: Gestational diabetes mellitus (GDM) has been associated with an 

increased risk of orofacial clefts (OFCs) and there is some evidence that GDM may be 

specifically related to palate development rather than lip. Genetic studies have identified 

many genes associated with non-syndromic OFCs, but none are clearly associated with 

GDM. 

Objective: to determine the association between genes related to GDM and the 

risk of OFCs. 

Methods: Genetic data from the GENEVA study of OFCs consisted of 892 cleft 

lip with or without cleft palate (CL/P) and 910 cleft palate with or without cleft lip 

(CP/L) trios of Asian ancestry and 665 CL/P and 644 CP/L trios of European ancestry. 

Twenty GDM-related genes were selected for analysis of association with OFCs. 

Genotypic transmission disequilibrium tests (gTDT) were used to analyze genetic effects 

and gene-environment (GxE) interactions with periconceptional maternal multivitamin 

use (PCMV), smoking, and environmental tobacco smoke (ETS). 

Results: SLC30A8 was associated with CL/P and HNF1B was associated with 

CP/L in Asian trios. In Europeans, ADRB3 and TNF-α were associated with both CL/P 

and CP/L; ABCC8 was associated with CL/P only and ADIPOQ and HNF1 were 

associated with CP/L only. Considering interactions with PCMV, associations were 
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found for ABCC8 and CDKAL1 in Europeans. Considering interactions with maternal 

smoking, associations were found for CDKN2A/2B in Asian and for LEP in Europeans. 

In Asians, FTO, HHEX, and PPARG had associations with OFCs when considering 

interaction with ETS.  

Conclusion: Several genes related to GDM were associated with risk of isolated 

CL/P and CP/L through genotypic effects alone and gene-environment interactions with 

PCMV, maternal smoking, and ETS. These associations do not point to a single major 

GDM gene associated with OFCs, but support the hypothesis that GDM may be causally 

related to OFCs via multiple GDM susceptibility genes and interactions with 

environmental factors.  

5.2 Introduction 

Orofacial clefts (OFCs) are among the most common congenital birth defects. 

Globally, approximately 1.43 in 1000 newborns suffer from OFCs (1). The prevalence of 

OFCs is different among varying ethnic and racial groups (2). National Birth Defects 

Prevention Network reported the prevalence of OFCs during 2002-2006 of CL/P was 

1.33 per 1000 live births, and 0.73 per 1000 live births for CP (3). The prevalence of 

OFCs in Utah is higher than the overall prevalence of the United States (2.25 per 1000 

births) (4).  

The etiology of orofacial clefts is not fully understood. The updated evidence 

suggests that there are the multiple factors for this defect including both genetic and 

environmental factors (5). Maternal diabetes mellitus, obesity, and underweight have 

been found as risk factors for OFCs (6-13). Pre-diabetes mellitus and GDM increased risk 



346 
 

of OFCs (6-8). Many case-control studies and a meta-analysis found that maternal 

obesity increased risk of OFCs. The previous study by Kutbi (11) reported the association 

between maternal obesity and risk of CL/P and CP/L. In addition, we found that GDM 

increased risk of cleft palate only (CPO) and CP/L in the previous chapter. 

OFCs are classified as either syndromic or non-syndromic. Syndromic OFCs are 

those occurring with other birth defects, while non-syndromic clefts have no other 

structural or functional anomalies. The prevalence of syndromic OFCs is around 25 

percent of all OFCs; around seventy-five percent of syndromic OFCs can be described by 

known genetic conditions including Van der Woude syndrome, Bamforth–Lazarus 

syndrome, Kabuki syndrome, Pierre Robin syndrome, and Treacher Collins syndrome 

(14). Genetic studies have identified genes related to syndromic OFCs and have provided 

clear associations between cleft phenotypes and the mutations of genes (15). Genetic 

studies have also found associations between non-syndromic orofacial clefts and genes 

related to growth factors, transcription factors, xenobiotic metabolism, immune response, 

and one-carbon metabolism (16). Genome-wide association studies (GWAS) have 

identified additional genes associated with non-syndromic orofacial clefts, but none to 

date are clearly associated with GDM (17-20).  

Several environmental factors, including PCMV, smoking, and ETS have been 

associated with OFCs. These same exposures have been associated with diabetes, 

therefore it is of interest to explore possible interaction between GDM-related genes and 

these environmental factors. 
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There has been no genetic association study focusing on GDM-related genes and 

OFC risk. Therefore, this study aims to determine the association between genes known 

to be related to GDM and risk of OFCs through genetic effects and gene-environment 

interactions.  

5.3 Subjects and Methods 

5.3.1 Study Design 

The study design is based on trios of children with an isolated orofacial cleft and 

their mothers and fathers using genome wide association (GWA) data available from the 

International Genetic Epidemiology study of Oral Clefts, a part of the Gene-Environment 

Association Studies Initiative (GENEVA) of the National Institutes of Health (NIH) (20). 

This study is a multi-center, international study of trios from Europe, the U.S., including 

Utah, China, Taiwan, Singapore, Korea, and the Philippines, which aims to investigate 

genes associated with oral clefts. Families were recruited from treatment centers or 

population-based registries. Research protocols for human study were reviewed and 

approved by institutional review boards of each participating institutions and parents 

provided informed consent. 

Principal Components Analysis (PCA) was used to document ancestral population 

affiliation. OFC cases were examined by either a clinical geneticist or an experienced 

clinician to minimize misclassification of the OFCs. All cases with cleft palate with or 

without cleft lip (CP/L) were analyzed together based on evidence that maternal obesity 

and diabetes have a specific effect on palate development (11). Trios having CL/P and 

CP/L were analyzed in this study separately.   
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5.3.2 Maternal exposure assessment 

Parents were asked about family history of oral clefts and other birth defects and 

maternal exposures during the periconceptional period (three months before conception 

through the first trimester) including smoking, alcohol consumption, environmental 

tobacco smoke exposure (ETS), and multivitamin use (PCMV).  

5.3.3 Gene selection and genotyping 

Gene selection was based on publications focusing on genes associated with 

GDM through March 2015. Eighty-three genes were found to have significant 

associations with GDM. In order to narrow the gene list, GDM candidate genes (Table 

5.1) were limited to those with statistically significant associations with GDM and either 

type 2 diabetes or obesity in at least three candidate gene studies or at least two GWA 

studies or at least one meta-analysis study. Genomic coordinates of selected genes were 

obtained from the major human genome assembly released by the Genome Reference 

Consortium, NCBI36/hg18, via the website of the National Center for Biotechnology 

Information (NCBI) (21).  Case and parent samples were collected as whole blood in 

EDTA tube for analyzing DNA. DNA samples were previously genotyped using the 

Illumina Human610 Quad v.1 B BeadChip at the Center for Inherited Disease Research 

(CIDR) and 99.1% passed quality control standards (20). Genotypes were not called if 

the quality score was more than 1 HapMap replicate error, more than 1 percent difference 

in call rate between genders, or more than 4% difference in heterozygote frequency.  
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5.3.4 Statistical analysis 

Statistical analyses were performed in the R program 3.1.2 TRIO package (22). 

Isolated CL/P and CP/L were analyzed separately. Individuals with more than 10 percent 

missing genotypes were excluded from the study. Four quality control (QC) criteria were 

used to flag and remove SNPs: 1) high rates of missing genotype calls (>10%), 2) low 

minor allele frequency (MAF <0.01), 3) high rates of Mendelian errors (> 5%) and 4) 

significant deviation from Hardy-Weinberg equilibrium (p >10-5). MAFs were calculated 

using parents only. SNPs within 100kb upstream and downstream of the selected genes 

were selected and used in this analysis in order include the promoter region (23, 24). 

Because this study included hypotheses for targeted GDM genes, based on strong 

evidence from previous studies, a gene-level approach to analysis was employed with 

Bonferroni adjustment of p-values based on the number of SNPs used in each individual 

gene region as employed in previous studies (25-28).  

The associations between genes related to GDM and risk of OFCs was examined 

by the genotypic transmission disequilibrium (gTDT) test developed by Schwender et al 

(29). Europeans and Asians were analyzed separately because of different allelic 

frequencies. All each SNP, one of the four possible pairs of parental alleles is known to 

be inherited by the case-child, and the other three untransmitted genotypes are used as 

pseudo-controls. The gTDT approach can be formulated as a conditional logistic 

regression model which can be written as: 

 

ln {P(ith case) / [(1-P(ith case))]}{ =  β0i + βGXi,  
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where Xi represents the corresponding risk genotypes under an additive, 

dominant, or recessive model. P(ith case) is the probability of being the observed case in 

the case and pseudo-controls set in the ith trio. The association between SNPs and OFCs 

was estimated with odds ratios as OR (OFCs) = exp (βG) with 95 percent confidence 

intervals (CIs) calculated from estimated standard errors of βG.  

The effects of gene-environment (GxE) interactions were examined using the 

conditional logistic regression model assuming an additive model of inheritance by the 

following model: 

 

 ln {P(ith case) / [(1-P(ith case))]} =  β0i + βGXi, + βEEi + βEG (XiEi)  

 

where Ei is environmental factor (exposed or unexposed). βEG represents the 

coefficient of GxE interaction. Both the gene and GxE interaction terms included in 

conditional logistic regression model provided an estimate of odds ratio (OR) under the 

additive model. The estimated OR of being a case with one copy of the risk allele in the 

unexposed mother was given by OR(OFCs|G no E) = exp (βG) and among the exposed 

mothers was OR(OFCs|G and E) = exp (βG+ βEG) for the odds ratio of being a case with 

one copy of the risk allele in the presence of maternal exposure. A one-degree of freedom 

(df) likelihood ratio test (LRT) was performed for studying the effect of GxE interaction 

alone (30) and 2 df LRT examined the inherited effect of genotype while accounting for 

effects of GxE interaction within the same model (31). 
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5.4 Results 

For Asians, 892 CL/P and 910 CP trios, and for Europeans, 665 CL/P and 644 

CP/L trios were analyzed (Table 5.2). European mothers had a higher rate of PCMV use 

than Asians (Tables 5.3 and 5.4) (CL/P: 54.0% vs 14.7%; CP/L: 54.5% vs 16.5). 

European trios with CL/P and CP/L had high missing rates of ETS (31.4 and 31.7%, 

respectively). Therefore, GxE interaction with ETS was analyzed only in Asian trios. 

Test of association considering genotypic effect alone in Asians and Europeans 

In Asian trios, SLC30A8 (rs924388) was associated with CL/P under the 

dominant model (OR: 1.42, 95% CIs: 1.16-1.74) (Table 5.5). The estimated OR of having 

a CP/L child carrying the minor allele at rs2158254 in HNF1B gene under the recessive 

model in Asians was 0.53 (95%CI: 0.37-0.75).   

In Europeans, ADRB3 (rs7812866) and TNF-α (rs28470596) were both 

associated with CL/P and CP/L (Table 5.6). Moreover, both rs2237991 and rs2074315 in 

ABCC8 showed significant association with CL/P under the dominant model (OR: 0.64, 

95%CI: 0.52-0.79; OR: 0.64, 95%CI: 0.52-0.79; respectively). The estimated odds ratios 

for Europeans for CP/L carrying the minor allele at rs17373877 in ADIPOQ and 

rs6607292 in HNF1B were 0.55 (95%CI: 0.39-0.78; additive model) and 0.50 (95%CI: 

0.35-0.73; recessive model), respectively. There were no significant associations between 

genes related to GDM and risk of CL/P and CP/L in analyses that combined Asians and 

Europeans. 
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Tests of association jointly considering genotypic effects and GxE interactions in 

Asians and Europeans: periconceptional maternal multivitamin (PCMV) as exposure. 

ABCC8 (rs4148622) and CDKAL1 (rs12201217) showed evidence of GxPCMV 

interaction in the 1 df LRT in European CL/P and CP/L, respectively (ABCC8: OR 

(CL/P│G no PCMV): 0.58, 95% CI: 0.42-0.81 and OR (CL/P│G and PCMV): 1.26, 95% 

CI: 1.01-1.58; CDKAL1: OR (CP/L│G no PCMV): 2.10, 95%CI: 1.45-3.03 and OR 

(CP/L│G and PCMV): 1.30, 95%CI: 1.04-1.61). After considering GxE interaction 

effects in the 2 df LRT, genotypic effects for FTO (rs836994) in Asian CL/P, ADIPOQ 

(rs7645316) in European CP/L, and  TNF-α (rs28470596) in European CL/P and CP/L 

became significant (OR (CL/P│G and PCMV): 1.23, 95%CI: 0.88-1.70;  (OR (CP/L│G 

and PCMV): 0.71, 95%CI: 0.57-0.89; OR (CL/P│G and PCMV): 0.49, 95% CI: 0.29-

0.82; OR (CP/L│G and PCMV): 0.28, 95%CI: 0.15-0.52; respectively). There was no 

gene that showed evidence of GxPCMV in Asian CP trios (Table 5.7). 

Test of association jointly considering genotypic effect and GxE interaction in Asians 

and Europeans: periconceptional maternal smoking (smoke) as exposure. 

CDKN2A/2B (rs1063192) and LEP (rs12538332) showed evidence of  gene-

environment interactions with maternal smoking in the 1 df LRT in Asian CL/P and 

European CL/P, respectively (CDKN2A/2B:  OR (CL/P│G no smoking): 1.16, 95%CI: 

0.98-1.37 and OR (CL/P│G and smoking): 0.15, 95%CI: 0.03-0.68; LEP: OR (CL/P│G 

no smoking): 0.83, 95%CI: 0.68-1.02 and OR (CL/P│G and smoking): 1.52, 95% CI: 

1.11-2.13). After considering GxE interaction effects in the 2 df LRT, genotypic effects 

for ABCC8 in European CL/P (rs2237991) and CP/L (rs4148617), and  TNF-α 
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(rs28470596) in European CL/P and CP/L became significant (OR (CL/P│G and 

Smoke): 0.56, 95%CI: 0.40-0.79, OR (CP/L│G and Smoke): 0.52, 95%CI: 0.38-0.73, 

OR (CL/P│G and smoke): 0.25, 95%CI: 0.12-0.52, and OR (CP/L│G and smoke): 0.29, 

95%CI: 0.15-0.60, respectively). There was no gene that showed evidence of GxPCMV 

in Asian CP/L trios (Table 5.8). 

Test of association jointly considering genotypic effect and GxE interaction in 

Asians: periconceptional maternal environmental tobacco smoke (ETS) as exposure. 

Four SNPs in FTO (rs3751812, rs8050136, rs9930333, and rs9941349) had 

protective minor allele associations with CL/P, but only in mothers not exposed to ETS 

(OR range: 0.59-0.60; Table 5.9). Similar protective associations were found for CP/L for 

FTO (rs3751812 and rs8050136). Increased risk for CL/P was found for ETS exposed 

only for five SNPs of HHEX (OR range 1.45-6.00) and found these were also associated 

with CP/L (OR range 8.50-16.0) though the 95% CI, while not including 1.0, were large. 

Three SNPs of PPARG were associated with increased risk of CL/P among ETS-exposed 

mothers (OR range 1.25-1.45).  

5.5 Discussion 

This study found several novel associations between GDM-related genes and 

OFCs and interaction with maternal environmental factors previously associated with 

OFCs. The study reported that HNF1B was associated with CP/L in both Asians and 

Europeans. SLC30A8 had an association with CL/P in Asian trios only. In Europeans, 

ADRB3 and TNF-α had associations with both CL/P and CP/L. Moreover, ABCC8 and 

ADIPOQ were associated with CL/P and CP/L, respectively, in Europeans. Five genes 
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were associated with OFCs when interaction with PCMV was considered -- FTO in 

Asians and ABCC8, ADIPOQ, CDKAL1, and TNF-α in Europeans. Interactions between 

genotype and maternal smoking were found for CDKN2A/2B in Asian CL/P, and in 

Europeans, ABCC8, LEP, and TNF-α were associated with CL/P. In Asian mothers 

exposed to environmental smoking, FTO and HHEX were associated with an increased 

risk of CL/P and CP/L, and PPARG was associated with an increased risk of CL/P.  

Linkage and association studies have reported over two dozen genes significantly 

associated with OFCs, but these differ across populations (32). While these studies have 

revealed the novel genes, it has been difficult to identify the etiologic mechanisms. A 

family-based study by Meeks et al.(33) focused on genes associated with one-carbon 

metabolism (OCM), and found that FUT6 (fucosyltransferase 6) and TCN2 

(transcobalamin 2) had an association with OFCs in Asian population.  

GxE interaction in OFCs have been conducted by many studies but not to date 

have focused on GDM-related genes. A case-parent trio study by Beaty et al (34) 

reported genes associated with cleft palate only (CPO) when maternal environmental 

exposures were considered including BAALC (brain and acute leukemia gene 

cytoplasmic) with maternal multivitamin use, ZNF236 (Zinc Finger Protein 236) and 

TBK1(tank-binding kinase 1) with maternal smoking, and MLLT3 (brain and acute 

leukemia gene cytoplasmic) and SMC2 (structural maintenance of chromosomes 2) with 

maternal alcohol exposure. Another study by Beaty et al. (25) reported GRID2 (glutamate 

Ionotropic Receptor Delta Type Subunit 2) and ELAVL2 (ELAV like RNA binding 

protein 2) had an association with CL/P when interaction with maternal smoking was 
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considered. A family-based study focusing on a Chinese population by Wu et al (35) 

showed interactions between IRF6 and both maternal multivitamin use and 

environmental tobacco smoke in CL/P risk. Another study by Wu et al (36) reported that 

SLC2A9 (solute carrier family 2 member 9) and WDR1 (WD repeat domain 1) gene 

increased risk of CP/L if mothers were exposed to environmental tobacco smoke. A 

family-based study by Wang et al (37) reported a novel gene (FGFR2: fibroblast growth 

factor receptor 2) was associated with CL/P when maternal multivitamin use and 

smoking were considered.  A study by Meeks (33) found that six genes related to one-

carbon metabolism had an association with OFCs if mothers used PCMV (DHFR 

(dihydrofolate reductase), MMAA (methylmalonic aciduria (cobalamin deficiency) cblA 

type), MTR (5-methyltetrahydrofolate-homocysteine methyltransferase), and TCN2 in 

European populations and CBS (cystathionine-beta-synthase) and MTHFD2L 

(methylenetetrahydrofolate dehydrogenase (NADP+ dependent) 2-like) gene in Asian 

populations).  

The association between maternal environmental exposures and risk of orofacial 

is inconsistent. Maternal use of multivitamin supplements in early pregnancy has been 

linked to decreased risk of OFCs; in a meta-analysis on overall 25% reduction in birth 

prevalence of OFCs with multivitamin use was reported (38). However, later data from 

the National Birth Defects Prevention Study (NBDPS) found no association between 

maternal use of supplement containing folic acid and risk of CL/P and CPO (39). 

Maternal smoking has been reported to increase the risk of both CL/P and cleft palate. An 

international population-based study, including Norway and the United States, reported 
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that mothers with active smoking increased risk of all types of isolated clefts (OR: 1.27, 

95% confidence interval (95% CI): 1.11-1.46 for all OFCs; OR: 1.28, 95% CI: 1.09-1.51 

for CL/P, OR: 1.25, 95% CI: 1.01-1.55 for CPO) (40). A study from Brazil by Leite et al. 

(41), however, presented no association between maternal smoking during the first 

trimester of gestation and OFCs. In addition, the effect of environmental tobacco smoke 

from passive exposure on the risk of OFCs still appears to be inconsistent. Case-control 

studies in China reported that passive smoke exposure of mothers increased the risk of 

OFCs (42, 43). However, a cohort study in the United States reported that environmental 

tobacco smoke exposure was not associated with CL/P and CPO (44). Inconsistent 

association between ETS and risk of OFCs might result from GxE interaction, which 

requires further study. The statistically significant gene-environment interactions may or 

may not correspond to biological interaction. Therefore, biological interaction requires 

further study to confirm the mechanisms involved. 

This study found that the presence of the minor allele at rs924388 in SLC30A80 

increased risk of CL/P in Asians by 42% under the dominant model. SLC30A8, a 

member of zinc transporter (ZNT) family, encodes the zinc transporter ZnT8. ZnT 

proteins transport zinc out of cells when zinc is excess, and sequester cytoplasmic zinc 

into cell when zinc is replete. Zinc facilitates the formation of dense core granules for 

insulin crystallization in pancreatic β-cell and has a positive influence on insulin gene 

transcription (45). Reduced zinc concentration in the secretory granules leads to increased 

proinsulin to insulin ratio in blood circulation and decreased glucose-induced insulin 

secretion (45). A cross-sectional study in the Chinese Han population found a strong 
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interaction between SLC30A8 (rs13266634) variant and plasma zinc concentrations in 

association with type 2 diabetes (46). Moreover, a cross sectional meta-analysis study 

also reported the interaction effect between SLC30A8 (rs11558471) variant and total zinc 

intake on fasting plasma glucose concentration (47). The association between plasma zinc 

concentration and risk of non-syndromic OFCs was reported in a Philippine population 

with poor zinc status, but the association was not found in Utah, U.S. population with 

adequate zinc status (48, 49). However, due to limited data in this study, the interaction 

between SLC30A8 and plasma zinc levels in association with OFCs cannot be 

determined. The mechanism explaining the association between SLC30A8 variant and 

risk of OFCs requires further studies in zinc-poor and zinc-replete populations.  

In European trios, the presence of the minor allele of ADRB3 at rs7812866 

increased the risk of CL/P and CP/L (44% and 53%, respectively) under the dominant 

model. ADRB3 is a member of beta-adrenergic receptor family, which regulates energy 

balance through lipolysis in adipocytes, free fatty acid mobilization from adipose cells 

and thermogenesis in skeletal muscle (50, 51). The mutation of ADRB3 is associated 

with decreased resting metabolic rate, obesity, obesity-related diseases (diabetes and 

hypertension), calorigenic dysfunction, early onset of diabetes mellitus, and increased 

body weight with aging (51, 52). Therefore, gene related to obesity (Table 5.11) might be 

associated with CP/L. This hypothesis is supported by a study by Kutbi et al reporting the 

association between maternal obesity and risk of CP/L and suggesting that obesity has a 

specific effect on palate formation but not lip formation (11). However, the association 

between obese genes and risk of CP/L requires further study to confirm the hypothesis. 
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While ADRB3 has been strongly linked to obesity and diabetes, the mechanisms 

explaining the association between ADRB3 gene and risk of OFCs require further study.  

 HNF1B (rs2158254) had an association with CP/L in both European and Asian trios. 

HNF1B (HNF1 homeobox B), a member of the homeodomain-containing superfamily of 

transcription factors, is expressed in liver, pancreas, bile ducts, thymus, genital tract, 

lung, and gut (53). Functions of HNF1B include epithelial differentiation during human 

organogenesis (54), renal tubulogenesis regulation (55), hepatic insulin sensitivity control 

(56), and pancreatic endocrine cell generation (57). Moreover, HNF1B gene is also 

associated with pancreatic β cell dysfunction and insulin resistance (56). Polymorphisms 

in HNF1B have been strongly associated with diabetes, but the mechanisms explaining 

the association between HNF1B and risk of OFCs require further study.  

ADIPOQ (rs17373877) was associated CP/L in Europeans, and ADIPOQ 

(rs7645316) was associated with CP in European trios when GxE interaction (PCMV) 

was considered. ADIPOQ has an influence on adiponectin concentration, which is 

involved in increased glucose uptake via glucose transporter-4, and increased fatty acid 

uptake and oxidation (58). Yamauchi reported that adiponectin stimulated 

phosphorylation of acetyl coenzyme A carboxylase, glucose uptake, lactate production, 

and fatty acid oxidation through activated 5-prime-AMP-activated protein kinase (59). 

While ADIPOQ has been strongly linked to obesity and diabetes, the mechanism of 

ADIPOQ or adiponectin level and risk of OFCs requires further study.  

TNF-α (rs28470596) was associated with both CL/P and CP/L in European trios 

in the gTDT and in the 2 df that controlling for gene-environment interactions with 
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PCMV and smoking. Rs28470596 is located approximately 85 kb upstream of TNF-α, a 

region with several genes related to immune function in MICB, MHC (major 

histocompatibility complex) Class I Polypeptide-Related Sequence B, which is expressed 

in monocytes and normal tissues (60). Polymorphisms of MICB cause autoreactive T-cell 

stimulation, which relates to relevant differences in immune response against infections, 

autoimmune diseases, and tumor transformation (61). TNF-α encodes a cell signaling 

protein produced at inflammatory sites. TNF-α interferes with insulin signaling in 

adipose, muscle, and liver cells. TNF-α inhibit glucose-induced insulin secretion (62). A 

cell study by Tsiotra et al. (63) found that TNF-α suppressed both basal and glucose-

induced insulin secretion and proinsulin mRNA transcription. TNF-α reduces GLUT4 

mRNA levels in adipocytes and myocytes and inhibits insulin-stimulated glucose 

transport, which induces insulin resistance (64).  It is uncertain whether polymorphisms 

in the TNF-α region are related to the regulation of TNF-α or to effects on other genes in 

the MHC regions. For example, a study by Rahimov et al of the IRF6-OFC association 

(65) found that rs642961 (10 kb downstream of IRF6, an IRF6 enhancer), disrupted the 

binding site of transcription factor AP-2α, which appeared to be the causal variant 

associated with cleft lip. The mechanism of rs28470596 on TNF-α and OFCs requires 

further study 

ABCC8 (rs2237991 and rs2074315) showed significant association with CL/P in 

the dominant model in Europeans. When GxE interactions were considered, ABCC8 was 

associated with CL/P (rs4148622 for PCMV and rs2237991 for maternal smoking). 

ABCC8 influences the K-ATP channel function, which causes increased insulin secretion 
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by pancreatic β-cells. Elbein et al. reported ABCC8 polymorphism that decreased 

pancreatic β-cell compensation leading to reduce insulin sensitivity (66).  

Interactions with ETS reveal that FTO (rs9930333, rs9941349, rs3751812 and 

rs8050136), HHEX (rs7078243, rs2497351, rs12784232, rs11187173 and rs1418388) and 

PPARG (rs7618046, rs3856806 and rs12629751) were associated with CL/P and CP in 

Asians.  FTO shares sequence with iron- and 2-oxoglutarate-dependent oxygenases, and 

FTO mRNA levels found in the hypothalamus are regulated by feeding and fasting (67). 

A mouse study by Gao et al (68) found that mice with FTO mutations had postnatal 

growth retardation (lower body weight, shorter body length, and lower bone mineral 

density) and decreased insulin-like growth factor 1 (IGF-1) levels. A case-control study 

in Romanian by Duicu et al found that rs9939609 in FTO was associated with 

adiponectin and leptin levels. HHEX encodes a transcription factor related to Wnt 

signaling for cell growth and development. A mouse study found that HHEX knockout 

mice had impaired forebrain, cardiovascular, thyroid, and liver development (69, 70). 

PPARG is associated with insulin action, adipocyte differentiation, lipid storage, and fat-

specific gene expression (71). PPARG (72) also activates glucose transporter 2 and 

glucokinase in liver and pancreatic β-cells, which improves glucose homeostasis.  

 LEP was associated with European CL/P when interaction with maternal smoking 

was considered. LEP encodes leptin hormone which regulates body weight through leptin 

receptors. Leptin is involved in food intake inhibition, energy expenditure regulatory, 

energy and glucose homeostasis, bone formation, immune and inflammatory response, 

angiogenesis, hematopoiesis, and would healing (73). Elevated leptin level during 
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pregnancy result from the production in placenta rather than adipose tissue. Maternal 

leptin increases the mobilization of maternal fat stores, and regulates placental growth, 

angiogenesis, and nutrient transfer. (74). A vitro study by Araujo et al (75) reported that 

increased leptin levels in GDM mothers inhibit placental folic acid transport. The 

previous chapter (chapter 4) analyzing the association between biomarkers and risk of 

OFCs reported that mothers having CL/P, CPO, and CP/L offspring had higher leptin 

levels than control mothers. Many studies have found that leptin concentrations were 

lower in smokers than in nonsmokers (76-80). The study by Nagayasu et al. (80) also 

presented that nicotine suppressed leptin gene expression. The study by Larsson and 

Ahren (81) and Donahue et al. (82) reported that leptin levels were not different between 

smoker and nonsmoker. However, the study Pertkins and Fonte (83) reported that 

smoking cessation increased leptin concentrations, and suggested that nicotine in tobacco 

caused leptinemia by inducing corticosteroid release from adrenal glands. The 

inconsistent associations between smoking and leptin levels may result from the study 

designs disregarding the different ethnicities, age, health status, and genetic variation 

(84). Thus there are many possible mechanism where by leptin may influence OFC risk. 

The interaction effect between leptin and smoking on risk of OFCs and effect of smoking 

on LEP gene expression require further study to explore.  

Major genes having associations with CL/P and CP/L when considering genotypic 

effect alone are related to beta-cell dysfunction and insulin resistance (Table 5.11). Five 

of seven genes showing gene-environment interaction with maternal smoking and ETS 

are related to beta-cell dysfunction (Table 5.12). A study by Beaty et al (20) reported 
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MAFB was associated with CL/P based on GWAS data, and had a role in palate 

formation based on expression study in mice. A mouse study by Banerjee et al (85) found 

that decreased MAFB expression in maternal beta-cell caused GDM. The hypothesis 

about the association between genes related to beta-cell dysfunction and insulin 

resistance and OFCs through genetic effects alone and gene-environment interactions 

requires further study to confirm. Moreover, the mechanism of gene-environment 

interaction with maternal smoking and ETS in OFCs, which focuses on genes related to 

beta-cell function, requires further study. 

This study is a multi-center, international family-based study. Family-based 

designs can control confounding bias from the population stratification which is a critical 

issue in international multi-center designs. For rare diseases, family-based designs 

provide better statistical power than case-control designs. Moreover, GxE interaction 

analysis provided additional genes associated when considering GxE interaction (Table 

5.13). However, this study cannot identify the etiological mechanism of significant genes 

on OFC risk. Biological interaction studies are needed to identify the mechanisms of 

interaction effects between genes and maternal exposures on lip and palate development.                                                                           

 This study reported the association between novel genes related to GDM and risk 

of CL/P and CP/L in term of genetic effects or GxE interactions with PCMV, maternal 

smoking, and ETS. Strong association between GDM and risk of OFCs has been reported 

in previous studies.  Therefore, this study supports the hypothesis that genes related to 

GDM are associated with OFCs through genotypic effects alone and gene-environment 

interactions with PCMV, maternal smoking, and ETS. The study does not point to a 
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single major GDM gene associated with OFCs, but supports the hypothesis that GDM 

may be causally related to OFCs via multiple GDM susceptibility genes and interactions 

with environmental factors. Further studies are needed to understand the mechanism 

through which genes related to diabetes and obesity influence the risk of OFCs.  
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Table 5.1 Summary of genes associated with gestational diabetes (GDM), diabetes mellitus, and obesity selected for analysis. 

  

Gene ID Gene name 
Mechanism1 

SNP2 
References 

BC IR IN OB AT T2DM3 GDM4 Obesity 

ABCC8 

(11p15.1) 

ATP-binding cassette, sub-

family C (CFTR/MRP), 

member 8 

X     rs4148643 (86) (86) - 

rs1799854 (86-88) (86) - 

rs1799859 (86, 87) - - 

ADIPOQ 

(3q27) 

 

Adiponectin, C1Q and 

collagen domain 

containing 

 X X  X rs266729 - (89, 90) (91) 

rs822396 - - (92) 

rs1063537 (93, 94) - - 

rs1501299 (95, 96) - (91, 92) 

rs2241766 (95, 96) (97-99) - 

rs2241767 - - (92) 

rs12637534 (100) - - 

rs16861194 (93, 94) - - 

rs16861209 (100) - - 

rs17366568 (100) - - 

rs17846866 (101) - - 

ADRB3 

(8p12) 

Adrenoceptor beta 3    X  rs4994 (95, 102) (103) (104, 105) 

rs72655364  (106) - - 

rs72655365 (106) - - 

CDKAL1 

(6p22.3) 

CDK5 regulatory subunit  

associated protein 1-like 1 

X     rs2206734 (107) - - 

rs2237892 (108) - - 

rs4712524 (109) - - 

rs7754840 (110-115) (116, 117) - 

rs7756992 (110-114) (116, 118) - 

rs9295475 (109) - - 
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Table 5.1 Summary of genes associated with gestational diabetes (GDM), diabetes mellitus, and obesity selected for analysis (Cont.). 

Gene ID Gene name 
Mechanism1 

SNP2 
References 

BC IR IN OB AT T2DM3 GDM4 Obesity 

CDKAL1 

(Cont.) 

      rs9460546 (109) - - 

rs10946398 (119-122) - - 

CDKN2A/2B 

(9p21) 

 

Cyclin-dependent kinase 

inhibitor 2A/B 

X     rs564398 (120-122) - - 

rs1412829 (123) - - 

rs2383208 - (124) - 

rs10811661 (113-115, 

120-122, 

125-128) 

(116) - 

FTO 

(16q12.2) 

Fat mass and obesity  

associated 

   X  rs965670 - - (129) 

rs1121980 - - (129) 

rs1421085 (130) - (130, 131) 

rs3751812 (132) - - 

rs6499640 (132) - - 

rs6602024 - - (129) 

rs7193144 - - (129) 

rs7907949 - - (129) 

rs8050136 (121, 122, 

133) 

- (129) 

rs965670 - - (129) 

rs9926289 - - (129) 

rs9930506 - - (129) 

rs9939609 (134, 135) (136) (129, 130, 

137-139) 

rs17817449 (133) - - 
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Table 5.1 Summary of genes associated with gestational diabetes (GDM), diabetes mellitus, and obesity selected for analysis (Cont.). 

Gene ID Gene name 
Mechanism1 

SNP2 
References 

BC IR IN OB AT T2DM3 GDM4 Obesity 

GCK 

(7p15.3-

p15.1) 

Glucokinase X     rs1799884 - (140-142) - 

rs2244164 (143) - - 

rs2268573 (143) - - 

rs2284779 (144) - - 

rs12534623 (143) - - 

rs4604517 (145)   

HHEX 

(10q23.33) 

Haematopoietically 

expressed  

homeobox 

X     rs7923837 (110, 113, 

115, 119, 

122, 128, 

146) 

(116) - 

rs5015480 (113, 119, 

121) 

(116) - 

rs1111875 (110, 113-

115, 119, 

122, 127, 

128, 146) 

(116) - 

HNF1A 

(12q24.2) 

HNF1 homeobox A X     rs1169288 (147, 148) (140) - 

rs2701175 (149) - - 

rs7305618 (150) - - 

rs7957197 (151) - - 

rs21573907 (150) - - 

HNF1B 

(17q12) 

Hepatocyte nuclear factor 

1-beta 

X X    rs10962 (144) - - 

rs2688 (88) - - 

rs1008284 (143) - - 
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Table 5.1 Summary of genes associated with gestational diabetes (GDM), diabetes mellitus, and obesity selected for analysis (Cont.) 

Gene ID Gene name 
Mechanism1 

SNP2 
References 

BC IR IN OB AT T2DM3 GDM4 Obesity 

HNF1B 

(Cont.) 

      rs1016991 (88) - - 

rs2285741 (144) - - 

rs3110641 (144) - - 

rs4430796 (151) (152) - 

rs6422978 (144) - - 

rs11263755 (144) - - 

rs12450628 (143) - - 

rs1470579 (110, 113-

115, 128, 153) 

(117) - 

IGF2BP2 

(3q27.2) 

Insulin-like growth factor 

2mRNA binding protein 2 

X     rs4376068 (109) - - 

rs4402960 (108, 110, 

113-115, 128, 

153) 

(124, 154) - 

rs6769511 (109) - - 

rs7651090 (125) - - 

IRS1 

(2q36) 

Insulin receptor substrate-

1 

 X    rs1801278 (155, 156) (157-160) (161) 

rs2943641 (162) - - 

KCNJ11 

(11p15.1) 

 

Potassium channel, 

inwardly  

rectifying subfamily J, 

member 11 

X 

 

 

 

 

 

 

 

 

 

rs5215 (119, 122) - - 

rs5219 (115, 125, 

128, 153) 

(163) - 

KCNQ1 

(11p15.5-

p15.4) 

Potassium channel, 

voltage gated KQT-like 

subfamily Q, member 1 

X     rs2074196 (164) (165) - 

rs2237892 (150, 164) (165-167) - 

rs2237895 - (166, 168) - 

http://www.ncbi.nlm.nih.gov/gene/3784
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Table 5.1 Summary of genes associated with gestational diabetes (GDM), diabetes mellitus, and obesity selected for analysis (Cont.) 

 

 

Gene ID Gene name 
Mechanism1 

SNP2 
References 

BC IR IN OB AT T2DM3 GDM4 Obesity 

KCNQ1 

(Cont.) 

      rs2237896 - (168) - 

rs231362 (151)   

 LEP 

(7q31.3) 

Leptin X   X  rs2167270 - (90) (169, 170) 

rs6966536 - - (171) 

rs7799039 - (172) - 

rs10954173 (173) - - 

rs10954174 - - (171) 

rs11761556 (173) - - 

MTNR1B 

(11q21-q22) 

Melatonin receptor 1B X     rs1387153 - (157, 174) - 

rs10830962 - (117) - 

rs10830963 (175-177) 
(157, 174, 

178) 

- 

PPARG 

(3p25) 

 

Peroxisome proliferator-

activated receptor gamma 

 X    rs1801282 (115, 121, 

122, 125, 153, 

179) 

(180) (181) 

rs3856806 - (180) - 

SLC30A8 

(8q24.11) 

Solute carrier family 30 

(zinc transporter), member 

8 

X     rs3802177 (110, 119, 

123, 133) 

- - 

rs11558471 (119) - - 

rs13266634 (110, 115, 

119, 121, 123, 

125, 133, 146, 

153) 

(116) - 

http://www.ncbi.nlm.nih.gov/gene/3784
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Table 5.1 Summary of genes associated with gestational diabetes (GDM), diabetes mellitus, and obesity selected for analysis (Cont.)  

1Mechanism related to diabetes and metabolic syndrome, BC: beta-cell dysfunction; IR: insulin resistance; IN: inflammation markers 

(cytokines and adipokines); OB: Obesity; AT: Atherosclerotic processes 
2 SNP, single-nucleotide polymorphism 
3T2DM, type 2 diabetes mellitus 
4GDM, gestational diabetes mellitus 

  

Gene ID Gene name 
Mechanism1 

SNP2 
References 

BC IR IN OB AT T2DM3 GDM4 Obesity 

TCF7L2 

(10q25.3) 

Transcription factor 7-like 

2 

X     rs4506565 - (136) - 

rs6585205 (119) - - 

rs7901695 (108) (182) - 

rs7903146 (113, 115, 

119, 121-123, 

126, 146, 153, 

183, 184) 

(116, 118, 

182, 185) 

- 

rs10885409 (127) - - 

rs114748339 (186) - - 

rs12255372 - (187) - 

TNF-α 

(6p21.3) 

Tumor necrosis factor 

alpha 

 X X   rs361525 (188) - - 

rs1800610 (149) - - 

rs1800629 (189, 190) (191, 192) (193, 194) 
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Table 5.2 Number of complete trios by recruitment site; GENEVA Orofacial Cleft Consortium 

Recruitment Site Asian Trios European 

CL/P CP/L CL/P CP/L 
Denmark - - 21 (3.2%) 20 (3.1%) 
Norway 3 (0.3%) 3 (0.3%) 275 (41.4%) 270 (41.9%) 
Iowa, US - - 44 (6.6%) 52 (8.1%) 
Maryland, US 1 (0.1%) 2 (0.2%) 83 (12.5%) 88 (13.7%) 
Pittsburgh, Pennsylvania, US - - 87 (13.1%) 73 (11.3%) 
Utah, US - 1 (0.1%) 152 (22.9%) 135 (21.0%) 
Philippines 94 (10.5%) 94 (10.3%) - - 
Singapore 56 (6.3%) 84 (9.2%) 3 (0.4%) 6 (0.9%) 
Taiwan 218 (24.4%) 250 (27.5%) - - 
Weifang, People Republic of China 183 (20.5%) 159 (17.5%) - - 
Wuhan, People Republic of China 176 (19.7%) 178 (19.6%) - - 
Chengdu, People Republic of China 106 (11.9%) 101 (11.1%) - - 
Korea 55 (6.2%) 38 (4.2%) - - 

Total 892 910 665 644 

CL/P: cleft lip with or without cleft palate; CP/L: cleft palate with or without cleft lip  
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Table 5.3: Environmental maternal exposures in Asian trios by site. 

Environmental 

risk factor 

exposure by 

Site 

Cleft lip with or without cleft palate (N=892) Cleft palate with or without cleft lip (N=910) 

Smoking PCMV Drinking ETS Smoking PCMV Drinking ETS 

Norway 

  No 

  Yes 

  Missing 

 

3 (100%) 

- 

- 

 

1 (33.3%) 

1 (33.3%) 

1 (33.3%) 

 

2 (66.7%) 

1 (33.3%) 

- 

 

2 (66.7%) 

1 (33.3%) 

- 

 

3 (100%) 

- 

- 

 

1 (33.3%) 

1 (33.3%) 

1 (33.3%) 

 

2 (66.7%) 

1 (33.3%) 

- 

 

2 (66.7%) 

1 (33.3%) 

- 

Maryland, US 

  No 

  Yes 

  Missing 

 

1 (100%) 

- 

- 

 

- 

1 (100%) 

- 

 

1 (100%) 

- 

- 

 

- 

- 

1 (100%) 

 

2 (100%) 

- 

- 

 

- 

2 (100%) 

- 

 

2 (100%) 

- 

- 

 

1 (50.0%) 

- 

1 (50.0%) 

Utah, US 

  No 

  Yes 

  Missing 

 

- 

- 

- 

 

- 

- 

- 

 

- 

- 

- 

 

- 

- 

- 

 

1 (100%) 

- 

- 

 

- 

1 (100%) 

- 

 

1 (100%) 

- 

- 

 

1 (100%) 

- 

- 

Philippines 

  No 

  Yes 

  Missing 

 

90 (95.7%) 

4 (4.3%) 

- 

 

65 (69.1%) 

29 (30.9%) 

- 

 

89 (94.7%) 

5 (5.3%) 

- 

 

- 

- 

94 (100%) 

 

90 (95.7%) 

4 (4.3%) 

- 

 

65 (69.1%) 

29 (30.9%) 

- 

 

89 (94.7%) 

5 (5.3%) 

- 

 

- 

- 

94 (100%) 

Singapore 

  No 

  Yes 

  Missing 

 

51 (91.1%) 

5 (8.9%) 

- 

 

29 (51.8%) 

27 (48.2%) 

- 

 

54 (96.4%) 

2 (3.6%) 

- 

 

42 (75.0%) 

14 (25.0%) 

- 

 

78 (92.9%) 

6 (7.1%) 

- 

 

44 (52.4%) 

40 (47.6%) 

- 

 

78 (92.9%) 

6 (7.1%) 

- 

 

67 (79.8%) 

17 (20.2%) 

- 
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Table 5.3: Environmental maternal exposures in Asian trios by site (Cont.).  

Environmental 

risk factor 

exposure by 

Site 

Cleft lip with or without cleft palate (N=892) Cleft palate with or without cleft lip (N=910) 

Smoking PCMV Drinking ETS Smoking PCMV Drinking ETS 

Taiwan 

  No 

  Yes 

  Missing 

 

203(93.1%) 

15 (6.9%) 

- 

 

173(79.4%) 

44 (20.2%) 

1 (0.5%) 

 

210(96.3%) 

8 (3.7%) 

- 

 

103(47.2%) 

113(51.8%) 

2 (0.9%) 

 

233(93.2%) 

17 (6.8%) 

- 

 

199(79.6%) 

51 (20.4%) 

- 

 

239(95.6%) 

11 (4.4%) 

- 

 

120(48.0%) 

128(51.2%) 

2 (0.8%) 
Weifang, PRC 

  No 

  Yes 

  Missing 

 

182(99.5%) 

1 (0.5%) 

- 

 

162(88.5%) 

11 (6.0%) 

10 (5.5%) 

 

182(99.5%) 

- 

1 (0.5%) 

 

116(63.4%) 

65 (35.5%) 

2 (1.1%) 

 

158(99.4%) 

1 (0.6%) 

- 

 

143(89.9%) 

7 (4.4%) 

9 (5.7%) 

 

157(98.7%) 

2 (1.3%) 

- 

 

99 (62.3%) 

59 (37.1%) 

1 (0.6%) 
Wuhan, PRC 

  No 

  Yes 

  Missing 

 

176 (100%) 

- 

- 

 

37 (21.0%) 

14 (8.0%) 

125(71.0%) 

 

173(98.3%) 

- 

3 (1.7%) 

 

171(97.2%) 

3 (1.7%) 

2 (1.1%) 

 

178(100%) 

- 

- 

 

38 (21.3%) 

16 (9.0%) 

124(69.7%) 

 

175(98.3%) 

- 

3 (1.7%) 

 

172(96.6%) 

2 (1.1%) 

4 (2.2%) 
Chengdu, PRC 

  No 

  Yes 

  Missing 

 

105(99.1%) 

1 (0.9%) 

- 

 

101(95.3%) 

2 (1.9%) 

3 (2.8%) 

 

103(97.2%) 

3 (2.8%) 

- 

 

12 (11.3%) 

92 (86.8%) 

2 (1.1%) 

 

100(99.0%) 

1 (1.0%) 

- 

 

97 (96.0%) 

2 (2.0%) 

2 (2.0%) 

 

98 (97.0%) 

3 (3.0%) 

- 

 

14 (13.9%) 

86 (85.1%) 

1 (1.0%) 
Korea 

  No 

  Yes 

  Missing 

 

55 (100%) 

- 

- 

 

53 (96.4%) 

2 (3.6%) 

- 

 

48 (87.3%) 

- 

7 (12.7%) 

 

37 (67.3%) 

12 (21.8%) 

6 (10.9%) 

 

38 (100%) 

- 

- 

 

37 (97.4%) 

1 (2.6%) 

- 

 

33 (86.8%) 

- 

5 (13.2%) 

 

27 (71.1%) 

7 (18.4%) 

4 (10.5%) 

Smoking: mother smokes in the periconceptional period (3 months prior through 3rd month of pregnancy) 

PCMV: mother takes multivitamins or prenatal vitamins in the periconceptional period (3 months prior through 3rd month of 

pregnancy) 

Drinking: mother has alcohol consumption in the perinatal period (3 months prior through 3rd month of pregnancy) 

ETS: mother exposed to environmental tobacco smoke during pregnancy or three months before pregnancy 
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Table 5.4 Environmental maternal exposures in European trios by site. 

Site Cleft lip with or without cleft palate (N=665) Cleft palate with or without cleft lip (N=644) 

Smoking PCMV Drinking ETS Smoking PCMV Drinking ETS 
Denmark 

  No 

  Yes 

  Missing 

 

14 (66.7%) 

7 (33.3%) 

- 

 

9 (42.9%) 

12 (57.1%) 

- 

 

15 (71.4%) 

6 (28.6%) 

- 

 

- 

- 

21 (100%) 

 

14 (70%) 

6 (30%) 

- 

 

8 (40.0%) 

12 (60.0%) 

- 

 

14 (70%) 

6 (30%) 

- 

 

- 

- 

20 (100%) 
Norway 

  No 

  Yes 

  Missing 

 

150(54.5%) 

125(45.5%) 

- 

 

104(37.8%) 

87 (31.6%) 

84 (30.5%) 

 

130(47.3%) 

145(52.7%) 

- 

 

232(84.4%) 

43 (15.6%) 

- 

 

158(58.5%) 

112(41.5%) 

- 

 

108(40.0%) 

88 (32.6%) 

74 (27.4%) 

 

123(45.6%) 

147(54.4%) 

- 

 

229(84.8%) 

41 (15.2%) 

- 
Iowa, US 

  No 

  Yes 

  Missing 

 

31 (70.5%) 

13 (29.5%) 

- 

 

11 (25.0%) 

32 (72.7%) 

1 (2.3%) 

 

13 (29.5%) 

31 (70.5%) 

- 

 

- 

- 

44 (100%) 

 

37 (71.2%) 

15 (28.8%) 

- 

 

12 (23.1%) 

39 (75.0%) 

1 (1.9%) 

 

17 (32.7%) 

35 (67.3%) 

- 

 

- 

- 

52 (100%) 
Maryland, US 

  No 

  Yes 

  Missing 

 

58 (69.9%) 

23 (27.7%) 

2 (2.4%) 

 

12 (14.5%) 

66 (79.5%) 

5 (6.0%) 

 

56 (67.5%) 

25 (30.1%) 

2 (2.4%) 

 

21 (25.3%) 

6 (7.2%) 

56 (67.5%) 

 

59 (67.0%) 

27 (30.7%) 

2 (2.3%) 

 

11 (12.5%) 

73 (83.0%) 

4 (4.5%) 

 

60 (68.2%) 

25 (28.4%) 

3 (3.4%) 

 

23 (26.1%) 

7 (8.0%) 

58 (65.9%) 
Pittsburgh, 

Pennsylvania, US 

  No 

  Yes 

  Missing 

 

 

66 (75.9%) 

21 (24.1%) 

- 

 

 

16 (18.4%) 

70 (80.5%) 

1 (1.1%) 

 

 

49 (56.3%) 

37 (42.5%) 

1 (1.1%) 

 

 

- 

- 

87 (100%) 

 

 

53 (72.6%) 

20 (27.4%) 

- 

 

 

14 (19.2%) 

58 (79.5%) 

1 (1.4%) 

 

 

41 (56.2%) 

31 (42.5%) 

1 (1.4%) 

 

 

- 

- 

73 (100%) 
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Table 5.4 Environmental maternal exposures in European trios by site (Cont.) 

Site Cleft lip with or without cleft palate (N=665) Cleft palate with or without cleft lip (N=644) 

Smoking PCMV Drinking ETS Smoking PCMV Drinking ETS 
Utah, US 

  No 

  Yes 

  Missing 

 

140(92.1%) 

12 (7.9%) 

- 

 

63 (41.4%) 

89 (58.6%) 

- 

 

132(86.8%) 

20 (13.2%) 

- 

 

137(90.1%) 

14 (9.2%) 

1 (0.7%) 

 

120(88.9%) 

15 (11.1%) 

- 

 

57 (42.2%) 

78 (57.8%) 

- 

 

119(88.1%) 

16 (11.9%) 

- 

 

119(88.1%) 

15 (11.1%) 

1 (0.7%) 
Singapore 

  No 

  Yes 

  Missing 

 

2 (66.7%) 

1 (33.3%) 

- 

 

- 

3 (100%) 

- 

 

2 (66.7%) 

1 (33.3%) 

- 

 

2 (66.7%) 

1 (33.3%) 

- 

 

5 (83.3%) 

1 (16.7%) 

- 

 

3 (50.0%) 

3 (50.0%) 

- 

 

5 (83.3%) 

1 (16.7%) 

- 

 

4 (66.7%) 

2 (33.3%) 

- 

Smoking: mother smokes in the periconceptional period (3 months prior through 3rd month of pregnancy) 

PCMV: mother takes multivitamins or prenatal vitamins in the periconceptional period (3 months prior through 3rd month of 

pregnancy) 

Drinking: mother has alcohol consumption in the perinatal period (3 months prior through 3rd month of pregnancy) 

ETS: mother exposed to environmental tobacco smoke during pregnancy or three months before pregnancy

 

 

 

 

 

 

 



 

3
7
5
 

Table 5.5 Conditional logistic regression results from genotypic Transmission Disequilibrium Test (gTDT): risk of orofacial clefts 

among Asian trios from GENEVA Orofacial Cleft Consortium.  

phenotype Gene ID Significant 

SNPs 

Allele MAF 

(%) 

Model fitted Odds ratios 

(95%CIs) 

Raw  

p-value1 

Threshold 

 P-value2 

CL/P SLC30A8 rs924388 A/G 17.3 Additive 1.31 [1.10-1.57] 2.7x10-3 7.7x10-4 

     Dominant* 1.42 [1.74-1.16] 7.2x10-4 

     Recessive 1.21 [0.77-1.90] 0.41 

CP/L HNF1B rs2158254 A/G 27.4 Additive 0.88 [0.76-1.02] 8.9x10-2 8.3x10-4 

     Dominant 0.92 [0.77-1.10] 0.38 

     Recessive* 0.53 [0.37-0.75] 4.5x10-4 

CL/P: cleft lip with/without cleft palate; CP/L: cleft palate with or without cleft lip 

Allele: minor allele/major allele; MAF: minor allele frequency 

Threshold p-value was adjusted for the number of SNPs in each gene as reported in Table 5.10 

* Model achieves significance after Bonferroni correction 
1 p-value significance of the gTDT without multiple testing correction. 
2 p-value significance of the gTDT after gene-level Bonferroni correction, calculated as 0.05 divided by the number of SNPs in each 

gene. 
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Table 5.6 Conditional logistic regression results from genotypic Transmission Disequilibrium Test (gTDT): risk of orofacial clefts 

among European trios from GENEVA Orofacial Cleft Consortium. 

phenotype Gene ID Significant 

SNPs 

Allele MAF 

(%) 

Model fitted Odds ratios 

(95%CIs) 

Raw           

p-value1 

Threshold 

 P-value2 

CL/P ABCC8 rs2237991 C/T 27.9 Additive* 0.72 [0.60-0.86] 2.5x10-4 3.1x10-4 

     Dominant* 0.64 [0.52-0.79] 3.6x10-5  

     Recessive 0.90 [0.62-1.30] 0.58  

  rs2074315 G/T 27.2 Additive 0.73 [0.61-0.87] 4.1x10-4  

     Dominant* 0.64 [0.52-0.79] 4.3x10-5  

     Recessive 0.93 [0.65-1.35] 0.71  

CL/P ADRB3 rs7812866 C/A 47.3 Additive 1.07 [0.92-1.24] 0.41 5.6x10-3 

     Dominant* 1.44 [1.13-1.83] 3.5x10-3  

     Recessive 0.81 [0.64-1.03] 8.4 x10-2  

CL/P TNF-α rs28470596 T/C 5.0 Additive* 0.36 [0.24-0.55] 9.6x10-7 2.4x10-4 

     Dominant* 0.36 [0.24-0.55] 1.3x10-6  

     Recessive N/A N/A  

CP/L ADIPOQ rs17373877 A/G 6.1 Additive* 0.55 [0.39-0.78] 6.7x10-4 8.5x10-4 

     Dominant 0.56 [0.40-0.80] 1.4x10-3  

     Recessive N/A N/A  

CP/L ADRB3 rs7812866 C/A 46.8 Additive 1.11 [0.94-1.30] 0.21 5.6x10-3 

     Dominant* 1.53 [1.19-1.97] 9.2x10-4  

     Recessive 0.83 [0.65-1.06] 0.14  

CP/L HNF1B rs6607292 A/G 35.5 Additive 0.82 [0.69-0.98] 2.6x10-2 7.1x10-4 

     Dominant 0.96 [0.76-1.20] 0.71  

     Recessive* 0.50 [0.35-0.73] 3.6x10-4  
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Table 5.6 Conditional logistic regression results from genotypic Transmission Disequilibrium Test (gTDT): risk of orofacial clefts 

among European trios from GENEVA Orofacial Cleft Consortium (Cont.). 

phenotype Gene ID Significant 

SNPs 

Allele MAF 

(%) 

Model fitted Odds ratios 

(95%CIs) 

Raw           

p-value1 

Threshold 

 P-value2 

CP/L TNF-α rs28470596 T/C 4.7 Additive* 0.27 [0.17-0.42] 8.75x10-9 2.4x10-4 

     Dominant* 0.27 [0.17-0.42] 1.1x10-8  

     Recessive N/A N/A  

 

CL/P: cleft lip with/without cleft palate; CP/L: cleft palate with or without cleft lip 

Allele: minor allele/major allele; MAF: minor allele frequency 

Threshold p-value was adjusted for the number of SNPs in each gene as reported in Table 5.10 

* Model achieves significance after Bonferroni correction 
1 p-value significance of the gTDT without multiple testing correction. 
2 p-value significance of the gTDT after gene-level Bonferroni correction, calculated as 0.05 divided by the number of SNPs in each 

gene.  
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Table 5.7 Estimated odds ratio (OR) (caseG no E) and OR (caseG and E) from conditional logistic regression using cases and 3 

pseudo-controls in both Asian and European trios from GENEVA Orofacial Cleft Consortium for 21 genes related to gestational 

diabetes mellitus considering G-E interaction between each SNP and mother taking multivitamins or prenatal vitamins in the perinatal 

period (PCMV) 

 

Ancestry phenotype Gene ID Significant 

SNPs 

Allele MAF 

(%) 
OR (caseG no 

PCMV) 

OR (caseG and 

PCMV) 

LRT 1 

df P-

value 

LRT 2 

df P-

value 

Asian CL/P FTO** rs836994 A/G 50.1 1.36 [1.16-1.60] 1.23 [0.88-1.70] 0.58 3.0x10-4 

European CL/P ABCC8* rs4148622 T/C 26.8 0.58 [0.42-0.81] 1.26 [1.01-1.58] 1.0x10-4 5.0x10-4 

 CL/P TNF-α ** rs28470596 T/C 5.0 0.22 [0.10-0.50] 0.49 [0.29-0.82] 0.09 3.6x10-6 

 CP/L ADIPOQ** rs7645316 C/T 33.5 0.70 [0.52-0.93] 0.71 [0.57-0.89] 0.90 6.8x10-4 

 CP/L CDKAL1* rs12201217 T/C 37.8 2.10 [1.45-3.03] 1.30 [1.04-1.61] 6.5x10-5 3.5x10-4 

 CP/L TNF-α** rs28470596 T/C 4.7 0.25 [0.12-0.54] 0.28 [0.15-0.52] 0.81 2.53x10-8 

CL/P: cleft lip with/without cleft palate; CP/L: cleft palate with or without cleft lip 

Allele: minor allele/major allele; MAF: minor allele frequency 
1 Raw p-value for 1 degree of freedom likelihood ratio test examining the exclusive effect of gene-environment interaction. 
2 Raw p-value for 2 degree of freedom likelihood ratio test examining the effect of genotype after considering effect of gene-

environment interaction. 
* only 1 degree of freedom likelihood ratio test achieved significance after Bonferroni correction (Table 5.10) 
** only 2 degree of freedom likelihood ratio test achieved significance after Bonferroni correction (Table 5.10) 
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Table 5.8 Estimated odds ratio (OR) (caseG no E) and OR (caseG and E) from conditional logistic regression using cases and 3 

pseudo-controls in both Asian and European trios from GENEVA Oralfacial Cleft Consortium for 21 genes related to gestational 

diabetes mellitus considering G-E interaction between each SNP and maternal smoking in the perinatal period. 

 

Ancestry phenotype Gene ID Significant 

SNPs 

Allele MAF 

(%) 
OR (caseG no 

smoke) 

OR (caseG 

and smoke) 

LRT 1 

df P-

value1  

LRT 2 

df P-

value2 

Asian CL/P CDKN2A/2B* rs1063192 C/T 19.5 1.16 [0.98-1.37] 0.15 [0.03-0.68] 1.2x10-3 2.4x10-3 

European CL/P ABCC8** rs2237991 C/T 27.9 0.79 [0.64-0.98] 0.56 [0.40-0.79] 0.09 2.7x10-4 

 CL/P LEP* rs12538332 C/A 29.7 0.83 [0.68-1.02] 1.52 [1.11-2.13] 1.3x10-4 5.6x10-3 

 CL/P TNF-α ** rs28470596 T/C 5.0 0.45 [0.28-0.74] 0.25 [0.12-0.52] 0.18 7.5x10-7 

 CP/L ABCC8** rs4148617 T/C 24.5 0.89 [0.71-1.12] 0.52 [0.38-0.73] 9.2x10-3 2.6x10-4 

 CP/L TNF-α ** rs28470596 T/C 4.7 0.25 [0.14-0.46] 0.29 [0.15-0.60] 0.76 2.2x10-9 

CL/P: cleft lip with/without cleft palate; CP/L: cleft palate with or without cleft lip 

Allele: minor allele/major allele; MAF: minor allele frequency 
1 Raw p-value for 1 degree of freedom likelihood ratio test examining the exclusive effect of gene-environment interaction. 
2 Raw p-value for 2 degree of freedom likelihood ratio test examining the effect of genotype after considering effect of gene-

environment interaction. 
* only 1 degree of freedom likelihood ratio test achieved significance after Bonferroni correction (Table 5.10) 
** only 2 degree of freedom likelihood ratio test achieved significance after Bonferroni correction (Table 5.10) 
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Table 5.9 Estimated odds ratio (OR) (caseG no E) and OR (caseG and E) from conditional logistic regression using cases and 3 

pseudo-controls in both Asian and European trios from GENEVA Oral Cleft Consortium for 21 genes related to gestational diabetes 

mellitus considering G-E interaction between each SNP and maternal exposure to environmental tobacco smoke in the perinatal period 

(ETS). 

 

Ancestry phenotype Gene ID Significant 

SNPs 

Alelle MAF 

(%) 
OR (caseG no 

ETS) 

OR (caseG and 

ETS) 

LRT 1 

df P-

value1 

LRT 2 

df P-

value2 

Asian CL/P FTO rs9930333*** G/T 4.4 0.62 [0.49-0.78] 1.17 [0.86-1.59] 1.2x10-3 2.5x10-4 

   rs9941349*** T/C 16.9 0.62 [0.49-0.79] 1.16 [0.85-1.59] 1.6x10-3 2.8x10-4 

   rs3751812*** T/G 12.4 0.59 [0.45-0.78] 1.35 [0.94-1.93] 3.5x10-3 3.0x10-4 

   rs8050136*** A/C 12.4 0.60 [0.45-0.79] 1.37 [0.95-1.96] 3.0x10-3 3.3x10-4 

 CL/P HHEX rs7078243* A/C 17.5 0.72 [0.56-0.92] 1.45 [1.08-1.94] 3.1x10-4 1.3x10-3 

   rs2497351* A/G 3.1 0.78 [0.44-1.38] 6.00 [1.77-20.37] 7.1x10-4 1.1x10-2 

   rs12784232* A/G 2.9 0.81 [0.46-1.43] 6.00 [1.77-20.37] 9.3x10-4 1.3x10-2 

   rs11187173* A/G 2.9 0.81 [0.46-1.43] 6.00 [1.77-20.37] 9.3x10-4 1.3x10-2 

   rs1418388* A/G 2.9 0.81 [0.46-1.43] 6.00 [1.77-20.37] 9.3x10-4 1.3x10-2 

 CL/P PPARG rs7618046* C/T 45.8 0.87 [0.73-1.04] 1.50 [1.18-1.90] 3.5x10-4 1.2x10-3 

   rs3856806* T/C 22.6 0.86 [0.69-1.07] 1.60 [1.21-2.12] 5.6x10-4 1.5x10-3 

   rs12629751* T/C 28.8 0.82 [0.67-1.00] 1.45 [1.12-1.88] 6.0x10-4 2.7x10-3 

 CP/L FTO rs3751812*** T/G 12.3 0.58 [0.44-0.76] 1.25 [0.87-1.81] 9.2x10-4 1.9x10-4 

   rs8050136*** A/C 12.3 0.59 [0.45-0.78] 1.27 [0.88-1.84] 9.4x10-4 3.0x10-4 

 CP/L HHEX rs12784232*** A/G 2.5 1.21 [0.66-2.22] 16.0 [2.12-120.65] 1.5x10-3 2.8x10-4 

   rs11187173*** A/G 2.5 1.15 [0.63-2.09] 16.0 [2.12-120.65] 1.1x10-3 3.1x10-4 

   rs1418388*** A/G 2.8 1.15 [0.63-2.09] 16.0 [2.12-120.65] 1.1x10-3 3.1x10-4 

   rs2497351** A/G 2.7 1.21 [0.66-2.22] 8.50 [1.96-36.79] 4.9x10-3 7.4x10-4 

CL/P: cleft lip with/without cleft palate; CP/L: cleft palate with or without cleft lip 

Allele: minor allele/major allele; MAF: minor allele frequency 
1 Raw p-value for 1 degree of freedom likelihood ratio test examining the exclusive effect of gene-environment interaction. 
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2 Raw p-value for 2 degree of freedom likelihood ratio test examining the effect of genotype after considering effect of gene-

environment interaction. 
* only 1 degree of freedom likelihood ratio test achieved significance after Bonferroni correction (Table 5.10) 
** only 2 degree of freedom likelihood ratio test achieved significance after Bonferroni correction (Table 5.10) 
*** both 1 and 2 degree of freedom likelihood ratio test achieved significance after Bonferroni correction (Table 5.10) 
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Table 5.10 Threshold p-value was adjusted for the number of SNPs in each gene as 

reported. 

Gene 

Asian trios European trios 

No. 

SNP 
Threshold P-value 

No. 

SNP 
Threshold P-value 

ABCC8 152 3.3x10-4 159 3.1x10-4 

ADIPOQ 56 8.9x10-4 59 8.5x10-4 

ADRB3 10 5.0x10-3 9 5.6x10-3 

CDKAL1 252 2.0x10-4 280 1.8x10-4 

CDKN2A/2B 43 1.2x10-3 44 1.1x10-3 

GCK 45 1.1x10-3 45 1.1x10-3 

FTO 124 4.0x10-4 128 3.9x10-4 

HHEX 34 1.5x10-3 38 1.3x10-3 

HNF1A 38 1.3x10-3 43 1.2x10-3 

HNF1B 60 8.3x10-4 70 7.1x10-4 

IGF2BP2 43 1.2x10-3 47 1.1x10-3 

IRS1 38 1.3x10-3 44 1.1x10-3 

KCNJ11 105 4.8x10-4 108 4.6x10-4 

KCNQ1 179 2.8x10-4 184 2.7x10-4 

LEP 33 1.5x10-3 38 1.3x10-3 

MTNR1B 44 1.1x10-3 47 1.1x10-3 

PPARG 52 9.6x10-4 59 8.5x10-4 

SLC30A8 65 7.7x10-4 66 7.6x10-4 

TCF7L2 59 8.5x10-4 70 7.1x10-4 

TNF-α 188 2.7x10-4 210 2.4x10-4 
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Table 5.11 Summary genes showing significant association with orofacial clefts with the genotypic Transmission Disequilibrium 

(gTDT) test. 

Gene Mechanism1 SNP Asian 

MAF 

European 

MAF 

Asians Europeans 

BC IR IN OB AT CL/P CP/L CL/P CP/L 

ABCC8 X     rs2237991 26.1 27.9   Additive 

 Dominant 

 

rs2074315 25.3 27.2   Dominant  

ADIPOQ  X X  X rs17373877 9.9 6.1    Additive 

ADRB3    X  rs7812866 29.1 46.8   Dominant Dominant 

HNF1B X X    rs2158254 27.4 45.4  Recessive   

rs6607292 46.7 35.5    Recessive 

SLC30A8 X     rs924388 17.3 9.6 Additive    

TNF-α  X X   rs28470596 12.9 4.7   Additive 

 Dominant 

Additive 

 Dominant 

CL/P: cleft lip with/without cleft palate; CP/L: cleft palate with or without cleft lip 

1Mechanism based on gene function; BC: Beta-cells dysfunction; IR: Insulin resistance; IN: Inflammatory markers (cytokines and 

adipokines); OB: Obesity; AT: Atherosclerotic process 
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Table 5.12 Summary genes showing significant gene-environment interaction (GxE) at 1df LRT 

Gene Mechanism1 Asians Europeans 

PCMV Smoke ETS PCMV Smoke 

BC IR IN OB AT CL/P CP/L CL/P CP/L CL/P CP/L CL/P CP/L CL/P CP/L 

ABCC8* X           X    

CDKAL1 X            X   

CDKN2A/2B X       X        

FTO    X  X    X X     

HHEX X         X X     

LEP X   X          X  

PPARG  X        X      

CL/P: cleft lip with/without cleft palate; CP/L: cleft palate with or without cleft lip 

 1Mechanism related to diabetes and metabolic syndrome, BC: Beta-cells dysfunction; IR: Insulin resistance; IN: Inflammatory 

markers (cytokines and adipokines); OB: Obesity; AT: Atherosclerotic process 
* significant genetic association (genotypic transmission disequilibrium; gTDT) among European trios 

GxE, PCMV: Periconceptional multivitamin, Smoke: maternal smoking, ETS: Environment Tobacco Smoke. 
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Table 5.13 Summary genes showing significant when considering gene-environment interaction (GxE) at 2 df LRT. 

Gene Mechanism1 Asians Europeans 

PCMV Smoke ETS PCMV Smoke 

BC IR IN OB AT CL/P CP/L CL/P CP/L CL/P CP/L CL/P CP/L CL/P CP/L 

ABCC8* X             X X 

ADIPOQ* X            X   

FTO    X  X    X X     

HHEX X         X X     

PPARG  X        X      

TNF-α *  X X         X X X X 

CL/P: cleft lip with/without cleft palate; CP/L: cleft palate with or without cleft lip 

 1Mechanism related to diabetes and metabolic syndrome, BC: Beta-cells dysfunction; IR: Insulin resistance; IN: Inflammatory 

markers (cytokines and adipokines); OB: Obesity; AT: Atherosclerotic process 
* significant genetic association (genotypic transmission disequilibrium; gTDT) among European trios 

GxE, PCMV: Periconceptional multivitamin, Smoke: maternal smoking, ETS: Environment Tobacco Smoke.  
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 CHAPTER 6  
 

CONCLUSION 
 
 

6.1 Summary 

Epidemiological research on orofacial clefts (OFCs) has determined the etiology 

of OFCs to be multifactorial including genetic factors, environmental factors, and 

combination of these factors. Environmental factors including maternal smoking, 

maternal alcohol consumption, maternal nutritional status, certain medicines and 

supplement intakes, eating behavior during pregnancy and prior to pregnancy, and 

maternal medical conditions (diabetes and obesity) have been reported to be associated 

with the incidence of OFCs (1-5). Insulin resistance and obesity are considered as risk 

factors of metabolic diseases. Several biomarkers including HDL, triglyceride, liver 

function tests (ALT: alanine aminotransferase and GGT: gamma-glutamyltransferase) (6-

8), cytokine (CRP: C-reactive protein, IL-6: interleukin-6, TNF- α: tumor necrosis factor 

alpha, and leptin) (9-12), and adipokines (adiponectin) (10-12) are associated with 

metabolic syndrome. Genetic studies have identified several genes associated with OFCs 

most of which have unknown etiologic mechanism. Genome-wide association studies 

have reported the significant genetic effects alone and with gene-environment interaction 

effect on the risk of OFCs but these effects differ across populations (13).  

The results from this dissertation support the association between maternal 

obesity and diabetes and risk cleft palate. Moreover, underweight mothers had a 

decreased risk of cleft lip only (CLO) and an increased risk of cleft palate only (CPO). 

The protective effect of underweight mothers on CLO risk is inconsistent with previous 
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studies (14). Maternal body mass index (BMI) and maternal diabetes might have effects 

on facial formation in a variety of pathways. It is difficult to identify the independent 

effects of maternal obesity and diabetes on OFCs because the relationship between 

obesity and diabetes is complex. Obesity increases the risk of inadequate folate status 

(15-18); BMI may have an adverse effect on cellular uptake and tissue distribution of 

folate. Obesity leads to insulin resistance because of the impairment of insulin sensitivity 

in sites of glucose disposal, which can develop to type 2 diabetes mellitus and GDM (19). 

Elevated blood glucose and insulin stimulates the production of ketone bodies, branched 

chain amino acid, inflammatory markers, and advanced glycation end products. These 

products alter expression levels of specific genes and increase the variation of gene 

expression levels (20-23). Inadequate folate status and adverse metabolic production may 

disrupt normal embryonic development.  

The results suggest that gestational diabetes, maternal obesity, and metabolic 

syndrome are associated with increased risk of cleft palate. Mothers having cleft palate 

with or without cleft lip (CP/L) offspring had an increased risk of developing metabolic 

syndrome based on both NCEP/ATP III and IDF definitions. When compared with 

control mothers, mothers having cleft palate offspring had a higher insulin, IL-8, and 

leptin levels. Insulin resistance associated with insulin and IL-8 levels is a risk factors of 

developing GDM (24). Leptin levels are significant higher in pregnancies with GDM 

compared with normal pregnancies (25-27). Therefore, insulin, IL-8, and leptin levels 

may be links among GDM, metabolic syndrome, and OFCs. Having OFCs offspring 

might be a risk factor of developing metabolic syndrome among mothers later in life. 
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Insulin, IL-8 and leptin might be performed as biomarkers for predicting OFC 

occurrence. 

The strong association between maternal diabetes and risk of OFCs leads to the 

genetic association study related to these metabolic conditions. The study of genetic 

effects alone found that two genes (SLC30A8 and HNF1B) were associated with Asian 

OFCs and five genes (ABCC8, ADIPOQ, ADRB3, HNF1 and TNF-α) were associated 

with European OFCs. Two genes were associated with OFCs when interaction with 

perinatal period (PCMV) was considered-- ABCC8 and CDKAL1 in Europeans. 

Interactions between genotype and maternal smoking were found for CDKN2A/2B in 

Asians, and for LEP in Europeans.  When considering gene-environment interaction with 

environmental tobacco smoke (ETS), FTO, HHEX, and PPARG increased risk of OFCs 

in Asians. Our result suggests that genes related to GDM have an effect on risk of non-

syndromic OFCs through either genetic effect alone or gene-environment interaction 

effects with maternal periconceptional multivitamin use, smoking, and environment 

tobacco smoke. Therefore, the etiology of non-syndromic OFCs is multifactorial between 

genes and environment.  

6.2 Future Direction 

This dissertation examines role of maternal diabetes mellitus in orofacial clefts 

through studies of medical histories, biomarkers, and genes. Further study is required to 

confirm the result and transcend the limitations of this project.  

The completeness of the data from registries is a limitation in this dissertation. We 

found under-reporting of maternal medical conditions and a large amount of missing data 
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of potential confounders (smoking and alcohol consumption). Training programs might 

help registry recorders give priority to complete data.  Moreover, the small number of 

participants with diabetes results in wide confidence intervals and small mediation effects 

of maternal diabetes on the association between maternal overweight and obesity and risk 

of OFCs. Therefore, further studies require larger sample sizes in order to confirm the 

association and mediation effect. 

This dissertation found associations between maternal biomarkers of metabolic 

syndrome and orofacial clefts. We found that insulin, IL-8, and leptin levels were higher 

in mother having cleft palate offspring than control mother. Therefore, a prospective 

study that regularly monitors insulin, IL-8 and leptin levels before the conception period 

until the next pregnancy may be in order to determine predictability for OFC occurrence. 

Moreover, the association between cytokines and adipokines and risk of OFCs requires 

further study with larger sample sizes and different ethnic groups in order to confirm and 

compare the associations.  

Genetic association have found that many SNPs in same gene were associated 

with OFCs; therefore, haplotype analysis and gene-gene interactions may find more 

regions or genes which have small effects individually but show strong statistical 

evidence of linkage and association when combined. This dissertation analyzed gene-

environment interaction associations between genes related to diabetes and obesity and 

maternal environmental factors (maternal multivitamin use, smoking, and environmental 

tobacco smoke). Additional environmental data for gene-environment interaction analysis 
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is required in further studies such as maternal BMI and biomarkers related to metabolic 

syndrome and diabetes mellitus. 

Observational studies provide evidence of association between exposures and 

diseases, but often cannot identify the etiological mechanisms of disease from exposure. 

Therefore, strong associations between maternal diabetes and obesity on risk of OFCs 

found through maternal medical conditions, maternal biomarkers and genetic associations 

require further research to explore the etiological mechanisms. Further studies will be 

required to understand how maternal diabetes and obesity has an effect on OFCs 

occurrence. Moreover, biological interaction studies needs to identify the mechanisms of 

interaction effects between genes and maternal exposures on fetal development. 

6.3 Public Health Significance 

The association between maternal diabetes and obesity and risk of OFCs may lead 

to increased awareness among people and health care providers. Effective interventions 

are needed for promoting healthy body weight and metabolic status in reproductive age 

women in order to reduce the risk of OFCs.  Moreover, early screening for GDM risk is 

needed for the periconceptional period and in the first month of gestation in order to 

allow early interventions for controlling hyperglycemia, hyperinsulinemia and other 

associated metabolic abnormalities to prevent OFCs and other congenital malformations. 

Mothers having an OFC child developed metabolic syndrome and had abnormal 

biomarkers later in life may and it may be proposed that having OFC child is a risk 

indicator for subsequent maternal metabolic syndrome. These mothers may receive 

regularly metabolic syndrome monitoring and intervention to prevent developing 
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metabolic syndrome and related diseases. On the contrary, metabolic syndrome score, 

insulin, IL-8, and leptin levels may be focus as indicator for OFC prediction. Moreover, 

the association of biomarkers before or during periconceptional period and risk of OFCs 

requires further study.  

The association between genetic effects alone and gene-environment interaction 

effects and risk of OFCs might be difficult to apply in public health because the 

biological function of detected variants is still difficult to interpret and people may carry 

the effects of one or more variants in several genes. Strategies for dealing with multiple 

causal genes and applying the strategy effectively are required in genetic studies of 

OFCs.  These associations do not point to a single major GDM gene associated with 

OFCs, but support the hypothesis that GDM may be causally related to OFCs via 

multiple GDM susceptibility genes and interactions with environmental factors. 

However, the finding in this dissertation confirms that etiology of OFCs is multifactorial 

including genetics and environment. 

Individuals with OFCs face both physical and mental health problems, which 

require multi-specialty team care. OFC prevention and prediction are important to public 

health. This dissertation reported that maternal diabetes mellitus, maternal pre-pregnancy 

weight and genes related to GDM had associations with the risk of OFCs. Mothers 

having an OFC child had an increased risk of developing metabolic abnormalities later in 

life. Potential risk factors were reported in this dissertation that can be applied for OFC 

prevention. This dissertation also reported potential biomarkers for predicting OFCs. 
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Moreover, mothers having an OFC child require regular monitoring for metabolic 

abnormalities later in life. 
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