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Abstract Learning about circuitry by connecting a battery,
light bulb, and wires is a common activity in many science
classrooms. In this paper, we expand students’ learning about
circuitry with electronic textiles, which use conductive thread
instead of wires and sewable LEDs instead of lightbulbs, by
integrating programming sensor inputs and light outputs and
examining how the two domains interact. We implemented an
electronic textiles unit with 23 high school students ages 16–
17 years who learned how to craft and code circuits with the
LilyPad Arduino, an electronic textile construction kit. Our
analyses not only confirm significant increases in students’
understanding of functional circuits but also showcase stu-
dents’ ability in designing and remixing program code for
controlling circuits. In our discussion, we address opportuni-
ties and challenges of introducing codeable circuit design for
integrating maker activities that include engineering and com-
puting into classrooms.
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Introduction

The push to promote STEM topics in K-12 education (Katehi
et al. 2009; Smith 2016) has recently been joined by efforts to
promote computational thinking for all (Wing 2006). Maker

activities in which youth engage with hands-on experiences
have been seen as a particularly promising vehicle to engage
youth in interdisciplinary STEM activities (Honey and Kanter
2013; Peppler et al. 2016a, b). One such maker activity which
combines engineering, crafting, and programming is electronic
textiles (hereafter, e-textiles), which are circuits constructed
with conductive thread, sewable LEDs and sensors, and sew-
able microcontrollers, like the LilyPad Arduino (Buechley
2006). Using e-textiles activities in classrooms and afterschool
workshops has been shown to raise girls’ interest in computing
(Kafai et al. 2014a), women’s engagement in the larger DIY
community (Buechley and Hill 2010), and students’ overall
interest in science and STEM careers (Tofel-Grehl et al. 2017).

So far, most of the research examining what students learn
through making e-textiles has focused on assessing students’
understanding of simple functional circuits (e.g., Peppler and
Glosson 2013) or their learning of programming concepts
(e.g., Kafai et al. 2014b). We know much less about students’
learning at the intersection of crafting, circuitry, and coding
with electronic which could further highlight possible STEM
integration. Learning how tomake codeable circuits sits at this
very intersection and involves students in designing and
crafting a functional circuit that also can be controlled via
code. For instance, students can learn to design a complex
circuit that can turn on or off particular LED lights with a
switch or when a sensor reads data above or below a set value.
Such activities not only provide a rich demonstration of how
to integrate electronics and computing with crafting and crea-
tivity in science education but also present complex chal-
lenges for the design of instruction and assessment.

In this paper, we examine how the design and crafting of
functional simple circuits can be expanded to circuits with
programmable features. We conducted a 15-session e-textiles
unit during which 23 high school students (ages 16–17)
learned how to make e-textiles. This was the first pilot in the
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development of an e-textiles curricular unit for the Exploring
Computer Science curriculum, an introductory high school
course (Goode et al. 2014). We asked the following research
questions: (1) Does students’ understanding of a functional
circuit improve in a complex e-textiles design project? (2)
Can students read, design, and remix codeable circuits after
completing a complex e-textile project? Our analyses not only
show significant improvements between pre/post tasks of stu-
dents’ understanding functional circuits but also showcase
students’ ability to read, design, and remix code for control-
ling circuits. In our discussion, we address how this type of
circuit design can lead to a better understanding of function-
ality and provides a promising context for integrating maker
and computational activities in science classrooms.

Background

Efforts to integrate new technologies in science education aim
to engage Bstudents in carrying out complex project that con-
nect advances in technology with important science topics^
(Linn 2003). We present e-textiles design projects as a com-
plex problem space in which students learn circuitry, coding,
and their interdependencies. The research on examining learn-
ing with e-textiles has been most closely connected with prior
work in science education that examined students’ under-
standing and misconceptions of circuit design. Osborne’s
(1981, 1983) seminal work found that elementary school stu-
dents tend to struggle with understanding circuitry and typi-
cally generate linear representations rather than loop-based
representations of circuits. Moreover, these misconceptions
persist with high school or college-age students, even with
instruction (Duit and von Rhöneck 1998; Fredette and
Lochhead 1980; Kock et al. 2013; Shepardson and Moje
1994). Issues like current flow (e.g., Shipstone 1984) and
polarity (e.g., Osborne 1981) are two of the most prevalent
misconceptions in students’ learning of simple circuitry and
scholars often point to the abstract nature of traditional teach-
ing models and learning materials as prime contributors.
Aware of these challenges, circuitry is often taught using ma-
terials like breadboards, wires, light bulbs, and batteries.

More recently, circuitry teaching and learning has expanded
to include other conductive materials such as play dough
(Johnson and Thomas 2010), circuit stickers (Qi and Buechley
2014), or conductive thread, sensors, and microcontrollers
(Buechley et al. 2007). For example, sewable microcontrollers,
such as the LilyPad Arduino (Buechley 2006) or Adafruit’s
Flora (Stern and Cooper 2015), enable users to craft interactive,
wearable designs by stitching circuits with conductive thread.
The emergence of these new tools and materials has sparked
scholars to explore their effectiveness at content delivery, espe-
cially in science education in relation to the Next Generation
Science Standards (Tofel-Grehl et al. 2016). In one study,

Peppler and Glosson (2013) measured students’ ability to create
a functional circuit before and after students participated in an
out-of-school e-textiles workshop using stickers of LilyPad-
specific components (an LED, a battery holder with battery,
and a switch). Findings revealed that students’ ability to create
a working circuit, as well as students’ understanding of current
flow, connections, and polarity, significantly increased from pre
to post (Peppler and Glosson 2013). Furthermore, Halverson
et al. (2016) examined whether students learning circuitry
through amusic-basedmaker activity in museum and classroom
settings. The authors employed a similar sticker-based circuitry
diagram assessment as Peppler and Glosson (2013) and found
that a significant number of students shifted from a linear-based
to a loop-based representation of circuits (Halverson et al. 2016).

While these studies of students’ electronic textiles designs
have demonstrated promising findings in helping students to
learn about simple and parallel circuits and further their under-
standing of key concepts such as polarity and current flow, they
did not address student learning of programming circuits con-
trolled by microcontrollers. It is at this intersection between
engineering and computing that circuit design and code control
takes students’ understanding into STEM application areas that
integrate computational thinking (Grover and Pea 2013; Wing
2006). The design of circuits becomes foundational for the
design of software (and vice versa) that control the input/
output interaction of sensors, lights, and motors. One study that
has examined this integrational dimension of electronics and
computing has focused on college students’ ability to success-
fully engage in creative prototyping with modular electronics
(Sadler et al. 2016). Others havemade efforts to assess students’
abilities to problem solve, troubleshoot, and integrate scientific
and design principles with fabrication technologies (including
microcontrollers), but do not go so far as to specifically study
learning of codeable circuitry (Blikstein et al. 2017). While
there has much research on student understanding of computer
science knowledge and programming concepts on the screen
(Guzdial 2015; K–12 Computer Science Framework 2016;
Soloway and Spohrer 1989), no studies exist that have specif-
ically examined K-12 students’ understandings of codeable cir-
cuit design with modular electronics or electronic textiles,
which have components both on and off the screen.

In this paper, we take on the challenge of investigating the
high school students’ understanding of functional circuit and
software design, or codeable circuits, through a combination
of pre/post tasks by examining two key aspects: (a) reading
codeable circuit designs and (2) designing and remixing func-
tional code for controlling circuits. What is both interesting
and challenging about codeable circuits is that they integrate
two different modalities—visual architecture of the circuit and
written text of programs—and how these are connected via a
microcontroller. In each instance, students have to be able to
interpret and produce not only the blueprints of circuit designs
but also the code for microcontrollers (in our case the LilyPad
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Arduino board), which collectively work to perform certain
actions such as turning on or off LED lights in patterns or
reading data from light or touch sensors and reacting accord-
ingly. Furthermore, in designing or remixing code for circuit
diagrams, the intersecting features become critical for how
inputs and outputs can be controlled. For instance, LEDs in
a parallel circuit design can only be turned on or off concur-
rently giving the designer no control over individual lights’
functionality. We have chosen to examine different competen-
cies such as reading, designing, and remixing both code and
circuit designs to provide students with different contexts in
which to showcase their understanding, fully realizing that
these contexts vary in difficulty for novice student designers.

Methods

Participants and E-Textile Unit

We conducted this study with a class of 23 high school juniors
(4 boys, 19 girls, 16–17 years old) within a STEM elective
class during the school day, based at a charter school in a
northeastern metropolitan city. Student demographics mir-
rored those of the school with 44% African American, 35%
Caucasian, 13% Hispanic, 3% Asian, and 3%Multiracial stu-
dents. Most students (n = 18) had completed an introductory
e-textiles project at the end of the previous academic year
(Litts et al. 2015), but six students were new to the STEM
elective class and were introduced to e-textiles for the first
time. The participating teacher, a trained biologist, was also
the STEM coordinator of the school. The teacher put students
in pairs aiming to balance skills and expertise, personality
traits, and existing friendships. Student absences occasionally
occurred throughout the unit; while two students had very
high absentee rates (5 or more times out of 15 days), four
others had lower absentee rates (2–3 times out of 15), and
the rest had minimal absentee rates (0–1 times out of 15).
All 23 students were included in the analyses.

The teacher worked together with our team to prepare and
guide 15 sessions each lasting about 90 min that took place
over the course of 3.5 weeks during the STEM elective class
within the school day. The teacher co-taught the curriculum
with Author 5, though Authors 1 and 3 were in the room
helping facilitate activities as needed. Over the course of the
e-textiles unit, student pairs collaboratively constructed an in-
teractive sign for the school that would be exhibited in a high-
traffic area of the school. Each student pair received a letter
printed onto canvas, which was designed by an art major
student at the same school; collectively the letters constructed
a sign of the school’s name. Each pair also received a LilyPad
Arduino, LEDs, sensors, switches, and other e-textiles mate-
rials to make the sign interactive. Figure 1 pictures an art
student’s design featuring an orange-colored letter (BE^)

superimposed over a patchwork of five different street scenes.
The student pair added to this artwork by sewing a LilyPad
circuit that incorporated nine LEDs (four in the upper left, two
at middle left, and three at lower center), as well as one switch
and two conductive patches (lower right), which were used for
activating four distinct light patterns (for example, blinking
back and forth between blue and white lights or turning on
the different Btraffic light^ LEDs). It should be noted here that
pairs divided the work in different ways; while a few divided
their efforts evenly (each doing half the coding and half the
sewing), most other pairs divided the work according to do-
main (one member acting as coder, and another as sewing).

Data Collection and Analysis

Before and after this e-textiles unit, all students participated in a
series of different circuit and coding tasks, which were admin-
istered by researchers (Authors 3 and 5) within an interview
format. These interviews were videotaped and transcribed, and
all artifacts such as student-generated diagrams and handwritten
comments were captured. Two of these tasks were implemented
before and after the unit (designing a functional circuit; reading
a codeable circuit design), while a third was included only after
the unit (designing, reading, and remixing a codeable circuit).
Even though all 23 students participated in these tasks, one
student did not complete the entire series due to time con-
straints. As a result, there was a resulting N = 23 for tasks 1,
2, and 3a, and N = 22 for tasks 3b and 3c. Table 1 provides an
overview of time point and data types of the three tasks ana-
lyzed in this study, and are described further below.

Designing a Functional Circuit (Pre and Post)

The structure of task 1 was modeled after Peppler and
Glosson’s (2013) e-textile-based circuitry task that used
stickers with lights, switches, and batteries. However, we took
a more open-ended approach to the task by asking students to
Bdraw aworking circuit with a light and a battery^ (see Fig. 2).
This more open-ended approach has been used effectively in
previous studies (e.g., Osborne 1983; Shepardson and Moje
1994) and was more appropriate for our context, because stu-
dents used microcontrollers in their projects rather than light,
battery, and switch components.

We adapted the coding schemes from Peppler and Glosson
(2013) and Halverson et al. (2016) for analyzing student per-
formance in regard to three aspects of a simple circuit: (a)
polarity, (b) connection, and (c) current flow. We coded each
specific feature as 1 (present/correct) or 0 (not present/incor-
rect). We determined polarity by the presence of battery po-
larity, light polarity, and matching polarity (+ to +, − to −); we
ascertained connection types as either loop or linear connec-
tion; and we established current flow by missing connections,
redundant lines, redundant extra components, and crossed
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lines/short circuits (for more detail, see BDesigning a
Functional Circuit (Pre and Post)^ section). Taking account
of these three aspects, we also coded whether or not students’
drawn circuits would function properly, that is, powering a
light with the battery (1—yes, 0—no). Due to the small sam-
ple size and binary coding scheme, we conducted Mcnemar’s
tests to determine significance of changes in students’ under-
standing for each of the circuitry features.

Reading a Codeable Circuit Design (Pre and Post)

The structure of task 2 was modeled after existing research on
assessing computer science knowledge—namely, if students
can read or interpret an existing computer program (Guzdial
2015; K–12 Computer Science Framework 2016). However,
this task moves beyond that skill through addition of another
component: a codeable circuit. Students were thus provided text
of a simple Arduino program (that could make an LED blink
continuously) and a simple circuit design that included one
LED and the LilyPad Arduino microcontroller, which were
both printed on a single piece of paper (see Fig. 3). It should
be noted here that this code was a basic pattern most students
learned in their previous year’s e-textiles project. We asked
students two questions: BDo you have a sense of what the
function of this code might be?^ and BDo you think this code
would work with the following LilyPad circuit, why or why
not?^ Answers were recorded on video and then transcribed.

Drawing from existing research on student understanding
of programming concepts (Guzdial 2015; Soloway and
Spohrer 1989), the qualitative coding scheme for this task

focused on students’ understanding of the basic computer sci-
ence concepts including (a) functions, (b) fundamentals, and
(c) looping. Reading through the transcripts, we coded each
specific feature as 1 (present) or 0 (not present). We established
functions by looking at whether or not students explained the
two basic components of a blink: (1) BdigitalWrite^ as a func-
tion that could turn an LED on or off (through the values
BHIGH^ and BLOW^); and (2) Bdelay^ as a command that
controls time. We determined computing fundamentals by see-
ing at whether or not they discussed (3) where and how vari-
ables were named, and (4) what the inputs/outputs were for the
program (e.g., LED as an output). We also ascertained looping
by mention of (5) continuous or repeated action of the com-
mands. Finally, we coded for whether or not students could
determine (6) whether the program as a whole matched the
circuit design shown (for more detail, see BReading a
Codeable Circuits Design (Pre and Post)^ section). After cod-
ing students’ answers, each student received a number ranging
between 0 and 6, with a higher score reflecting a more thor-
ough understanding of the code. Due to the small sample size
and continuous coding scheme, we conducted a Wilcoxon
two-sample paired signed ranks test on these data to determine
significance in changes in students’ understanding.

Designing, Reading, and Remixing a Codeable Circuit (Post
Only)

Only occurring after the unit, the structure of task 3 is a more
complex extension of both tasks 1 and 2. Whereas task 1 re-
quired the construction of a simple circuit and task 2 required

Fig. 1 Student pair e-textile de-
sign for the letter BE^ of school
sign (left, full design; right, close-
up of LilyPad and three LEDs)

Table 1 Data sources for circuit
and coding tasks Task Timepoint Data type Data source Coding task

1 Pre/post Artifact Simple circuit diagram Designing

2 Pre/post Transcript Explanation of codeable circuit Reading

3a Post Artifact Advanced circuit diagram Designing

3b Post Transcript Explanation of codeable circuit Reading

3c Post Transcript and artifact Remixed code + explanation Reading + remixing
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students to read a program for the LilyPad Arduino, task 3
additionally asked students to complete these tasks at a more
integrated and advanced level, since it asked them to design,
read, and remix a codeable circuit. In other words, rather than
just being asked to engage with a circuit or a program, students
are required to work on these simultaneously within this task—
a specially designed circuit that can be controlled via code.

The task was split up into three separate parts. In task 3a,
students needed to design a circuit with four given compo-
nents (a LilyPad, two LEDs, and a switch) that corresponded
with a pre-existing program. In task 3b, students needed to
read and explain this given program, which was notably more
complex than the program given for task 2 since it was switch-
based and included a conditional statement (if-then-else) and
custom functions (see Fig. 4). In task 3c, students needed to
remix parts of this code to change the behavior of the circuit
from blinking asynchronously to blinking synchronously.
Throughout the tasks, students responded to questions either
verbally or by writing down their answers (including

drawings, comments, and code), and these data were video-
recorded, transcribed, and documented accordingly.

The analytic coding scheme for the circuit design (task 3a)
focused on students’ ability to design a codeable circuit based
on an existing program.Modifying the coding scheme for task
1 (drawing a simple circuit), we coded 1 (present/correct) or 0
(not present/incorrect) for three specific features: (a) connec-
tion, (b) polarity/grounding, and (c) current flow. In terms of
connection, we looked at how each component (two LEDs
and one switch) was connected to the LilyPad. As with task
1, this required a looped rather than a linear connection, but
additionally required a connection to a particular LilyPad pin
as identified in the code (as opposed to just the + pole). In
order to successfully complete this task, students have to be
able read the variable declaration section within the Arduino
code, and identify the correct pin for the correct component. In
terms of polarity/grounding, we examined two elements:
whether or not each individual component was correctly
grounded (somehow connected to the negative pole of the

Fig. 3 Codeable circuit task
(Task 2)

Fig. 2 Examples of students’ drawing of a functional circuit (left) and a non-functional circuit (right) diagram (Task 1)
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LilyPad); and the techniques of grounding, specifically
looking if components were as follows: directly connected
to negative pin of the LilyPad; connected to each other; con-
nected to a negative line; or connected to other non-named
pins. Finally, we examined current flow by checking for miss-
ing connections, redundant lines, and crossed lines/short cir-
cuits. We also coded (1—yes, 0—no) if the circuit as drawn
would indeed work with the existing program (for more detail,
see BDesigning a Codeable Circuit^ section).

For task 3b (see Fig. 4), we coded for students’ ability to
read the given switch and sensor-based program using the
same coding scheme as task 2 (see BReading a Codeable
Circuit Design (Pre and Post)^ section. Again, this focused
on student demonstration of basic computer science concepts
including the following: functions including (1) digitalWrite
as a function that would turn an LED on or off; (2) delay as a
command relating to time; fundamentals including (3) decla-
ration of variables; (4) setting up inputs/outputs of the pro-
gram; and looping, that is (5) repetition of action. However,
instead of asking whether or not the code would work with a
given circuit design (something that could not occur since
students designed this circuit themselves), we additionally
scored students about their ability to (6) understand the con-
ditional if/then commands within the program—a more com-
plex computer science concept (Soloway and Spohrer 1989)
that was not present in the more basic program presented in
task 2 (for more detail, see BReading Program for a Codeable
Circuit^ section). This coding scheme resulted in each student
receiving a number ranging between 0 and 6, with a higher
score reflecting a better understanding of the program.

Finally, the coding scheme for task 3c was based on students’
ability to remix given lines of the code to shift the program
output from asynchronously blinking LEDs to synchronously
blinking LEDs. Drawing from existing standards in computer
science education, this task looked at how well students under-
stood the control structures of the program, that is, the sequential
ordering of steps within a program that leads to different behav-
iors or outcomes (K–12 Computer Science Framework 2016).
Most student verbally described, rather than typed or wrote,
what they would change. As a result, the coding scheme only
captures the general revision required for this remix rather pre-
cisely capturing these changes (e.g., with the correct syntax and/
or exact ordering). Students were therefore scored based on the
following appropriate revisions: (1) move together the
BdigitalWrite HIGH^ l ines, (2) move together the
BdigitalWrite LOW^ lines, and (3) move or eliminate the
Bdelay^ lines from the program (for more detail, see
BRemixing Program Code for a Codeable Circuit^ Section).
The maximum score for this task was three points. Again, be-
cause of the nature of this coding scheme, the students who
gained the highest score (3) would still have needed to make
minor revisions for the correct behavior. However, their changes
would have been close enough to keep them on the right track.

Findings

We first present results of students’ ability in designing a
functional circuit. We also highlight particular circuitry con-
cepts in which students demonstrated their greatest

Fig. 4 Designing a working codeable circuit task: LilyPad with two LEDs and switch component (left) and Arduino code (right) (Task 3a)
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improvements. Second, we share results regarding students’
ability in reading a codeable circuit. Finally, we describe re-
sults of students’ ability to design and remix a codeable circuit
after participating in the e-textiles unit during which they de-
signed similar codeable circuits.

Designing a Functional Circuit (Pre and Post)

In Task 1, we first sought to determine whether students sig-
nificantly improved their ability to draw, label, and explain a
working circuit diagram (see Fig. 2). Like in previous studies
(Peppler and Glosson 2013; Halverson et al. 2016), we found
that students’ ability to draw a working circuit significantly
increased (p < .05, p = .000) from pre- to post task.
Specifically, after the e-textiles unit, 78% (18) of students
were able to draw a functional circuit design whereas only
26% (6) were able to do so before the unit.

Furthermore, we examined what elements of a circuit were
the biggest areas of improvement (see Table 2 for an
overview) and found that students significantly improved their
understanding of matching polarity (p < .05, p = .002).
Students also significantly increased their understanding of
circuitry as a loop (p < .05, p = .004). In terms of common
mistakes, students significantly reduced the number of miss-
ing connections they had in their circuit prior to the unit
(p < .05, p = .021), whereas redundant connections and short
circuits did not appear to be major issues either before or after
the class. These results confirm findings from prior studies
(Peppler and Glosson 2013; Halverson et al. 2016) demon-
strating that students can learn about circuits as loops in mak-
ing activities.

Reading a Codeable Circuits Design (Pre and Post)

In Task 2, we also investigated students’ ability to understand
the relationship between circuit design and program code by
explaining a given code and diagram (see Fig. 3). In this task,
the Arduino code generates a basic blinking pattern, turning
on and off the LED attached to the LilyPad with a repeated
delay of 1000 ms.

We found that students’ ability to read the code to control a
circuit improved after the e-textiles unit: while only one stu-
dent in the pre-task got a score between 4 and 6, indicating
high understanding, over 56.5% (13) of students reached this
level in the post-task. The average score on the pre-task was
1.13 (N = 23) and on the post-task it jumped to 3.35 (N = 23)
indicating that students significantly improved in their ability
to decipher a program and circuit design (see Table 3 for a
student example). A Wilcoxon two-sample paired signed
ranks revealed that the median post-assessment scores were
significantly higher than median pre-assessment scores
(Z = −3.7364, p < .01).

A more nuanced understanding of students’ knowledge
about codeable circuits was revealed through examination
of the different aspects of the program that were coded. The
class as a whole made the highest gains in understanding the
digitalWrite function (a command that could turn an LED
on or off through the values BHIGH^ and BLOW^), with 16
more students demonstrating this knowledge after the unit
than before (from 2 to 18 students). In general, this is not
surprising. The digitalWrite function is the most readily ob-
servable aspect of the code, since it literally controls wheth-
er or not the LEDs attached to a LilyPad turn on or off.
Almost all the students had experience manipulating this
function within their own project programs in order to cause
different LED behaviors. On the other hand, other aspects of
the program (the looping, the fundamentals such as decla-
ration of variables and inputs/outputs) were coded less often
within this analysis. The review of the interview answers
revealed one reason why this occurred: these sections, while
essential to the function of the program, generally seemed
less tangible than the digitalWrite command and often taken
for granted within people’s answers. For instance, many
students who provided brief descriptions describe the func-
tion (e.g., it makes the LED blink) tended not to explicate
each part within their answers. From this perspective, stu-
dent understanding of codeable circuits seems distinct from
student understanding of on-screen code; it appears that
tangibility of concepts can become key influence here
aiding student learning.

Table 2 Changes in students’
understandings of circuit features
(Task 1)

Circuit feature Pre (N = 23) Post (N = 23) Significance

Polarity (matched) 7 19 .002*

Connection type (loop) 14 23 .004*

Current flow

Missing connections 9 1 .021*

Redundant connections 1 0 1.000

Crossing lines/short circuits 3 0 .250

Circuit functionality 5 18 .000*

*Significance differences at the p < .05 level
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Designing, Reading, and Remixing a Codeable Circuit
(Post Only)

The last task (3a, 3b, and 3c) focused on designing, reading, and
remixing of a codeable circuit, thus giving us better insights into
students’ understanding of the relationship between software de-
sign and the circuit design for the LilyPad. As compared to the

simple circuit design in task 1, this design was more complicated
because it includedmore components (two lights and a switch) as
well as a microcontroller with multiple possible sites for connec-
tion. Additionally, compared to the basic blink program provided
in task 2, this program was more complex since it contained a
conditional statement (if-then-else) with a switch, control of mul-
tiple LEDs, and custom light pattern functions (see Fig. 4).

Table 3 Pre/post interview excerpts for single student (Task 2)

Post-Interview Answer from Same Student for Simple Codeable Circuit Task
(SCORE = 6 out of 6)

Pre-Interview Answer of One Student for Simple Codeable Circuit Task
(SCORE = 0 out of 6)
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Designing a Codeable Circuit

In Task 3a, we examined students’ ability to design a working
circuit that matched components such as two LED lights and
switch with a pre-existing program, which includes a condi-
tional statement (if-then-else) using the switch and custom
functions (see Fig. 4). As with task 1, this challenge required
students to design a grounded circuit that facilitated current
flow. However, students were additionally required make con-
nections between the different components and the LilyPad
that corresponded to the given program.

In terms of connections, most students were able to create
looped connections for each component (one connection each

from the positive and negative ends): 91.3% (21) of students
did this for the LEDs and 78.2% (18) did this for the switch.
Students were also able to connect the positive end of the
components to the correct LilyPad pin based on their under-
standing of the program: 78.2% (18) of students were able to
properly connect the BCat^ LED to pin A5, 82.6% (19) were
able to properly connect the BBird^ LED to pin 11, and 87.0%
(20) were able to properly connect the switch to pin 9. In
Fig. 5, the top drawing illustrates a student’s correct design
of a codeable circuit.

However, students had more difficulty connecting the neg-
ative pole of each component appropriately in order to prop-
erly ground the circuit: 73.9% (17) of students were able to

Fig. 5 Student drawings of codeable circuits design: functional design (top), partial (middle), and non-working (bottom) designs (Task 3a)
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ground the BCat^ LED, 65.2% (15) of students were able to
ground the BBird^ LED, and 52.2% (12) of students were
able to ground the switch. In terms of their techniques for
grounding, we found that they accomplished this using one
or more methods including the following: 73.9% (17) of
students by connecting them directly to the negative pin of
the LilyPad, 34.8% (8) of students by connecting to another
component (which was eventually connected to the nega-
tive pin), and .04% (1) student by connecting it to negative
connecting line. It should be noted here that the latter two
techniques are considered more advanced, since they are an
efficient use of thread and sewing. Interestingly, 17.4% (4)
of students attempted to ground components by connecting
them to undesignated pins on the LilyPad. While this ap-
proach would not have worked with the pre-existing pro-
gram, further analysis of the interviews illustrated how this
resulted from conversations that we had in the unit about
this particular technique of writing extra code in order to
program a pin negative.

Finally, we analyzed whether or not the whole configura-
tion of a students’ designed circuit would ultimately work
with the pre-existing program as intended. Overall, 39.1%
(9) of students created a circuit that would fully work with
the existing code, meaning that it all the intended actions
written into the program (for the two lights and the switch)
would function. In some cases (6 students, or 26.1%), stu-
dents’ circuit diagrams would work for some but not all com-
ponents, so we did not rate these as working. Regarding these
mistakes, 39.1% (9) of students were missing connections
within the entire circuit and 8.7% (2) of students had redun-
dant lines. However, as with task 1, none had crossed lines or
short circuits. The middle drawing of student in Fig. 5 show-
cases an example a partially working codeable circuit with a
redundant line andmissing connections (marked as non-work-
ing), while the drawing on the bottom included linear rather
than looped connections (which indicates missed connec-
tions), and was thus not appropriately grounded.

Reading Program for a Codeable Circuit

In Task 3b, we asked student to read and explain program
code that controlled a LilyPad Arduino and components.
Students’ overall average score for this task was 3.45
(N = 22) out of 6 with a distribution as follows: no students
scored a 0, 4.5% (1) of students scored a 1, 31.8% (7) scored a
2, 18.2% (4) scored a 3, 13.6% (3) scored a 4, 22.7% (5)
scored a 5, and 9.1% (2) scored a 6 indicating the highest level
of comprehension. As with task 2, students demonstrated the
greatest understanding of the function digitalWrite (with the
values of high and low) as corresponding to turning the LEDs
on and off (95.7% or 22 of 23). Again, this is not unexpected
since almost all the students had opportunities to deal with this
function in their own program code, and experienced its

tangible output (lights going on or off). However, students
demonstrated the lowest understanding of the conditional
statement (if-then-else) statements (39.1% or 9 of 23 stu-
dents). While this concept was fundamental to the outcome
of students’ projects (since it controlled their switch func-
tion), their lack of understanding can be likely explained by
the pair working arrangements of the class. As described
within the methods section of the paper, many students di-
vided their work according to domain. While some students
focused more on crafting and circuit design, others focused
more intensely on coding and were thus exposed to more
complex aspects of the program (i.e., the conditional state-
ment, inputs/outputs).

A closer examination of the answers themselves addition-
ally revealed a more complex picture about student under-
standing of this code. Students’ answers varied in specificity
which also made it challenging to develop a consistent coding
scheme. For example, some students, whom we knew were
proficient at coding, gave succinct answers which demonstrat-
ed an overall understanding of the program (i.e., that turn the
switch on and off would change the light pattern). However,
they may have not provided a step-by-step breakdown of this
action, and therefore did not describe individual functions
such as delays, digitalWrite, or loops. On the other hand, some
students who we knew were less proficient at coding were
generally more explicit in describing these individual features.
While they received scores that may have demonstrated high
understanding of the program, they could not ultimately syn-
thesize these into a comprehensive explanation. Thus, the
scores did not always reflect a level of understanding of com-
putational concepts at-large but instead students’ abilities to
recognize individual aspects of code.

Within this task, we also noticed students’ abilities in
linking together their understanding of the two different
modalities of circuitry and coding. Specifically, this in-
volved how they used their understanding of the text of the
code to design the visual circuit (seen in the previous task
3a), and how they used their understanding of the visual
circuit to interpret the text of the code (seen in this task).
When students were asked to explain the provided Arduino
code, more than half of them (12 of 22) ended up physically
pointing to different parts of the LilyPad circuit that they
had designed as part of their answer. For example, this can
be evidenced by this interview excerpt, where a student is
reading from the code and explaining her answers, while
simultaneously pointing toward the drawn circuit diagram:
BThis BIRD LED [points to right LED in circuit diagram]
comes on then it goes off [points to pattern 1 text in code].^
While we cannot empirically confirm that their understand-
ing in one area depended on the other area, their use of the
circuits as an explanatory tool seems to indicate their devel-
oping fluidity moving in between the realm of software (the
code) and hardware (the circuit).
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Remixing Program Code for a Codeable Circuit

In Task 3c, we investigated students’ ability to remix existing
program code to change the behavior from synchronous to
asynchronous blinking for a codeable circuit. We rated stu-
dents on whether or not they made the following changes in
the program code: (1) move together the BdigitalWrite HIGH^
lines, (2) move together the BdigitalWrite LOW^ lines, and (3)
move or eliminate the Bdelay^ lines from the program (see
Fig. 6). Students’ average score was 2.09 (N = 22) distributed
as follows: no one scored 0, 22.7% (5) scored 1, 31.8% (7)
scored 2, and 40.9% (9) scored 3, the highest score. As stated
earlier, this task primarily engages with students’ understand-
ing of the sequential ordering of steps within programs to
cause different outcomes, or the control structure of the pro-
gram. Most students indicated that they would move the
BdigitalWrite HIGH^ lines or BdigitalWrite LOW^ lines to-
gether (19 or 86.4%, and 16 or 72.7%, respectively), but only
half indicated an interest in moving the delays (11 or 50%).
While this finding indicates that these students would not be
able to exactly rewrite the code to achieve the desired behavior
change, we still argue that this does indicate an understanding
of the role of sequencing steps to change outcomes. This can
be demonstrated, for instance, by one students’ answer to the
question of how to modify the existing code make the BCat^
and BBird^ lights blink together (rather than one at a time):
B[The] Cat and Bird would both be right here [points to first

two digitalWrite lines of the code] and they’d both be high.
Then Cat and Bird would be right here [points to second
digitalWrite lines] and they would both be low.^ Here, the
student does not mention the necessity of shifting the delay
functions within the code, but seems to indicate that pushing
the two Cat and Bird high lines together (indicating a function
that turns both lights on), and the two Cat and Bird low lines
together (indicating a function that would turn both lights off)
would mean that both lights would be blinking at the same
time. From this perspective, while this student (and others)
would not have the exact code needed for the behavior
change, her impulse to move these lines together would put
on her on the right track to accomplishing this goal, while still
missing some details. Because of the large percentage of stu-
dents that did indicate an interest in this shift (86.4 and 72.7%,
respectively for the high and low lines), we assert that our
finding indicates that students had developed a basic under-
standing of control flow, or the sequencing of lines within a
program to shifts its outcome.

Summary of Findings

After completing the e-textiles unit, students significantly in-
creased not only their ability to design a functional circuit, but
also to design and understand the functionality of a codeable
circuit. Codeable circuits are a unique type of design in which
both the blueprint of the circuit design and the control

Fig. 6 Sample of student answer for remixing code task (Task 3c)
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structure of the code must align in order for the LED, sensors,
and switches to perform desired behaviors, hence, making
circuit codeable. In this study, students not only exhibited
increases in reading a codeable circuit, but also developed
more sophisticated skills in designing and remixing codeable
circuits in post tasks. The codeable circuit tasks successfully
captured students’ ability to read, design, and remix code at a
basic level, and task 3 allowed us to tease apart these different
areas while guiding students through a natural progression of
difficulty.

Discussion

As digital and maker technologies proliferate our lives, there
is a growing interest in integrating computer science and en-
gineering education in K-12 curriculum. The crux of our study
is built on the understanding that as new technologies are born
out of this movement we must investigate the new learning
that follows. Specifically, with e-textiles, learning happens at
the unique intersection of crafting, circuitry, and coding thus
providing a promising example for the type of integrated
STEM learning called for in national reports and initiatives
(Katehi et al. 2009; Smith 2016). Building on previous re-
search that showcased students’ increased understanding of
circuit designs, we extended this understanding by adding
software design. The research on students’ understanding of
codeable circuits presented in this paper sits at the intersection
of engineering and computing—two key STEM topics. In the
following sections, we discuss the opportunities and chal-
lenges in understanding and assessing this type of intersec-
tional learning in maker activities.

Understanding STEM Learning in Maker Activities

Successfully working with codeable circuits requires a grasp
of both circuit design and coding, which makes these types of
circuits particularly challenging for students crafting e-textiles
projects. In our study, most students read and some students
successfully designed and remixed codeable circuits after
completing a complex e-textiles project. This means that most
students understood the interconnectedness of circuit design
and coding enough to interpret it, but only some were able to
apply this knowledge by producing new code. Since about
half the students took on the role of Bcoder^ in their pair, this
could explain the differences between student abilities in the
post-tasks. Thus far, only college students have demonstrated
learning this intersectional knowledge found in codeable cir-
cuits (Sadler et al. 2016), and our study sheds light on high
school students’ learning in this area.

Recognizing the integrated nature of maker activities, we
suspect that the disciplinary knowledge is interdependent in
many of these activities. Put differently, that understanding

one disciplinary area (e.g., circuitry) could be supportive of
learning other areas (e.g., coding or design). We have some
evidence supporting this, specifically, when students made
references to circuit diagrams when discussing their program
code, thus providing an answer that integrated both visual and
textual elements. This dimension of STEM learning can be
especially challenging when students need to connect con-
cepts from different disciplines, such as engineering and com-
puting, with which they are often unfamiliar and which are
rarely introduced together. The situated, multimodal, and in-
terdisciplinary learning we investigated in this study is pre-
cisely the form of STEM learning for which maker scholars
are arguing.

By the same token, the opportunities presented by these
maker activities also pose significant challenges to teachers
and students. To support these interdisciplinary activities in
the classroom, teachers will likely need to gain some familiar-
ity with the intersecting disciplines and/or develop interdisci-
plinary collaborations with their peers, which are typically
siloed in traditional schooling settings. Here we need to inves-
tigate how teachers can provide differentiated support for stu-
dents often at various completion points of their projects.
Another way to support student learning is through designing
technologies that support interdisciplinary and multimodal
learning. In the context of e-textiles, for example, Modkit, a
visual programming software for the LilyPad Arduino
(Millner and Baafi 2011), is one case of integrating the visual
diagrams with the coding process. The trade-off with this spe-
cific tool, however, is that it eliminates the more authentic
computer science practice of text-based coding. We need ad-
ditional work in this area focused on designing and develop-
ing tools and resources to support the interdisciplinary, multi-
modal learning which maker activities require.

Developing Assessments for Maker Activities

Maker activities like e-textiles are different from more tradi-
tional science or computing activities primarily due to their
interdisciplinary nature, which also make them especially dif-
ficult to assess. Peppler and Glosson (2013) and Halverson
et al. (2016), whose findings we replicated in this study, have
collectively worked to design assessment tools to capture a
particular aspect of engineering knowledge—namely circuit-
ry—in maker activities and contexts. Their assessments tools,
though, primarily look at designing simple circuits. However,
during this e-textiles unit, we pursued more complex interdis-
ciplinary projects involving codeable circuits, which required
understanding of multiple domains, namely the visual design
of a circuit along with the written construction of a program.
The order of tasks mirrors the order in which we taught the
unit; while all the students were required to design simple
circuits, fewer were required to learn how to read and remix
code because of the pair structure of the course. The
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particularly of the tasks is something that might limit our
ability to employ these tasks in other contexts. For this study
then, we worked to develop codeable circuit assessment tools,
which represent our initial efforts to capture this interdisciplin-
ary knowledge and skill.

Within our design, we incorporated elementary circuit de-
sign assessments with various computational practices such as
reading, writing, and debugging code. Besides the first free
drawing circuit design task, the other tasks presented in this
paper were designed in order highlight the integrated nature of
the activity. They highlighted this aspect in two ways. First,
the visual presentation of the tasks was multimodal; that is,
students were simultaneously presented with the text of a pro-
gram alongside a LilyPad circuit design, they did not see one
without the other. In this way, the presentation reinforced their
integration. Second, while the tasks themselves focused on
one mode over another (e.g., asking students to design a cir-
cuit, or asking them to explain or remix the code), the most
correct answers depended upon their understanding and abil-
ity to manipulate both modes simultaneously. Thus, our de-
sign of these tasks, while preliminary, works to expand the
growing body of assessment tools in the maker literature with
an eye toward its interdisciplinary, multimodal nature.

Along with the affordances of the codeable circuit tasks
described above, we should also note some of the constraints
of these activities. In terms of implementation, we relied on
paper and verbal responses to tasks rather than relying upon
the more true-to-life modes of the screen or craft-based cir-
cuits, thus potentially yielding inauthentic responses and/or
answers. Here we suggest developing true-to-life e-textile
debugging activities as described by Fields et al. (2012) that
engage students in debugging code and circuit designs inmore
tangible and real-world maker contexts. Additionally, another
potential area of growth involves our interview protocol in this
study. Because it was open-ended and follow-up questions
varied across interviews, this sometimes resulted in inconsis-
tent responses that might have captured more student articu-
lateness but not always their understanding. For future work,
we plan to explore both more structured interview protocols
and screen-based tasks to accommodate realistic time
constraints.

Future Research

The present study contributes to the growing body of research
exploring learning in maker activities and designing activities
and tasks to assess that learning. In previous work, we inves-
tigated the collaborative dimensions of maker activities by
examining how student pairs can leverage distributed exper-
tise to mitigate the challenges of these tasks. By working in
pairs, students were able to rely on each other’s strengths to
troubleshoot and debug problems in various disciplines.
Building on this work, we should continue explore how to

best leverage collaborative learning arrangements as possible
solutions to support learning in maker activities. Here we
should also focus on the design of collaborative tasks them-
selves as a way to support and scaffold students’ learning
(Litts et al. 2015).

Moreover, though our primary focus in this study was on
circuitry and coding pieces of the maker activities, we believe
similar successes and challenges exist at other disciplinary
intersections (e.g., between design and crafting). Thus, our
work expands maker designs in STEAM by highlighting the
significance of learning at the points of intersection between
disciplines, where we can focus future research. Likewise,
expanding our conceptions of learning requires that we also
expand our notions and tools of assessment. The codeable
circuits tasks we present in this study is a first example of
how interdisciplinary, multimodal assessments could look
like. Taken together, our study lays a foundation for future
work to capture learning and rethink assessments in maker
activities implemented in K-12 settings.
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