

A Deep Space Radio Communications Link for Cubesats: The CU-E³ Communication Subsystem

The Challenge!

CU's Earth Escape Explorer (CU-E³)

The University of Colorado's - Earth Escape Explorer (CU-E³) is a 6U cubesat being designed and built to compete in NASA's Cube Quest Challenge - Deep Space Derby. CU-E³ will be attempting communication from \geq 4,000,000 km, requiring us to "escape" the influence of the "Earth" and "explore" deep space.

NASA's Cube Quest Challenge

• The **Cube Quest Challenge** has two phases:

- 1. <u>Ground Tournaments (GT-1 thru GT-4)[†]</u>:
- Maximum of \$100,000 for any one team.
- Phase completed in June 2017.
- 2. <u>The "In-space Prizes":</u>

 $U_{-}E^{3}$

- 365-day competition period.
- a) Lunar Derby
 - Up to \$3 million in prizes.
 - Technical objectives in propulsion & communications.
- b) **Deep Space Derby**
 - Up to \$1.5 million in prizes.
 - Focus on deep space communications using small spacecraft.
 - Competition starts at 4,000,000 km:

- Best Burst Data Rate **\$250,000**
- ii. Largest Aggregate Data \$750,000
- iii. Spacecraft Longevity \$250,000
- iv. Farthest Communication \$250,000
- [†] CU-E³ placed 2nd during the Ground Tournament phase, earning \$80,000, and has been offered a position on the SLS's EM-1 mission!!!

Challenges Faced by CU-E³

- Size restricted to 6U dimensions.
 - Limits power generation and heat dissipation.
 - Limits transmitter power.
 - Limits use of classic high-gain antennas. \rightarrow Limits possible radiated signal strength (EIRP)!
- Limited time & money!
 - GTs' schedule very short & tight.
 - Rad-hardened parts too expensive.
 - \rightarrow Could not design everything from scratch.
 - \rightarrow Use COTS components as much as possible.
 - \rightarrow Prototype circuits quickly for P.O.C & testing.
- Distance *extremely* long range. \rightarrow EVERY dB COUNTS!!!

SSC17-P1-07

John S. Sobtzak, Elie G.Tianang, Varun Joshi, Breana M. Branham, Neeti P. Sonth, Michael DeLuca, Travis Moyer, Kyle Wislinsky, and Dr. Scott E. Palo **College of Engineering & Applied Science, University of Colorado at Boulder**

[‡]Palo, S.E., "High Rate Communications for CubeSats", Proc. of the IEEE International Microwave Symposium, Phoenix, AZ, 2015. [‡]Palo, S.E., D. O'Connor, E. DeVito, R. Kohnert, G. Crum and S. Altunc, "Expanding CubeSat Capabilities with a Low Cost Transceiver", Proc. of the AIAA Small Satellite Conference, Logan, UT, 2014.

Key Notes

Reflectarray & Horn Antennas

• CU-E³ utilizes a novel, student-designed, *reflectarray* antenna and *feed horn*.

- Planar design \rightarrow fits 6U cubesat form factor.
- Utilizes standard PCB microstrip technology.
- \rightarrow easy and relatively inexpensive to fabricate.
- High gain \rightarrow 22.3 dB at X-band Tx frequency.

• CU-E³'s design includes a second *feed horn* antenna.

- Provides back-up communication link in the event
- primary reflectarray antenna does not deploy.
- Lower gain \rightarrow 12.8 dB, but can still close link.

High-Rate CubeSat Communication System (HRCCS)[‡]

• CU-E³ will provide the maiden launch for the HRCCS.

- Designed for deep space X-band frequencies.
- Provides a flexible communications platform.
- Compatible with NASA's NEN & DSN.

Downink Dudget Analysis Summary							
TX ANTENNA		Reflect	Feed	Reflect	Feed	Reflect	Feed
	-	Array	Horn	Array	Horn	Array	Horn
SLANT RANGE	km	4,000,000		6,000,000		27,000,000	
TRANSMITTED EIRP	dBm	56.6	47.1	56.6	47.1	56.6	47.1
TOTAL SIGNAL POWER @ OUTPUT OF LNB (S)	dBm	-82.4	-91.9	-85.9	-95.4	-99.0	-108.5
NOISE POWER DENSITY OF RX @ OUTPUT OF LNB (No)	dBm/Hz	-123.0	-123.0	-123.0	-123.0	-123.0	-123.0
NOISE POWER OF RX (N)	dBm	-94.3	-103.8	-97.9	-107.4	-111.0	-112.2
USEFUL BIT RATE	bits/s	608	68	270	30	13	1
ENERGY PER BIT (Eb)	W/bit	-110.3	-110.2	-110.3	-110.2	-110.1	-108.5
Received SNR (@ OUTPUT OF LNB)	dB	11.9	11.9	11.9	12.0	12.0	3.7
Resulting Eb/No	dB	12.7	12.7	12.7	12.8	12.8	14.5
Link Margin	dB	6.10	6.12	6.11	6.15	6.22	7.86

Downlink Budget Analysis Summary