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Mission Context

» CubeSat missions have grown exponentially, becoming the
most popular form of small satellite

Satellite Mission Growth 1994-2013

Marafati
Fioiat, e

Gustafson, Charles L., and Siegfried W. Janson. "Think Big, Fly Small." The
Aerospace Corporation. Crosslink Magazine, 1 Sept. 2014. Web. 07 Feb.
2017.

* In spite of this rapid growth, development of propulsion
systems for small satellites has lagged behind
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One Possibility: Multi-Mode Thruster
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» Multi-Mode SmallSat Propulsion Mission: a technology
demonstration of a single propulsion thruster operable in...

-catalytic chemical mode
-electrospray electric mode
...using the same propellant!
 Can be integrated into a CubeSat form factor
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APEX CONOPS

\ (The Advanced Propulsion Experiment)

: i 4. Cruise to ilesire_d
1. Launch/Separation . ) Orbital Position

2. Initialization

5. Electrical Burn 6. Chemical Burn 7. End of Life
Centered Around Argument of Centered Around Argument of (Propellant Depleted)
Latitude of 90 degrees Latitude of 90 degrees

ST




Payload Description

» Utilizes Non-toxic, Green lonic Liquid
Propellant

- Can extract ions

- Energetic and capable of exothermically
decomposing

Preliminary testing of chemical mode with a
single emitter in vacuum chamber

* Chemical Mode

- Propellant fed to thruster at high flow rate
- Combination of applied heat and

catalytic microtube ignite propellant

* Electric Mode

| - Propellant fed to thruster at low flow rate

- Voltage potential applied between emitter and
extractor to release ions from propellant
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Payload Description
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Challenges

Mass and VVolume Constraints: 6U

Power Constraints: Electric mode requires 3400 V in a compact
circuit

Communication: Pointing constraints

Propulsion hardware

Accuracy of GNC hardware

Capabilities of thruster itself

e Thruster VValidation

-Thruster data downlinked for comparison with ground testing
-Thrust measured using orbit/attitude changes
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Validation Through Propulsion
Engineering Data

* Pressure
- Feed system pressure will be measured by pressure transducers in the
feed system
- Provides values just before the propellant storage system and thruster
- Expected value: 200 psi

* Temperature
- Thermal sensor on the propellant storage system will provide a
reference temperature to compare with readings from thermocouples in
the thruster itself
- Expected combustion temperature: 1900 K (1627 degrees Celsius)

* Voltage
- Thruster extractor voltage will be measured by voltage dividers on
the digital circuit board at a rate of 1 Hz during electric mode burns
- Expected value: 3.4 kV
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Validating Thruster Performance with
Measured Orbit Changes

 Direct thrust measurement with IMU
» Measuring attitude change
» Measuring orbit change

- Altitude changing maneuver

- Inclination changing maneuver

- RAAN changing maneuver

Restrictions: Limited quantity propellant (75 cm”3)
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Inertial Measurement Unit Acceleration

* IMU accuracy of 5 mG (0.049 m/s"2)
- Largest thrust detectable: 0.43 N (for a satellite mass of 8.6 kg)
« Chemical Mode

- ~1 newton thrust

- Acceleration can be measured

e Electric Mode
- ~0.00025 newton thrust

- Acceleration undetectable

Missourl UNIVERSITY OF SCIENCE AND TECHNOLOGY



Attitude Change Results

Minimum IMU detectability: 0.21 deg/s with factor of safety = 2

Positioning Thruster to Generate Maximum Torque:
Chemical:

e Burn Time = 1.14 sec or longer
 Change = 0.21 deg/sec

Electric:
 Burn Time = 1.06 hours or longer D —
« Change = 0.21 deg/sec | |

& &
2 2 2 &
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Orbit Changing Maneuver

» Key question: What orbital element gives best “bang-for-the-
buck” measurability?

a(km)‘e‘ i ‘Q‘w ‘r(km)
45° | 90° | 6753.14

Initial Conditions:

6753.14 | 0 | 45°
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Altitude, Inclination, & RAAN Change

* Inclination: centered about ascending/descending nodes
 RAAN: centered about argument of latitude 6 = + 90°

Previous
Perigee

Periapsis Altitude
Change Diagram

Inclination Change RAAN Change
Diagram Diagram
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Element Sensitivity Analysis

Maneuver Type | Mode | Burn Length (sec) | Change
Periapsis Chemical 5 2.014 km
Altitude Electric 1000 0.106 km

o . Chemical 5 0.00434°
S Inclination . .
i Electric 1000 0.00021
RAAN Chem.ical 5 0.00613°
Electric 1000 0.00030°

* RAAN is the clear “winner”

* Now how do we measure the RAAN change and use that to
quantify thruster performance?

MissoURrl UNIVERSITY OF SCIENCE AND TECHNOLOGY



Quantifying Thruster Performance

o Orbit determination algorithms used to determine orbital
elements (RAAN change) using GPS data/measurements

o Attitude determination and control used to maintain thrust
normal to orbit plane

» By integrating the Gauss Variational Equations (with
constant thrust/mass) the thrust can be determined
analytically

Missourl UNIVERSITY OF SCIENCE AND TECHNOLOGY



Gauss Variational Equations
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Thruster Performance Cont.

Considering the accuracy of GPS data we are confident in
being able to determine the thrust within 10%

of the true value

Monte Carlo, 10000 Runs, Burn Time 5 sec
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Chemical Mode (1 N thrust)
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Electric Mode (0.25 mN thrust)

Q) noise: 0 = 12.72 y-degrees
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Final Remarks

» Thruster qualitatively validated with downlinked
engineering data

» Thruster quantitatively validated using change in RAAN

» Considering also corroborating with change in inclination
and IMU/accelerometer

» Considering expanding our paper, after receiving reviewer
feedback, to apply to more general CubeSat missions
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Questions?
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45.00008
. D 45.00006
Solving for Thrust :
= 45.00004
é 45.00002
Q= n sin(0) 45 ' '
h sin(i) v S00 1000
Time (sec)

Assuming circular orbit (r = const and § = n = (*/,5) /2

t
_Tfy .
f dQ = fh sm(e) dt = sin(i)!sm(e) dt

Where i = const so sin(i) = const resulting in

Tf h
AQ = - sm(z) - [cos(e ) — cos(ef)]
Rearranging
F AQhsin(i) n

In = m- r[cos(6;) — cos(8y)]
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Propellant Feed System

1. Pressurize to 375
psi prior to launch

Check. val've —El—p ﬂ —El—i Check Valve
and t-juction
to fill -
" — |—— Solenoid Valve
pressurant Pressure 2. Convert Pressure
tanks pre- Regulator from 375 to 200 psi — Pressurant Flow Path
launch T — Propellant Flow Path
Pressure Relief — Thermal Sensor
Valve

-
In-line check _El’ .

valve

¢

3. Record Pressure 5. Inhibits (solenocid valves)
entering propellant tank released
Pressure
Pressure
Transducer
Transducer
- ?
propellant Jli— | T} —|ﬂ|—|£|—|ﬂl—|"|— — —
Storage

Check valve and t-junction to
fill propellant tank pre-
launch

4, Propellant released 6. Propellant reaches
thruster for chemical or

electric burns
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Propellant Composition

» Monopropellant Mixture: 41% Fuel 59% Oxidizer

* Fuel: 1-ethyl-3-methylimidazolium ethyl-sulfate
([EmIm][EtSO,])

 Oxidizer: Hydroxylammonium Nitrate (HAN)

CHs *
B R/ CHs \
N 00 H—N—OH [NO;T
§ © /
CHs; H
[Emim][EtSO,] HAN
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Electrospray Mode Set Up
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Plumbing and Instrumentation Diagram of the
Electrospray Apparatus
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