

CHOMPTT (CubeSat Handling of Multisystem Precision Timing Transfer): From Concept to Launch Pad

SmallSat 2017 : August, 6th 2017

Presenter: Seth Nydam²

Watson Attai¹, Nathan Barnwell², Maria Carrasquilla², Jonathan Chavez², Olivia Formoso¹, John Hanson¹, Belgacem Jaroux¹, Asia Nelson², Anh N. Nguyen¹, Tyler Noel², Seth Nydam², Ken Oyadomari¹, Jessie Pease², Frank Pistella², Cedric Priscal¹, Tyler Ritz², Steven Roberts², Paul Serra², Jan Stupl¹, Evan Waxman², Jasper Wolfe¹, and John W. Conklin²

1. NASA Ames Research Center 2. University of Florida

- Mission Overview
- Payload Design History
- Flight Payload Overview
- Spacecraft Overview
- SLR (Satellite Laser Ranging) Facility Overview
- Current Status

Background and Motivation

- Initial proposal for CHOMPTT in Fall 2012 for UNP8
- Application of precision time transfer to space:
 - Satellite navigation system
 - Beyond LEO
 - Global time standards
 - Test of general relativity
 - Satellite encryption/authentication
 - Communications and Networking
- Optical time transfer
 - More resilient to ionospheric effects than RF ($\propto 1/f^2$)
 - CNES T2L2 (2008), hosted payload on Jason-2

T2L2 mission [P. Guillemot et al 2006]

Mission Overview

Single Time-Transfer <200 ps time transfer error, < 20 ns clock drift after 1 orbit

OPTI 1.0

(Optical Precision Timing Instrument)

- Design based on AFRL UNP Mission Requirements
- Key Technologies: Precision timing electronics, a Chip Scale Atomic Clock (CSAC), Avalanche Photodetector
- Successful laboratory testing of breadboard

- EDU unit for the UNP8 unit configuration
- Much higher power ~8W average because of Miniature atomic clock
- 1.5 U form factor with reconfigurable clocks
- Power regulation and distribution
- High Altitude Balloon Test
 - ~100,000 ft. for 6+ hours
 - Obtained system health data
 - Successful power cycle test
- UF planned to design entire CubeSat

OPTI 2.0

OPTI 3.0

PSSL

NASA Ames/Advanced Exploration Systems began CHOMPTT support

- NASA Ames bus: EDSN Derived Bus (Summer 2015)
- New low-power mission requirements from bus (<2 W average)
- Decrease size to 1U
- Key technologies: precision timing electronics, two CSACs, APD, single 1 in. retroreflector design

EDU Unit for current flight version

OPTI 3.1 (FlightPayload)

- New/defined SLR requirements
- Include beacon laser diodes
- Include additional debug ports and test points

Flight Channel Board

- Responsible for Precision Timing
- Key Components:
 - TDC-GPX
 - Integrated solution
 - Measurement based on propagation delay
 - Autonomous temperature compensation using DLL
 - 10 ps single shot accuracy
 - MSP430
 - Microcontroller, Provides course clock counts
 - CSAC (Chip Scale Atomic Clock)
 - Low size, power, and weight so minimal budget impact
 - Allan Deviation: 3.26 x 10⁻¹² after one orbit
 - Avalanche Photodetector
 - InGaAs APD with wavelength detection 900-1630 nm
 - High gain, small package with TEC included

▶ PSSL

Bottom View

Channel Board Results

OPTI

EDU

Measured timing error: 150 ps (4.5 cm) @ 1 sec 3.5 ns (1 m) @ 1000 sec

- Less optical received than on orbit
- Timestamped all ~15000 pulses with no artifacts

Flight Supervisor Board

- Data management and storage between the two channel boards
- Current driver for laser diodes
- Key Components
 - Custom current driver on board (4X)
 - N25Q00AA 1 Gb NOR Flash Memory
 - MSP430

Flight Optical Assembly

- Hollow Retroreflector Array (HRA): Six (6) Ø 0.40 [10mm] Clear Aperture
 - Individual Retroreflector Accuracy: 15 arc seconds.

- Laser Diodes
 - 4X 808 nm
 - 4X 500 mW optical power

Spacecraft

OPSSL

SLR Facility (TISTEF/UCF)

CHOMPTT: From Concept to Launch

• ElaNa XIX Launch

Rocket Labs LV

Status

- Electron, Mahia NZ
- Low Earth Orbit:
 - 500 km x 85 deg
- Delivery: Q4 2017
- Launch: Q1 2018
- Finished conformal coating and functional testing of flight boards
- Working towards final integration and verification tests
- Shake and Bake this month
- Final testing in FL with SLR and ground station in Sept.

PSSL

PSSL Postdoc, Scientist positions

- Positions available in the following areas:
 - Digital & analog electronics/avionics for space
 - Optics, photonics, lasers and detectors
 - Control & estimation techniques applied to complex systems

Inertial sensors, drag-free systems

Contact: jwconklin@ufl.edu

Precision timing, Opto-electronics

Geodesy & Gravitational waves NODeS-derived TASC 111 Solar Panels (x4) Navigation & 3U Solar Panel **GOMSpace P110 Nounting Plane** 1U Solar Panels (x8 **Optical Comms** umpkin 3U Solid Chassis v Custom Cutou ithium UH Monopole Antenna enSat UHF Monopole Antenna TSA Pumpkin Large Aperture Plate Gravitational Wave Observatory

Vibrational Testing

- Vibration testing to GEVS specs on all three axis
- All four beacons were functional to spec after the vibrational test

