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ABSTRACT 

Fault Seal Analysis for CO2 Storage: Fault Zone Architecture, Fault Permeability, and 

Fluid Migration Pathways in Exposed Analogs in Southeastern Utah 

 
by 
 
 

David J. Richey, Master of Science 

Utah State University, 2013 

 

Major Professor: Dr. James P. Evans 
Department: Geology 

  

 Geologic storage of anthropogenic carbon dioxide (CO2) by injection into 

underground porous sandstone reservoirs has been proposed as a method for the 

reduction of anthropogenic greenhouse gas emissions. Upwards migration and leakage of 

injected fluids along natural fault and fracture networks is a key risk factor for potential 

injection locations. We examine exposed natural analogs to evaluate the impacts of 

faulting and fracturing on reservoir and top-seal pairs and to evaluate evidence for paleo-

migration of fluids along the fault zone.  

 We examine the Iron Wash fault, a 25-km long normal fault which cuts Jurassic 

sedimentary rocks and has throws that range from 20-120 m, to examine how a fault may 

affect seal integrity. Field mapping, kinematic analysis, petrographic analysis, 

characterization of the fault zone facies and fault architecture, analysis of altered and 

mineralized rocks in and around the fault zone, and modeling of fault seal capacity was 
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conducted to provide an understanding of the Iron Wash fault zone. Field data and 

observations were combined with well log and borehole data to produce three types of 

models for the Iron Wash fault: 1) geometric model of the fault in the subsurface, 2)  

predictive models of fault zone behavior and fault seal analysis, and 3) predictive 

geomechanical models of the response of the fault zone to an imposed stress field and 

increasing the effective stress on the fault.   

 We conclude that the Iron Wash fault zone has low sealing capacity and will 

likely not behave as a seal for fluids against the fault zone due primarily to modest throw 

on the fault and high frequency of fractures associated with the fault zone. Analysis of 

fluid alteration and mineralization around the fault zone indicates that the fault zone was 

conduit for paleo-fluids. We conclude that the fault is not likely to develop a sealing 

membrane and therefore will most likely fail as a seal to fluids moving through the 

reservoirs modeled here. Modeling results indicate that a reduction in the effective 

normal stress on fault surfaces may induce failure of faults resulting in earthquakes or 

increased hydraulic conductivity of fractures. 
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PUBLIC ABSTRACT 

Fault Seal Analysis for CO2 Storage: Fault Zone Architecture, Fault Permeability, and 

Fluid Migration Pathways in Exposed Analogs in Southeastern Utah 

 
by 
 
 

David J. Richey, Master of Science 

Utah State University, 2013 

 

Major Professor: Dr. James P. Evans 
Department: Geology 

  

 Anthropogenic carbon dioxide (CO2) primarily resulting from the combustion of 

fossil fuels can be captured and stored by injection into underground porous sandstone 

reservoirs. This process has been proposed as a method for reducing greenhouse gas 

emissions that contribute to global warming. Two of the major risks associated with this 

technology include: 1) upwards migration and leakage of injected fluids along natural 

fault and fracture networks, and 2) possible induced seismicity (earthquakes) resulting 

from increasing the pressure in reservoirs and along existing faults.  

 We use geologic field mapping, petrographic analysis, characterization of the 

fault zone, analysis of altered and mineralized rocks in and around the fault zone, and 

computer-based modeling to better understand of the Iron Wash fault zone. We use 

studies of exposed natural analogs of subsurface geology to evaluate the impacts of 

faulting and fracturing on reservoir and top-seals. We examine the Iron Wash fault, a 25-
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km long normal fault which cuts Jurassic sedimentary rocks and has throws that range 

from 20-120 m, to examine how a fault may affect seal integrity. We incorporate field 

data and observations with subsurface data derived from oil and gas exploration 

boreholes to produce three types of models for the Iron Wash fault: 1) geometric model 

of the fault in the subsurface, 2)  predictive models of fault zone behavior and fault seal 

analysis, and 3) predictive models of the response of the fault zone to an imposed stress 

field and increasing reservoir pressures.   

 We conclude that the Iron Wash fault zone has low sealing capacity and would 

likely fail to behave as a lateral barrier to fluid flow. Analysis of fluid alteration and 

mineralization around the fault zone indicates that the fault zone was conduit for paleo-

fluids. Modeling results indicate that increases in reservoir pressure against the Iron 

Wash fault in the current stress field could potentially result in the failure of the fault 

resulting in earthquakes or increased hydraulic conductivity of fractures. It is impossible 

to predict the magnitude of potentially induced earthquakes or how much fluid may leak 

along faults that have failed, but this study provides insight into the potential risks 

associated with injection of large volumes of fluid into the subsurface.  
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INTRODUCTION 

 This thesis assesses a fault zone as a potential fluid pathway for carbon dioxide 

(CO2) stored in a saline formation underground. This approach is motivated by the fact 

that anthropogenic CO2 resulting from the combustion of fossil fuels is a significant 

contributor to increasing levels of greenhouse gases in the atmosphere (Figure 1; 

Intergovernmental Panel on Climate Change, 1990, 1992, 2001, 2005; Carbon Mitigation 

Initiative, 2013). Globally, annual CO2 emissions were estimated to be 24 gigatonnes 

(Gt) in the year 2000 and increased to an estimated 31.6 Gt in 2011 (Figure 1; 

Intergovernmental Panel on Climate Change, 2005; National Energy Technology 

Laboratory, 2012; International Energy Agency, 2012; Carbon Mitigation Initiative, 

2013). Of the total global emissions in 2011, approximately 60% of emitted CO2 was 

derived from stationary sources such as power plants and industrial operations, with coal 

accounting for about 45%, oil for 35% and natural gas for 20% of the total emissions 

(Intergovernmental Panel on Climate Change, 2005; National Energy Technology 

Laboratory, 2012; International Energy Agency, 2012). Various technologies for carbon 

management and mitigation are currently under development (Figures 1 and 2) including 

the geologic storage of CO2, or, carbon capture and storage (CCS) (Intergovernmental 

Panel on Climate Change, 2005; Carbon Mitigation Initiative 2013). The process of CCS 

involves sequestration large volumes of CO2 into deep, underground geologic formations, 

or used in the process of secondary recovery of oil and/or gas (Figure 2; Halloway, 2001; 

Intergovernmental Panel on Climate Change, 2005; Carbon Mitigation Initiative 2013). 

Studies have shown that CCS is a viable option for the management of greenhouse gas 
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emissions and that the technology could play a significant role in emissions mitigation in 

the U.S. and elsewhere (Intergovernmental Panel on Climate Change, 2005). 

 

 
Figure 1. Overview of proposed CO2 stabilization wedges. Plot of historical and 
projected future carbon emissions with proposed CO2 stabilization strategies divided into 
eight wedges and an example target emissions based on 2012 emissions level (modified 
from Carbon Mitigation Initiative, 2013). 
 
 

 Geologic storage of CO2 is accomplished by injecting CO2 at depth into depleted 

oil and gas reservoirs or stacked geologic formations identified as saline aquifers that 

posses the ability to keep CO2 from returning to the surface (Figure 2). As of 2005, there 

were three active CCS programs in the world operation at an industrial scale (injection of 

>1MtCO2yr-1): the Sleipner project in the North Sea, the Weyburn project in Canada and 

the In Salah project in Algeria (Intergovernmental Panel on Climate Change, 2005). In 
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the United States, potential sites for sequestration have been identified on the Colorado 

Plateau (Allis et al., 2001) and other locations throughout the country.  Currently, a major 

concern for the viability of potential storage sites is the ability of underground reservoirs 

to adequately store injected CO2 for reasonable amounts of time (National Energy 

Technology Laboratory, 2012), as well as having clear policy guidelines to define 

reasonable volumes that must remain sequestered on different time scales 

(Intergovernmental Panel on Climate Change, 2005).   

 

 
Figure 2. Schematic overview of geological storage types used in geologic sequestration 
of CO2 (modified from Intergovernmental Panel on Climate Change, 2005). 
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 Technological shortcomings for CCS have been identified by the 

Intergovernmental Panel on Climate Change and others (Zoback and Gorelick, 2012) and 

are one reason that the proliferation of this potential carbon mitigation technique has not 

occurred at large-scales world-wide. One of these technological shortcomings is the 

uncertainty associated with potential escape mechanisms from storage sites (Figure 3). 

Leakage of CO2 through natural pathways within geologic seals such as fault and fracture 

networks represents a major concern when assessing the leakage risk of a potential 

storage site. This scenario can be studied at naturally occurring CO2 leakage sites with 

numerous examples available in southern and central Utah (Evans et al., 2004). 

Furthermore, faults and their associated damage zones represent additional uncertainty 

when assessing these natural leakage pathways. 

 

 
Figure 3. Schematic overview of potential escape mechanisms of geologically 
sequestered CO2 out of injection reservoirs (modified from Intergovernmental Panel on 
Climate Change, 2005). 
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 The Southwest Regional Partnership on Carbon Sequestration has identified a 

preliminary test injection site at the Gordon Creek field in Carbon County, Utah (Figure 

4; McPherson and Grigg, 2010). This site will serve as a test location for a possible future 

large scale injection of CO2 that could be sourced from the local Hunter and Huntington 

coal-fired power plants (Figure 4; Allis et al., 2003; McPherson and Grigg, 2010). The 

primary reservoir for injection at this site is the Navajo Sandstone with the overlying 

Carmel Formation acting as a first-order seal to prevent upward migration of the injected 

CO2 (Allis et al., 2003).  

 Previous work has been done in the central San Rafael Swell specifically 

examining the structure as an analog for CO2 storage sites (Barton, 2011). Structure 

contour maps developed by Barton (2011) for key intervals within the Mesozoic rock in 

the San Rafael Swell show the geometry of the  top of the Carmel Formation and are 

projected over the eroded core of the San Rafael Swell to show what the restored 

geometry of the monocline may have been. Structures consistent with leakage of fluids 

from reservoirs through overlying seals in migration pathways such as faults and 

fractures have been identified within faults in the region (Shipton et al., 2004; Barton, 

2011; Petrie and Evans, in review). Previous workers have used fault linkage potential 

maps and stratigraphic restoration maps to quantify fault interaction and leakage potential 

(Barton, 2011).  
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Figure 4. Location map and annual CO2 emitted from point sources in the Four Corners 
region. Names of largest power plants in the region are provided for reference (modified 
from Allis et al., 2003). 
 
 

Motivation 

 The sealing nature of faults with respect to upwards or lateral migration of fluids 

in the subsurface is a source of uncertainty when proposing injection projects for 

geologic storage of CO2 and is still much debated (Evans et al., 2004; Intergovernmental 
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Panel on Climate Change, 2005; Dockrill and Shipton, 2010; Zoback and Gorelick, 

2012). For example, disposal of wastewater , CO2 or other fluids by injection into 

underground reservoirs may contribute to or result in the triggering of earthquakes 

(Wessen and Nicholson, 1987; Nicholson et al., 1988; Horton, 2012; Zoback and 

Gorelick, 2012; Rubenstein et al., 2013; Virgas et al., 2013; Karenen et al., 2013). The 

sealing and/or leaking nature of faults in the subsurface as well as their internal 

architecture, hydrologic characteristics, associated structures and damage zones is also of 

interest to the petroleum industry in a variety of applications in the exploration and 

exploitation of hydrocarbons (Hesthammer and Fossen, 2000; Fisher et al., 2001; 

Ligtenberg, 2005). 

 Fault and fluid interactions are extremely complex and often difficult to predict.  

Faults commonly exhibit very different structures and flow properties along strike, acting 

as conduits for fluids in some locations and baffles or barriers to fluids in other locations 

(Berg and Skar, 2005; Fisher et al. 2001; Braathen et al., 2009).  Fluid overpressures at 

depth, or as a result of the injection of CO2 into underground reservoirs presents an 

additional complexity that still needs more study (Gudmundsson, 2001; Phillip, 2012). 

Evidence for fluid migration along faults at outcrop analogs is a key factor in an analysis 

of a fault system with respect to sealing characteristics. Detailed characterization of fault 

zones is required prior to making an assessment of the fault in question, and in some 

cases, even a fault that would be suspected to be sealing may still leak (Shipton et al., 

2004).   

 Current guidelines on permissible leakage rates of sequestered CO2 out of 

geologic formations at depth are not clearly defined, but various studies have proposed 
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that the economic threshold for viability is somewhere between 0.1%/year and 1%/year 

(Ha-Duong and Keith, 2003; Intergovernmental Panel on Climate Change, 2005). With 

this benchmark in place, the nature of subsurface fluid flow and potential leakage 

pathways must be well understood prior to any injection occurs. Accordingly, a detailed 

understanding of the nature of faults and the associated damage zones is crucial to 

making an analysis of potential storage sites. Furthermore, much of the understanding of 

subsurface fluid flow is based on knowledge from the petroleum industry, where the 

extraction of fluids and a resulting reservoir pressure drop is the end result. Additional 

data has been gathered where CO2 is only used in enhanced oil recovery operations in 

some petroleum fields. In contrast, injection of supercritical CO2 fluid will increase 

reservoir pressures of fluids with different capillary entry pressure properties and 

densities. This may result in a completely different interaction of fluids, faults, damage 

zones and fracture networks. Having additional data on the geometry of faults and 

associated damage zones will enable a better analysis of these areas potentially acting as 

leaking pathways for injected fluids. 

 Subsurface monitoring and modeling has shown that CO2 injected at depth as a 

supercritical fluid migrates both laterally and vertically controlled by the permeability 

and hydraulic gradient within the reservoir (Chang and Bryant, 2007; Arts et al., 2008; 

Zhou et al., 2009). Injected CO2 acts as a buoyant plume when injected into reservoirs 

containing saline water and preferentially migrates upwards until a top seal such as a low-

permeability rock formation, hydraulic barrier, or a sealing fault is encountered (Chang 

and Bryant, 2007; Arts et al., 2008; Zhou et al., 2009). As CO2 plumes migrate upwards 

and pressure in the reservoir increases, the chance of seal failure increases. The increase 



9 
	  

in reservoir pressure could potentially result in the reactivation of faults within reservoirs 

in CO2 injection locations increasing the risk for CO2 leakage. Understanding internal 

fault structure and associated fracture networks and their hydraulic conductivity will help 

in the planning of the rate of injection and storage capability of specific reservoirs.  

 Significant portions of today's unconventional hydrocarbon production is from 

naturally fractured reservoirs or reservoirs in which fractures are induced and/or fault seal 

analysis plays a role in the risk analysis of prospective petroleum plays (Nelson, 1985; 

Aydin, 2000). This project has implications for reservoir management, reservoir 

performance, fluid entrapment in naturally fractured systems, fluid leakage along high 

permeability pathways, and detection and prediction of fracture zones related to faulted 

systems (Nelson, 1985). Fault-seal analysis is crucial to the petroleum and other 

industries in understanding the nature of migration or entrapment of fluids in the 

subsurface and in the risk analysis for leakage of reservoirs prior to and during drilling 

operations (Nelson, 1985; Moretti, 1998).  

Objectives 

 We examine the nature of faulted seal-reservoir analogs above the Nequoia Arch 

and adjacent to the San Rafael monocline along the Iron Wash fault zone in central Utah 

(Figure 5). The work characterizes the geometry and architecture of the Iron Wash fault 

zone and develop computer-based models of the fault zone that are used to predict the 

characteristics and behavior of the fault at depth.  
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Figure 5. Geologic map of the San Rafael Swell and San Rafael Desert areas with a box 
showing the Iron Wash fault study area (modified from Hintze et al., 2000; Doelling, 
2002). 
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 This study has three overarching goals: 1) we use outcrop data to establish the 

nature of fault zone architecture with importance for fluid migration predictions, 2) 

incorporate field observations and data with subsurface data into a simple model of the 

fault zone to help assess the sealing behavior of faults in the subsurface, and 3) use fault 

kinematic data to determine how strain is distributed along a fault in different structural 

settings along the fault. 

 The specific objectives of this project are to: 

1. Map the surface expression of the Iron Wash fault zone and determine throw profiles 

of all major fault strands.   

2. Characterize the fault damage zone in different structural settings and within different 

rock types.   

3. Conduct strain analysis along the fault on major stands of the fault and within fault 

linkage structures. 

4. Perform petrographic and mineralogical analysis of microstructures, deformation 

features, altered and mineralized faults and fractures related to fluid migration. 

5. Apply surface geophysical detection methods to imaging the fault zone in the shallow 

subsurface and use surface data to help interpret these results. 

6. Combine well and borehole data with field data to construct subsurface models of the 

region surrounding the fault zone and models of the fault zone focusing on fault seal 

characteristics.         

  The Iron Wash fault field area was studied because it contains evidence for 

multiple generations of deformation and the resulting overprinting of younger faulting on 

older folding in reservoir/caprock analogs. Exposures of the fault core and preserved slip-
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vector data allow for kinematic analysis of the distribution of strain along the length of 

the fault and within fault linkage structures. The area contains well-exposed examples of 

fault relay zones at different stages of fault linkage and at different structural levels. Fault 

relays expose areas of the fault where the contact between an analog target injection 

reservoir and the top seal can be seen. This allows for the investigation of the impacts of 

these fault relays on the seal integrity and possible structures related to seal bypass. Many 

examples of mineralized faults and fractures within the fault zone preserve a history of 

fluid migration along the fault with evidence of multiple fluid types and several 

generations of precipitation and mineralization. 

 Hypotheses that are tested in this thesis include:   

1. The Iron Wash fault zone experienced an episode of extensional deformation that was 

structurally influenced by the pre-existing San Rafael monocline near its midpoint. 

We test the hypothesis that the geometry of the fault zone will reflect this structural 

overprinting in its width, orientation and intensity of deformation. 

2. The southeast segment of the fault has formed in the Colorado Plateau stress field and 

therefore has experienced plane-strain with north-northeast-south-southwest 

extension. The western segments have experienced three-dimensional strain resulting 

from the stress transition zone between the Basin and Range stress field and the 

Colorado Plateau stress field (Reches, 1978; Aydin and Reches, 1982; Krantz, 1988). 

We test the hypothesis that the western parts of the fault have undergone three-

dimensional strain due to both Basin and Range-related deformation and Colorado 

Plateau extension.  
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3. In the process of multiple segments of non-linked faults becoming increasingly 

structurally connected, the net length has increased, the Iron Wash fault zone has 

produced several relay zones that are both hard- and soft-linked. We test the 

hypothesis that these two distinct relay styles will have different internal structure, 

fault and fracture distribution and orientation, and strain transfer mechanisms.   

4. Fault zone width is proportional to throw on the fault and will have higher average 

fault throw to fault zone width ratio in structurally complex areas of the fault zone 

such as fault tips, relays zones and structural intersections (e.g. Robertson, 1983; 

Scholz, 1987; Hull, 1988; Walsh and Waterson, 1988; Evans, 1990; Childs et al., 

2009; Faulker et al., 2011). 

5. Relay zones will have increased deformation intensity relative to damage zones 

surrounding discrete fault planes and that damage zone volume in the hanging wall of 

the fault is more extensive than in the footwall (Wilkins et al. 2001, Davatzes et al., 

2003; Berg and Skar, 2005; Savage and Brodsky, 2011; Faulkner et al., 2011; 

Schueller et al., 2013). 

6. Individual segments of the Iron Wash fault produced fault propagation folds that are 

both continuous and/or segmented across fault relays and accommodate a significant 

portion of the throw across the fault.   

7. Fractures surrounding the fault have acted as conduits for several types of fluids 

during multiple phases of fluid flow.  

8. Due to the relatively modest throw on the Iron Wash fault and the nature of the 

sedimentary units being faulted, the fault will fail to behave as a lateral or vertical 

seal to fluid migration.    
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 The Iron Wash fault field area (Figure 6) was selected as a study site due to the 

presence of a fault that formed at depth, has been subsequently exhumed, contains 

carbonate alteration and mineralization along and near the fault and allows for analysis of 

the fault core, damage zone and fault-related structures. The Iron Wash fault is analogous 

to faults found in the subsurface provides insight into the influence of faulting on seal and 

reservoir lithologies and the mechanics of fault linkage and propagation. The fault 

juxtaposes of numerous reservoir/caprock lithologies (Figure 7) and this provides an 

opportunity to characterize the fault-zone geometries and architectures within different 

rock types and structural levels. Well and borehole date from oil and gas exploration 

drilling within the area also provide the ability to constrain the subsurface geometry of 

the rocks cut by the fault in the San Rafael Swell and San Rafael Desert. 

Geologic and Structural Setting 

 The Colorado Plateau consists of Cambrian through Tertiary sedimentary rocks 

that lie unconformably on Proterozoic metamorphic and metasedimentary basement 

(Pipiringos and O'Sullivan, 1978; Sprinkle, 1994; Nuccio and Condon, 1996; Sprinkle et 

al., 2011). Permian through Jurassic sedimentary rocks are exposed in the San Rafael 

Desert and San Rafael Swell (Figures 5 and 7; Doelling, 2002). During the Cambrian 

through Mississippian the region was tectonically stable and primarily carbonate rocks 

were deposited on a cratonic shelf in a shallow-marine environment (Kelly, 1955; Poole 

and Sandberg, 1991; Poole et al., 1992; Sprinkle, 1994). In the Pennsylvanian and 

Permian, collision of the super-continents Laurentia and Gondwana resulted in regional 

uplift and the development of localized basins (Kelly, 1955; Nuccio and Condon, 1996)  
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Figure 6. Annotated aerial photo of the Iron Wash fault with boxes showing locations of 
detailed maps of the Iron Wash fault zone. Areas A through D are referenced throughout 
the text to clarify field localities (modified from Googleearth.com). 
 
 
 
where sediments were deposited into warm, shallow waters within fairly restricted basins. 

These units consist of marine limestone, dolostone, shale, anhydrite, halite, sandstone and 

mudstone (Hintze, 1993; Sprinkle, 1994; Hintze and Kowallis, 2009).  The tectonically 

important Pennsylvanian Paradox Formation was deposited during this time and consists 

of up to 500 m of halite, gypsum, shale and mudstone (Foxford et al., 1996; Nuccio and 

Condon, 1996; Hintze and Kowallis, 2009). Magmatic arc development during the 

Triassic and Jurassic provided increased clastic sediment input to regional basins due to  
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Figure 7. Generalized stratigraphic column for Jurassic and Triassic rocks in San Rafael 
Desert. Reservoir/caprock pairs characterized in this study are noted along with rocks 
exposed in the field area (modified from Chan et al., 2000; Doelling, 2002; Barton, 
2011). 
 
 
 
periodic uplift of source terrain (Dickinson et al. 1988; Dickinson, 2004; Hintze and 

Kowallis, 2009). Sedimentation during this time was characterized by dominantly 

continental environments with periodic marine incursion (Stewart et al., 1972; Sprinkle, 
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1994; Hintze and Kowallis, 2009). Triassic sedimentary environments include fluvial, 

lacustrine, sabkha, and eolian, as reflected in sandstones, mudstones and limestones of 

the Moenkopi and Chinle Formations (Hintze, 1993; Hintze and Kowallis, 2009). Early 

Jurassic sedimentary rocks are dominated by eolian erg deposits when widespread sand 

sheets covered much of the western United States and is represented by the enigmatic 

cross-stratified eolian sandstones of the Glen Canyon Group and the lower San Rafael 

Group (Sprinkle, 1994; Verlander, 1995; Kocurek, 2003; Sprinkle et al., 2011). In the 

middle Jurassic, a marine incursion began to inundate the eolian system and deposit the 

fossil-bearing marine limestones, mudstones and shales of the Carmel Formation 

(Kocurek and Dott, 1983; Hintze, 1993; Sprinkle et al., 2011). Sprinkel et al. (2011) 

subdivide the Carmel Formation into four distinct members: the Windsor Member, the 

Paria Member, the Crystal Creek Member, and the Co-op Creek Limestone Member. For 

simplification in this study, we have decided to maintain a simple nomenclature of lower 

Carmel and upper Carmel Formations. This shallow seaway eventually retreated, 

allowing deposition of the sandstones and mudstones of the Entrada Formation in a 

system of widespread mudflats, fluvial and eolian deposition (Hintze, 1993; Sprinkle et 

al., 2011). An additional marine incursion is recorded in the marine limestones, shales 

and mudstones of the Curtis Formation (Hintze, 1993; Nuccio and Condon, 1996; Currie, 

1997). Middle Jurassic rocks are the primary units exposed at the surface within the field 

area. Older rocks are investigated primarily using well data to constrain the subsurface 

geometry and petrophysical properties of these formations.    

 The sedimentary package that comprises the Colorado Plateau (Figure 7) was 

deformed during the late Mesozoic and into the Cenozoic producing many of the 
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enigmatic features of central Utah (Figure 8; Dickinson et al., 1988; Bump and Davis, 

2003; Dickinson, 2004). The San Rafael Swell is a broad, north-northeast trending, 

doubly-plunging, highly asymmetrical anticline (Dickinson et al., 1988; Bird, 2002; 

Bump and Davis, 2003) commonly referred to here as a the San Rafael monocline due to 

its asymmetry. This structure related to Late-Cretaceous to Early Tertiary deformation of 

the Laramide Orogeny as characterized by regional thrusting (reverse faulting) involving 

deep crystalline basement (Dickinson et al., 1988; Jones et al., 1998; Bird, 2002; Bump 

and Davis, 2003; DeCelles, 2004; Saleeby, 2003; Jones et al., 2011) with the maximum 

compressive stress in a northeast-southwest orientation (Bird, 1998; Jones et al., 2011). 

Laramide deformation resulted from the subduction of the Farallon slab under continental 

North America and shallowing of the subducting slab angle resulted in deformation 

within the continental interior (e.g. Saleeby, 2003; Jones et al., 2011). Some disagreement 

about the exact mechanisms by which slab-continent interactions resulted in regional 

orogenesis still remains (Bird, 1984; Jones et al., 2011). Laramide basement faulting 

produced the broad anticlines and monoclines observed along the western margin of the 

Cordillera, including many of the anticlines and monoclines of central and southern Utah 

(Huntoon and Sears, 1975; Dickinson et al., 1988; Hintze, 1993; Bird, 1998; Bump and 

Davis, 2003; Jones et al., 2011). The Colorado Plateau province was uplifted as a 

relatively rigid and intact region that experienced far less internal deformation than 

surrounding provinces (Bird, 1998; Sonder and Jones, 1999; Jones et al., 2011). Timing 

of the onset of extension in the eastern Basin &Range province on the Sevier Desert 

Detachment fault has been estimated to be ~19 Ma based on thermochronologic data 

(Stockli et al., 2001). Extensive work has been conducted on the Moab Fault, located in  
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Figure 8. Burial history, thermal model and key geologic events of the area near Green 
River, Utah (modified from Nunccio and Condon, 2000; Bird, 2002; Davatzes, 2003 and 
references therein). 
 
 
 
east central Utah, where a long and complex history of activity has been described 

starting as early as the Triassic due to salt tectonism with reactivation during the Tertiary 

(Solumn et al., 2005). The interpreted regional timing of regional tectonic events have 

been examined by previous workers (e.g. Dickinson et al., 1988; Hintze, 1993; Nuccio 
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and Condon, 1996; Peaver et al., 1997; Chan et al., 2001; Stockli et al., 2001; Davatzes, 

2003; Solumn et al., 2005) and are summarized in Figure 8.   

 Uplift of the San Rafael Swell most likely involved the slip along one or more 

major reverse faults within the Precambrian basement (Maerten et al., 2001). The 

Consortium for Continental Reflection Profiling conducted a regional two-dimensional 

seismic survey that transected the core of the San Rafael Swell, however, it was 

inconclusive as to the existence of the reverse fault (Allmendinger et al., 1987), and other 

hypotheses regarding the mechanisms of formation of the fold have been proposed such 

as warming of heterogeneous lithosphere (Roy et al., 2009). Halokinesis, resulting from 

the movement of the thick salt deposits within the Paradox Basin, occurred regionally 

during the Permian through the Early Jurassic and again during the Late Cretaceous 

through the Tertiary (Doelling, 1988; Hintze, 1993; Foxford et al. 1996). Salt diapirism 

and dissolution is associated with the development of large salt anticlines and salt-cored 

faults in the region resulting from the collapse of overlying strata (Doelling, 1988). Salt 

movement has been shown to be active in the region by the presence of deformed 

Quaternary deposits (Oviatt, 1988). Paradox salt deposits thin dramatically or are 

completely gone adjacent to the San Rafael Swell (Nuccio and Condon, 1996) and 

minimal salt is believed to underlay the Iron Wash fault study area due to the proximity 

to the edge of deposition of salt in the Paradox Basin (Friedman et al., 1994).    

 Multiple generations of fluid movement and mineral precipitation have been 

documented within the Colorado Plateau region for a variety of different fluids and 

oxidation-reduction conditions (Figure 8; Foxford et al., 1996; Nuccio and Condon, 1996; 

Huntoon et al., 1999; Chan et al., 2000). The geochemical conditions during alteration are 
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generally categorized as an oxidizing environment, resulting in the precipitation of 

oxides, or a reducing environment, resulting in removal of oxides from the system 

(Foxford et al., 1996). Hematite, a ferric (Fe3+) iron oxide, is the most common oxide that 

is observed in the Iron Wash field area and is interpreted to be the result of oxidizing 

conditions (Foxford et al., 1996; Chan et al., 2000). Bleaching resulting from removal 

hematite and manganese oxides from localized areas or regionally is interpreted to be the 

result of reducing conditions (Foxford et al., 1996; Chan et al., 2000).  

 Localized bleaching, primarily in the form of bleached fractures and bleached 

faults, is observed in the field commonly as elongate halos of lightly colored rock relative 

to the surrounding host rock that are off-white to yellow. Bleaching is most apparent in 

the red to brown rocks of the Earthy Member of the Entrada Formation and the Carmel 

Formation. Regional bleaching (bleaching of the entire formation) is seen in the Navajo 

Formation and the Slickrock Member of the Entrada Formation (Foxford et al., 1996; 

Chan et al., 2000). Hematite is found in the Iron Wash field area as hematite coated 

grains, hematite concretions, hematite stained fractures, and as hematite staining calcite 

within faults. The interpreted regional timing of oil migration, fluid migration, bleaching, 

iron oxide and calcite precipitation have been examined by previous workers (e.g. 

Foxford et al., 1996; Nuccio and Condon, 1996; Peaver et al., 1997; Huntoon et al., 1999; 

Chan et al., 2000; Davatzes, 2003) and their relative timing is summarized in Figure 8.  

Iron Wash Fault 

 The Iron Wash fault zone, the focus of this study, is a Late Cenozoic northwest-

striking normal fault that extends approximately 25 km along the eastern edge of the San 
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Rafael Swell in central Utah (Aydin and Reches, 1982; Doelling, 1988, 2002; Friedman 

et al., 1994). It is approximately perpendicular to the primary structural trend of the larger 

San Rafael monocline (Figure 5). Overall, the fault strikes about 315°, dips steeply 

between 67-84° northeast and accommodates normal slip with a small amount of left-

lateral oblique motion. Maximum throw on the fault is about 120  m. The fault is broadly 

divided into three area in this study: 1) the San Rafael Desert area to the southeast of the 

San Rafael monocline, 2) the area along the steep limb of the San Rafael monocline, and 

3) the interior area west of the monocline (Figure 5). Mapping and field work focuses on 

the study area defined by the area within the steeply dipping beds of the monocline and in 

the San Rafael Desert (Figure 5). Mapped areas are shown in Figure 6 and will serve as 

reference throughout this thesis as to localities of specific field sites or sections of the 

fault zone and will be referred to as Areas A through D. The four areas of the fault zone 

(Figure 6) have different structural geometries and perhaps different structural histories 

associated with the development and linkage of multiple fault segments. This structural 

history may be represented by the kinematic indicators and geometries of the fault. The 

segments are investigated separately to understand the mechanics of structural linkage 

and propagation of the fault zone and characterize how both the intersection of structures 

and mechanical stratigraphy influence fault development. 

 The fault is well exposed in the San Rafael Desert east of the San Rafael Swell, 

where the fault offset shows that the northeast side is down and the surrounding units lay 

sub-horizontal (Figure 6; Aydin and Reches, 1982; Doelling, 2002). The fault strikes 

about 300° in the far eastern segments (Figure 6, Areas C and D), changing strike towards 
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the San Rafael Swell where they are more north-south oriented and nearly parallel to the 

axis of the monocline. The far western segments (west of the monocline) of the fault are 

more impacted by preferential erosion and weathering, with poorer exposures of the fault 

core and damage zone. Here, the fault strikes about 325° and has an opposite sense of 

slip, showing offset with the southwest side down-faulted (Doelling, 2002). Scissoring 

offset along the fault, or the reversal in relative motion of the fault, occurs in the steep 

limb of the San Rafael monocline and is associated with a wide damage zone within the 

steeply dipping beds in the fold limb. 

  The Iron Wash fault has a similar strike, length and throw to the northwest 

striking Late Cenozoic to Quaternary normal faults to the northeast and southwest, and its 

geometries suggest that it is likely an extensional normal fault within the uplifting 

Colorado Plateau  (Wong and Humphrey, 1989; Flesch and Kreemer, 2010; Berglund et 

al., 2012; Ostenna, 2012; USGS, 2012). Age constraints on timing of slip on the Iron 

Wash fault are poor but studies on timing of regional events (Figure 8) suggest that faults 

of this nature were possible forming as early as the Oligocene (Chan et al., 2001; 

Davatzes, 2003). Salt-cored faults within the region, such as the Moab fault, began 

forming as early as the Triassic due to salt movement in the subsurface and have 

experienced several episodes of reactivation in the Mesozoic and Tertiary (Doelling, 

1988; Foxford et al., 1996). Faults with similar orientation to the Iron Wash fault cut 

Quaternary deposits throughout the Colorado Plateau (e.g. Oviatt, 1988; Friedman et al., 

1994; Ostenna, 2012; USGS, 2012) and a summary of the ages of movement on some of 

the similarly oriented fault can be found in Friedman et al. (1994). 
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 Recent work on the Iron Wash fault by Fugro World Wide Inc. (www.fugro.com) 

geologists, working in a consulting role for Blue Castle Holdings in the process to site a 

nuclear power plant north of the town of Green River, UT (Dean Ostenaa and Ozgur 

Kozaci, personal communication, 2012; Ostenna, 2012), investigated fault seismic hazard 

potential in the area as part of the federal regulatory framework to approve construction 

of new nuclear power facilities (Ostenna, 2012). No Quaternary fault scarps have been 

identified along the Iron Wash fault based on field work in this study (Dean Ostenaa and 

Ozgur Kozaci, personal communication, 2012; Ostenna, 2012). Based on fault trenching 

and Quaternary geochronology of deposits overlying the fault, the minimum time since 

the last slip event is ~80,000 years using optically stimulated luminescence (OSL) dating 

technique (Joel Pederson, personal communication, 2013). Based on U-series dating of 

soil carbonates, an minimum age of ~300,000 years since the last slip event was 

determined by Fugro consultants (Joel Pederson, personal communication, 2013, for 

Fugro, Inc.). These ages may reflect a low event reoccurrence on the fault, a relatively 

small total offset on the last slip or the fact that Quaternary deposits do not record the last 

slip event or even the problem that deposits sampled do not record the last slip event. The 

simplest explanation is that the fault truly has had no significant slip in the last ~300,000 

years. We conducted subsurface mapping of salt deposits using well data which 

supported results from other work that the Iron Wash fault study area is not underlain by 

salt either because salt moved out of the area to the east or because salt was never 

deposited in the area. Based on burial history and  thermal models (Figure 8), it appears 

that the current exposure of the fault formed at no greater than about 2.5 km depth and < 

90°C (Nuccio and Condon, 1996). 
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 The Iron Wash fault cuts Jurassic rocks in San Rafael Desert (Figure 7) and 

Permian rocks in the core of the San Rafael Swell (Aydin and Reches, 1982; Doelling, 

2002). The fault potentially represents the surface expression of a deep, reactivated pre-

existing structure within the crystalline basement rocks and therefore existing structural 

fabrics may have influenced the formation and development of the fault (Huntoon and 

Sears, 1975). We see the intersection of two major structural grains: the northwest-

striking Iron Wash fault zone and the older, northeast-trending San Rafael Swell. The 

Iron Wash field area allows for investigation of structural interaction of these two 

structural grains. The fault exposes many fault relays, step-over zones and fault 

propagation features with the fault zone becoming particularly complex at the 

intersection of the San Rafael monocline, where it develops a horst and graben complex 

east of the frontal monocline.     

Terminology and Definitions 

 Fault zones can be described as containing an outer damage zone, an inner 

damage zone and a fault core (Figure 9; Aydin and Johnson, 1983; Chester and Logan, 

1986; Caine et al., 1996; Micarelli et al., 2003). Protolith (host rock or country rock) 

represents the pre-faulting condition of the rock prior to initiation, coalescing and slip on 

a fault (Caine et al., 1996). A fault zone is a volume of deformed rock is unique to the 

fault creating the deformation and its architecture is highly dependent on the processes 

during the formation of the fault (McGrath and Davidson, 1995; Evans et al., 1997, 

Wibberley et al., 2008). Numerous factors control the nature of the fault core and damage 

zone including lithology, fault scale, fault type, deformation style and history, fluid 
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interactions with the fault, burial history and depth of faulting, et al. (Caine et al., 1996, 

Steen and Anderson, 1999). 

 

 
Figure 9. Schematic model of extensional fault geometry. Block diagram illustrating the 
associated inner and outer damage zones and the fault core that have resulted by 
deformation of the host rock (modified from Ganerod et al., 2008). 
 
 
 
 Due to differences in fault zone terminology and field practices used by various 

studies, comparison to previous work can be problematic (Evans, 1990; Childs et al., 

2009). We use the term fault core to describe a central zone containing primary slip 

surfaces, cataclasite, fault breccia, and gouge material (Figure 10; Caine et al., 1996; 

Braathen et al., 2009). A damage zone (divided here into inner and outer damage zones) 

surrounds the fault core and consists of a network of deformed rock and subsidiary 

structures (Caine et al., 1996; Braathen et al., 2009). A damage zone is a volume of rock  
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Figure 10. Schematic of structures associated with fault linkage and development. Key 
structures include fault lenses, fault relay zones, and fault damage zone surrounding a 
discrete fault core (modified from Childs et al., 2009). 
 
 
 
surrounding a fault core that is characterized by a increased amount of deformation 

(small faults, fractures, veins, folds) relative to the surrounding host rock (Figure 9; 

McGrath and Davidson, 1995; Caine et al., 1996; Ganerød et al., 2008). All deformation 

related to the primary fault segments, related faults, fault splays, relay zones, fault lenses, 

fault-related folds and fault core, are collectively termed fault zone in this study (e.g., 

Sibson, 1977; Caine et al., 1996).We discuss individual fault segments that are part of the 

fault zone and structurally interact and link. Many studies use the term fault displacement 
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when comparing fault zone thickness to displacement (e.g., Kim et al., 2004; Childs et 

al., 2009). We use the term fault throw in this study because we have measured fault 

throw defined as the vertical component of displacement on a dip-slip fault by measuring 

the stratigraphic offset of the fault (we use the term displacement when comparing our 

results to prior studies). Fault relay zones accomodate the transfer of throw from one 

strand of a fault to another, with either complete or partial transfer of throw (Figure 10; 

Peacock and Sanderson, 1991; Childs et al., 2009). Strain that is concentrated in the 

primary slip surfaces of the fault strands must also be transfered either completely or 

partially (Peacock, 2002). Fault strands that surround relay zones exert stress on the relay 

zone and strain is dispersed across many secondary structures within the relay zone to 

accomdate the transfer of throw from one strand to the next (Peacock and Sanderson, 

1991; Peacock, 2002). We use the term fault architecture to describe the spatial and 

geometric relationship between elements of the fault zone (e.g., Braathen et al., 2009). 

We measure fault zone thickness as the width (perpendicular to the fault zone) of a 

system of related fault segments and fault-related structures (Peacock et al., 2000).  

 A positive correlation of fault zone thickness and throw has been established by 

other workers (Robertson, 1983; Hull, 1988). Evans (1990) strongly disputes this 

assessment, suggesting that  D:T relationships for fault thickness oversimplify the 

complex nature of fault zones. Fault cores may indeed thicken with displacement (e.g. 

Evans, 1990; Shipton et al., 2006), but overall fault zone thickness is a function of the 

number of fractures and fault and is therefore dependent on where is it measured along 

the fault zone in relationship to the nature of the fault (i.e. at relay zones or near dip 

changes in the bedding being faulted) (Evans, 1990; Shipton et al., 2006). For the 
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purposes of this section of the study, measurements were made in the field and using 

aerial photography of fault zone thickness as defined by Peacock et al. (2000) as a system 

of related fault segments that interact and link and by Childs et al. (2009) as an 

anastomosing network of through-going synthetic slip surfaces and associated fault rock. 

For clarification, fault zone is a more encompassing term than damage zone, which is 

used here to reference a zone surround the fault which has increased fracture intensity 

relative to the surrounding host rock.  

 Several distinct types of discrete structures are present in and around fault zones 

and are defined by the presence of discontinuities or mechanical defects in the rock that 

are typically cohesionless at the time of development (Schultz and Fossen, 2008; 

Braathen et al., 2009). Several types of fractures have been identified by previous 

workers: 1) dilatational fractures or open-mode fractures such as joints or veins, 2) 

compaction fractures such as compaction bands, and 3) shear fractures such as faults 

(Schultz and Fossen, 2008). Deformation bands are also commonly found within porous 

sandstones and have been described as thin zones of shear strain (Schultz and Fossen, 

2008). Fossen et al. (2007) provides a more robust discussion of deformation bands types 

and the related impacts on reservoir properties.     

 Here, we use the fault zone compiled architecture model to guide our exaimation 

of the Iron Wash fault in order to differenciate data collected from various components of 

the fault and to allow for comparison to previous studies. We will also use the fault relay 

zone compiled architecture model guide our examination of the fault relays and lenses 

located within the Iron Wash fault zone.    
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Characterization of Fault Zones 

 Fault zone thickness, composition and internal architecture are key aspects of 

fault zone characteristics that help constrain fault mechanisms and their relationship to 

fluid flow (Caine et al., 1996). Empirical relationships for fault thickness and throw have 

been examined and discussed by many previous studies (Robertson, 1983; Scholz, 1987; 

Hull, 1988; Walsh and Waterson, 1988; Evans, 1990; Shipton et al., 2006; Childs et al., 

2009; Faulker et al., 2011). Previous work has constrained the architecture of faults and 

damage zones (McGrath and Davidson, 1995; Rawling et al., 2001; Davatzes, 2003; Kim 

et al., 2004; Braathen et al., 2009; Faulkner et al., 2010), the permeability structure of 

faults (Sibson, 1996; Evans et al., 1997; Gudmundsson et al., 2001; Shipton et al., 2002; 

Hammond and Evans, 2003; Caine et al., 2010), the types of deformation that occur in 

various faults (Fossen and Hesthammer, 1997; Ogilvie and Glover, 2001; Vrolijk and van 

der Pluijm, 1999; Fossen et al., 2007; Rotevatn et al., 2008;), and the evolution by which 

these structures occur (Shipton and Cowie, 2001, 2003; Sammis and Ben-Zion, 2008). 

However, detailed case studies of fault zones are still highly in demand.  

 Various studies have utilized synthetic and model-driven fault analyses to look at 

the interaction of fluids and faults, using data derived primarily from outcrop studies 

(Hestir et al. 2001; Tveranger et al., 2005;  Fredman et al., 2007, Zhang et al., 2009; 

Manzocchi et al., 2010; Fachri et al., 2013; ). Detailed work on the asymmetry of damage 

zones both along strike and in the hanging wall and footwall of fault has shown 

significant spatial variations (Berg and Skar, 2005; Schueller et al., 2013). Mechanical 

overprinting is observed in many locations, for instance in Utah, and represent important 

information in inferring tectonic histories for fault activity (Bump and Davis, 2003; 
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Davatzes et al., 2003; Davatzes et al., 2005). Fault activity plays into significant 

uncertainties that are associated with predicting the sealing (or leaking) nature of a fault 

based either on outcrop analogs or subsurface data (Hammerhest and Fossen, 2000; 

Shipton et al., 2004; Dockrill and Shipton, 2010; Tueckmantel et al., 2010). 

 Damage zone width has been demonstrated to be asymmetric, generally wider in 

the hanging wall than in the footwall of a fault and has been shown to have spatial 

variations along strike (Berg and Skar, 2005). Damage zones are unique to the fault 

creating the deformation and the fault architecture is highly dependent on the processes 

during the formation of the fault (McGrath and Davidson, 1995; Evans et al., 1997, 

Wibberley et al., 2008). 

 Fault zones contain a wealth of small structures of various types, such as, 

deformation bands and fractures. In the continuation, we assume that such structures are 

well known to the reader. Otherwise, some of the many papers on the subject include: 

Sibson (1977), Narr and Suppe (1991), Caine et al. (1996), Evans ( 1997), Hammond and 

Evans (2003), Kim et al, 2004), Johansen et al. (2005), Rotevatn et al. (2008), Schueller 

et al. (2013), Torabi et al. (2013). 

METHODS 

 This study uses qualitative as well as quantitative and semi-quantitative methods 

to constrain the geometry and intensity of deformation and mineralization within the fault 

core and damage zone. Various datasets examine different scales of deformation and 

alteration along the fault zone, from regional analysis of the impact of the fault to 

mesoscale fault segments and fault relay zones (100's of meters between fault segments) 
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to fracture networks and damage zones (meter to centimeter scale), to microscopic 

features of deformation (decimeter scale).  

 In this study, fault zone geometry, fault linkage structures and fault propagation 

structures are the primary focus. Data collected also characterize the density, aperture, 

and connectivity of fractures in the damage zone surrounding the fault. These data are 

derived from detailed mapping at scales of 1:6,000 to 1:60,000 which was used to 

characterize relay zones, fault lenses and fault propagation folding. Understanding fault 

relays, fault jogs and large fault lenses will help to better constrain the potential fluid 

flow pathways and high-permeability zones. Detailed mapping was undertaken in key 

outcrops where well-developed fault sealing features such as clay smear, re-cemented 

fault core and fault gouge may support considerations around fault behavior as a barrier 

or baffle to fluid flow for the Iron Wash fault. A three-dimensional characterization of the 

fault zone was constructed to constrain the geometry of the fault zone down dip into the 

subsurface (to the extent possible), along strike, and away from the fault core.   

Field Mapping 

 Geologic field mapping was performed at a scale of approximately 1:6000 to 

1:60,000 along the Iron Wash Fault zone, incorporating an area of ~100 km2 to identify 

all geologic units affected by the fault and structures associated with the fault. Fault 

width was determined from field observations and fault maps. Fault throw was calculated 

from stratigraphic offset at sites where offset could be determined along the fault and was 

compiled into a detailed throw profile for the fault. Drill hole data was used to 

supplement field mapping and calculations of fault throw when possible.  
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 Characterization of the damage zone was accomplished by quantifying the 

fracture density away from the fault core by using scanlines and stereo image analysis. 

Field photographs (stereo pair photographs) were rendered in three-dimension using 

Sirovision™ software package where pseudo-scanlines can be performed to characterize 

fractures. Field-based scanlines 30 to 400 m long, or fracture density characterizations 

within individual beds away from the fault, provided data on the density and orientation 

of fractures away from the fault core. A total of 17 scanlines were conducted for multiple 

purposes including for the characterization of the relay zones and to understand the 

changes in fracture density in different lithologies in the hanging wall and footwall. 

Starting in the inner damage zone or fault core, scanlines perpendicular to strike were 

used to characterize the amount of decay in fracture density from a region of high 

fracture density (low fracture spacing) near the fault core, to low fracture density (high 

fracture spacing) away from the fault core. In various locations along the fault, scanlines 

parallel to strike were used to examine fracture density variations along strike.  Because 

of the nature of the exposures of the Iron Wash fault, more strike-perpendicular scanlines 

were acquired than strike-parallel scanlines.  

 Scanline data were collected in different lithologies in an attempt to attain a 

complete picture of the damage zone and to characterize a segmented fault as it cuts 

multiple lithologies with differing mechanical properties. A total of 9 scanlines were 

conducted in five different formations: Navajo Sandstone, lower Carmel Formation, 

upper Carmel Formation, Slickrock and Earthy Members of the Entrada Formation. For 

each of the units a fracture density scanline was conducted in the hanging wall and 

footwall of the fault. Because of the nature of the exposures scanlines within the same 
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formation were not at the same location for the hanging wall and footwall. There is no 

accessible location on the fault where the Navajo was exposed in the hanging wall where 

the fault had >10 m of throw, so no scanline was acquired. At various locations along the 

fault, specific localities are identified where the fault juxtaposes different mechanical 

stratigraphies and comparisons were be made about the stratigraphy involved and the 

resulting fault expression. These data are used to characterize statistical relationships and 

better understand the influence of mechanical stratigraphy and lithofacies on fracture 

distribution and fault architecture propagation. 

   Detailed mapping at scales of 1:100 to 1:1,000 of the architecture of the fault 

core was performed along strike to document spatial variations in geometry along a 

single fault. Characterization of the fault core at various locations was conducted  

utilizing a classification of the expression of the core with schemes similar to those used 

in previous studies (McGrath and Davidson, 1995; Kim et al, 2004; Shipton et al, 2006), 

specifically focusing on characterization of fault facies (Braathen et al., 2009). Detailed 

analysis of the expressions of the fault core, or fault facies, provided insight into the 

heterogeneity and spatial variation of a single fault as it cuts different lithologies. Some 

examples of fault facies observed in the Iron Wash fault include rotated fault blocks, 

sheared blocks, re-cemented fault breccias, coalesced cataclastic deformation bands, 

distributed cataclastic deformation bands, clay gouge, gypsum smear, and fault step over 

(or fault relay) zones.  

 Tiny-Perm II (New England Research, www.ner.com), a hand-held instrument for 

field-based assessment of permeability, was used to measure the field permeability of 

rocks within the damage zone and to constrain the permeability of both filled and unfilled 
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fractures. Permeability measurements of specific fault related features, lithologies and of 

specific fault facies provided support for interpretation of features as being conduits for 

fluids or baffles (or barriers) to migration along or across the fault. An effort was made to 

adequately acquire Tini-Perm in strategic areas of the fault to have a complete along-

strike profile of the fault and the associated characteristics. 

Structural Petrology 

 Oriented strike-perpendicular thin sections were prepared from hand samples 

collected at key field localities along the Iron Wash fault from the Navajo Sandstone, 

upper and lower Carmel Formations, and Earthy and Slickrock Members of the Entrada 

Formation. Oriented hand samples were collected from the fault core and damage zone 

and targeted deformed rocks with features such as mineralized fractures, altered fractures, 

and breccias. Petrographic thin sections were professionally prepared by Burnam 

Petrographic.  Petrographic analysis was used to examine mineralogy and microstructures 

related to deformation within the fault core, in the associated structures and in the 

damage zone. Microstructures resulting from different types of deformation mechanisms 

were examined to infer deformation history of the rocks. Features related to fluid-rock 

interactions were also identified to better understand the history and role of fluids and/or 

hydrocarbons within the fault zone. The objective of the petrographic analysis was to 

provide insight into the role of fractures in conducting fluids, understanding multiple 

generations of deformation and fluid migration, crack growth and propagation, and other 

general insights into processes related to faulting. 
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X-Ray Diffraction Analysis 

 Samples collected from key locations along the Iron Wash fault were prepared 

and analyzed using standard X-ray diffraction (XRD) methods to determine mineralogy 

to supplement mineralogical analysis done using petrographic thin sections. A total of 15 

samples were analyzed using standard laboratory methodology for XRD when preparing, 

processing, analyzing and interpreting samples. These analyses examined compositional 

variations of the fault facies identified in later sections, the damage zone, and fluid 

alteration zones. Compositional analyses provided insight into fluid interactions, fluid 

alterations and chemical signatures across the fault. In addition to sampling key fault 

facies and damage zone structures, a compositional "scanline" was performed at one field 

locality to sample a transect perpendicular to strike of the fault core to determine any 

mineralogical shift across the fault core.  

Subsurface Modeling 

 Because this project is motivated by technical challenges related to the storage of 

CO2 and for the oil and natural gas industry, it was important to produce results that focus 

on the both the surface and subsurface geometry of the fault and the impacts of faults 

within potential sealing caprock and reservoir units. Subsurface contouring and 

restoration of eroded units in San Rafael Swell and other similar structures has been done 

by Barton (2011). Data for this project included publically available files and locations 

for drill-holes and wells, depth of formation tops, well-site mud logs, wireline logs, pre-

drilling and post-drilling well reports, and core data from Utah Division of Oil, Gas, and 

Mining downloaded from http://oilgas.ogm.utah.gov (Appendix A). Data was input into 
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IHS Petra, an industry-oriented software package designed for oil and gas exploration. 

Formation top depths for wells were loaded for 675 wells for all available tops available 

within Grand, Emery and Wayne counties in Utah. Scanned paper wireline logs and well 

reports were used to verify formation top depths for control wells throughout the field 

area. Selected paper wireline logs were digitized to provide insight into the log response 

for various formations of interest and to make petrophysical interpretations about the 

formations. 

 Subsurface models provide an excellent framework for the incorporation of 

detailed fault maps and the integration of fault zone characteristics into a working fault 

model. Formation top data were gridded to create structural contour maps of various 

formations at depth. These grids were then input into TrapTester, a program developed 

by Badley's Geoscience for fault mapping and modeling of fault juxtaposition and sealing 

properties. These models were developed to make predictions about the fault properties 

and characteristics of the Iron Wash fault in the subsurface, that were ultimately used to 

discuss and constrain the ability of the fault to behave as a seal to fluids. Further, the 

software allows us to make predictions about the height of a CO2 column that the fault 

could reasonably support during injection. Details of the model design and input are 

discussed in later sections. 

Geophysical Surveys 

 In the process of developing this project, several geophysical surveying methods 

were attempted to try to image the fault zone. Resistivity, induced potential, and active-

source seismic surveys were conducted using standard methodologies. The results of 
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these surveys were inconclusive and therefore not included in the main text of this thesis, 

however, the raw data and descriptions of the methods used are included in Appendix B. 

RESULTS 

Overview 

 The Iron Wash fault study area is located on the eastern side of the San Rafael 

Swell and in the western section of the San Rafael Desert (Figure 5). The Iron Wash fault 

strikes ~310° and dips steeply (67°-84°) to the northeast, has a slightly listric fault trace 

and a maximum stratigraphic offset of ~120 m. The fault is oriented perpendicular to the 

San Rafael Swell where bedding strikes ~45° and dips moderately (30°-40°) to the 

southeast. 

 We present geologic maps produced of the Iron Wash fault zone and results from 

kinematic analysis of the fault (map locations in Figure 6). Measured fault throw profiles 

of the fault zone are used to determine the distribution of slip along the trace of the fault, 

to characterize the transfer of throw across fault relays, and to describe the role of fault 

related folding in this fault zone. We present results on the measured thickness of the 

fault zone and the fault damage zone. We describe and characterize the structure of two 

fault relay zones and one fault lens and discuss the overall architecture of the fault zone 

and fault facies. We present evidence for the migration of fluids vertically and laterally 

through the fault zone. We present results of x-ray diffraction and petrographic analysis 

of samples collected from the fault zone. Finally, we describe how we designed various 

models to reproduce the geometry of the fault and predict fault zone properties and 

sealing behavior.   
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 The western side of the field area (Figure 6, Areas A and B) consists of a horst 

and graben complex adjacent to the monocline and a widely distributed fault and fracture 

network seen in the dipping beds of the Navajo Sandstone and Kayenta Formation along 

the monocline limb (see Figure 6 for locations; Figure 11). We present data on the nature 

of the fault geometry as it intersects the monocline to characterize the fault zone 

thickness, architecture, and strain distribution to characterize the interaction of the Iron 

Wash fault with the monocline.     

 The central part of the field area (Figure 6, Area C) contains numerous fault relay 

structures, one large (~1 km long) fault lens, several 10- to 50-m long fault lenses and 

extensive fault-related folds (see Figure 6 for locations; Figures 12 and 13). Two 

examples of meso-scale (102 m wide) fault relay zones are exposed (in Area B), a soft- 

and a hard-linked fault relay (Figure 12). These fault relays are zones in which the throw 

transferred in a north-stepping (or right stepping) direction from one discrete segment of 

the fault to another and the associated fault and fracture networks are exposed within 

different structural levels. We present data on the nature of the fracture and fault 

distribution, strain transfer, linkage and propagation features, thickness and architecture 

to characterize the internal structure of fault relays and lenses.  

 In the far eastern part of the study area (Figure 6, Area D), the Iron Wash fault is a 

relatively narrow zone of slip accommodation that gradually loses throw to the southeast 

(Figure 14). On the western side of the monocline, it becomes increasingly difficult to 

track individual segments of the fault zone or to identify the total amount of slip 

accommodated by the fault and fracture network as a whole. Due to the nature of the fault 



40 
	  

zone and exposure in these segments, the focus of this study is the more structurally 

complex central areas of the fault zone. 

 

 
Figure 11. Geologic map of the Iron Wash fault zone (Area A) at the intersection of the 
San Rafael monocline (location in Figure 6) (modified from Doelling et al., in review). 
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Figure 12. Geologic map of the Iron Wash fault zone (Area B) showing hard- and soft-
linked relay zones (location in Figure 6) (modified from Doelling et al., in review). 
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Figure 13. Geologic map of the Iron Wash fault zone (Area C) showing hard-linked relay 
and fault lenses (location in Figure 6) (modified from Doelling et al., in review). 
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Figure 14. Geologic map of the Iron Wash fault zone (Area D) showing the eastern tip of 
the fault (location in Figure 6) (modified from Doelling et al., in review). 
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Strain Distribution  

 Slip along the fault is characterized to better understand the strain that the fault 

accommodated and to use this information to analyze the stress field in which the fault 

formed. We  hypothesize that the Iron Wash fault has formed in both the stress fields of 

the Colorado Plateau and the Basin & Range and these data are used to test this 

hypothesis. 

 Where the main strand of the Iron Wash fault intersects the dipping beds of the 

monocline (Figure 6, Area A), the main strand of the Iron Wash fault tips out and we 

observe a wide zone of associated faulting in the limb of the monocline (Figure 11). Here 

we see the intersection of the northwest-striking fault zone (Figure 15a) with the 

southeast-dipping monocline (Figure 15b) and the beginning of a widely dispersed fault 

zone at the monocline front (Figure 11). This dispersed fault zone is composed of 

numerous small-throw faults (<10 m throw) that generally strike east-west (Figure 15c) 

or north-south (Figure 15d), orthogonal to the main strand of the fault (Figures 11 and 

15). Between these small faults a damage zone that consists of well-developed network of 

deformation bands is exposed and most apparent within the porous sandstones of the 

Navajo Formation.  

 Slip vectors were measured on exposed principal slip surfaces with slickenlines 

located within the fault core away from the San Rafael monocline (Areas B and C, Figure 

16a). A set of primary slip planes strike 310° to 325° and dip steeply (72°-86°)	  to the 

southwest and northeast (Figure 16a). A set of secondary slip planes strike 320° to 350° 

and dip moderately (20°-42°) to the west and southwest (Figure 16a). A third minor set of 

slip planes strike 320° and dips shallowly (~6°) to the northeast. Slip data show a 
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dominate dip-slip motion on the primary slip planes and oblique-slip motion on other slip 

planes with a component of left-lateral motion. The amount of oblique slip varies from a 

minor component to an almost pure strike-slip motion on some planes (Figure 16a). 

 

 
Figure 15. Equal-area, lower hemisphere stereonet projections of faults in the western 
section of the study area (Area A). Data are from a) main strands of the Iron Wash fault, 
b) orientation of bedding of the San Rafael monocline, and c/d) small-throw faults (<5 m 
throw) along the front of the monocline as the main strand of the Iron Wash fault loses 
throw, see text for descriptions. 
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Figure 16. Equal-area, lower hemisphere stereonet projections of planes, poles to planes 
and lineations of the Iron Wash fault zone. Data are from a) main strand east of the San 
Rafael monocline (Areas C and D), b) fault strands within the San Rafael monocline 
(Area A), c) faults within the soft-linked relay (Area B), and d) main strands of the fault 
surrounding the fault lens (Area C). 
 
 

 Slip vectors were measured on exposed principal slip surfaces with slickenlines 

located in the fault core as the fault adjacent to and within the San Rafael monocline 

(Area A, Figure 16b). The main strand of the fault strikes ~320° and dips steeply (~80°) 

to the northeast (Figure 16b). The other half of an assumed conjugate fault set to the 

primary plane strikes ~340° and dips steeply (~75°) to the southwest. Another set of 
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secondary slip planes strike 260° to 300° and dip moderately (47°-71°) to the southwest 

(Figure 16b). Slip data show a dominate oblique-slip motion in this area. The primary 

planes that dip steeply have both a left and right-lateral oblique component depending on 

the dip of the fault. The secondary planes have an oblique-slip motion with right-lateral 

motion. No faults in this area show dominantly dip-slip motion (Figure 16b).    

Fault Throw 

 Throw on the fault was characterized by measuring stratigraphic offset of the 

rocks in the hanging wall and footwall at 92 localities over 25-km strike distance along 

the fault where exposures allowed. Total throw on the fault measured away from the fault 

core damage zones was determined first (Figure 17). Secondly, we measured throw 

localized on the primary slip surface (within the fault core) not including throw 

accommodated by damage zones or fault-related monoclines (Figure 17). We see that 

throughout the fault zone, total stratigraphic offset away from the fault core is 

consistently greater than throw measured at the fault core (Figure 17). The reduced throw 

at the fault core is a result of additional stratigraphic offset accommodated by monoclines 

adjacent to the fault zone with amplitudes up to ~20 m (Figure 17). For the remainder of 

this study and when conducting calculations, the term throw is used to denote total throw 

of the fault zone.  

 Near the San Rafael monocline (Figure 6, Area A), the Iron Wash fault consists of 

multiple fault segments and total throw is determined by summing individual fault throw 

across each of these segments. The throw profiles (Figure 18a) allow for the 

determination of throw gradients (or the distribution of throw perpendicular to strike) to 
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determine where throw gradients are relatively low (i.e. more distributed throw) or higher 

to help draw conclusions about the nature of faulting. Fault zone thickness was 

determined at 40 locations along the fault (Figure 18a) and will be discussed in later 

sections. 

 

 
Figure 17. Fault throw profile of the Iron Wash fault zone. Solid line showing total throw 
accommodated by the fault measured as total stratigraphic offset away from the fault 
zone, dashed line showing throw accommodated by the primary slip surface measured as 
throw accommodated by the damage zone and fault monoclines subtracted from the total 
throw. Vertical bars on left side of figure represent measurement error associated with 
measuring the throw on dispersed faults in the monocline (Area A). 
 
 
 
 The throw profile for the fault shows that the ~25 km long fault has a maximum 

throw of ~120 m (Figure 18a) over a broad ~7 km strike distance slightly skewed to the 

northwest end of the fault zone. In agreement with observations of other fault systems 

(e.g., Kim and Sanderson, 2005), the maximum throw lies at approximately the center of  
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Figure 18. Fault throw and thickness profiles for the Iron Wash fault zone. a) Fault throw 
and thickness profile of the Iron Wash fault zone, b) fault throw profile of the Iron Wash 
fault zone from A-A' shown in figure 18a, and c) fault throw profile of the Iron Wash 
fault zone from B-B' shown in figure 18a. Vertical bars on left side of figures represent 
measurement error associated with measuring the throw on dispersed faults in the 
monocline (Area A). 
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the fault trace. Throw gradually increases from the eastern fault tip to a maximum point 

on the fault from 9-13 km along the fault (Figure 18a) and then loses throw sharply as the 

fault approaches the San Rafael monocline. As the fault intersects the steeply dipping 

beds of the monocline, throw is dispersed across many small-throw faults, but based on 

field observations and mapping, it appears that the fault likely accommodates similar (or 

less) total throw as the primary segments of the Iron Wash fault, or somewhere between 

~40-90 m of cumulative throw (Figure 18a). West of the monocline, throw is 

accommodated by a relatively discrete fault zone through the interior of the San Rafael 

Swell where the fault has an opposite sense of slip to the west of the monocline and 

throw is ~40-100 m, as measured in the Cedar Mesa Formation (Figure 11).     

 Because one of the major subjects of this research is to characterize fault relay 

zones and fault lenses, detailed throw profiles were conducted for the far western 

segment of the fault containing two fault relays (Area B, Figure 18b) and for the segment 

containing one fault relay and one fault lens (Area C, Figure 18c). In the area of the fault 

relays (Area B, Figure 12) throw generally decreases to the northwest, and it appears that 

although throw decreases slightly across the relay zones, all throw is transferred by each 

of the relays (Figure 18b). Within the relays however, the throw profile shows that the 

relays are areas of deceased throw by about ~20 m in each case. As on fault segment dies 

out and the next segment begins, these are areas of high throw gradient relative to other 

areas of the fault. The throw gradients here are as high as 70 m of slip accumulated in a 

fault trace distance of ~300 m, or ~0.23 m per meter of fault length (Figure 18b). 

 In the central segments of the fault containing a relay zone and a fault lens (Area 

C, Figure 13) throw is transferred almost completely across the relay and lens (Figure 
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18c). Here the relay does not appear to be a zone of decreased throw as other examples 

and the throw gradients are much lower, with gradients as high as 110 m of slip 

accumulated in a fault trace of ~1500 m, or ~0.073 m per meter of fault length. The throw 

profile across the fault lens shows that each of the fault strands bounding the lens 

accommodate approximately half of the total cumulative throw and that strain within the 

lens does not seem to reduce the total slip on the fault relative to adjacent segments 

(Figure 18c). Throw gradients on the segments bounding the fault lens are ~45 m of slip 

accumulated in a fault trace of ~250 m, or ~0.18 m per meter of fault length.    

Fault Zone Thickness 

 Fault zone thickness (refer to terminology and definitions section for clarification) 

was measured at 40 locations along the fault and examples of these locations can be seen 

in Figures 11, 12, and 13 (see Figure 6 for locations). In the far eastern segment of the 

fault (Area D), the fault is generally between 70-200 m wide and contains small folds (5 

m to 30 m wide) and narrow damage zones (generally <10 m wide) (Figure 18a). In the 

central segments of the fault (Area C), where throw is at its maximum, the fault zone is 

250-500 m wide (Figure 18a). Along strike to the northeast (Area B) the hard- and soft-

linked relays and fault-related folding result in a fault zone between 200-500 m wide 

(Figure 18a). Where the fault intersects the San Rafael monocline (Area A) throw is 

dispersed among many small-throw faults (101 m's of throw). Throw is transferred from a 

relatively discrete fault zone (<250 m wide) to a much wider zone (up to ~5000 m) 

(Figures 11 and 18a). This zone consists of ~10 mapped faults with >10 m of throw and a 

complex network of fractures contained within the fault zone. This wide zone might be 
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termed a damage zone, fault relay, or even a large fault splay amplified by the presence 

of the monocline and is interpreted as a zone of strain dispersal in the form of a very 

widely spaced small-throw faults each accommodating generally <10 m total throw 

(Figure 18a).  

 We plot fault throw as a proxy for fault displacement to examine fault zone 

thickness as a function of displacement and compare the Iron Wash fault to other 

published work (Figure 19). The Iron Wash fault zone falls within the previously 

observed ranges of fault displacement to thickness ratio (D:T ratios) by previous workers 

(Figure 19). Most studies of fault-related rocks, fault zones, and relay zones show D:T 

ratios ranging from 0.01 to 1000. The features plotted for the Iron Wash fault include 

relay zones, fault tips near relays, small faults within relays, the monocline segment of 

the fault and main segments of the fault and show D:T ratios ranging from 0.01 to 10 

(Figure 19). The main segments of the fault and small-displacement (<5 m throw) faults 

measured around the main strand have D:T ratios ranging from 0.1 to 10. Fault zones 

where relays are overlapping have D:T ratios of 0.1 to 2.0. The two features that plotted 

with comparably thicker fault zone for a given thickness (lower D:T ratio) are the 

segment of the fault within the San Rafael monocline and fault tips near relay zones 

where D:T ratios were 0.01 to 0.06. 

 Fault damage zone thickness was characterized using fracture density scanlines 

away from the fault core (Figure 20). We did not include any fractures in the fault core in 

these scanlines, but only fractures in the damage zone and host rock. Scanlines data was  
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Figure 19. Plot of fault thickness and displacement for the Iron Wash fault zone. Data 
from previous studies are pale, for comparison with data from this study (modified from 
Childs et al., 2009 and references therein). 
 
 

acquired as far as exposures would allow or until 50 m away from the main slip surface. 

Scanline data was collected where exposures allowed, but an attempt was made to reduce 

variables between scanlines whenever possible. All scanlines were acquired in areas of 

the fault where no major secondary structures such as fault relays or fault lenses were 

present and the throw on the fault was 50-85 m. An attempt was made to target beds with 

similar characteristics (thickness, lithology, facies), but in some cases this was not 

possible (see Figure 20 for bedding descriptions). Fracture density scanline data was 

collected in the hanging wall and footwall for the Earthy and Slickrock Members of the 
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Entrada Formation, the upper and lower Carmel Formations, and in the footwall of the 

Navajo Sandstone (Figure 20). No scanline data was collected in a hanging wall exposure 

of the fault for Navajo Formation because of lack of good exposure with adequate throw. 

 

 
Figure 20. Fracture density scanlines in hanging wall and footwall damage zones of the 
Iron Wash fault zone. Scanlines in all units from the Jn, Navajo Sandstone; Jcl, lower 
Carmel Formation; Jcu, upper Carmel Formation; Jes, Slickrock Member of the Entrada 
Formation; Jee,  Earthy Member of the Entrada Formation. Scanlines all plot the fault 
core at 0 m. Fracture densities are in number of fractures per 1 m bins. Lithologic 
descriptions are for each of the scanlines. 
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 Scanline data show that the Slickrock Member of the Entrada Formation and the 

Navajo Formation have the lowest concentration of fracturing and the lower Carmel has 

the highest overall fracturing (Figure 20). Scanline data show a general trend of increased 

fracturing in the hanging wall compared to the footwall (Figure 20). Hanging wall 

fracture density shows a wider damage zone than the footwall damage zone in some cases 

(Figure 20). This relationship is most apparent in the Earthy Member of the Entrada 

Formation and the lower Carmel Formation (Figure 20). The Slickrock Member of the 

Entrada Formation and the upper Carmel Formation do not clearly show one side of the 

fault having a wider damage zone (Figure 20). The fine-grained lithologies of the Earthy 

Member of the Entrada Formation and the upper and lower Carmel Formations have 

wider damage zones than the courser-grained Slickrock Member of the Entrada 

Formation and the Navajo Sandstone (Figure 20).      

Relay Zone and Fault Lens Structure 

General Structure 

 There are four exposures of fault relay zones where fault throw is transferred from 

one segment of the fault to another across steps up to ~230 m wide. The two fault relay 

zones examined in this study are: 1) a soft-linked relay that transfers  ~65-80 m of throw 

across a ~200 m wide relay zone that has no significant faults linking the strands and 2) a 

hard-linked relay that transfers ~50- 80 m of throw across a ~175 m wide relay zone that 

is structurally connected by at least two significant fault segments in direct linkage with 

the south segment (Zone A, Figures 12 and 18b). In the soft-linked relay (Figure 12), the 

south strand of the fault loses throw to the northwest and the north strand gains throw to 
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the northwest. The relay zone creates a relay ramp that strikes north-northeast and dips 

east at 5-33°. Monoclines lie parallel to strike in the hanging walls of both main strands 

of the fault, and within the relay zone in the footwall of the north strand as it loses throw 

to the southeast. In the hard-linked relay (Figure 12), the south strand of the fault loses 

throw to the northwest and the north strand gains throw to the northwest. The relay zone 

creates a subtle ramp similar to that found in the soft-linked relay, but is truncated by two 

strands of the north fault deflect towards the southern segment and intersect the fault 

obliquely. Folds are observed in the hanging wall on the north strand of the fault, north of 

the relay and is continuous across the relay zone associated with both northern strands 

and along the southern strand (Figure 12). 

 Fault-bounded lenses range in dimensions from 5 m long and 3 m wide up to 1 

km long and 150 m wide, where throw is accommodated by more than one primary 

segment of the fault (Figure 18b and c). Fault lenses <~10m long are referred to in this 

text as fault blocks and are commonly rotated within the fault core bounded by the main 

fault and smaller synthetic and antithetic faults (Figure 21a). The largest fault lens 

observed in the field area is in the southeastern segment of the fault (Figure 13) and is 

approximately 1 km long and up to 150 m wide. Although the nature of the deformation 

in this area makes determination of exact amount of throw on each segment of the fault 

difficult, it appears that throw is distributed approximately evenly between the fault 

segments (Figure 18c). Quaternary cover prevents the investigation of the exact point 

where the fault diverges into two segments on either end, but the interior of the fault lens 

was investigated to characterize kinematic indicators and fluid-related mineralization and 

alteration. This fault lens is the primary area of the fault where extensive oil staining is 
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present throughout almost the entire lens area. Oil staining is most intense between the 

fault strands and becomes less common away from the faults. Oil-stained rocks are 

present in other areas of the fault, but not to the extent found in this area, and will be 

discussed in later sections.  

 

 
Figure 21. Annotated field photos of the fault core of the Iron Wash fault zone. a) View 
to the northwest along strike of the fault showing Navajo Formation juxtaposed against 
upper and lower Carmel Formation with multiple large rotated fault blocks incorporated 
into the fault core (Area B), and b) view along strike of vertical outcrop of the fault core 
showing highly deformed damage zone on either side of the fault core, and a fault gouge 
membrane (clay gouge) within the fault core (Area B). 
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Strain Distribution 

 Slip vectors were measured on exposed fault surfaces with slickenlines located in 

the soft-linked relay zone (Area B, Figure 12) excluding the main strands of the Iron 

Wash fault (Figure 16c). Three dominate fault orientations can be seen within the relay 

zone: a ~305° striking set that dips ~60° southwest and has right-lateral oblique-slip 

motion, a ~270° striking set that is nearly vertical and has almost pure strike-slip motion 

and, a generally north-south striking set that dips 30°-65° to the east and has a right-

lateral oblique-slip motion (Figure 16c).  

 Measured slip vectors within a fault lens (Area C, Figure 13) include 

measurements on the main strands of the Iron Wash fault and internal faults within the 

lens (Figure 16d). The southern strand of the fault lens is interpreted to be the principal 

fault based on field mapping, however both segments accommodate roughly equal 

portions of the total slip (Figure 18c). The ~310° striking faults dip 40°-87° to the 

northeast and southwest and have a dominantly dip-slip component with a small amount 

of left-lateral oblique-slip motion on some faults that dip to the southwest (Figure 16d). 

 We observed a smaller fault set (~4 m maximum throw) oblique to the main 

strand of the Iron Wash fault. We characterize this small graben structure to understand 

the structural relationship of this smaller feature to the main strand of the fault. Slip 

vector data from the primary slip surfaces on this fault show that the fault propagated 

away from the main strand of the fault (Figure 22). This fault creates a small graben 

adjacent to the main fault that is ~20 m in length with ~4 m throw near the main fault 

losing throw away along strike to the northeast (Figure 22a). We interpret this exposure 

to be evidence of the propagation of small fault segments away from the main strand of 
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the fault zone (e.g. Roberts, 1996). We identify slip fanning or a change in the slip vector 

direction towards the fault tips (Figure 22c; Roberts, 1996). This type of structure may be 

related to the process development of fault lenses or fault blocks within the fault zone as 

small fault branch out from the main fault zone and incorporate intact blocks into the 

fault zone (Roberts, 1996). 

 

 
Figure 22. Summary of data and interpretation of small-throw fault (~4 m throw) 
adjacent to the main slip surface of the Iron Wash fault zone. a) Schematic representation 
of a small-throw (~4 m throw) fault propagating obliquely away from the principal slip 
surface of the Iron Wash fault (e.g. Roberts, 1996), b) schematic cross section of 
interpreted propagation of a single fault, c) slip vector data from  the two fault creating 
the graben showing increasing rake angle towards the fault tips and the propagation 
direction. Small faults within the graben strike slightly more east-west than the main 
segments of the Iron Wash fault. 
 
 

 Strain analysis of slickenline data from the Iron Wash fault zone was performed 

using the methodology described by Krantz (1988) to determine the presence of three-

dimensional strain within the fault zone and the changes in strain along strike (Figure 16). 
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Three-dimensional strain requires three or four fault sets to accommodate strain, whereas 

plain strain one or two fault sets (Reches, 1978; Aydin and Reches, 1982; Krantz, 1988, 

1989). Aydin and Reches (1982) argue that multiple fault sets along the eastern flank of 

the San Rafael monocline formed contemporaneously based on crosscutting relationships 

and therefore formed during one stage of deformation. The western section of the fault 

experienced three-dimensional strain, specifically the segments of the fault that lie closer 

to the San Rafael Swell (Figure 16; Reches, 1978; Aydin and Reches, 1982; Krantz, 

1988). Localized and perhaps more intense three-dimensional strain developed within 

relays zones adjacent to the San Rafael Swell. These data are interpreted to indicate that 

the Iron Wash fault has formed in two different strain fields (Reches, 1978; Krantz; 

1988). 

Fracture Distribution 

 In the central part of the fault zone (Area B, Figure 12), a fracture density scanline 

within the soft-linked relay shows how brittle deformation is associated with the relay 

zone and the four small-faults with throws ranging from 1.5-3.1 m (Figure 23). Fracture 

density in the lower Carmel Formation is generally higher within the relay zone than 

outside of the relay, and each of the small faults have related damage zones contributing 

an overall higher fracture density (Figure 23). Fracture density is greater on the north half 

of the relay, or on the half of the relay closer to the fault that accommodates the majority 

of the slip. Within the relay, faults and fractures are generally sub-parallel and orthogonal 

to the main fault strands and small-faults being both synthetic and antithetic to the main 

fault (Figures 12 and 23).   
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Figure 23. Summary of soft-linked relay zone (Area B). View to the southeast of soft-
linked relay zone, schematic representation of the relay zone, and fracture density 
scanline across the relay zone (see Figure 12 for location) within the upper and lower 
Carmel formations. 
 
 
 
 Approximately one kilometer to the north of the soft-linked relay (Area B, Figure 

12), a fracture density scanline within the hard-linked relay shows a relay zone that is 

more intact and less impacted by faulting than the soft-linked relay (Figure 24). Fracture 
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density in the Navajo Formation is similar both within the relay zone and outside of the 

relay. The damage zone in the footwall of the south fault, where throw is about two 

meters, is substantially wider and more deformed than in the footwall of the north strand, 

where throw is about 40 m (Figure 24). In this location the D:T ratio approaches 0.01 as a 

fault with 1-2 m of throw produces a damage zone thickness of 80-100 m (Figure 19). 

 

 
Figure 24. Summary of hard-linked relay zone (Area B). View to the northwest of hard-
linked relay zone, schematic representation of the relay zone, and fracture density 
scanline across the relay zone (see Figure 12 for location) within the Navajo and lower 
Carmel formations. 
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 Fracture orientations within the relay zones were measured to better characterize 

possible fluid conduits within the relay and any possible connectivity to underlying 

fracture networks  or enhanced fracturing within the relay zone (Figure 25). Fractures 

outside of the relay zone have one dominate strike of ~310° (Figure 25a). Fractures 

within the relay show three distinct orientations with strikes of  ~305°, a second set 

striking between 340° and 60° with an mean strike of ~10°, and a third set striking ~90° 

(Figure 25b). All fractures measured were at a high angle to bedding and generally had 

dips >75°. 

 

 
Figure 25. Equal-area, lower hemisphere stereonet projections with Kamb contour of 
poles to planes of fractures in the Iron Wash fault zone. a) Fractures outside of relay 
zones and b) fractures within soft-linked fault relay. Data comes from Area B within and 
around fault relays. 
 

Fault-related Folding 

 In the central segment of the fault the hanging wall of the fault contains a ~600 m 

wide syncline with a hinge that lies ~200 m northeast of the fault core and with a fold 



64 
	  

axis approximately parallel to strike of the fault (Figure 12). Based on available outcrops 

of the eroded syncline, we estimate that it has an amplitude of ~20-30 m and limbs that 

dip between 8°-19°.  

 Many fault-related monoclines are observed along the fault with axes that are 

parallel to sub-parallel to the main strand of the fault. They have the synclinal hinge of 

the monocline located 5-30 m from the fault core and with amplitudes ranging from 1-20 

m (Figures 11, 12 and 13). Several exposures of cross-sectional views of these 

monoclines allows for investigation of the amplitude and internal structure of the folds 

(Figures 26 and 27). These monoclines accommodate throw that is distributed across the 

fold instead of being concentrated at the principal slip surface (Figure 26). Throw 

accommodated by the monoclines results in larger total stratigraphic separation away 

from the fault than the throw accommodated by the principal slip surface (Figures 17 and 

27). These folds appear to be either draped over fault tips or dragged up against the fault 

and occur primarily on the hanging wall side of the master fault (Figure 27). Some of the 

folds have an orientation similar to the structure they are related to, for example, there is 

evidence of folding related to the formation of the fault relays (Figure 12). Folded rocks 

have dips of 10°-32° in the direction of the relay ramp to form a monocline that is 

constituting the relay ramp. These folds are observed to follow fault strands around relay 

structures (Figure 12); where the fault becomes two distinct strands that link to the next 

segment, each of the fault strands has a fold associated with it that parallels the fault until 

it becomes hard-linked. Although the area is quite complex and it is difficult to tell with 

certainty, it seems that the fold is continuous across the relay, possibly indicating that as 

throw is transferred by fault linkage, similarly, folding may be transferred as well. Cross- 
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Figure 26. Annotated field photo and schematic cross-section of fault-related fold 
illustrating displacement accommodated by the flexure of bedding (Area D). View to the 
northwest of the fault core and primary slip surface in the eastern part of the fault zone 
(see Figure 14 for location). 
 
 
 
cutting relationships are observed such that folds are cut by the fault obliquely, indicating 

that some of the folds existed at the time of continued fault growth. These folds are 

interpreted to be a result of the formation and propagation of the fault (Schlische, 1995; 

Janecke et al., 1998), and appear to be present mostly in the Earth Member of the Entrada 

Formation and in the upper and lower Carmel Formations and completely intact (entire 

fold structure preserved) near fault tips where throw approaches zero (Figure 27). They 
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are observed to be zones of increased fracture development and commonly coincidental 

with small faults that also appear to be related to the folding. 

 

 
Figure 27. Annotated field photo and schematic cross-section of fault-related fold 
illustrating displacement accommodated by the flexure of bedding (Area B). View to the 
southeast of the fault core and primary slip surface in the central part of the fault zone 
(see Figure 12 for location). 
 
 

Fault Zone Architecture  

 The majority of throw on the Iron Wash fault is commonly localized in a narrow 

fault core and surrounding damage zone (Figures 10 and 21). The fault is a complex zone 
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hosting principal slip surfaces with smaller associated structures surrounding the central 

fault core (Figure 9). Fracture intensity is highest within and adjacent to a narrow fault 

core and decreasing away from the fault core within both an inner and outer fault damage 

zone (Figure 9 and 23).  

 The core of the Iron Wash fault is highly heterogeneous along strike and is 

divided into distinct fault facies (Braathen et al., 2009). In some locations, the fault core 

is composed of rotated fault blocks suspended in a complex zone of fault gouge (Figure 

21a). The fault blocks are commonly bound by the primary slip surface towards the 

hanging wall and synthetic faults (Figure 27). In areas of the fault where porous 

sandstones are in both the hanging wall and footwall, the fault core is composed of zones 

of intense deformation band development (Figure 28). In these zones, the fault core is a 

narrow (<50 cm) zone of coalesced deformation bands with little to no development of 

fault gouge or incorporation of fine-grained clay gouge into the fault zone (Figure 28). In 

other areas of the fault zone where fine-grained units are cut by the fault, the core is 

composed of narrow zones (<1 m) of highly developed fault gouge and clay smear 

surrounded by fault breccia, cataclasite, and occasionally rotated fault blocks (Figure 

21b). Fault gouge and clay smear membranes are composed of cataclasite and altered 

clays derived from the faulted rocks of both the hanging wall and footwall. Fault breccia 

recemented with calcite and fine-grained quartz sand matrix is exposed in areas of the 

fault where porous sandstones are juxtaposed (Figure 28). The fault breccias are 

composed of angular to sub-angular clasts of sandstone in a cataclastic matrix that is 

recemeted with calcite and to a lesser extent quartz (Figure 28).  
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Figure 28. Annotated field photos of expressions of the fault core and damage zone. a) 
View to the northwest of fault core consisting of fault breccia and deformation bands in 
the Navajo Sandstone, b) fault core showing intensely deformed fault breccia recemented 
with calcite in the Navajo Sandstone close to contact with lower Carmel Formation, c) 
coalesced deformation bands along the footwall side of the fault core in the Slickrock 
Member of the Entrada Formation, and d) coalesced deformation bands along the fault 
core in the Navajo Sandstone. 
 
 
 
 The Iron Wash fault zone has a heterogeneous architecture along strike and 

contains distinct architectural components such as rotated fault blocks (Figure 21a), fault 
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lenses (Figure 29a), brecciated fault core containing fault blocks (Figure 29b), and 

commonly consists of multiple slip surfaces (Figures 21a and 29). Along-strike variations 

in the fault zone architecture and the linkage of slip surfaces are characterized by four 

representative cross-sections of the fault zone (Figure 30). We see large variability in 

fault block and fault core width, distance between slip surfaces, distribution of slip on slip 

surfaces, and amount of rotation of fault blocks (Figure 30). In some locations, the 

footwall has been dragged down into the damage zone of the fault (Figure 31). Dragging 

of the footwall down into the fault zone creates the inner damage zone of the fault where 

zones of intense fracturing are present (Figure 31). In other areas of the fault, the fault 

core is composed of a combination of fault-related folds and large (8 m long and 4 m 

wide) rotated fault blocks (Figures 21a, 26, 27, 30, and 31). The fault blocks and fault 

related folds are typically spatially associated with multiple synthetic and antithetic faults 

(Figure 26, 27, 30, and 31).  

Evidence for Fluid Migration 

 The interaction between faulting and fluids has been described by many previous 

workers in many different field localities (e.g. Barton et al., 1995; Hickman et al., 1995; 

Foxford et al., 1996; Evans et al., 1997; Peaver et al., 1997; Chan et al., 2000; 

Gudmundsson et al., 2001). Evidence for fluid migration along faults in and around the 

San Rafael Swell area has also been well documented (e.g. Evans et al., 2004; Shipton et 

al., 2004). We present here evidence for fluid migration along the Iron Wash fault within 

the fault core, in the damage zone and away from the fault.  
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Figure 29. Annotated field photos of expressions of the architecture of the fault zone. a) 
View to the southeast of fault lens bound by two primary slip surfaces of the Iron Wash 
fault (Area C, see Figure 13 for location) and b) view to the southeast of ~3 m wide fault 
core containing fault breccia, rotated fault blocks and multiple slip surfaces (Area B, see 
Figure 12 for location). 
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Figure 30. Multiple schematic cross-sections designed to illustrate fault architecture 
along strike. Cross-sections illustrate variation in geometry, width and multiple strands of 
faults that are part of the Iron Wash fault zone. These four examples are about 2-6 km 
apart and are based on field exposures of the fault zone and mapping of fault strands 
along strike. 
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Figure 31. Annotated field photo of large fault blocks within the fault core adjacent to 
fault related monocline. View to the southeast of the central part of the fault zone 
showing a relatively undeformed damage zone in the footwall and highly fractured 
damage zone in the hanging wall (see Figure 12 for location). 
 
 
 
 Evidence for the migration of fluids along the Iron Wash fault includes structures 

and features resulting from fluid-rock interactions and preserved mineralization within 

faults and fractures (e.g. Barton et al., 1995; Foxford et al., 1996; Evans et al., 1997). 

Evidence for fluid alteration and mineralization is observed along most of the length of 

the fault zone at different intensities and types of alteration products (Chan et al, 2000). 

These features reflect the type of fluids present, the chemistry and reactivity of the fluid 

and the rock involved, and the pressure-temperature regime at which the fluid-rock 

reactions occurred (e.g. Peaver et al., 1997; Chan et al., 2000; Gudmundsson et al., 2001).  
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 Bleached rocks along and adjacent to fractures are common where reducing fluids 

have moved along fractures and removed or 'bleached out' the iron oxide (or other oxide) 

staining from a volume of rock surrounding the fracture (Figure 32; Hawley, 1968; 

Foxford et al., 1996; Chan et al., 2000). Bleaching and oil staining are commonly both 

present within the same fracture systems (Figure 32), lending credence to the idea that 

bleaching here is related to oil migration in and along the fault zone. Bleached and 

unbleached fractures have a dominate orientation of ~310° which is similar to strike of 

the fault with a minor component of fractures striking more east-west (Figure 33a). 

Unbleached fractures also have a north-south striking fracture set and a east-west striking 

fracture set (Figure 33b). 

 Oil staining is found within fractures in numerous locations along the fault. This 

'dead' oil has lost all or most of the aromatic compounds and is present as a stain (Figure 

34) or as crystallized oil preserved in fractures (Figure 32). Oil is also found staining 

rocks within the fault core in various locations and is commonly cut by later episodes of 

faulting (Figure 34) or concentrated along fractures and cross-bedding (Figure 34). Oil-

stained fractures have a dominate strike of ~310° or generally parallel to strike of the 

fault, with a minor east-west striking component (Figure 33c). Based on cross-cutting 

relationships in the oil-stained rocks, it is clear that the majority of oil staining is older 

than the deformation associated with the formation of the Iron Wash fault. Evidence of 

this cross-cutting relationship is clear in areas where oil-stained sandstone with cross-

bedding of the Slickrock Member of the Entrada Formation is cut by later faulting and 

fracturing (Figure 34a, b). However, in several instances it is clear that oil migration 

occurred after deformation bands within the porous sandstone units had formed (Figure 
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34c). In others locations, oil appears to have been present at the time of formation of 

deformation bands because oil residue is incorporated into the cores of the deformation 

bands (Figure 34c) 

 

 
Figure 32. Annotated field photos of evidence for fluid migration within the fault zone. 
a) Bleached fractures and oil staining (indicated by arrows) within fractures located in the 
damage zone of the fault in the Earthy Member of the Entrada Formation, b) close-up 
view of box in Figure a, and c) bleaching halos around fractures in the lower Carmel 
Formation in a rippled bedding plane surface of a silty oolitic limestone. 
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Figure 33. Rose diagrams showing strike of fractures with different morphologies along 
the Iron Wash fault. Fracture data collected from Area B and projected in the northern 
hemisphere with 5° bins. a) Bleached fractures, b) unbleached fractures, c) oil-filled 
fractures. Note scale change in c. 
 
 
 
 Breccias in the fault zone commonly contain angular to sub-angular clasts of 

sandstone encased in a calcite-cemented sandstone, siltstone and cataclasite matrix 

(Figure 28). Clasts suspended in the breccia commonly show evidence for multiple 

generations of deformation as they are composed of sandstone that contains deformation 
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bands and is then incorporated into the fault core (Caine et al, 2010). These breccias are 

interpreted to be the result of formation of the brecciated fault rock and cementation by 

calcite- or CO2-bearing fluids producing a matrix of fine-grained calcite and cemented 

cataclasite (Caine et al., 2010).   

 

 
Figure 34. Annotated field photos of examples of evidence for fluid migration within the 
fault zone in Area C within a fault lens. a) View to the southeast of the fault lens with 
extensive oil staining within bedding cut by later faulting in the Slickrock Member of the 
Entrada Formation (see Figure 13 for location), b) close-up view of box in a, showing oil-
stained bedding cut by later faulting, and c) close-up view of box in a, showing 
deformation bands and oil staining concentrated in fractures. 
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X-Ray Diffraction Analysis of Fault-Related Rocks 

 X-Ray diffraction analysis was conducted on 15 samples to examine the 

mineralogy of the host rock and fault rocks. Host rock samples included porous 

sandstones of the Navajo Sandstone and the Slickrock and Earthy Members of the 

Entrada Formation to characterize any evidence of alteration of these formations (Figure 

35). All samples collected from host rock are composed almost exclusively of quartz 

(Figure 35). Analysis of one oil-stained sample of the Slickrock Member of the Entrada 

Formation indicated the presence of carbon (Figure 35). Unbleached samples of the 

Slickrock Member of the Entrada Formation contained hemitite while bleach samples 

were devoid of hematite and contained dolomite and kaolinite (Figure 35). One sample of 

the Navajo Formation and a bleached sample from the Slickrock Member of the Entrada 

Formation contained calcite as secondary minerals.  

 A sample transect with 4 samples within the fault core in a location with Navajo 

Formation in the footwall and upper Carmel Formation in the hangingwall was analyzed 

for mineralogy to determine any variation across the fault core (Figure 36). Samples were 

collected approximately every 12 cm across the fault core (Figure 36). The dominate fault 

zone  mineralogy is quartz and calcite (Figure 36). In the two samples closer to the 

footwall, dolomite is present (Figure 36). Clay content increases closer to the footwall as 

indicated by the presence of illite, muscovite and mica and a more intense clay peak in 

the diffractograms (Figure 36). We interpret increasing clay content as indicative of a 

more well-developed fault core resulting from incorporation of material derived from the 

hanging wall and footwall and altered by migration of fluids through the fault zone.   
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Figure 35. X-Ray diffraction analysis for host rocks and fault-related rocks. Annotated 
field photos showing sample locations from Areas B and C, diffractograms showing 
intensity in counts for 2Θ angles of diffraction, and interpreted mineralogy for each 
sample (some samples not pictured).	  
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Figure 36. X-Ray diffraction analysis for a sample transect across a fault gouge zone. 
Annotated field photos showing sample transect in Area B, diffractograms showing 
intensity in counts for 2Θ angles of diffraction, and interpreted mineralogy for each 
sample. 
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Petrographic Analysis of Fault Rocks 

 Petrographic analysis of 24 thin sections add insight into relative timing and types 

deformation mechanisms, evidence for fluid migration, and mineralization in and around 

the fault zone. Photomicrographs demonstrate many micro-textures and structures 

including intra-, inter- and transgranular microfractures and fault-related rocks such as 

cataclasite breccias. The host rocks are composed of fine to medium-grained well-sorted 

sandstones, with thinner siltstones, ooilitic and fossiliferous grainstones, lime mudstones 

and gypsum beds.     

 Cataclastic deformation bands are the most common microstructure identified in 

the fine to medium-grained porous sandstones and exhibit grain crushing of different 

intensities (Figure 37a; Antonellini and Aydin, 1994; Fossen et al., 2007; Rotevatn et al., 

2008). Within cataclastic band cores, well- to sub-rounded quartz grains are interpreted to 

have experienced grain crushing resulting in reduction in grain sizes (Figure 37a). We 

observe intense grain-size reduction from initial quartz grains with grain diameters of 

~0.2-0.6 mm down to <0.05 mm and suspension of these grains in a matrix of ultra-fine-

grained cataclastic material (clay size) and calcite cement (Figure 37 a and b). Cataclastic 

deformation bands are in places cut by later generations of fractures that are typically 

filled with calcite (Figure 37 a and b).      

 Two of the dominate deformation mechanisms observed within the field area are  

cataclastic deformation bands (Figure 37a) and breccias of the fault core (Figure 37b). 

Deformation bands are the dominate deformation structure in the porous sandstones of 

the Navajo Formation and the Slickrock Member of the Entrada Formation. They are 

interpreted to be the result of mechanical reduction in grain size as individual quartz  
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Figure 37. Photomicrographs of deformation structures in the Iron Wash fault zone. Left 
images are cross-polarized light, right images are plane-polarized light. a/b) Porous 
sandstone of the Navajo Formation showing cataclastic deformation bands and cross-
cutting filled fractures, c/d) fault breccia composed of material from the lower Carmel 
Formation and Navajo Sandstone within fault core containing quartz sandstone clasts 
supported in a calcite-cemented matrix and, e/f) fault breccia from within fault core with 
arrows showing different components of the fault core including clasts of sandstone, 
ooilitic grainstone, lime mudstone, and calcite-cemented cataclastic material from the 
lower Carmel Formation and Navajo Sandstone. 
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grains are crushed and porosity is reduced during slip along the deformation band 

(Antonellini and Aydin, 1994; Fossen et al., 2007; Rotevatn et al., 2008). Cataclastic 

deformation occurs away from the fault as isolated or coalesced clusters of deformation 

bands.  Highly developed zones of coalesced deformation bands are commonly the 

primary deformation structure of the fault core and accommodate the majority of slip on 

the fault (Figure 28).  

 Fault breccias and evidence for later cementation to preserve the breccia textures 

are seen in many locations along the fault (Figure 31). Fault breccias typically consist of 

sub-angular to sub-rounded clasts of porous sandstone suspended in a matrix of 

individual grains and cataclastic material and in many cases are cemented with calcite 

(Figure 37 c and d). Many of the clasts of the fault breccias consist of previously 

cataclastically deformed rock, which is evident by cataclastic deformation bands within 

clasts creating a cataclasite in breccia texture (Figure 37 c and d). Several examples of the 

incorporation of components of the hangingwall and footwall into the fault breccias are 

seen on both hand sample and in thin section. In places, fault breccias are composed of 

clasts of sandstone derived from the footwall and clasts of ooilitic limestone derived from 

the hanging wall (Figure 37 e and f). Many of the fault breccias are cemented with ultra-

fine-grained calcite containing cataclastic material and individual suspended grains 

(Figures 37 c, d, e, and f). Fault breccias result from the mechanical crushing of fault 

rocks to produce angular to sub-rounded clasts of rock that become suspended in a matrix 

of fine-grained sand and silt that is cemented by calcite to preserve the breccia texture 

(Figure 37). 
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 Oil staining within the fault zone is common and is most intense within the fault 

lens in the central segment of the fault zone (Figures 35 and 36). It is characterized in 

hand sample by black staining and occasional fetid odor of hydrocarbon present when 

fresh surfaces are exposed. In thin section, oil staining appears as amorphous opaque fill 

within pore space, in deformation bands, filling or partially filling fractures and as 

staining rims on calcite crystals (Figures 38 and 39). We differentiated oil from hematite 

staining, which is the other common opaque material in thin section, by the use of 

reflected light where oil appears black and lacks the red or rust colored rims that hematite 

commonly exhibits (Figure 38). 

 Hydrocarbon occupies most or all pore space within some samples (Figure 38b). 

Hematite-coated grains are commonly present in many of the samples containing oil 

staining (Figure 38e) and in some cases, oil and calcite seem to displace hematite and 

concentrate it in discrete bands within the rock (Figure 38b). Commonly in breccias and 

more deformed samples, oil and hematite are both present filling pore space or coating 

grains within the calcite matrix or in suspended clasts (Figure 38h). 

 Evidence for several fluid types are seen within the same fracture or fracture sets 

filling different areas of the fracture and/or contained within previously mineralized 

fractures. Most commonly, calcite mineralization and oil staining are seen co-located 

within the same fracture and occasionally with hematite also present (Figure 39). Oil 

staining is commonly contained within calcite crystals that have mineralized open 

fractures. In such cases, oil staining is not in contact with the fracture wall (Figure 39 a 

and b). In other cases, oil fill almost fills the entire fracture with little to no formation of 

calcite crystals (Figure 39 c and d). In places, oil staining lines the calcite crystal grain 
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boundaries (Figure 40). Microfractures are also seen to contain oil staining and calcite 

cement in fracture widths <10 µm (Figure 39 c and d). 

 

 
Figure 38. Photomicrographs of mineralization in the Iron Wash fault zone. Left images 
are cross-polarized light, middle images are plane-polarized light, right images are 
reflected light. a/b/c) Well-sorted sandstone of the Slickrock Member of the Entrada 
Formation, arrow shows oil staining and minor hematite staining is present, d/e/f) well-
sorted sandstone of the Slickrock Member of the Entrada Formation showing hematite-
coated grains throughout the sample and minor oil staining and, g/h/i) fault breccia 
composed of Slickrock and Earthy Members of the Entrada Formation showing calcite 
cemented matrix with oil staining and hematite and calcite cement. 
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Figure 39. Photomicrographs of fracture mineralization in the Iron Wash fault zone. Left 
images are cross-polarized light, right images are plane-polarized light, samples are 
oolitic grainstones of the lower Carmel Formation. a/b) Calcite mineralized fractures with 
arrows indicating oil staining confined within the calcite crystal matrix, c/d) calcite 
mineralized fractures containing oil staining arrows indicating micro-fractures containing 
mostly oil staining and minor calcite mineralization, and e/f) calcite mineralized fracture 
with calcite crystals on the fracture margins, oil staining contained within the calcite, and 
a fine-grained oil-stained calcite cemented cataclasite in the interior of the fracture. 



86 
	  

 
Figure 40. Photomicrographs of calcite growth and mineralization in fractures in the Iron 
Wash fault zone. Left images are cross-polarized light, right images are plane-polarized 
light, sample from the fault core with open mineralized fractures in Navajo Formaion. 
a/b) Open fracture lined with euhedral calcite crystals, inset box shows locations of c and 
d, c/d) euhedral calcite crystals showing locations of oil staining rings formed during 
crystal growth. 
 
 
 
 Evidence of multiple generations of fluid flow is found in several samples from 

the fault core. Calcite fracture fill is observed to have grown on the margins of an open 

fracture and encompasses an oil-filled inner fracture with a fracture core of oil-stained 

cataclastic material (Figure 39 e and f). The inner fracture fill is a calcite-cemented, oil-

stained matrix supported cataclasite containing survivor grains of calcite rock fragments 

(Figure 39 e and f). Euhedral calcite crystals that have grown on the margins of an open 
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fracture demonstrate multiple phases of calcite crystal growth and oil staining  as 

evidenced in Figure 40. Calcite crystals have oil bands that are interpreted to have been 

oil that stained the outer part of the crystal during early generations of crystal growth and 

was subsequently encased by additional calcite growth. By counting the number of oil-

stained bands in the crystal, it appears that these crystals record at least three cycles of 

calcite growth and oil wetting. This interpretation is based on the number of bands and 

does not imply that multiple episodes of fluids moved through the fracture, only that 

there were stages of crystal growth an oil staining (possibly during the same fluid event). 

 Deformation bands that have formed in the presence of oil staining are black in 

hand sample and appear to be "oiled" deformation bands (Figure 36). In the oil-stained 

porous sandstones where deformation bands have formed, it seems that the cataclastic 

textures formed after the oil staining, based on the apparent incorporation of oil stained 

material into the cataclastic material. In thin section oil can be seen staining the 

undeformed sandstones and is incorporated into the core of the cataclastic bands (Figure 

41 a and b). Within the deformation bands oil is seen as stained areas or zones of oil 

staining aligned with the deformation band (Figure 41 c and d). Oiled deformation bands 

are interpreted to be the result of dead-oil stained porous sandstone experiencing later 

formation of cataclastic textures.    

 The nature of fracture margins can provide some insight into how these fractures 

formed and timing of mineralization. Some fracture show complex boundaries where 

cataclasite and calcite-cemented grains create a very tortuous fracture boundary with a 

less distinct margin that is the edge of a fracture that is mineralized with large (~1-2 mm) 

calcite grains (Figure 42 a and b). Other fractures show distinct fracture margins with 
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very discrete boundaries that follow grain boundaries that in some cases and cut across 

grains in some cases, but overall create a sharp fracture boundary. Calcite mineralization 

is inside many fractures throughout the field area (Figure 42 c and d).   

 

 
Figure 41. Photomicrographs of oil-stained and mineralized deformation bands in the 
Iron Wash fault zone. Left images are cross-polarized light, right image is plane-
polarized light, samples are porous sandstones of the Slickrock Member of the Entrada 
Formation. a\b) Cataclastic deformation band within an oil-stained sample, the 
deformation band contains oil from the surrounding rock and calcite cementation, inset 
box shows locations of c and d, c\d) close-up of cataclastic material with oil staining 
surrounding the cataclastic core, the deformation band contains calcite and oil stain. 
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Figure 42. Photomicrographs of mineralized fractures and fracture margins in Iron Wash 
fault zone. Left images are cross-polarized light, right images are plane-polarized light. 
a/b) Fracture margin in Navajo Formation with cataclasite and calcite-cemented grains 
adjacent to large calcite crystals within the fracture, c/d) calcite mineralized fractures in 
oolitic grainstone in lower Carmel Formation with fracture margins that show fractures 
following grain boundaries and cutting grains. 
  
	  

ANALYSIS  

Fault Zone Behavior and Geomechanical Modeling   

 In previous sections of this study, we show that the Iron Wash fault is a complex 

zone of faults, fractures, and folds. We describe and characterize fault linkage structures 

along the fault and provide data on the internal strain accommodation within these 
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structures. We have described the architecture of the fault zone and the fault facies found 

as different rocks are juxtaposed. We provide evidence that the fault zone has 

experienced multiple types and generations of fluid movement resulting in mineralization 

and alteration along faults and fractures. Here, we synthesis these data from field 

observations and petrographic analysis and combine them with geophysical and 

petrophysical observations to develop three different types of fault models.  

 These models were developed for three purposes: 1) to recreate the geometry of 

the fault in the subsurface, 2) to predict fault zone behavior as a seal to fluids, and 3) to 

predict the geomechanical response of the fault zone in an imposed stress field and while 

increasing the effective stress on the fault. The goal of the geometric recreation is to 

reproduce a possible subsurface geometry of the fault zone and the composition and 

juxtaposition relationships of rocks that are faulted in the area. These modeled fault 

properties and lithologic characteristics are then used as input for models and used to 

make predictions about fault behavior with respect to fluid migration. Geomechanical 

models are subjected to an imposed stress field to predict the nature of failure along the 

fault and the formation of fracture networks. The models produced for this study are one 

of several realizations of what are likely several allowable interpretations of the data 

available and are presented to provide insight into how surface and subsurface data can 

be combined to provide insight into the complexity of the subsurface. 

Model Inputs and Design 

 Geometric recreation models incorporate data from field observations, subsurface 

geophysics and borehole data and geometrically restored formations that were eroded 
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from the field area. Oil and gas exploration well and drill hole data is compiled using the 

software package IHS Petra (www.ihs.com). This project uses the existing framework of 

a previous project developed by Barton (2011) at Utah State University that was focused 

on restoration of the Navajo Formation. Formation tops are added to the project to 

complete the stratigraphic column for the wells in the area, using formation top data from 

Utah Division Oil, Gas and Mining (www.oilgas.ogm.utah.gov), by investigating 

individual well reports for additional tops data, and by picking tops from wireline logs. 

This project used a total of 675 drillholes within the database and utilized a total of 328 

drillholes located adjacent to the field area (Appendix A). A type log for the area is 

produced to act as a guideline for other picks in the area (Figure 43). Gridding of the 

formation tops is performed using various gridding algorithms: highly connected features 

method, disconnected features method, least squares method, linear projection method, 

and minimum curvature method (see Tearpock and Bischke, 2003 for description of 

methods). Final versions of the structural contour maps are produced using a minimum 

curvature gridding method because it produced the best results based on the density of the 

data being gridded. Minimum curvature gridding produces smoothed grids that were 

interpreted to be most representative of the formations at depth and it worked well in an 

area with only one major fault.  

Subsurface Contouring 

 A structure contour map of the top of the Navajo Formation, the primary unit of 

interest in this study as an analog to a potential CO2 reservoir (Figure 44), shows that top 

of the Navajo Sandstone defines a broad, low amplitude (~300 m high) anticline that has  
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Figure 43. Generalized type log for the San Rafael Desert from exploration drill-hole 
API# 43-015-10019. Left track shows a gamma-ray curve and center track shows 
calculated porosity curve. Annotations show generalized lithology and formations tops 
from the Morrison to the top of the Paradox Formation (data from Utah Division of Oil, 
Gas, and Mining, http://oilgas.ogm.utah.gov). 
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a fold axis oriented ~300° with a plunge <5° (Figure 44). The geometry of this anticline 

and the folded sedimentary package is seen in a well correlation cross-section along with 

the location of the Iron Wash fault (Figure 45). The northwest-trending regional anticline 

has been referred to as the Nequoia Arch (Heylmun, 1964; Baars, 1987) and a smaller 

anticline located in the vicinity of the Iron Wash fault is referred to as the Iron Wash 

Arch (Figure 46; Heylmun, 1964). The Iron Wash fault is located on the northeastern 

flank of this anticline (Figure 44) and appears to offset units at least 800 m deep based on 

the available borehole data adjacent to the fault (Figure 45). Although no boreholes 

adjacent to the Nequoia Arch penetrate the crystalline basement, based on the deepest 

boreholes in the area, it appears that basement would be no more that 300-500 m deeper 

than the maximum depth of boreholes in the Nequoia Arch area. Thickness of the Navajo 

Sandstone varies between 150-230 m within the gridded area and is as deep as 1100 m as 

measured from the surface. Restoration of the Navajo Sandstone where it is eroded above 

the San Rafael Swell was performed by using elevations of stratigraphically deeper units 

and restoring elevations of the Navajo Sandstone based on the thickness of the rock 

column above the units that have not been eroded (Figure 44). 

 The Nequoia Arch was a target of oil and gas exploration in the 1950's and 1960's 

(Figure 46) and is parallel to the structural trend of the Uncompahgre Uplift to the north 

and the Four Corners lineament to the south (Heylmun, 1964; Baars, 1987). Altered rocks 

within the San Rafael Swell have been well documented due to their importance in 

mineral exploration and economic ore deposits (Hawley et al., 1968). Extensive alteration 

of the Moenkopi Formation was identified within the San Rafael Desert and into the San 
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Rafael Swell (Hawley et al., 1968). The structural high of the Moenkopi Formation is co-

located with the extent of bleaching in this unit (Figure 47). 

 

 
Figure 44. Structure contour map of the top of the Navajo Formation. Data is contoured 
in true vertical depth and gridded from formation top data. Within the San Rafael Swell 
contours are projected into the air using estimated thickness of eroded units (data from 
Utah Division of Oil, Gas, and Mining, http://oilgas.ogm.utah.gov). Blue line shows 
location of cross section in Figure 45. 
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Figure 45. Well log correlation across the Nequoia Arch. Structural relief of the arch is 
~500 m. Location of cross section shown in Figure 44 (data from Utah Division of Oil, 
Gas, and Mining, http://oilgas.ogm.utah.gov). 
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Figure 46. Oil and gas exploration map of the San Rafael Swell and Desert showing the 
Nequoia Arch (modified from Heylmun, 1964; Baars, 1987). 
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Figure 47. Structure contour map of the top of the Moenkopi Formation outline of the 
approximate extent of bleaching in the Moenkopi Formation. Data is contoured in true 
vertical depth gridded from formation top data, blue polygon shows extent of bleaching 
in the Moenkopi Formation and is approximated by dashes where the unit is eroded. 
Within the San Rafael Swell contours are projected into the air using estimated thickness 
of eroded units (modified from Hawley et al., 1968; data from Utah Division of Oil, Gas, 
and Mining, http://oilgas.ogm.utah.gov). 
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Fault Permeability Modeling 

   Gridded surfaces derived from well and borehole data were transferred to 

TrapTester™, a three-dimensional modeling program designed specifically for modeling 

characteristics of fault zones and fluid-fault interactions (www.badleys.co.uk).  A simple 

model of the Iron Wash fault was created by projecting the fault surface to depth by 

creating a tri-mesh surface at a dip of ~65° (Figure 48). A shallower dip was used in the 

fault model than the average dip of ~75° measured at the surface because we assume the 

fault has a slightly listric geometry at depth. Key stratigraphic surfaces of the tops of the 

Morrison Formation, Navajo Formation and Kayenta Formation were input into the 

model from gridded surfaces derived from well and borehole data to produce a model of 

the rocks cut by the fault (Figure 48). Wireline log data were tied to the gridded surfaces 

at key intervals and additional units were interpolated between the gridded surfaces. This 

simplification step in the modeling process enables us to model the entire rock column 

without the need to input gridded surfaces for each horizon. A gamma ray curve from the 

type log (Figure 43) was used to construct a shale volume curve, a calculation of the total 

shale volume in the formation as a percentage of the total rock volume. Many of the fault 

models used an existing framework of components that were modified and re-configured 

to produce geometries that represent the Iron Wash fault.  

 To simplify the modeling process the Iron Wash fault is initially modeled as a 

single fault surface with no additional structural features as observed in the field (Figure 

48). This simple model produces a model similar to what may be imaged in a seismic 

expression of the fault. For this fault model, rock types and shale volume were input into 

the model to produce shale juxtaposition diagrams that show the lithologic juxtaposition 
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along the fault zone for a range of values for throw. For the Iron Wash fault there are 

large proportions of shale in the upper part of the sequence and dominantly sandstone in 

the lower portions of the sequence (Figures 43 and 49). Based on the units present and 

the throw of the fault, there is dominantly shale-shale juxtaposition in the upper part of 

the sequence and sand-shale and sand-sand juxtaposition in the lower part of the 

sequence (Figure 49).  

 

 
Figure 48. Overview of Iron Wash fault model design in TrapTester. a/b) Perspective 
views of fault model showing borehole locations with marker horizons and top of the 
Navajo gridded horizon, c) perspective view of the fault model showing the calculated 
volume of shale (Vshale)as a percentage projected on the fault plane and several marker 
horizons (see text for description of method), d) throw profile of the fault in the model. 
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Figure 49. Triangle diagram of shale juxtaposition for the Iron Wash fault model. Shale 
volume calculated from Vshale log for fault throw between 0-700 m (see text for 
description of method). 
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 From these model inputs we can analyze the seal capacity of the fault zone using 

proxy-properties and empirical correlations with other faults (Manzocchi et al., 1999). 

Shale gouge ratio (SGR) is a proxy-property based on the proportion of phyllosilicate 

displaced past any point on the fault (e.g. Yielding et al., 1997; Manzocchi et al., 1999). 

The SGR is used in combination with empirical databases to assess the ability of a fault 

to act as a seal and SGRs of ~15-20% have been suggested as a minimum value to 

produce a sealing fault membrane (Watts, 1987; Manzocchi et al., 1999). The SGR for 

the Iron Wash fault is calculated based on Skerlec (1996) using Eqn. 1, and is calculated 

for a range of values of fault throw to produce a SGR plot to show areas of the fault 

where seal integrity may be low due to low fault gouge development (Figure 50). Well-

developed fault gouge is commonly associated with sealing faults in the subsurface, with 

a common cutoff for fault seal being SGR > 30%, a partial sealing behavior with 

15%<SGR<30% and dominantly non-sealing faults with SGR<15% (Skerlec, 1996). In 

the modeled fault SRG plot shown in Figure 50, we can see that in areas where the thick 

sandstone sequences dominate and only thin shale sequences are present, very low shale 

gouge regions are present.   

  

Shale  gouge  ratio   SGR =   
   Zone  thickness   x   Zone  clay  fraction

Fault  throw   x  100%         1  

  

 Lindsey et al. (1993) developed a methodology for using shale smear factor (SSF) 

to predict the likelihood of continuity of shale smear along the fault. This is another 

proxy-property of the fault zone based on the proportion of the fault throw to the  
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Figure 50. Triangle diagram of shale gouge ratio for the Iron Wash fault model. Shale 
gouge ratio calculated from Vshale log for fault throw between 0-700 m (see text for 
description and method). 
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thickness of shale in the sequence. The SSF is used in a similar manner as SGR to predict 

the sealing behavior of faults where lower values of SSF result in more complete shale 

smear along the fault and therefore higher sealing potential. 

 The SSF is calculated for the Iron Wash fault (Figure 51) based on Lindsey et al. 

(1993) using Eqn. 2 and is calculated for a range of values for fault throw. In the modeled 

fault SSF plot, high in the sequence, where the rocks are dominantly shale, the SSF is low 

(<3.0) and the fault is predicted to behave as a seal. Lower in the sequence, where 

sandstone reservoirs are present, we calculate 0.3<SSF<6.0 and predict a partial sealing 

behavior. Hence, also with this method there is a substantial part of the fault that is not 

predicted to seal with SSF>6.0.  

  

Shale  smear  factor   SSF =   
Fault  throw

Shale  layer  thickness                                                        2  

 

 Based on the plots for SGR and SSF, it appears that the fault would most likely 

behave as a seal where the fault juxtaposes units above the Earthy Member of the Entrada 

Formation, where the sequence is dominated by units with >50% shale (Antonellini and 

Aydin, 1994; Yielding et al., 1997; Manzocchi et al., 1999; Shipton et al., 2002). In the 

middle part of the stratigraphic sequence, there is transition zone from dominantly shale 

units to dominantly sandstone units (Figure 51). In this transition zone, the fault is 

predicted to behave as a partial seal in the sand-shale sequence of the Slickrock Member 

of the Entrada Formation and the Carmel Formation. Below the transition, where the fault  
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Figure 51. Triangle diagram of shale smear factor for the Iron Wash fault model. Shale 
smear factor calculated from Vshale log for fault throw between 0-700 m (see text for 
description and method). 
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juxtaposes rocks that are generally <50% shale, the fault is not predicted to act as a seal 

(Figure 51). 

 From the calculated values determined for SGR, fault zone permeability is 

calculated for the Iron Wash fault (Figure 52) using Eqn. 3 and the method determined by 

Manzocchi et al. (1999) . Modeled values for permeability are based on the SGR plots 

and empirical values for the fault permeability based on the amount of shale gouge 

present. The lower part of the sequence in the fault zone with greater sandstone content 

and higher initial permeability has higher modeled fault zone permeability, generally 

>0.04 mD. In the upper part of the sequence, the fault has low modeled permeability, 

generally <0.01 mD. These values provide a quantitative measure of the sealing behavior 

of the fault based on the more qualitative SGR measurement. Recent work suggests that 

for a given porosity, permeability is higher in host rock than in fault core slip zones and 

slip surfaces, and that as the amount of deformation increases, permeability decreases 

(Antonellini and Aydin, 1994; Shipton et al., 2002; Torabi et al., 2013).   

    

Average  Permeability = log k = 4SGR−  
1
4 log Fault  throw 1− SGR !                              3  

 

 Shale gouge ratio has been related to across fault pressure difference (AFPD) by 

using empirical databases that are used to calibrate the relationship between fault-seal 

attributes and capillary fluid properties (Bretan et al., 2003). The calibration of SGR 

against AFPD used robust datasets but each fault is geologically unique and therefore is 

only an predication of the possible fault zone capillary entry pressure (FZP), also  
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Figure 52. Triangle diagram of fault zone permeability for the Iron Wash fault model. 
Fault zone permeability diagram calculated from Vshale log and shale gouge ratio for fault 
throw between 0-700 m (see text for description and method). 
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commonly referred to as across fault pressure difference (AFPD). The FZP is strongly 

dependent on which fluid types are juxtaposed by the fault (e.g., oil against water or gas 

against water), the depth of burial, and the estimate of the clay content of the fault zone 

(Bretan et al., 2003). Capillary entry pressure for supercritical CO2, assuming a density of 

550 kg/m3, is calculated for the Iron Wash fault (Figure 53) using the method determined 

by Breten et al. (2003) using Eqn. 4. The value for C in Eqn. 4 is a depth-dependent term 

that was set equal to 0.5 for all calculations in this study as all burial depths are <3.0 km. 

These calculations assume that as pressure builds up on one side of the fault and that the 

dominate mechanism of seal bypass is through capillary action through the fault zone. 

Modeled FZP for the faulted units of the Slickrock Member of the Entrada Formation 

generally have low entry pressure of <2 MPa (Figure 53). Stratigraphically higher, the 

modeled FZP for the faulted units including the Earthy Member of the Entrada Formation 

generally have high entry pressure of >8 MPa (Figure 53).  

  

!"#$%  !"#$  !"#$%%"&'  !"#$$%"#   !"# =   10
!"#
!" !!                                              4  

 

 The potential hydrocarbon column height (H) is the height of a column of fluid or 

gas that can be supported against a fault before the capillary entry pressure is exceeded 

and the fault no longer acts as a seal (Bretan et al., 2003). Empirical relationships 

between SGR and AFPD are used to predict the hydrocarbon column height that the fault 

may be able to support at different levels within the fault units (Childs et al., 2002; Bretan 

et al., 2003). The value H is expressed as the maximum column height of a fluid with a  
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Figure 53. Triangle diagram of fault zone capillary entry pressure for the Iron Wash fault 
model. Fault zone capillary entry pressure calculated from Vshale log and shale gouge ratio 
for fault throw between 0-700 m (see text for description and method). 
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known density that is buoyantly driven to float above a water-saturated reservoir. The 

model incorporates a fault with calculated proxy-properties (SGR) and a calculated fault 

capillary entry pressure (AFPD). Potential CO2 column height is calculated for the Iron 

Wash fault using the same methodology developed for prediction of hydrocarbon column 

heights (Jennings, 1987; Bretan et al., 2003, Bretan et al., 2011) using Eqn. 5. Column 

height is calculated using FZP which was previously calculated, ρw is the pore-water 

density (1000 kg/m3), ρh is the hydrocarbon density for which we substitute supercritical 

CO2 density in our model (550 kg/m3), and g is gravitational acceleration (9.81 m/s2) 

(Bretan et al., 2003; Bretan et al., 2011). The maximum column height is a result of the 

buoyancy driven effect of a lower density fluid (like CO2 or oil) with respect to the water 

or brine in the reservoir. The column height is a maximum height at any point along the 

fault zone and can be used in conjunction subsurface fault mapping to predict when a 

leak point along strike of the fault might be predicted. The predicted maximum CO2 

column height is >60 m for most areas of the Iron Wash fault where significant volumes 

of shale are predicted in the fault zone (Figure 54). Where the volume of shale gouge 

predicted is low, the maximum CO2 column height is predicted to be only 10-30 m 

(Figure 54).  

  

!"#$%  !"#$%&  ℎ!"#ℎ!   ! =
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                                            (5) 

 

 The methodology for using shale gouge ratio in the calculation of FZP and fluid 

column height was initially developed to predict these properties in systems where the  
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Figure 54. Triangle diagram of predicted maximum CO2 column height for the Iron 
Wash fault model. Predicted maximum CO2 column height diagram calculated from fault 
zone capillary entry pressure and assuming a density of CO2 = 550 kg/m3 for fault throw 
between 0-700 m (see text for description). 
 



111 
	  

dominate fluids are hydrocarbon and brine. It has been recently applied to systems where 

CO2 is injected resulting in a CO2-brine system (Bretan et al., 2011), but some 

uncertainty remains in this new application of the method. The calculation of capillary 

entry pressure is dependent on the wetting angles of the fluids in the system and Eqn. 4 

assumes a wetting angle of zero in the oil-water system (Bretan et al., 2003). However, 

because the wetting angle in a CO2-water phase may range as high as 60° at pressures of 

10 MPa, the predicted capillary entry pressure and column heights would be reduced by a 

factor of 50% (Bretan et al., 2011). Additionally, the interfacial tension between two 

phases in an aquifer, such as in a system with CO2 and brine, will influence the resulting 

capillary entry pressure and is a pressure-temperature dependent relationship (Torabi et 

al., 2013). These factors has not been included in the calculations in this study as this will 

introduce model complexities that our data cannot address or test. Because the process of 

prediction of column heights is dependent on the density of the fluid, an understanding of 

the pressure and temperature regime becomes much more important when dealing with a 

supercritical fluid such as CO2 (Antonellini and Aydin, 1994; Yielding et al., 1997; 

Manzocchi et al., 1999; Shipton et al., 2002). 

Geomechanical Models 

 We calculate likelihood of fault failure in the subsurface as the pressure would be 

increased on the fault surface, as would be expected in the case where fluids, such as 

CO2, were being injected against one side of the fault surface. To do this, the basic model 

has a state of stress consistent with the general state of stress in the Colorado Plateau 

stress field (Figure 55; Patton and Zandt, 1991; Flesch and Kreemer, 2010). Stress  
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Figure 55. Stress field  map of eastern Utah and western Colorado. Dashed line 
approximates the transition zone between the Colorado Plateau stress field dominated by 
north-northeast extension and the Basin and Range stress field dominated by east-west 
extension (Patton and Zandt, 1991; Flesch and Kreemer, 2010). Red box indicates 
location of the Iron Wash fault field area. 
 
 

orientations were determined from the world stress map project (www.world-stress-

map.org) and stress magnitudes were calculated assuming that the crust is at a critically 

stressed state (e.g. Barton et al., 1995). Stress notation used here is Sv > SHmax > Shmin 

where Sv is the principal stress and is assumed to be vertical and SHmax and Shmin are the 

maximum and minimum horizontal stresses, respectively. Vertical stress is assumed to be 

the lithostatic gradient of 24 MPa/km, the minimum horizontal stress is calculated based 

on Anderson (1951) as 15 MPa/km using Eqn. 6 by assuming a Poisson's ratio, υ = 0.25. 

The maximum horizontal stress, SHmax, is assumed to be 18 MPa/km, or slightly less than 
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the mean stress, however, because we were interested in the differential stress for all 

cases, this value was not important in the modeling process. Models are produced 

assuming both a cohesionless material and a material with a cohesion of 5 MPa and with 

a Coulomb failure envelope defined by a coefficient of internal friction, µ, of 0.60 and 

0.4. The pore fluid pressure gradient is assumed to be 10 MPa/km in the nominal state 

and is varied to understand the influence of an increase in pore pressure on predicted 

failure of the materials. 

  

!!!"# =
!

1− ! !! −   !" + !"                                               6  

 

 We show geomechanical models of fault failure tendency contoured with the 

dilation tendency (the tendency of a fracture to open as a mode 1 fractures). We conclude 

that in all cases modeled for cohesionless faults, rocks with a coefficient of internal 

friction of µ = 0.4 are predicted to be in failure and additional fault orientations are 

predicted to fail as pore pressure increases (Figure 56). Model results show that with 

increasing depth, no failure is predicted based on a constant pore pressure and µ = 0.6 

(Figures 56a and b). As pore pressure is increased and depth is held constant, failure is 

predicted in about half of the fault orientations with an increase in pore pressure of 2 

MPa/km. As pore pressure is increased to 15 MPa/km, equal to the minimum horizontal 

stress, the majority of fractures are predicted to fail (Figure 56d). The second model is 

produced for a material cohesion of 5 MPa predicts no failure at pore pressures up to 12 

MPa/km for rocks with µ = 0.4 or 0.6 (Figures 57a and b). As pore pressure is increased  
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Figure 56. Geomechanical plots with components used in predicting fault failure along 
the Iron Wash fault for cohesionless faults. Plots each display the principal stresses and 
pore fluid pressure plotted with depth, stereonets with poles to faults and horizontal 
stresses, and Mohr-Coulomb failure diagrams. Models are for a cohesionless material 
with an internal coefficient of friction of µ = 0.6 and µ = 0.4. Color contours are dilation 
tendency. a) 1000 m depth and 10 MPa/km pore pressure gradient, b) 2000 m depth and 
10 MPa/km pore pressure gradient, c) 2000 m depth and 12 MPa/km pore pressure 
gradient, and d) 2000 m depth and 15 MPa/km pore pressure gradient. See text for 
discussion. 



115 
	  

 
Figure 57. Geomechanical plots with components used in predicting fault failure along 
the Iron Wash fault for faults with cohesion of 5 MPa. Plots each display the principal 
stresses and pore fluid pressure plotted with depth, stereonets with poles to faults and 
horizontal stresses, and Mohr-Coulomb failure diagrams. Models are for a material with a 
cohesion of 5 MPa and with an internal coefficient of friction of µ = 0.6 and µ = 0.4. 
Color contours are dilation tendency. a) 2000 m depth and 10 MPa/km pore pressure 
gradient, b) 2000 m depth and 12 MPa/km pore pressure gradient, c) 2000 m depth and 
15 MPa/km pore pressure gradient, d) 2000 m depth and 18 MPa/km pore pressure 
gradient. See text for discussion.      
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to 15 MPa/km, rocks with µ = 0.4 are predicted to fail and rocks with µ = 0.6 approach 

the failure envelope but are not predicted to fail. With a pore pressure of 18 MPa/km, 

equal to the maximum horizontal principal stress, failure is predicted in most of the fault 

orientations for all values of  µ. 

 DISCUSSION 

 The Iron Wash fault study area is an exposed analog to potentially targeted CO2 

injection reservoirs and top-seals where faults are present and faults may represent 

potential leakage and migration pathways for fluids. Our case study is an exposed analog 

of faulted reservoir-caprock systems in the form of structural intersection, fault relays, 

fault-related folds, fault lenses and internal fault architecture. The goal of this project was 

to study a natural analog of a potential injection target for geologic storage of CO2 in the 

subsurface. The project focused on analogous reservoir-seal units that are present within 

the Nequoia Arch and adjacent to the larger San Rafael monocline, both of which are 

analogous to typical structural targets for production of hydrocarbons and injection of 

CO2 when found in the subsurface. The study focused around the Iron Wash fault, a ~25 

km long normal fault with ~120 m of throw that has faulted along the axis of the Nequoia 

Arch and intersects the flank of the San Rafael monocline. The fault represent a potential 

seal bypass mechanism for both the lateral and vertical migration of fluids out of the 

Nequoia Arch and the San Rafael monocline. 

 We combine field observations and exploration drill hole wireline data in a model 

the fault geometry, sealing behavior and frictional strength to undertake a comprehensive 

analysis of the Iron Wash fault zone. These results are discussed in the context of an 
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exposed and modeled analog to faults that could potentially (and will most likely) be 

encountered during the planning and characterization stages of a potential CO2 

sequestration project.  First we discuss field data and observations on the geometry and 

architecture of the Iron Wash fault zone. Evidence shows that this is a segmented fault 

zone surrounded by a volume of deformed rock described as inner and outer damage 

zones. The fault provides evidence for the migration of fluids along the fault and 

fractures and we discuss types of fluid movement and implications for multiple phases of 

fluid movement. The focus is on architectural components of the fault zone including 

fault relays and lenses as potential leakage points in the fault zone. By combining field 

data with subsurface data from drill holes in the area, we have undertaken geometric 

reconstructions of the fault zone and use this model in predictions about fault zone 

behavior and in discussions of fault sealing ability for fluids injected within a reservoir 

containing a fault. Finally, we discuss results from our modeling of the geomechanical 

implications of injection of fluids and changing pressure conditions surrounding a fault 

zone.   

Fault Architecture, Facies and Damage Zone   

 The Iron Wash fault zone shows examples of both hard-linked and soft-linked 

fault relay structures. These structures are generally more common in the northwestern 

segments of the Iron Wash fault (Figure 58). Both the hard and soft-linked relay zones 

are unique in their geometry, orientation, linkage style and internal deformation (Figure 

59). The fault and fracture development in the soft-linked relay zone appears to be 

controlled by a localized three dimensional strain field resulting from the stress influence  
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Figure 58. Summary of the Iron Wash fault zone with location of major structural 
components and location of areas with evidence for fluid migration. Columns show fault 
throw (from Figure 18), strain data (from Figures 15, 16 and 22) interpreted as the 
principal strain directions, and the observed structural and evidence for fluid-related 
alteration and mineralization along fault zone.  
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Figure 59. Summary of the two fault relay systems studied at the Iron Wash fault zone. 
 
 

of each of the primary slip surfaces surrounding the relay zone (Figure 59). Fracture 

orientations within the relay zones differ from those found outside of relay zones in the 

damage zone of the Iron Wash fault (Figure 59). Increased fracture intensities and 

different orientations is qualitatively believed to open better potential pathways for fluids 

to migrate through relay zones and fault lenses and is supported by observed fluid-related 

features co-located with structural complexities of the fault zone (Figure 58). Because the 

faults each have no measureable offset away from the relay zone, we would predict no 
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fault seal beyond the fault tips and therefore no fault seal across the soft-linked relay 

laterally. Contrary, in the case of the hard-linked relay which has direct linkage of the 

faults, we would expect at least some degree of fault seal. 

 Results from this study support the idea that fault damage zones are asymmetric, 

being wider in the hanging wall than in the footwall, but demonstrate that this is not 

always the case, as seen in wider damage zones in the footwall near fault tips and within 

relay zones. The implications for wider damage zones on one side of the fault are that 

during CO2 injection projects, a higher risk factor for leakage of fluids upwards along the 

fault zone could be assigned to fluids encountering a fault zone from the hanging wall 

side. We would expect that upwards migration along fracture networks or caprock failure 

due to fracturing may be more likely in the hanging wall then when compared to the 

footwall. This may also be helpful when planning injection sites or monitoring locations 

as planners would likely need to avoid these features and would need to allow for a wider 

stand-off spacing on the hanging wall of a fault than the footwall.   

 Alteration, mineralization and preservation of oil staining within fractures and 

joints in the fault zone have been used as indicate past migration of fluids (e.g. CO2, 

brine, hydrocarbons) through fault and fracture networks. Observations about the size and 

intensity of the damage zone of the Iron Wash fault help to constrain the distribution of 

fracture networks associated with the fault. More detailed investigations of relay zones 

and fault lenses has yielded insight into formation of isolated fracture networks unique to 

areas with relay zones as well as concentration of mineralization and alteration within 

these areas. 
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 The displacement-thickness ratios measured for the Iron Wash fault zone conform 

well with previously established relationships (Figure 19; Robertson, 1983; Hull, 1988; 

Evans, 1990; Shipton et al., 2006; Childs et al., 2009). Fault cores may indeed thicken 

with displacement (e.g. Evans, 1990; Shipton et al., 2006), but overall fault zone 

thickness is a function of the number of fractures and fault and is therefore dependent on 

where is it measured along the fault zone in relationship to the nature of the fault (i.e. at 

relay zones or near dip changes in the bedding being faulted) (Evans, 1990; Shipton et al., 

2006). We suggest that the D:T ratio for specific regions of the Iron Wash fault lies on 

the upper end of the observed data from previous studies, meaning that the fault zone has 

greater thickness than expected based on displacement. This is observed in two areas of 

the fault zone: 1) at the intersection of the Iron Wash fault and the San Rafael monocline 

and 2) at fault tips located near relay zones (Figure 19). We suggest that these zones of 

decreased D:T ratio are present due to increased structural complexity and the 

distribution of strain as the fault loses throw, respectively. Our results support previous 

conclusions that when D:T relationships are used as tools to predict fault thickness based 

solely on fault displacement, significant uncertainty in accurate prediction of the 

geometry and thickness of the damage zone still remains. This study suggests that this 

uncertainty is magnified when additional structural complexities are present, such as the 

at fault tips and/or within fault relay zones.   

 Fault facies are interpreted to be the result of different expressions of local 

structural setting, mechanical characteristics of the hanging wall and footwall, the amount 

of slip, and the proportion of strain accommodated by the fault core and fault zone 

(Braathen et al., 2009). Fault facies have implications on the sealing nature of the fault 
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and can be used to identify potential leakage points for fluids in the fault (e.g. Antonellini 

and Aydin, 1994; Shipton and Cowie, 2001; Shipton et al., 2004). Fault cores that are 

composed of coalesced deformation bands are common where the fault juxtaposes porous 

sandstones where cataclastic grain crushing and deformation band slip are the dominate 

deformation mechanisms. These deformation bands reduce the permeability of the 

sandstone drastically (e.g. Antonellini and Aydin, 1994; Shipton et al., 2002; Fossen et al. 

2007; Rotevatn et al., 2013) and therefore a well developed and laterally continuous fault 

core may behave as a baffle or barrier to fluid migration (Antonellini and Aydin, 1994; 

Shipton et al., 2002; Fossen et al. 2007; Rotevatn et al., 2013; Torabi et al., 2013). Areas 

where the fault core contains a well-developed fault gouge and clay smear are where the 

fault is likely to be a seal to fluid migration (e.g. Jennings, 1987; Watts, 1987; Lindsey et 

al., 1993; Skerlec, 1996; Yielding et al., 1997; Manzocchi et al., 1999; Bretan et al., 

2003). 

 We describe 8 fault facies along the Iron Wash fault zone and estimate percentage 

of shale content based on field sampling and examination, petrographic and XRD 

analysis (Figure 60). Fault facies in the field are linked to the model results of shale-

gouge development along the fault zone and then ranked in terms of their potential seal 

effectiveness using cutoffs for SGR described in previous sections (Figure 60). We define 

shale gouge ratio and relate it to facies observed in the field to use as a guideline to 

understanding and relating modeling results to field observations. We do not take into 

account the amount of throw for each of these facies as the purpose of this exercise was 

to simply relate fault facies observed in the field to modeled values for SGR and seal 

effectiveness.   
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Figure 60. Summary of fault facies observed along the Iron Wash fault zone with 
interpreted shale gouge ratio and seal effectiveness (see text for discussion and 
description of shale gouge ratio calculations). 
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 Fault and fracture networks, including those associated with fault damage zones, 

represent the locations of potential leakage and fluid migration pathways through top-

seals intended to contain injected fluids within target reservoirs. Because these features 

are difficult to predict in the subsurface in terms of both their geometry and their 

hydraulic properties, it is difficult to plan for how these may impact any injection 

projects. Damage zones are typically below the ability of modern seismic reflection 

profiling images to detect. Therefore field analogs are critical to characterize hydraulic 

structure, fault facies, and the geometry, intensity and thickness of damage zones. The 

numerous small-throw faults (<5 m) contained within relay zones and adjacent to the 

principal slip surface have an associated damage zone and therefore is a potential leakage 

pathway. 

 Our data show that fault relays and fault lenses are another pathway for leakage of 

fluids across or along fault zones. Fault relay zones, specifically ones that are soft-linked 

and where there is no through-going fault represent a major risk when assessing seal 

behavior for a fault zone. Each of the individual faults on a relay system may behave as a 

seal, however, because there is a lateral ramp connecting the hanging wall and footwall, 

no fault sealing mechanisms are in place such as shale gouge. We show along with others 

(Peacock and Sanderson, 1994; Walsh et al., 1999; Bastesen and Rotevatn, 2012; Fachri 

et al., 2013) that relay zones are areas of increased faulting and fracturing, which may 

further enhance the lateral permeability of any sealing rocks in the relay and allow for 

leakage of fluids through what would otherwise be a lateral seal. Similarly, fault cores 

with very wide zones of fracturing, rotated fault blocks, or fault lenses are more likely to 

leak due to increased potential leakage pathways within and surrounding the fault zone. 
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Flow could however also be baffled by deformation bands specifically in porous 

sandstones (Rotevatn et al., 2013). 

Strain Analysis 

 One possible interpretation of the strain analysis is that the eastern segments of 

the fault (Figure 6, Areas C and D) formed in the Colorado Plateau stress field and the 

western segments (Figure 6, Areas A and B) of the fault have formed in the transitional 

stress zone between the Basin & Range stress field and the Colorado Plateau stress field 

(Figures 55 and 58; Patton and Zandt, 1991; Flesch and Kreemer, 2010). Another 

possible interpretation is that the difference in strain field along strike is a result of the 

structural intersection of the northwest-striking Iron Wash fault with the north-northeast 

trending San Rafael monocline.  

 We believe that the fault reflects the complexities of having formed in multiple 

strain fields in its structure and geometry (Reches, 1978; Aydin and Reches, 1982; 

Krantz, 1988, 1989). Structural components of the fault zone were compiled for the trace 

of the fault along strike (Figure 58) and show that as the fault begins to lie within the 

Colorado Plateau stress field the relative increased structural complexity of the fault 

increases (Figure 58; Patton and Zandt, 1991; Flesch and Kreemer, 2010). Conversely, in 

the eastern segments of the fault there is lower relative structural complexity of the fault 

zone (Figure 58). Fluid-related aspects of the fault zone such as mineralization, bleaching 

and alteration of faults and fractures were compiled for the trace of the fault along strike 

(Figure 58) and show very similar relationships between the complexity of the fluid-

related structures and the position relative to the stress field. Many of the structural 
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components of the fault zone coincide with fluid-related components, indicating that as 

fault complexity increases the fault is less likely to act as a seal and that this will be 

observed as evidence for fluids and mineralization in the fault zone (Figure 58).     

Implications for CO2 Injection 

 As CO2 is injected into subsurface reservoirs as a supercritical fluid it behaves as 

a buoyant fluid and migrates laterally and upwards until it encounters a top seal, lateral 

seal or permeability change (Figure 61; White et al., 2003; Arts et al., 2008). Top-seals 

are a low-permeability and high capillary entry pressure cap rock above the injection 

target. Lateral seals can be faults and stratigraphic pinch-outs and permeability 

anisotropies are lateral or vertical changes in the permeability structure from sedimentary 

facies changes, or altered or mineralized intervals in the reservoir. These lateral seals 

have been modeled for the injection of CO2 into a reservoir containing a modeled fault for 

both a high-permeability fault and a low-permeability fault and has been shown to 

produce very different results based on the characteristics of the fault (Figure 62; Chang 

and Bryant, 2007).  

 We present model results on the predicted development of fault seal membranes 

with standard practices to calculate shale gouge ratio and shale smear factor (Figures 50 

and 51). We use these modeled fault properties to predict the permeability of the fault 

zone (Figure 52) and then to calculate the capillary entry pressure of the fault zone 

(Figure 53). These values are used to model the maximum CO2 column height that can be 

supported by the fault (Figure 54). As the modeled fault throw increases towards the 

center of the fault and decreases up and down dip (Figure 63) the fault juxtaposes varying  
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Figure 61. Modeling results showing gas saturation from injected CO2 into the White 
Rim Sandstone. Model is displayed in time intervals of a) 10 years, b) 30 years, and c) 
100 years (modified from White et al., 2003). 
 
 
 

 
Figure 62. Modeling results showing gas saturation from injected CO2 interacting with a 
fault. Fault is represented by yellow line and is modeled as a) a low-permeability fault 
and b) a high-permeability fault with time intervals noted for each case (modified from 
Chang et al., 2007). 
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Figure 63. Perspective view of modeled fault surface of the Iron Wash fault contoured 
with fault zone characteristics. Surfaces are contoured with a) fault throw calculated from 
stratigraphic offset, b) footwall lithology calculated from Vshale curve (see Figure 49 and 
text for description), c) juxtaposition diagram of hangingwall lithologies, d) fault zone 
permeability calculated from shale gouge ratio (see Figure 52 and text for description). 
See text for description and method.  
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lithologies in the hanging wall and footwall (Figure 63). Modeled shale gouge ratio and 

shale smear factor contoured on the fault plane show that the fault has a well-developed 

shale membrane shallow in the fault and poorly-developed shale membrane in the 

sandstone dominated sections of the fault zone (Figure 64). Modeled fault zone capillary 

entry pressure and fault zone permeability show that the fault would likely behave as a 

seal in areas of the fault where there is dominantly shale in both the hanging wall and 

footwall or where throw is sufficient to develop gouge membranes (Figure 64). There are 

many parts of the fault have very low capillary entry pressure (<4 MPa) with many areas 

close to 0 MPa (Figure 64). The fault plane is contoured with the predicted maximum 

CO2 column height that can be supported by the fault and see that where fault cuts the 

Navajo Formation the fault zone that would support a CO2 column of only ~10-20 m 

(Figure 64), and the Slickrock Member of the Entrada Formation would support a CO2 

column height of ~25-35 m near the maximum throw on the fault (Figure 64).   

 There are several implications of this research for site characterization for 

potential injection targets for CO2. Because small-throw faults (<100m throw) are 

relatively common in most geologic settings, extensive work must be done to 

characterize the orientation and intensity of faults in any potential injection locality. Fault 

characterization is common practice in any major project involving injection of fluids 

into the subsurface. The National Energy Technology Laboratory (2010) best practices 

guide states that initial site characterization for potential localities should "identify faults 

and fractures". No guidelines have been put forth to define a threshold value of fault 

throw, distance, length, or type for which these site characterizations must occur. For 

example, no framework defines that all faults with throw greater than a specified value  
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Figure 64. Perspective view of modeled fault surface of the Iron Wash fault contoured 
with fault zone characteristics. Surfaces are contoured with a) shale gouge ratio (see 
Figure 50 and text for description), b) shale smear factor (see Figure 51 and text for 
description), c) fault zone capillary entry pressure (see Figure 53 and text for 
description), d) predicted maximum CO2 column height (see Figure 54 and text for 
description). See text for description and method.   
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must be characterized, presumably because there is not enough data on the risk of faults 

in CO2 injection projects to assign such a threshold.   

 The National Energy Technology Laboratory (2010) also describes that a site 

characterization will include acquiring 2D, 3D and possibly 4D seismic data which is 

used along with any well or borehole data to characterize faults in the subsurface. We 

propose in this study that many of the features we have observed including fault-related 

folds, fault relay zones and fault lenses would not be resolved on 2D seismic surveys and 

would be difficult to resolve on terrestrial 3D seismic surveys without exceptional 

resolution in the data. In neither case would fracture networks, damage zones, small fault 

lenses (<5 m wide) and small-throw faults (<5 m) be resolved. These features represent 

potential leakage and migration pathways and therefore present a challenge for many 

potential site characterization projects.    

 The National Energy Technology Laboratory (2010) also describes that a site 

characterization will "determine the existing stress state and assess the impact of changes 

in pore pressure on stress". We propose that injection of fluids into the subsurface can 

potentially induce failure of faults that are optimally oriented to the stress field. Based on 

our previous assertion that there is significant difficulty in identification of all structural 

components in the subsurface, including faults, it would be difficult to predict failure on 

all possible faults in the subsurface. The uncertainty associated with fault-seal analysis in 

CO2 injection projects means that further work is required in the response of faults of a 

wide range of throws to increased reservoir pressure and on across fault pressure 

difference.  
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 Our model results that indicate based on the geometry and characteristics of the 

rocks of the Iron Wash fault zone, the fault does not behave as a good fault seal to fluids 

in the subsurface. Because the Iron Wash fault throw is small relative to the total 

thickness of sandstone in the Triassic to Jurassic part of the sedimentary package, our 

model predicts the fault to fail as a seal. We would propose that standard methodology 

for fault seal analysis and risking used in the petroleum industry for assigning risk to 

faults and populations of faults be applied to CO2 site characterization projects. A similar 

approach was taken to adapt petroleum industry best practices by the National Energy 

Technology Laboratory (2010) for the classification of prospective storage capacity in a 

CO2 site, and we propose a similar model for fault seal analysis.  

CONCLUSIONS 

 If large-scale carbon capture and storage is implemented as a technology to 

address anthropogenic CO2 emissions, there are significant challenges to overcome in the 

planning and characterization stages. We propose that small to medium-throw faults 

(>100 m throw) represent significant risk factors for proposed injection locations. We 

propose that faults can act as conduits for fluids for both upwards and lateral migration of 

fluids. Upward migrating CO2 along a fault zone could potentially leak from the injection 

reservoir to the surface, or, could leak along a fault into an overlying reservoir. In both 

cases, CO2 would be leaving the system that it was intended to remain in and therefore 

the storage project would be compromised.  

 Faults have been identified as one mechanism by which reservoir 

compartmentalization occurs (Tveranger et al., 2005; Keranen et al., 2013). 
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Compartmentalized reservoirs could have a significant impact on reservoir management 

plans for injection due to the dependence of pressure management on reservoir volume. 

Faults, if not properly identified and characterized could have significant impacts on 

reservoir pressure management because they may act as lateral seals, baffles or conduits 

for fluids (Braathen et al., 2009). Because faults may not be identified, migrating CO2 

plumes within a reservoir could undergo unintended pressure increases adjacent to these 

faults. Unintended pressure increases within reservoirs could result in the forced 

shutdown of injection activities, induced seismicity on faults, or even abandonment of 

injection sites due to lack of injectivity. Any of these results could result in the failure of 

CO2 injection sites and potentially loss of large investment capital in the construction of 

these projects.   

 Induced seismicity resulting from the injection of  fluids is a significant risk factor 

for any current or future projects (Zoback and Gorelick, 2012; Keranen et al., 2013). 

Earthquakes that are linked to fluid injection that are large enough magnitude to be felt 

by people at the surface or to cause damage to structures at the surface have been 

observed recently (Zoback and Gorelick, 2012; Keranen et al., 2013). Our work has 

shown that critically stressed faults (Barton et al., 1995; Zoback and Gorelick, 2012) that 

are favorably oriented in the current stress field (i.e. in the optimal orientation for failure 

to occur) are the most likely faults to be at risk for failure during injection activities. We 

have shown that in some cases, when faults are favorably oriented, that small 

perturbations in reservoir pressure (~2 MPa) could induce failure even on relatively 

strong faults with coefficients of friction of µ = 0.6 and are more likely to fail assuming 

weak faults with µ = 0.4. Unidentified or misidentified faults within potential injection 
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sites represent the largest risk factor for induced seismicity because either no planning 

has been done to prevent failure on these faults or the planning may be done under false 

assumptions about the nature of the faults.  

  We provide insight into fault-related phenomena such as deformation related to 

structural interaction, fault relay and linkage structures, fault related folding, and fault 

architecture. Results from this study have implications on the linkage and development of 

fault zones as discrete faults interact and link in various configurations. Additionally, 

fault-seal analysis depends on an understanding of the nature, geometry and architecture 

of faults. Understanding relationships between faults and the damage zones they create 

with respect to the structural location along a fault or relative to other structures will help 

better constrain models and predictions about these features and their occurrence in the 

subsurface. 

 Strain analysis of the Iron Wash fault zone along strike has provided support for 

the hypothesis that the Iron Wash fault has formed in two distinct stress regimes. The 

eastern segments of the fault zone have undergone pure north-northeast extension 

consistent with the Colorado Plateau stress field and the western segments approaching 

the San Rafael monocline have experienced three-dimensional strain consistent with the 

transition zone stress field between the Colorado Plateau and the Basin & Range stress 

fields (Reches, 1978; Aydin and Reches, 1982; Krantz, 1988; Patton and Zandt, 1991; 

Flesch and Kreemer, 2010). This change in stress field and the formation of part of the 

fault in a three-dimensional strain field is interpreted to be spatially related to more 

structurally complex areas of the fault zone and more concentrated mineralization and 

alteration associated with fluid migration (Figure 58). We propose that three dimensional 
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strain fields within potential injection sites increase the risk of faults that are favorable 

oriented to the stress field and therefore increase the risk of induced seismicity during 

injection. We would suggest that potential injection sites where possible three-

dimensional strain fields are present either be abandoned or require additional 

characterization of faults in the area due to the elevated risk of induced seismicity.         

 Geometric reconstruction of the fault zone integrated with properties of the 

faulted rocks derived from wireline log data have been used in producing predictive 

models or properties of the fault. These models predict that the Iron Wash fault did not 

act as a seal to fluids injected on one side of the fault and that lateral migration of fluids 

across the fault would occur with relatively low capillary entry pressures (generally <3 

MPa) where the fault produces sand-on-sand juxtaposition. The models have predicted 

that the fault is capable of supporting a CO2 column height of ~10-20 m in areas of the 

fault where fault leakage is most likely. Geomechanical models have based on the 

orientations of stresses in the Colorado Plateau (Patton and Zandt, 1991; Flesch and 

Kreemer, 2010), stress magnitudes estimated from established relationships and 

mechanical properties of rocks defined by empirical relationships. These models show 

that as fluid pressures are increased along fault zones and fractures it is possible to 

reactivate these structures in either shear or tensile failure by modest increases of pore 

pressure.  

 Economics of large-scale carbon capture and storage is a final consideration in 

this thesis. Although our work did not focus on this subject, it would obviously be a 

driving force in the decision making process before moving forward with any projects. 

Many of the technical challenges we have identified would have implications on the 
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economics of storage locations, for example, leaking faults would reduce storage 

effectiveness and therefore would increase cost as more injection would be necessary to 

accomplish the same storage. Our work on induced seismicity similarly has large 

implications on economics as projects would likely be shut-down for long periods of time 

or cancelled and abandoned following any significant seismicity was detected.   

Recommendations 

 For carbon capture and storage to be a viable mechanism for reducing global 

green house gas emissions, potential underground CO2 storage sites must be 

characterized extensively for reservoir potential, seal integrity and possible leakage 

pathways. Leakage of CO2 along faults and fracture networks in the subsurface is a major 

concern when characterizing the storage capacity of CO2 storage sites and must be 

considered when designing injection plans. As CO2 is injected into the subsurface, 

reservoir pressure increases as the plume of CO2 migrates through the reservoir and 

displaces formation waters. The increasing pressure build-up from injection of fluid into 

deep aquifers has been attributed to the reactivation of faults within the target injection 

sites (Zoback and Gorelick, 2012). Earthquakes of up to magnitude 5.7 have been 

recently attributed to the injection of wastewater in Oklahoma (Keranen et al., 2013). 

Additional seismicity has been reported around the country in places like Ohio, Colorado, 

and New Mexico (Wessen and Nicholson, 1987; Nicholson et al., 1988; Horton, 2012; 

Rubenstein et al., 2013; Virgas et al., 2013) Robust data on the in-situ stresses and proper 

identification of faults in the subsurface prior to the injection of fluids into storage 

reservoirs must be a pre-requisite to any injection activity. 
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 Detailed analysis of fault zones within potential injection sites should also include 

characterization of fault zone internal structure to the extent possible. We show that fault 

relay zones and fault lenses are potential zones of increased faulting and fracturing as 

well as being fault bypass systems in some cases. Since faults and fractures are the 

dominate seal bypass mechanisms in potential injection sites a detailed characterization 

of these features is crucial to the successful prediction of their sealing ability.    

 We propose that an ideal injection site for CO2 sequestration would have the 

following characteristics: 

1. Close to point sources for CO2 emissions to reduce costs associated with 

transporting large volumes of CO2 

2. Devoid of any faulting or fracturing whatsoever 

3. Have four-way structural closure over a large areal extent 

4. Multiple, stacked reservoir seal pairs overlain by thick (as thick as possible) and 

laterally continuous impermeable caprock 

5. Thick, high porosity/permeability reservoir intervals with excellent injectivity 

6. Within a tectonically stable sedimentary basin preferably with little to no salt 

7. In a region with no three-dimensional strain field 

8. Low initial reservoir pressure in the injection target 

 Sites meeting even one of can be difficult to find; when all eight criteria are 

considered, it could be potentially very difficult to nearly impossible to find injection 

locations. However, we propose that there likely exists many injection locations that are 

"good enough" to act as geologic storage sites. Additional work to understand what the 

total potential storage volume of sites of varying degrees of quality throughout the world 
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will help constrain the viability of the large-scale feasibility of carbon capture and 

storage.  

 Future work relating to this project might include: 1) additional field studies to 

characterize fault damage zones in a wider array of settings and fault settings, 2) 

additional field studies to better characterize how fault geometry might be influenced by 

changing stress field along strike, 3) additional work on producing a wide range of 

models to help predict fault and fracture orientations that are likely to be reactivated as a 

result of injection of fluids, 4) analysis of 3-D seismic data to better understand the 

seismic expression of fault relays and fault lenses that can then be correlated to field 

observations such as in this study, 5) compiling data on active injection wells that are 

believed to have produced seismicity to understand how field and subsurface studies can 

better identify potential risks associated with injection. 
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 Select borehole data compiled and organized from Utah Division Oil, Gas and 

Mining (www.oilgas.ogm.utah.gov) are available via the Utah State University Digital 

Commons website within the Selected Works of David J. Richey 

(http://works.bepress.com/david_richey/). 

 The data found here include API well numbers, names of all wells used, well 

datum as defined by the elevation above sea level measured at the Kelly Bushing on the 

drilling floor, and the depth to various formation tops encountered during drilling 

measured in drilling depth. 
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 Select geophysical data collected and processed during this thesis are available 

via the Utah State University Digital Commons website within the Selected Works of 

David J. Richey (http://works.bepress.com/david_richey/). 

 A description of the geophysical methods used, the results and raw data, and some 

interpretations are provided in this appendix. 
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