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Abstract 

We provide a tutorial on how to analyze multiple-indicator multi-method (MM) longitudinal (multi-

occasion, MO) data. Multiple-indicator MM-MO data presents specific challenges due to (1) different 

types of method effects, (2) longitudinal and cross-method measurement equivalence (ME) testing, (3) 

the question as to which process characterizes the longitudinal course of the construct under study, and 

(4) the issue of convergent validity versus method-specificity of different methods such as multiple 

informants. We present different models for multiple-indicator MM-MO data and discuss a modeling 

strategy that begins with basic single-method longitudinal confirmatory factor models and ends with 

more sophisticated MM-MO models. Our proposed strategy allows researchers to identify a well-

fitting and possibly parsimonious model through a series of model comparisons. We illustrate our 

proposed MM-MO modeling strategy based on mother and father reports of inattention in a sample of 

N = 805 Spanish children. 

 

Keywords: longitudinal confirmatory factor analysis, multitrait-multimethod, multiple reporters, 

measurement equivalence, structural equation modeling, multistate model, latent variables, inattention 
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Introduction 

More and more personality researchers collect and study longitudinal data, that is, data from 

more than one measurement occasion. Such “multi-occasion” (MO) data is useful to examine 

developmental processes, changes in personality across time, or the effects of experimental 

manipulations, events, or treatments on personality constructs. In addition, personality researchers have 

been encouraged to collect data from multiple methods (multiple sources, multiple reporters, multiple 

informants, observations, indirect measures, physiological measures, etc.) to examine construct 

validity, potential discrepancies between different methods, and obtain more detailed information on 

the relevant constructs. The idea of collecting and studying multimethod (MM) data goes back to 

Campbell and Fiske’s (1959) multitrait-multimethod (MTMM) approach to construct validation, which 

has been extremely influential in nearly all areas of psychology (Eid & Diener, 2006). 

The statistical modeling of both longitudinal and MM data is complex and comes with specific 

challenges. Even greater complexities arise when MM and MO designs are combined such that data is 

obtained from multiple reporters or other methods on each of multiple measurement occasions (so-

called MM-MO designs). This is particularly true when multiple observed variables (indicators; e.g., 

items, tests, or questionnaire subscales) are used at each measurement occasion. The use of multiple 

indicators has been recommended for MM as well as MO data, because multiple-indicator data allows 

researchers to test assumptions (i.e., regarding measurement equivalence) that cannot be tested with 

single-indicator data (e.g., Marsh, 1993; Eid, Lischetzke, Nussbeck, & Trierweiler, 2003; Cole, Martin, 

& Steiger, 2005). 

Over the past 10 to 15 years, a number of latent variable approaches have been proposed that 

combine the advantages of longitudinal (MO) studies with the advantages of MM approaches (e.g., 

Cole & Maxwell, 2003; Courvosier, Nussbeck, Eid, Geiser, & Cole, 2008; Crayen, Geiser, 
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Scheithauer, & Eid, 2011; Geiser, 2009; Geiser, Eid, Nussbeck, Courvoisier, & Cole, 2010a, b; Grimm, 

Pianta, & Konold, 2009; Koch, Schultze, Holtmann, Geiser, & Eid, in press). In the present paper, we 

provide a tutorial on how to analyze multiple-indicator MM-MO data with structural equation 

modeling. Below we first introduce the data example and then discuss key modeling issues with MM-

MO data. 

Data Example 

Sample. We use data from a longitudinal study on symptom and impairment dimensions with 

Spanish children (for details, see Bernad, Servera, Becker, & Burns, 2016; Burns, Servera, Bernad, 

Carillo, & Geiser, 2014; Burns, Becker, Servera, Bernad, & García-Banda, 2017). For the purposes of 

the present tutorial, we analyzed mother (Method 1) and father reports (Method 2) of N = 805 Spanish 

children’s inattention (IN) symptoms over three measurement occasions (i.e., spring semesters of the 

first, second, and third grade with each assessment separated by 12 months).  In order to reduce the 

level of complexity of the analyses and output, we focus on a single construct (IN). Generalizations of 

the described modeling approaches to more than one construct are discussed in Geiser et al. (2010a, b). 

Measure.  We used the 9-item IN subscale of the Child and Adolescent Disruptive Behavior 

Inventory (CADBI; Burns et al., 2014).  Two example items of the IN subscale are: “Has difficulty 

keeping attention focused on homework or home activities (e.g., difficulty remaining focused during 

homework, chores, conversations, lengthy readings)” and “Fails to give close attention to details or 

makes careless mistakes in homework or home activities (e.g., overlooks or misses details; work is 

inaccurate).” The nine IN symptoms were rated on a 6-point scale (i.e., 0 = almost never [never or 

about once per month), 1 = seldom [about once per week], 2 = sometimes [several times per week], 3 = 

often [about once per day], 4 = very often [several times per day], and 5 = almost always [many times 
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per day]).  Mothers and fathers were instructed to base their ratings on the child’s behavior in the home 

and community and to make their ratings independently. 

To obtain multiple indicators for each type of reporter and measurement occasion, we assigned 

the nine items to three parcels (with each parcel representing the average of three items) following 

procedures recommended by Little (2013) to create homogenous parcels.  On each measurement 

occasion, the corresponding parcels for mothers and fathers consisted of the same items. Furthermore, 

the parcels were composed of the same items on each measurement occasion. Full information 

maximum likelihood estimation in the Mplus statistical software (version 7.4, Muthén & Muthén, 

1998-2010) was used for all analyses. The Mplus input/output files for all models can be found in the 

supplemental materials. 

Specific Modeling Issues With MM-MO Data 

There are several peculiarities of multiple-indicator longitudinal MM-MO data that make the 

statistical modeling of such data challenging. These issues concern different forms of method effects 

that may arise in MM-MO studies, the question of measurement equivalence (ME) across time and 

methods, and the question as to whether and how the construct under study changes over time. Below 

we describe each issue in detail. Subsequently, we illustrate a modeling strategy for addressing each 

issue based on the data example described above. 

Method effects. In longitudinal multiple-indicator MM-MO data, there are at least two 

potential sources of method effects: 

(1) Method effects due to the repeated use of the same measures (observed variables, 

indicators; e.g., item, questionnaire, or test scores) across time within each method. These 

types of method effects are often referred to as indicator-specific effects (e.g., Marsh & 
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Grayson, 1994; Raffalovich & Bornstedt, 1987).  Indicator-specific effects are due to the 

fact that different measures often reflect (at least slightly) different facets of a construct or 

contain other sources of method variance (e.g., due to a specific response format or item 

wording that is not shared with the remaining indicators). This is the case even for measures 

that are supposedly homogenous—in longitudinal studies, it often turns out that a measure 

is more highly correlated with itself over time than with other measures of the same 

construct due to indicator-specificity (Cole & Maxwell, 2003). 

(2) Method effects due to the use of different methods (e.g., different reporters or raters) within 

each measurement occasion. Different methods often provide unique perspectives on the 

constructs to be measured or show specific biases. Even when methods use the same or 

equivalent measures (e.g., if a parent report questionnaire uses the same items as a self-

report questionnaire), different methods typically do not show perfect agreement in their 

ratings. A specific complexity with MM-MO data arises from the fact that when different 

methods use the same items, indicator-specific effects due to the use of the same measures 

may be shared across methods. 

Both types of methods effects described above need to be addressed when modeling MM-MO 

data. Ignoring method effects can lead to bias in the estimated parameters of the model. Furthermore, 

method effects are usually of substantive interest, as they inform researchers about convergent validity 

and method specificity between different methods of measurement. 

Measurement equivalence across time and methods. Another important issue in longitudinal 

modeling in general concerns the degree of measurement equivalence (ME; aka measurement 

invariance) of the indicators across time. ME refers to the extent to which the measures are related in 

the same way to the underlying latent variables on each measurement occasion (Raykov, 2006). A 
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sufficient degree of ME is required for a meaningful comparison of, for example, latent means across 

time. 

Widaman and Reise (1997) distinguish between configural, weak, strong, and strict ME. 

Configural invariance only requires that the number of factors and the pattern of factor loadings be the 

same on each occasion of measurement. Weak ME (or metric invariance) holds if—in addition to 

configural invariance—the factor loadings remain the same over time. Strong ME (scalar invariance) 

additionally requires the observed variable measurement intercepts to be time-invariant. The condition 

of strict factorial invariance is satisfied when the measures additionally show constant measurement 

error variances across time. 

In practical applications, it is often desirable to use measures that show at least strong ME 

(constant loadings and intercepts). The reason is that strong ME ensures that the latent variables are in 

the same metric at each time point (i.e., the origin and units of measurement are the same at each 

measurement occasion under strong ME). Strong ME therefore allows for meaningful comparisons of 

latent variable variances and means across time.  

In MM-MO studies that use equivalent measures (e.g., questionnaires or items) across methods, 

ME can not only be studied across time, but also across methods (Geiser, Burns, & Servera, 2014). If 

at least strong ME is established across methods, this means that the latent variables are measured in 

the same metric across methods. Therefore, strong ME enables meaningful comparisons of latent 

means and variances across methods. Establishing ME not only across time but also across methods is 

thus advantageous, because it allows researchers to study the convergent validity of latent mean levels, 

latent variances (the extent of true individual differences), and latent covariances across methods. This 

enables researchers to evaluate between-method similarities and differences in more detail beyond just 

evaluating correlations of the same measures across methods as in the classical Campbell and Fiske 
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(1959) approach. For example, it can be important for researchers to know whether different methods 

reflect the same mean levels of a given construct. The additional ME constraints across methods (if 

tenable) also lead to an even more parsimonious model (fewer loading, intercept, or error variance 

parameters are estimated in a model that features ME constraints). 

Longitudinal process. Researchers often want to find out whether the construct under study is 

stable or changes across time. Below we present a general longitudinal structural equation model that 

allows capturing both state variability (short-term reversible fluctuations) and potential trait changes 

(more long-term and enduring changes; Nesselroade, 1991). For a detailed discussion of more specific 

longitudinal models that correspond to state variability and/or trait change processes see Geiser, Hintz, 

Burns, and Servera (in press). In the Discussion section, we refer to relevant extensions of these 

models to MM data. 

Modeling Strategy and Results 

In our example multiple-indicator MM-MO data set for the IN construct, we are dealing with a 

3 (indicators) × 2 (methods) × 3 (measurement occasions) measurement design. We are thus modeling 

the means, variances, and covariances of 18 observed variables (see Table 1 regarding the descriptive 

statistics for all indicators). To simplify the analysis, we recommend beginning with separate analyses 

for each method (Step 1). After identifying well-fitting and parsimonious models for each method, we 

proceed to Step 2 in which the models from Step 1 are combined into a common model and more 

sophisticated MM-MO models are examined. 

Step 1: Analyze Separate MO Models For Each Method 

It is useful to simplify the analysis of complex MM-MO data by first examining separate 

longitudinal models for each method (and, in the case of multiple traits, by analyzing separate models 
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for each trait-method combination). In this way, the homogeneity (unidimensionality) of indicators, the 

question of measurement equivalence (ME) across time as well as the underlying longitudinal process 

(e.g., state variability or trait changes) can first be studied separately for each method and well-fitting 

models can be established for each method.  

A useful starting point in Step 1 is to fit a so-called latent state (LS) or multistate model (Geiser 

et al., 2010a; Steyer, Ferring, & Schmitt, 1992) separately for each method. Fitting a series of LS 

models to each method separately allows (1) examining potential method effects due to indicator 

heterogeneity, (2) testing for ME across time within each method, and (3) studying the type of 

longitudinal process for each method through examining latent variable parameters such as LS factor 

means, variances, and covariances/correlations. The LS model is an excellent baseline model for these 

types of analyses, because contrary to other longitudinal models, it has a simple and saturated 

(unrestricted) latent variable covariance and mean structure. Therefore, it allows researchers to focus 

on measurement-related issues first (i.e., the question of indicator homogeneity and ME) before 

examining more complex latent variable structures. 

An example of a single-method LS model for three indicators and three measurement occasions 

is depicted in Figure 1. In the LS model, there is a single LS variable at each time point. In our 

example, each LS variable represents true individual differences in the IN construct at a given 

measurement occasion. The LS variables are measured and identified by (1) using multiple (at least 

two) indicators at each time point (typically, the same variables are used at each time point as this is 

critical for establishing ME and comparability across time; in our case, the same three item parcels 

served as indicators at each time point), (2) fixing the loading of one indicator to 1, and (3) fixing the 

intercept of the same indicator to 0. Fixing the loadings and intercepts of this so-called reference 

indicator (the first indicator in Figure 1) allows identifying the variances and means of the LS variables 
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at each time point. When only two indicators are available at each time point, model identification 

additionally requires that each LS variable be substantially correlated with at least one other LS 

variable in the model or with at least one external variable that is added to the model.  

In most cases, LS variables have substantial, positive correlations with at least some of the 

remaining LS variables, thus ensuring identification even with only two indicators. This is because 

most psychological variables show at least some stability of individual differences across time—this 

stability is reflected in the LS variable correlations. For more state-like constructs (e.g., hormone 

levels, mood), such stabilities may be relatively low, however, especially when measurement occasions 

are widely spaced out (e.g., more than one year interval between measurement occasions). In this case, 

it would be wise to collect data for at least three indicators on each measurement occasion to avoid 

potential identification problems. 

We recommend starting with an LS model as shown in Figure 1 in Step 1 that places no 

constraints on measurement parameters (loadings, intercepts, and error variances) other than the 

reference indicator restrictions needed to identify the model as described above (Model 1.1). Model 1.1 

assumes invariance of measurement parameters only for the reference indicator (for which the loadings 

and intercepts are fixed to the same values on all measurement occasions) and otherwise represents a 

model of configural ME. (The constraints for the reference indicator serve to identify and conveniently 

interpret the LS factor means and variances, but do not represent testable ME restrictions.) If Model 

1.1 shows a reasonable model fit, this model can be used in subsequent analyses of higher levels of ME 

(weak, strong, and strict invariance). According to Schermelleh-Engel, Moosbrugger, and Müller 

(2003), a structural equation model can be considered to show a good approximate fit when the ratio of 

chi-square statistic to its degrees of freedom (df) is ≤ 2 or at least ≤ 3, the root mean square error of 

approximation (RMSEA) is at or below .05, the comparative fit index (CFI) is at or above .95, and the 



11 

 

standardized root mean square residual (SRMR) is at or below .05 (similarly criteria were proposed by 

Hu & Bentler, 1999). We furthermore considered the chi-square difference test for nested model 

comparisons and Akaike’s information criterion (AIC) for nested and non-nested model comparisons. 

The model with the smallest AIC is considered the best-fitting model. 

In our example, Model 1.1 did not show a very good fit for either mother or father reports. This 

was shown especially by a large ratio of chi-square value to df of > 5 for both types of reporters. In 

addition, RMSEA values were larger than the desirable cut-off value of .05 for both mothers and 

fathers. Although other fit indices (SRMR, CFI) indicated a decent fit, the chi-square values and 

RMSEA coefficients provided evidence that Model 1.1 was too simplistic for the given data and that 

additional effects in the data should be modeled. 

When Model 1.1 does not fit well as in the present example, this is often a sign that indicators 

are not perfectly homogenous (i.e., that they do not measure exactly the same construct due to method 

or indicator-specific effects). In this case, a model that adds indicator-specific factors can be examined 

next (Model 1.2). Model 1.2 is depicted in Figure 2. Model 1.2 addresses method effects due to more 

or less heterogeneous indicators (differences in item content, wording, response format etc.). This 

model uses a reference indicator (the first indicator Y1t in the figure) to identify the LS variables at each 

time point. For this reference indicator, the factor loadings and intercepts are fixed to 1 and 0, 

respectively, as in Model 1.1. In addition, the second and third indicators Y2t and Y3t load onto 

additional indicator-specific (method) factors ISi. The ISi factors are residual factors that represent 

specific variance in Indicator 2 and 3 that is (1) not shared with the reference indicator and (2) stable 

across time (i.e., shared by the same indicator across measurement occasions).  

In Model 1.2, the LS factors are thus specific to the reference indicator and have an additional 

index for Indicator 1 (S1t). The choice of the reference indicator is not completely trivial, especially 
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when indicators are very heterogeneous and represent rather distinct facets of a construct. In this case, 

the indicator that most closely reflects the intended construct (i.e., a “marker indicator”) should be 

chosen as reference indicator. For indicators that are essentially homogenous and show only small 

indicator-specific effects, the choice of the reference indicator is typically (more or less) arbitrary: 

With homogenous indicators that can be seen as random representations out of the same universe of 

indicators for a given construct, different choices of the reference indicator are unlikely to produce 

dramatically different results. 

All ISi factors, being defined as residual factors, have means of zero. Latent means are thus 

estimated only for the LS factors in Model 1.2. The ISi factor variances are identified by fixing at least 

one factor loading to 1 for each ISi factor. Given that the factors are measured by the same variables at 

each time point, it is often reasonable (and parsimonious) to fix all ISi factor loadings to 1 at all time 

points (as was done in the present example), although this is not necessary for identification as long as 

there are three or more time points. For only two time points, one loading per ISi factor can still be 

estimated freely (if necessary) as long as each ISi factor is substantially correlated with at least one 

other factor or variable in the model. 

For even slightly heterogeneous indicators, Model 1.2 typically shows a substantially better 

global model fit than Model 1.1. In our example, the chi-square values were much lower for Model 1.2 

for both mothers and fathers (see Table 2). Furthermore, descriptive fit measures also indicated that 

Model 1.2 should be preferred over Model 1.1. This showed the presence of at least some degree of 

indicator heterogeneity. The estimates of ISi factor loadings and variances obtained from Model 1.2 can 

be examined to study the degree of heterogeneity of indicators in more detail. Squared standardized ISi 

factor loadings give the proportion of stable indicator variance that is not shared with the reference 

indicator and thus are a measure of indicator heterogeneity (method effects at the indicator [parcel] 
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level), whereas the squared state factor loadings give the proportion of (non-reference) indicator 

variance that is shared with the reference indicator.  

In our example, both the ISi factor loadings and variances were significantly different from 

zero. Their sizes (compared to the state factor variances and loadings) were relatively small, however, 

indicating that indicators were relatively homogenous and did not differ strongly in terms of the 

underlying constructs. This was expected given that the parcels were constructed to be rather 

homogenous. Squared standardized loadings revealed that only between 5% and 9% percent of the 

indicator variance was due to stable indicator specific effects, whereas between 77% and 86% percent 

of the indicator variance reflected state variance shared with the reference indicator. In summary, even 

though indicator-specific effects were relatively minor in our example, Model 1.2 exhibited a 

substantially better fit than Model 1.1. Indicator-specific effects observed in Model 1.2, although small, 

were statistically significant and not completely negligible. Therefore, we chose to use Model 1.2 

rather than Model 1.1 in subsequent analyses of ME for each of the two methods. 

Next, we examined ME across time by estimating constrained versions on Model 1.2. Model 

1.2 did not place any restrictions on factor loadings, intercepts, or residual variances and can thus be 

seen as a model of configural ME across time (the same indicators loaded onto the state factors at each 

measurement occasion). Model 1.3 was a version of Model 1.2 in which the factor loadings for the 

same indicators were set equal across time (i.e., a model with time-invariant state factor loadings for all 

indicators). Model 1.3 is nested within Model 1.2 and reflected the assumption of weak ME across 

time. Nested models can be compared via chi-square difference tests. A significant chi-square 

difference value indicates that the more constrained model (here: Model 1.3) fits significantly worse 

than the less constrained model (here: Model 1.2). In this case, the additional constraints are not 

tenable. On the contrary, a non-significant chi-square difference value means that there is no 
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statistically significant decline in fit when making the additional constraints. In this case, the more 

constrained (and therefore more parsimonious) model is preferred.1 

In our example, the fit indices (see Table 2) revealed that Model 1.3 did not fit significantly 

worse than Model 1.2, indicating that the assumption of weak ME across occasions did not have to be 

rejected for either mother or father reports. We therefore tested for strong ME across time next (Model 

1.4: equal loadings and intercepts across time for all indicators across occasions). Model 1.4 did not fit 

significantly worse than Model 1.3 for either mother or father reports, thus allowing us to retain the 

assumption of strong ME across time for both types of reporters. Model 1.5 added the constraint of 

equal error variances across time for all indicators (strict ME). This assumption had to be rejected for 

both mother and father reports according to the chi-square difference test, indicating that the amount of 

measurement error variance changed in one or more indicators between at least two time points. We 

therefore based subsequent equality tests of latent variable parameters on the less constrained Model 

1.4 rather than Model 1.5. Strong ME as represented by Model 1.4 is sufficient to examine latent 

variable means, variances, and covariances across time.  

Step 1 also serves to identify the longitudinal process reflected in each method. The LS model 

provides some answers to the question as to whether a construct is characterized by state variability or 

trait changes in each method. These answers can be obtained by fitting LS model versions that place 

restrictions on latent variable parameters, that is, LS factor means, variances, and potentially 

covariances. For example, if an LS model with equal LS factor means across time fit the data well, this 

would indicate mean stability of the construct within that method, which could point to a process of 

state variability (no trait changes).  

                                                 
1 Other authors (e.g., Little, 2013) have proposed more complex criteria for testing invariance constraints in longitudinal 

studies. Comparing different criteria is beyond the scope of the present tutorial. 
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In Model 1.6, we tested whether the latent state factors had equal means on all measurement 

occasions. Model 1.6 thus reflected the assumption of mean stability across time. Model 1.6 was not 

rejected for mother reports, but did show a significantly worse fit compared to Model 1.4 for father 

reports. An examination of the parameter estimates in Model 1.4 for father reports revealed that the 

latent state factor means at Time 1 and 3 were somewhat larger than the state factor mean at Time 2. 

This small difference in average levels of IN was not reflected in mother reports. 

Subsequent models with equal state factor variances were rejected for both mother and father 

reports indicating that the amount of true individual differences in IN was not constant across time for 

either mother or father reports. An examination of the parameters estimates obtained in Model 1.6 for 

mothers revealed a larger state factor variance at Time 1 compared to Time 2 and 3. Model 1.4 for 

fathers revealed that state factor variances were similar at Time 1 and 3, but higher than the state factor 

variance at Time 2. An inspection of the LS factor correlations in Model 1.6 (mothers) and Model 1.4 

(fathers) revealed substantial stability of individual differences across time according to both types of 

reporters (LS factor correlation range for mothers: [.72; .79], for fathers: [.68; .82]). 

In summary, Step 1 revealed the presence of small indicator-specific effects in both mothers’ 

and fathers’ reports of IN in children showing that parcels were essentially, but not perfectly 

homogenous. Furthermore, Step 1 allowed us to determine the degree of ME across time for each of 

the two methods. For both mother and father reports of IN, strong ME across time could be assumed, 

allowing us to perform meaningful comparisons of latent state factor means and variances across time. 

These structural comparisons revealed that mother reports showed mean stability across time, 

indicating no average IN symptom change across time. Father reports indicated similar average levels 

of IN at Time 1 and 3 but a slightly lower level at Time 2. Correlations between LS factors across time 
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were substantial for both types of reporters indicating considerable stability of individual differences 

across time.  

Step 2: Analyze Combined MM-MO Models 

In the next step, we combined the best-fitting single-method LS models from Step 1 into a 

comprehensive MM-MO models for the IN construct. When equivalent measures are used across 

methods as in the present example, the level of ME across methods can be examined first in Step 2. As 

explained previously, establishing ME not only across time, but also across methods, allows for 

interesting comparisons of latent variable parameters across methods (Geiser et al., 2014) and can lead 

to a more parsimonious model. 

Combined MM LS models also allow researchers to study the convergent validity across 

methods by estimating correlations of LS factors across methods and by comparing structural 

parameters (latent means, variances, and covariances) across methods. High LS factor correlations 

across methods for the same time point indicate agreement between reporters (the presence of 

convergent validity), whereas low correlations indicate a lack thereof. Furthermore, more sophisticated 

combined MM models can be estimated later in Step 2 that directly contrast different methods against a 

reference method. This is useful to obtain coefficients of convergent validity and method specificity for 

each indicator in the form of proportions of explained variance (R2). We first discuss the extension to a 

MM LS model and then present an additional, more sophisticated MM-MO model that allows more 

detailed comparisons across methods. 

MM-LS models. In our example, we combined Model 1.6 for mother reports and Model 1.4 

for father reports from Step 1 into a MM LS model (Model 2.1, see Figure 3A). In this model, all LS 

factors were allowed to correlate and all indicator-specific factors were allowed to correlate, but no 
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correlations were allowed between any LS factors and indicator-specific factors. This model showed a 

decent chi-square/df ratio of 2.81 as well as good RMSEA, SRMR, and CFI values.  

The estimates obtained from Model 2.1 revealed perfect correlations between the indicator-

specific factors for mother and father reports for both Parcel 2 and 3 [latent correlation estimates of 

1.04 (SE = 0.09) and 1.06 (SE = 0.10)]. This indicated that parcel-specific effects for Indicator 2 and 3 

indicator were perfectly homogenous (unidimensional) across mother and father reports. We therefore 

tried a more parsimonious model version (Model 2.2) in which the indicator-specific factors for 

corresponding parcels were collapsed into a single factor across reporters, respectively. That is, the 

simplified Model 2.2 contained only one indicator-specific factor for Parcel 2 and one indicator-

specific factor for Parcel 3 that applied to both types of reporters (see Figure 3B). Given greater 

parsimony, Model 2.2 had an improved chi-square/df ratio of 2.6 and fit better than Model 2.1 

according to the AIC. Other fit indices were similarly good for both Models 2.1 and 2.2, so that we 

decided to continue tests of ME with the more parsimonious Model 2.2.  

Model 2.3 tested whether indicator-specific factor loadings were equal across mother and father 

reports by fixing all indicator-specific factor loadings to 1. The slightly improved chi-square/df ratio of 

2.55 and non-significant chi-square difference test indicated that this assumption was tenable. Other fit 

indices also supported the more parsimonious Model 2.3. In Model 2.4, we tested for equal state factor 

loadings across mother and father reports (reflecting the assumption of weak ME across methods). 

Model 2.4 had a similar chi-square/df ratio of 2.52 and did not fit significantly worse than Model 2.3 

according to the chi-square difference test. Model 2.4 also showed a lower AIC value than Model 2.3 

and was supported by the remaining fit indices. 

Next, we tested for equal intercepts across mother and father reports (Model 2.5; reflecting the 

assumption of strong ME across methods). This constraint was not rejected by the chi-square 
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difference test. Although the AIC was slightly higher for Model 2.5 than for Model 2.4, the remaining 

fit indices (including a chi-square/df ratio of 2.52) were similar for both models. We therefore decided 

to retain the more parsimonious Model 2.5. 

In Model 2.6, we set error variances equal across reporters for corresponding parcels (reflecting 

the assumption of strict ME across methods). The chi-square difference test indicated that this 

constraint led to a significant decline in fit. We therefore preferred Model 2.5, assuming strong (but not 

strict) ME across methods. As stated previously, strong ME is sufficient for meaningful comparisons of 

LS factor means and variances. In the subsequent Model 2.7, we tested for equal LS factor means 

across methods for Time Points 1 and 3 (Step-1 analyses had already revealed that means for fathers 

differed slightly between Times 1 and 3 vs. Time 2). Model 2.7 did not fit significantly worse than 

Model 2.5 according to the chi-square difference test and had a decent fit overall (including a chi-

square/df ratio of 2.52). This indicated that mother and father reports in general showed convergent 

validity with regard to mean levels of IN in this sample, with the exception of Time 2, for which father 

reports indicated a slightly lower level of IN (0.92 vs. 0.97 on the 0 to 5 point response scale). This 

mean difference was very small however, and likely does not represent a substantively meaningful 

difference. Note that convergent validity of mean levels does not mean that reporters also showed 

perfectly correlated LS scores—we address the question of convergent validity with respect to the LS 

factor correlations in a later section below. 

Next, we tested for equal LS factor variances across reporters. Equal LS factor variances across 

methods would indicate that different methods reflect the same amount of true score variability. Our 

Step-1 analyses had already revealed that equal state factor variances could not be assumed across time 

within each method. Therefore, we only tested whether state factor variances were equal across 

reporters at the same time point (Model 2.8). Model 2.8 did not fit significantly worse than Model 2.7 
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and had a decent overall fit. This indicated that equal state factor variances across methods could be 

assumed at each time point. Mother and father reports thus showed convergent validity also with 

respect to the amount of true individual differences in IN at each time point. Therefore, it made sense 

to also test for equal covariances of LS factors across reporters (Model 2.9). This assumption was also 

tenable according to the chi-square difference test and global fit measures. We accepted Model 2.9 as 

the final combined MM-LS model. The good fit of Model 2.9 indicated that mother and father reports 

also showed convergent validity with regard to the overtime correlations of LS factors. In other words, 

mother and father reports reflected the same amount of stability of individual differences in IN across 

time (state factor correlations for both reporters: Time 1 with Time 2: .80; Time 2 with Time 3: .76; 

Time 1 with Time 3: .70). 

An examination of the correlations between corresponding mother-father LS factors that were 

measured at the same time point revealed very high convergent validity between mothers and fathers at 

each measurement occasion. The three correlations were .84 (Time 1), .83 (Time 2), and .79 (Time 3). 

This indicated that the rank order of individuals with regard to true IN scores was rather similar across 

reporters at each time point—mother and father consistently showed high agreement in their reports. 

CS-C(M – 1) models. One way to examine the degree of convergent validity in more detail is 

by means of a more sophisticated MM-MO model that contrasts the reports of one (or several) methods 

against a reference method. This allows researchers to determine variance components due to shared 

construct variance (convergent validity relative to the reference method), method specificity 

(discrepancies of a given method relative to the reference method), and measurement error 

(unreliability) in each indicator. This possibility is offered by a model called the correlated states-

correlated (methods – 1) or CS-C(M – 1) model (Geiser, 2009; Geiser et al., 2010b).  
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The CS-C(M – 1) model requires researchers to select one method as reference prior to the 

analysis (Eid et al., 2003). The choice of the reference method is usually based on the following 

considerations (for a more detailed discussion and guidelines as to the choice of an appropriate 

reference method, see Geiser, Eid, & Nussbeck, 2008). First, if there is a method that is (1) already 

known (or hypothesized) to be highly valid or (2) most established or trusted in a given field (so-called 

“gold-standard” method), then this method is selected as reference (e.g., an objective measure of a 

construct such as a test or physiological measure versus more subjective measures such as self- and 

other reports). In other cases, there may be no gold standard available, but a specific contrast between 

methods (e.g., self- versus other reports of behavior) may be most interesting or relevant to the 

research problem at hand. In the case of just two methods, the choice of the reference method is 

relatively arbitrary from the point of view of variance components, as these will give similar answers 

in either case. 

A path diagram of a CS-C(M – 1) model with general state factors for the present design with 

two methods, three time points, and three indicators per time point is depicted in Figure 4. In the 

picture, the first method (i.e., mother reports) was selected as reference method. The second method 

(i.e., father reports) served as non-reference method. The LS factors in Figure 4 are defined by the 

reference method and therefore reflect true individual differences in IN as reported by mothers. The 

father report indicators also load onto the reference LS factors and in addition have loadings on method 

factors Mmt. The Mmt factors are defined as residual factors with respect to the corresponding state 

factors S11t. Therefore, the method factors Mmt capture systematic variance in the non-reference (father) 

indicators that is shared by all father report indicators at a given time point, but not shared with the 

mother indicators at the same time point. Variance shared with the mother report indicators 
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(convergent validity) is reflected in the factor loadings of the father indicators on the mother report 

state factors.  

One loading per method factor is fixed to 1 for identification on each measurement occasion. 

Method factors, defined as residuals, have means of zero. Therefore, as in previous models, latent 

means are only estimated for the LS factors. Furthermore, method factors are not allowed to correlate 

with corresponding state factors that pertain to the same construct and time point. Indicator-specific 

factors ISim are specified in the same way and have the same meaning as in the previous MM-LS 

model. These factors reflect indicator-specific effects in mother and father indicators relative to a 

reference indicator. The ISim factors are not allowed to correlate with either the LS or method factors 

Mmt. 

An alternative way to specify a CS-C(M – 1) model is to use indicator-specific instead of 

general LS factors. In CS-C(M – 1) model with indicator-specific LS factors (see Figure 5), indicator-

specific effects are reflected in the fact that each indicator has its own LS variable. Therefore, separate 

indicator-specific factors ISim are not required in this model. The CS-C(M – 1) model with indicator-

specific LS factors can be a useful alternative to the model with general LS factors when different 

methods use the same indicators as in the present example. An advantage of the CS-C(M – 1) model 

with indicator-specific LS factors is that it does not require indicator-specific effects to be 

homogeneous (unidimensional) across measurement occasions. Instead, indicator-specific LS factors 

can simply be freely correlated and do not require a unidimensional structure across time. Another 

advantage is that separate LS factors are specified for each indicator. Latent means, variances, and 

covariances can thus be estimated separately for each LS factor for the reference method. Therefore, 

the model is particularly useful when indicators reflect rather distinct facets of a construct for which 

general state factors are less meaningful.  
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In the CS-C(M – 1) model with indicator-specific state variables, convergent validity and 

method-specificity can be quantified in terms of the consistency and method-specificity coefficients 

(Eid et al., 2003; Geiser et al., 2010b). The consistency coefficient for an observed variable (indicator) 

is given by the squared standardized state factor loading for that indicator and reflects the proportion of 

variability in that indicator that is shared with the reference method. The method specificity coefficient 

is given by the squared standardized method factor loading and reflects the proportion of variability in 

a non-reference indicator that is due to method effects (systematic variability that is not shared with the 

reference method). Consistency and method-specificity coefficients add up to the reliability coefficient, 

which gives the proportion of total reliable (systematic) variability in an indicator. Consistency and 

method-specificity coefficients can also be calculated for the underlying true score variables. This can 

be accomplished by dividing the observed variable consistency and method-specificity coefficients for 

a given indicator by the reliability estimate for that indicator. That way, one can more easily examine 

which proportion of the true score (overall systematic variance) is shared with the reference method 

versus method-specific. 

In our example, both the CS-C(M – 1) model with ISim factors (Model 2.10) and the CS-C(M – 

1) model with indicator-specific LS factors (Model 2.11) fit the data well (see Table 2). According to 

the AIC, the latter model had the best fit of all models considered. We therefore present detailed 

outcomes for Model 2.11. Tables 3 and 4 contain the relevant parameter estimates for this model. 

Table 5 gives the consistency, method specificity, and reliability coefficients. The CS-C(M – 1) model 

revealed that mother and father reports showed fairly strong convergent validity on all three 

measurement occasions. This can be seen from the high standardized loadings of the father report 

indicators on the reference state factors and the comparatively low standardized loadings on the father 

report method factors. The consistency and method specificity coefficients in Table 5 show that 
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between two-thirds and three-fourths of the true score variance in father reports was shared with 

mother reports. Only between a fourth and a third of the true score variance in father reports was 

method-specific in the sense that it was not shared with mother reports.  

Correlations of method factors across measurement occasions (range: [.45; .50], see Table 4) 

indicated moderate stability of method effects (deviations from mother reports) over time. This means 

that there was a tendency for fathers who overestimated a child’s IN symptoms on one measurement 

occasion to also overestimate this child’s IN symptoms on another measurement occasion. However, 

the stabilities of the method effects were relatively modest, indicating that there was some change in 

method effects as well. 

Summary of the Analysis 

In summary, our detailed analyses of longitudinal mother and father report IN data with 

multiple MM-MO models revealed the following findings: 

• Mother and father reports of IN showed high levels of convergent validity in different 

domains: There was strong ME across reporters indicating that the IN latent variables were 

measured in the same metric for mothers and fathers. Mother and father reports resulted in 

identical latent IN means on two out of the three measurement occasions as well as identical 

latent variances on each measurement occasion. Mother and father reports also resulted in 

identical stability estimates (latent state correlations) across time. In addition, mother and 

father reports shared a large portion of true score variance on all three measurement 

occasions.  
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• Mother and father reports both revealed the same high level of stability of true individual 

differences across time. This indicated that IN may be a rather trait- than state-like construct 

in this age group and population. 

• Method effects of father reports (deviations from mother reports) showed moderate 

stabilities across measurement occasions, indicating that specific father true score variance 

is somewhat (but far from perfectly) consistent across time. 

Outlook: Other Models for MM-MO Data 

In subsequent steps, researchers could analyze more specialized MM-MO models. Due to space 

limitations, we can only briefly review these models, but provide the appropriate references for more 

detailed descriptions and applications. 

State Variability Models. For constructs that represent a longitudinal process of pure state 

variability (e.g., mood), latent state-trait extension of MM-MO models can be used to determine 

variance components due to trait, state residual, and measurement error components for different 

methods as well as for examining the convergent validity of state and trait components across methods. 

MM-LST models have been presented by Courvoisier et al. (2008); Hintz, Geiser, and Shiffman 

(2016); Koch et al. (in press); as well as Scherpenzeel and Saris (2007). An application of a MM-LST 

model to IN can be found in Litson, Geiser, Burns, and Servera (in press). 

Change and Growth Models. Investigators are often interested in modeling change over time 

in more detail. For this purpose, the MM-MO state models presented here can be adapted to include 

latent change (difference score) variables (Raykov, 1993; Steyer, Eid, Schwenkmezger, 1997). Geiser 

et al. (2010a) presented an extension of the MM-LS model to an MM change score model. Geiser et al. 

(2010b) discuss a latent change version of the CS-C(M – 1) model. Both models allow researchers to 
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examine the convergent validity of change scores. Grimm et al. (2009) presented an extension of the 

correlated traits-correlated methods (CT-CM) model to a multiple-indicator MM growth curve model. 

However, their extension uses a single indicator per method rather than multiple indicators for each 

method. Crayen et al. (2011) discuss a multigroup modeling approach that is based on the CS-C(M – 1) 

model and can be used when multiple intervention or control groups are compared longitudinally using 

a multigroup MM-MO design. 

Models for more complex MM designs. Koch, Schultze, Eid, and Geiser (2014) presented an 

extended CS-C(M – 1) model for MM measurement designs that use both structurally different (fixed) 

and interchangeable (random) methods. A similar extension of Courvoisier et al.’s (2008) MM-LST 

model is discussed in Koch et al. (in press). 

Conclusion 

The modeling of multiple-indicator MM-MO data involves a number of specific issues such as 

examining different types of method effects, testing for ME across time and methods, and studying 

convergent validity through structural (latent variable) parameters. In the present tutorial, we addressed 

the question as to how such complex MM-MO data and models can be approached and how a well-

fitting and possible parsimonious model can be identified. We hope that our tutorial will be useful to 

get substantive researchers started on their analysis of MM-MO data.  
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Table 1. Correlations, Means, and Standard Deviations for Mother and Father Reports of Inattention (IN) 

 Mother reports Father reports 
Parcel T1P1

M 

T1P2

M 

T1P3

M 

T2P1

M 

T2P2

M 

T2P3

M 

T3P1

M 

T3P2

M 

T3P3

M 

T1P1

F 

T1P2

F 

T1P3

F 

T2P1

F 

T2P2

F 

T2P3

F 

T3P1

F 

T3P2

F 

T3P3

F 

T1P1M —                  

T1P2M .87 —                 

T1P3M .82 .85 —                

T2P1M .70 .68 .66 —               

T2P2M .68 .74 .70 .86 —              

T2P3M .64 .66 .71 .82 .85 —             

T3P1M .63 .61 .62 .65 .66 .62 —            

T3P2M .61 .66 .63 .68 .75 .66 .87 —           

T3P3M .61 .63 .66 .63 .67 .68 .86 .86 —          

T1P1F .77 .74 .72 .67 .66 .62 .59 .56 .55 —         

T1P2F .70 .78 .72 .61 .67 .61 .54 .56 .53 .87 —        

T1P3F .69 .73 .78 .64 .68 .67 .56 .58 .58 .83 .86 —       

T2P1F .68 .65 .61 .75 .73 .67 .60 .64 .59 .74 .71 .70 —      

T2P2F .66 .68 .64 .70 .79 .68 .60 .66 .60 .71 .75 .72 .88 —     

T2P3F .65 .63 .64 .69 .72 .76 .58 .61 .61 .71 .69 .75 .84 .85 —    

T3P1F .50 .50 .51 .54 .59 .55 .70 .70 .66 .59 .59 .59 .68 .66 .61 —   

T3P2F .53 .58 .56 .56 .64 .57 .67 .76 .68 .61 .65 .62 .68 .74 .65 .88 —  

T3P3F .51 .53 .54 .54 .59 .57 .66 .69 .72 .59 .60 .62 .64 .66 .66 .87 .87 — 

M 0.94 1.20 1.10 0.91 1.14 1.06 0.99 1.18 1.12 0.99 1.20 1.13 0.93 1.10 1.05 1.03 1.23 1.14 

SD 0.97 1.09 1.05 0.96 1.07 1.03 1.00 1.09 1.06 0.99 1.10 1.06 0.97 1.05 1.02 1.02 1.11 1.07 

Note. T = time, P = parcel, M = mother report, F = father report  
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 Table 2. Goodness of Fit Statistics for Different Models Fit to the Inattention Data 

Model Description χ2 df p RMSEA SRMR CFI AIC Δχ2 Δdf p( Δχ2) 

Step 1 (mother report) 

1.1 LS model, configural ME 184.87 24 <.001 .09 0.018 .964 10383 
   

1.2 Model 1.1 with ISi factors 

for Parcel 2 and 3,  

24.59 21 .26 .015 0.01 .999 10174 
   

1.3 Model 1.2 with weak ME  27.23 25 .34 .011 0.013 1 10170 2.64 4 .61 

1.4 Model 1.2 with strong ME  35.01 29 .20 .016 0.014 .999 10171 7.77 4 .10 

1.5 Model 1.2 with strict ME 50.90 35 .03 .024 0.018 .996 10184 15.97 6 .01 

1.6 Model 1.4 with equal 

state factor means 

40.54 31 .11 .02 0.019 .998 10174 5.52 2 .06 

1.7 Model 1.5 with equal state 

factor variances 

47.77 33 .04 .024 0.029 .997 10180 7.23 2 .02 

Step 1 (father report) 

1.1 LS model, configural ME 137.87 24 <.001 .081 .02 .973 8622    

1.2 Model 1.1 with ISi factors 

for Parcel 2 and 3,  

34.43 21 .033 .030 0.012 .997 8495    

1.3 Model 1.2 with weak ME  42.55 25 .016 .031 0.02 .996 8498 8.12 4 .09 

1.4 Model 1.2 with strong 

ME  

47.69 29 .016 .030 0.019 .996 8495 5.14 4 .27 

1.5 Model 1.2 with strict ME 66.19 35 .001 .035 0.022 .993 8510 18.50 6 .005 

1.6 Model 1.4 with equal state 

factor means 

59.26 31 .002 .035 0.025 .993 8504 11.58 2 .003 

1.7 Model 1.5 with equal state 

factor variances 

56.48 31 .003 .034 0.037 .994 8503 8.79 2 .01 

Step 2 (mother and father reports combined) 

2.1 
Models 1.6 (Mothers) and 

1.4 (Fathers) combined 
326.37 116 <.001 .047 0.018 .979 17235    

2.2 
Model 2.1 with general ISi 

factors across reporters 
335.90 129 <.001 .045 0.018 .980 17224 9.53 13 .73 

2.3 
Model 2.2 with equal ISi 

factor loadings  
343.76 135 <.001 .044 0.019 .980 17223 7.86 6 .25 
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2.4 
Model 2.3 with weak ME 

across reporters 
345.58 137 <.001 .043 0.019 .980 17221 1.82 2 .40 

2.5 
Model 2.4 with strong ME 

across reporters 
350.65 139 <.001 .043 0.019 .979 17222 5.06 2 .08 

2.6 
Model 2.5 with strict ME 

across reporters 
367.40 148 <.001 .043 0.02 .979 17226 16.74 9 .05 

2.7 

Model 2.4 with equal LS 

factor means across 

reporters a 

355.73 141 <.001 .043 0.02 .979 17223 5.07 2 .08 

2.8 Model 2.7with equal LS 

factor variances for 

corresponding time points 

358.07 144 <.001 .043 0.021 .979 17219 2.34 3 .50 

2.9 Model 2.8 with equal LS 

factor covariances across 

reporters 

360.11 147 <.001 .042 0.022 .979 17220 2.04 3 .56 

2.10 CS-C(M – 1) model with 

general state and ISi factors 
397.33 137 <.001 .049 0.067 .975 17284    

2.11 CS-C(M – 1) model with 

indicator-specific state 

factors 

210.85 91 <.001 .04 0.07 .988 17123    

Note. LS = latent state. IS = indicator specific. CS-C(M – 1) = correlated state-correlated (methods minus one). RMSEA = root 

mean squared error of approximation. SRMR = standardized root mean square residual. CFI = comparative fit index. AIC = 

Akaike’s information criterion. Best-fitting models for which detailed outcomes are reported in the text are printed in bold face.  
a Latent state factor means set equal across reporters on all time points except Time 2. 
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Table 3. Parameter Estimates and Standard Errors for Model 2.11 

Parameter Estimate SE Standardized estimate 

Parcel 1 state factor loadings    

     Mother report   1.00 a, b – .95, .94, .95c 

     Father report 0.93 b 0.02 .83, .83, .79 c 

Parcel 2 state factor loadings    

     Mother report   1.00 a, b – .97, .98, .97 c 

     Father report 0.92b 0.02 .84, .83, .80 c 

Parcel 3 state factor loadings    

     Mother report   1.00 a, b – .95, .95, .96 c 

     Father report 0.93 b 0.02 .83, .83, .79 c 

Method factor loadings    

     Parcel 1, father report   1.00 a, b – .50, .50, .55 c 

     Parcel 2, father report   1.18 b 0.04 .50, .50, .55 c 

     Parcel 3, father report   1.04 b 0.04 .46, .48, .54 c 

State factor means    

Parcel 1 .936 0.03  

Parcel 2 1.16 0.04  

Parcel 3 1.07 0.03  

Intercepts    

Mothers and fathers, Time 1 

and Time 3 
    0.00 a – 

 

    Fathers, Time 2 Parcel 1     0.01  0.02  

    Fathers, Time 2, Parcel 2   –0.02  0.02  

    Fathers, Time 2, Parcel 3   –0.004  0.02  

Factor variances    

State 1 Parcel 1 Mothers 0.85 0.07  

State 1 Parcel 2 Mothers 1.24 0.09  

State 1 Parcel 3 Mothers 1.05 0.08  

State 2 Parcel 1 Mothers 0.74 0.06  

State 2 Parcel 2 Mothers 1.01 0.07  
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State 2 Parcel 3 Mothers 0.85 0.06  

State 3 Parcel 1 Mothers 0.76 0.06  

State 3 Parcel 2 Mothers 1.13 0.08  

State 3 Parcel 3 Mothers 0.86 0.07  

Time 1 Father Method Factor 0.27 0.03  

Time 2 Father Method Factor 0.23 0.03  

Time 3 Father Method Factor 0.33 0.05  

Measurement error variances    

Parcel 1, Time 1, Mothers 0.09 0.01 0.10 

Parcel 2, Time 1, Mothers 0.07 0.02 0.06 

Parcel 3, Time 1, Mothers  0.11 0.02 0.12 

Parcel 1, Time 1, Fathers  0.08 0.01 0.07 

Parcel 2, Time 1, Fathers 0.09 0.02 0.06 

Parcel 3, Time 1, Fathers  0.13 0.02 0.10 

Parcel 1, Time 2, Mothers  0.10 0.01 0.12 

Parcel 2, Time 2, Mothers  0.05 0.01 0.05 

Parcel 3, Time 2, Mothers  0.09 0.01 0.10 

Parcel 1, Time 2, Fathers  0.06 0.01 0.06 

Parcel 2, Time 2, Fathers  0.07 0.01 0.06 

Parcel 3, Time 2, Fathers  0.08 0.01 0.08 

Parcel 1, Time 3, Mothers  0.08 0.01 0.10 

Parcel 2, Time 3, Mothers  0.08 0.02 0.07 

Parcel 3, Time 3, Mothers  0.08 0.01 0.09 

Parcel 1, Time 3, Fathers  0.08 0.01 0.07 

Parcel 2, Time 3, Fathers  0.08 0.02 0.06 

Parcel 3, Time 3, Fathers  0.09 0.02 0.08 

Note. Model 2.11 = CS-C(M – 1) model with indicator-specific state factors. a parameter fixed for 

identification. b parameter set equal across measurement occasions and therefore reported only once. 
c standardized factor loadings were not set equal across time and are reported for each of the three 

measurement occasions in the order Time 1, Time 2, Time 3. Dashes (–) indicate that a standard 

error was not computed due to a parameter being fixed rather than freely estimated. 
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Table 4. Latent Variable Correlations in Model 2.11 

Factor S1P1M S1P2M S1P3M S2P1M S2P2M S2P3M S3P1M S3P2M S3P3M Method 1 Method 2 Method 3  

S1P1M         
 

   

S1P2M .94        
 

   

S1P3M .92 
.93 

      
 

   

S2P1M .79 
.75 .75 

     
 

   

S2P2M .75 
.79 .77 .94 

    
 

   

S2P3M .74 
.73 .79 .91 .92 

   
 

   

S3P1M .69 .66 .69 .73 .72 
.70 

  
 

   

S3P2M .69 .72 .71 .75 .79 
.73 .94 

 
 

   

S3P3M .69 .68 .73 .72 .72 
.75 .94 .93  

   

Method 1 0a 0 a 0 a .15 .14 .15 .13 .08 
.08 

   

Method 2 .18 .16 .14 0 a 0 a 0 a .14 .13 
.11 

.45   

Method 3 .07 .10 .08 .08 .11 .08 0 a 0 a 
0 a 

.49 .50  

Note. Model 2.11 = CS-C(M – 1) model with indicator-specific state factors. S = state factor. P = parcel. M = mother report. Method 

1 = method factor father reports time 1. Method 2 = method factor father reports time 2. Method 3 = method factor father reports 

time 3. a correlations between state and method factors at the same time point are fixed to zero by definition of the model. 
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Table 5. Consistency, Method-Specificity, and Reliability Estimates for Model 2.11 

 
Observed Variables                      Latent state (true score) variables 

Variable Consistency Method specificity Reliability Consistency Method specificity 

 Time 1 

Parcel 1, Mothers .90 — .90 1.00 .00 

Parcel 2, Mothers .94 — .94 1.00 .00 

Parcel 3, Mothers .90 — .90 1.00 .00 

Parcel 1, Fathers .68 .25 .93 .74 .26 

Parcel 2, Fathers .70 .25 .94 .74 .26 

Parcel 3, Fathers .69 .22 .90 .76 .24 

 Time 2 

Parcel 1, Mothers .88 — .88 1.00 .00 

Parcel 2, Mothers .95 — .95 1.00 .00 

Parcel 3, Mothers .90 — .90 1.00 .00 

Parcel 1, Fathers .69 .25 .94 .74 .26 

Parcel 2, Fathers .69 .25 .94 .73 .27 

Parcel 3, Fathers .69 .23 .92 .75 .25 

 Time 3 

Parcel 1, Mothers .91 — .91 1.00 .00 

Parcel 2, Mothers .93 — .93 1.00 .00 

Parcel 3, Mothers .91 — .91 1.00 .00 

Parcel 1, Fathers .62 .31 .93 .67 .33 

Parcel 2, Fathers .64 .31 .94 .68 .32 

Parcel 3, Fathers .63 .29 .92 .68 .32 

Note. Mother reports served as reference method. Father reports were contrasted against mother reports. Therefore, method specificities 

are zero for mother report indicators by definition. 
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Figures 

 

 

 

Figure 1. Path diagram of a single-method latent state (LS) model for three indicators and three time 

points. Yit = observed variable (indicator; i = indicator, t = time point). St = common latent state factor. 

λit = state factor loading. εit = measurement error variable. The triangles represent a constant of 1 that is 

used to add a mean structure to the model [intercepts αit and latent state factor means E(St)]. 
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Figure 2. Path diagram of a single-method LS model for three indicators and three time points with 

indicator specific factors for the second and third indicator. S1t = latent state factor specific to indicator 

Y1t. ISi = indicator-specific residual factor. λit = state factor loading. δit = indicator-specific factor 

loading. The mean structure is the same as in Figure 1 and has been omitted from the picture to reduce 

clutter. 
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Figure 3. Path diagram of multi-method LS models for three indicators, two methods, and three time points. Indicators are indexed imt 

(i = indicator, m = method, t = time point). A: each method has separate (method-specific) indicator-specific factors ISim. B: both 

methods share the same (common) indicator-specific factors ISi. The mean structure has been omitted from the pictures to reduce 

clutter, but is described in the text and was included in the analysis of each model. 
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Figure 4. Path diagram of a correlated states, correlated (methods minus one) [CS-C(M – 1)] model with general state factors and 

indicator-specific factors for three indicators, two methods, and three time points. Method 1 serves as reference method. Method 

factors M2t are included for the second method to contrast Method 2 against Method 1 on each measurement occasion. Both methods 

share the same (common) indicator-specific factors ISi. The mean structure has been omitted from the picture to reduce clutter, but is 

described in the text and was included in the analysis of the model. 
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Figure 5. Path diagram of a correlated states, correlated (methods minus one) [CS-C(M – 1)] model with indicator-specific state 

factors for three indicators, two methods, and three time points. The first method is selected as reference method. Method factors M2t 

are included for the second method to contrast Method 2 against Method 1 on each measurement occasion. The mean structure has 

been omitted from the picture to reduce clutter, but is described in the text and was included in the analysis of the model. 

 


