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ABSTRACT 

Petrology of the Lower Middle Cambrian Langston Formation, 

North- central Utah and Southeastern Idaho 

by 

Gary Jay Buterbaugh , Master of Sc i ence 

Utah Sta te University , 1982 

Major Professor : Dr . Peter T. Kolesar, Jr . 
Department : Geology 

The Lower Middle Cambrian Langs·on Formation was studied in the 

xi 

Bear River Range of north - central Utah and southeaste rnmos t Idaho and 

the Wellsville Mountains of north - central Utah . The depositional 

textures and sedimenta ry structures preserved within the rocks were 

compared with characteristics of similar modern sediments and ancient 

rock to determine environments of deposition, paleogeography, 

diagenetic alteration and pattern of dolomitization . 

The rocks of the Langston Formation were divided into eleven 

different rock types . These eleven rock types were formed within 

four recognizable lithofacies : 1) upper pe ri t idal; 2) inner 

carbonate shelf ; 3) inner clastic shelf ; and 4) outer clastic shelf. 

The gene r al depositional environment is inferred to have been a 

shal l ow subtidal to subaerial carbonate shoa l complex . Clastic 

sediments fro m the east and north or northwes t periodically prograd ed 

over the carbonate complex during times of relatively slow 

subsidence . The deposition of the Langston Format ion mudrocks and 

carbonates occurred during the first Cambrian grand cycle. 



xii 

During Langston time the study area was located near the outer 

edge of an equatorial epeiric sea . Clay mineralogy of the insoluble 

residues indicates a relatively humid climate, yet the humidity was 

low enough to permit precipitation of sulfate minerals . 

Eogenetic diagenetic features include birdseye structures, 

relict evaporite structures, fibrous rim cement , compaction, and the 

begining of dolomitization . Mesogenetic diagenesis is characteriz ed 

by dolomitization and pressure solution . Telogenetic diagenesis is 

limit ed to fracturing and calcite infilling . 

Dolomitization is believed to have resulted mainly from downward 

reflux of hypersaline brines, as indicated by relict evaporite 

structures, zoned dolomite rhombs, and a general association of 

dolomite with upper peritidal facies. The hypersaline brines formed 

in the upper peritidal environment , and percolated downward through 

underlying porous sediments . The greater density of the hypersaline 

brines displaced less-dense interstitial fluids . Thes e brines were 

periodically diluted by normal marine water or fresh water . 

(166 pages) 



INTRODUCTION 

Gene r al Statement 

This report summari zes a study of the environments of deposit ion 

and the di agenesis of the Middle Camb r ian Langston Forma tion in 

southe rnmost Idaho and north-central Utah . In the area of study the 

Langston Formation is conformably underlain by the Lower Cambrian 

Brigham Quartzite and overlain by the Middle Cambrian Ute Formation . 

The Langston Formation is the lowermost carbonate unit in the 

Cambrian stratigraphic sequence of the study area . It represents a 

major change in the depositional history of the Cambrian sequence. 

Wide distribut i on , fair to good exposure , vertical and lateral 

diversity in lithology, and its unique position in the Cambrian 

sequence lead to the selection of the Langston Formation for study. 

Purpose of the Investigation 

The objec tives of this thesis were: ( 1) to determine the 

environments of deposition as indicated by lithology and sed imentary 

structures ; (2) to determine the paleogeographic setting ; and (3) to 

determine the order of diagenetic events, with emphasis on 

dolomitization . 
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Location 

Six of the eight measured sections a re located within the Logan 

Quadrangle (Fig . 1) . The ~emaining two sect i ons are located just 

outs i de of it , i n the Preston Quad rangle t o the north , and in Bo x 

Elder County to the west . The area is bounded to t he north by 

0 1 0 
la~itude 42 02 Nand on the south by latitude 41 30 ' N. The boundary 

to the east is longitude 112°04 ' W and to the west , longitude 111 

30 ' W. The study area extends east -wes~ fo r 42 kilometers and 

north - south for 62 kilometers , for a total area of 2604 square 

kilome~ers . Elevations below 5135 feet comprise approximately 2/5 of 

the study area and are covered by Quaternary lacust r ine deposits of 

Lake Bonneville . At elevations above the Lake Bonneville deposits , 

Recent ana Pleistocene deposits of drift and alluvial sediments cover 

many a r eas (Will i ams , 1948) . 

Seven of ei ght sections were measured in the Bear River Range. 

Two of the measured sect i ons (2 , 8) had excel lent exposure , three 

(3 ,4, 5) had good exposure and three (1 , 6 ,7 ) had fair exposure . Four 

sections (1 , 2 , 3 , 7) were exposed on west-facing slopes, three ( 4,6,8) 

on south-facing slopes , and one on an east-facing slope. The lower 

contacts in four of the sections ( 2,4 , 5, 8) were well exposed, 

graditional , and conformabl e . In three sections ( 1 , 3 ,7) the lower 

contacts we re covered but measurable to within : 2 met e rs . The uppe r 

contact in a ll sections except section 6 , was well exposed, sharp, 

and conformable. The top 30% of section 6 was covered in the area 

measured, but in the same general area Rigo ( 1968) measured a middle 

limestone - shale unit and an uppe r dolostone unit . 



FIG . 1 - Map showing outcrops of the Langston 

Formation, Logan Peak Syncline , and Strawberry 

Valley Anticline , north - central Utah and southeastern 

Idaho . Circled numbers are locations of measured 

sections. (adapted from Maxey , 1958) 
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Three sections (1 ,2,3 ) were measured on the west limb of the 

Logan Peak Syncline . Three sections (4 , 5 , 6) were measured on the 

west limb of the Strawberry Valley Anticline, and one sect i on (7) on 

the east limb . The last section (8) , Miners Hollow, contributed most 

to the east - west control of the study area and is exposed on the 

west - facing side of the Wellsville Mountain Monocline . No faults 

were found within ny measured section . 

Extensive field reconnaissance of 14 sections showed that 6 were 

unsuitable for measuring due to faulting and/or very poor exposure . 

Most sections were easily accessible by motor vehicle and only 

required 2- 3 kilometers of hiking and climbing to reach exposed 

outcrops . 

Geologic Setting 

The Bear River Range occupies about 3/ 5 of the study area and 

consists of two ridges separated by a depression . The front ridge is 

located to the west and contains Naomi and Logan Peaks . The eas tern 

ridge is a combination of Temple Ridge and Hayes Ridge . These two 

ridges (the eastern ridge and the front ridge) comprise a fault block 

bound ed on the west by the East Cache fault, a nd on the eas t by the 

Temple Ridge and Hayes Ridge faults . The front ridge is a 

topographic hi gh superimposed on a structural l ow, the Logan Peak 

Syncline . The Strawbe rry Valley Ant icl ine, to the east , r uns 

parallel to the Logan Peak Syncline (Williams , 1948) . 

s 



Field and Laboratory Methods 

The field work was conducted between June 1 , 1981 and October 

15 , 1981. Reconna issance field work included locating possible 

sections for measurement using Williams' (1948) geologic map of the 

Logan quadrangle , and section locations described in Maxey (1958), 

Oriel and Armstrong (197 1) , and Riga ( 1968) . Once a section was 

located in the field, it was then scouted for faults, large covered 

intervals , or other undesireable features . Measurement and 

description of acceptable sections usually required 2 to 3 days . 

All sections were measured with a Brunton compass and a Jacob's 

staff according to the methods and procedures described in Compton 

(1962) and Kottlowski (1965) . Descriptions included section 

attitude , exposure , nature of contacts , topography , thickness , rock 

type, texture , color , bedding, organic and i norganic features, and 

nature of dolomitization . 

The rock- color chart of Goddard (1963) was us ed for determining 

rock color . Average bedding thicknesses were r ecorded according to 

the fo llowing sche me : thin bedded = 1- 5 em; medium bedded = 5- 25 em; 

and thick bedded = 25+ em. Shale thicknesses were classified 

according to Potter et al . (1980) . 

Or ganic sedimentary featu r es such as pe llets, onkoids , biotic 

components , t race fossils, and cryptalgal structur es , a l ong with 

inorganic sedimentary features such as peloids, pi soliths , 

intraclasts , ooids , mudcracks , birdseye structures , cross - and 

parallel - laminat ions were recorded . Diagenetic features such as 
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stylolites , and fractu re s we r e also noted . Representati ve s a mpl es 

we r e collected within each recognizable uni t , a nd more than one 

sample was collected in units wi th gradational changes . When a thick 

unit (> 15 meters) appea r ed homogeneous, samples were collected a t 

app r oximatly 15 mete r intervals. A total of 135 samples were 

collected. The laboratory work included preparation of cut and 

polished slabs of all 135 samples . Thirty - fo ur thin sections were 

prepared from the samples of sections 5 and 8 . Section 8 , Miners 

Hollow , is representative of the sections in the no r th and west of 

the study &rea ; similarly, section 5 , Blacksmith Fork Canyon , is 

representative of the sections in the southeastern part of the area . 

An additional 24 thin sections were prepared from selected samples a:· 

the remaining 6 sections . 

The thin sections were stained with Alizarin- red S (Friedman , 

1959) to dis tinguish ca lcite from dolomite . Examination was 

accomplished with the use of both binocular and pe trogra phic 

microscopes . Due to extensive recrystallizat ion and dolomitization, 

examination wi th the petrographic microscope to det e rmine original 

textures proved to be less than satisfactory without the a i d of a 

light diffuser (De lga do , 1977) . Delgado recommended the use of a 

magnesium- oxide - coated glass pl ate placed under the thin section to 

be e xamined . He also stated a piece of white paper would gi ve 

similar results . In this study a plain white paper diffuser was us ed 

and found to be just as effective and much easier and less cumbersome 

to use . The binocular microscope , used with the attached l i ght 

diffuser, a lso proved to be invaluable in determining original 



textures . Sandstones , mudrocks, and sandy carbonates were examined 

by standard petrographic techniques, but the paper diffuser was also 

a great aid in thei r study . 

8 

The amounts of acid - insoluble residues and organic matter in 135 

samples were determined . The insoluble residues were isolated from 

the carbonate of each sample by digestion of the carbonate in 20% 

HCl . They were rinsed three times in tap water , then once in 

de - ionized water . They were then air dried until desiccation 

features formed and then oven- dried at 70°c for a minimum of four 

hours . They were then weighed . Organic matter content was 

determined using the insoluble residues . Organi c matter was oxidized 

in a 30% solution of Chlorox. They were rinsed a total of 5 times, 

includin a final rinse in de - ionized water . They were then dried 

and weighed in the same manner as the acid - insoluble residues . 

The percentages of organic matter may have a large error factor 

due to the techniques used in washing the insoluble residues. During 

the rinsing stages, the organic matter , being less dense, fl oated to 

the surface, and large percentages may have been washed away . 

Howeve r, organic matter percen t ages compare reasonably well with 

average organic matter per centages found by Gehman ( 1962). 

The mineral composition of each insoluble re s idue was then 

dete rmined by x- ray diffraction. Oriented - sample slides were 

prepared by grinding the acid - insoluble residues to a size which 

would pass th r ough a 60 mesh sieve. A powde r-water slurry was t hen 

placed on a glass slide and allowed to dry . It was then scanned from 



2026 to 35026 at 2°2e per minute using Ni - filtered CuK radiation at 

35 Kv and 16 rnA , on a Siemens Krystalloflex IV x- ray diffractometer. 

In order to distinguish between the clay minerals present, 69 

samples were rescanned . Sixty- four of these samples were exposed to 

ethylene glycol vapor for 1 hour at Gooc to distinguish the 

montmorillonite group from chlorite and vermiculite clay minerals 

(Carroll , 1970). This process expands the montmorillonite structure 

from 15 A to 17 A, but does not affect the chlorite or vermiculite. 

Thirty - eight samples were heated to 550°C for 1 hour to collapse the 

structure of any kaolinite present, this allowed identification of 

the kaolinite -chlorite peak (Carroll , 1970) . 

Paleoenvironmental and paleogeographic interpretations were 

aided by the use of an isopachous map , geologic sections, a fence 

diagram of lithofacies, and a fence diagram of total dolostone, 

limestone, and non - carbonate . 

9 



PREVIOUS STUDIES 

In 1878, King, during exploration with the Fortieth Parallel 

Survey , first made mention of the undivided Cambrian rocks of the 

Blacksmith Fork area (King , 1878, p . 154, in Deiss , 1938) . 

10 

While doing a general reconnaissance of northeast and central 

Utah, Walcott (1908a , p . 8) made the first description of the 

Langston Formation in Blacksmith Fork Canyon . He published a 

detailed study of the sections and faunas following his initial 

reconnaissance work (Walcott , 1908b, c, d). Walcott (1908d) 

designated Langston Creek as the type locality for the Langston 

Formation, but he stated that it is most readily accessible in 

Blacksmith Fork Canyon where he measured it . Walcott, in all 

publications, incorrectly identified the lower shale member of the 

Ute Formation as the Spence Shale . The Spence Shale member is absent 

in the Blacksmith Fork area . 

The next study of the Langston Formation was done by Richardson 

( 191 3) near Garden City, in the Randolf Quadrangle . In this study he 

reaffirmed Walcott's 1908 name and definition of the Langston , and 

stated that the Cambrian section in the Randolf Quadrangle was 

essentially the same as in the Blacksmith Fork area . 

Again in 1927 , Walcott ' s names and definitions were confirmed by 

Mansfield (1927) , in a study of southern Idaho . 
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Deiss in 1938 , (p . 1116 ) stated that Walcott' s origi nal 

definitions of the Blacksmith Fork section " are nearly all so 

brief, incomplete and generalized that the formations canno t be 

recogniz ed from the m." He emended Walcott ' s definition of the 

Langst on Formation and designat ed the t y pe locality as No rth 

Cottonwood Canyon on the north side of Blacksmith Fork. The Spence 

Shale member was still included in the Ute Format ion . 

Williams and Maxey (1941 , p . 279) defined t he Langston as 

a sequence of shales , l i mestones , and dolomites tha t, though changi ng 

laterally to some extent , constitute a satisfactory mappable 

(lithologic) unit. The Spence Shale is a member of the Langston 

Formation separated in a normal sequence from the Brigham quartz i te 

by only a few fe e t of crystalline l imest one ." Thi s was the first work 

that recogniz ed the Spence Shale as a lower member of the Langston 

Formation. Williams ( 1948) described the Langs ton again fro m his 

work with Maxey . 

Maxey ( 1958 , p . 669) stated Deiss's new 'type ' locality was 

abnormal and further stated that the base of the formation should be 

dra wn at the first distinctive limestone bed above the lower 

quartzite . He then remeasured the Langston Formation one mile south 

of Deiss's section in South Cottonwood Canyon, off Blacksmi th Fork 

Canyon, and exclud ed the basal sands tone which Deiss had included . 

He concluded that the High Creek section " is the best and most 

nea rly typical exposure of the Langston Formation" (Maxey , 1958 , p . 

669) . 
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Maxey (1958) described the interlayered and intertonguing 

relationship of the Cambrian shales and their upper and lower 

carbonate ~ounterparts . Rigo (1968) believed the Spence Shale member 

to the north and the unnamed shale member to the south represent 

small regressive tongues within the overall transgressive sequence of 

the Langston Formation. 

Oriel and Armstrong ( 1971) proposed a modification of the 

definition of the Langston Formation . They proposed that the term 

Langston be restricted to the do ostone member . The Spence Shale 

member was designa~ed as a tongue of the Lead Bell Shale . The lower 

member was designated as the Naomi Peak Tongue of the Twin Knobs 

Formation, and the upper limestone was designated as a new formation, 

the High Creek Limestone. 

These descriptions of the Langston Formation formed parts of 

larger works describing the Cambri an stratigraphy of the region. 

Maxey's 1958 definition of the Langston Formation is used in this 

report because it appears to be widely accepted in Utah and because 

the boundaries between the 'new ' formations of Orie l and Armst rong 

are often gradational or unclear . 

The paleontology of the Langston Formation, especially the 

Spence Shale member , has been described by Walcott ( 1908b, c , 19 12 ), 

Robison (1969) , Robison and Sprinkle (1969) , Gunther and Gunther 

(1981 ) , and Resser (1939) . 
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TERMINOLOGY 

General Statement 

According to Leighton and Pendexter ( 1962) a carbonate rock i s 

one composed of at least 50% ca rbonate . Carbonate rocks a re furthe r 

subdivided into dolostones and limestones: a dolostone contains more 

than 50% dolomite a nd a limestone contains more than 50% calcite . 

The modifier ' calcareous ' specifies that 10 to 40% of a dolostone is 

calcite while the modifier ' dolomitic ' spec ifi es that 10 to 40% of a 

lim stone is dolomite . A carbonate rock conta ining gr eater than 10% 

of a mineral other than dolomite or ca l cite is so s pecifi ed in the 

name (e . g . quartzose dolomitic limestone) . 

The c l assificat i on scheme of Dunham ( 1962) was used for t extural 

cl assification . No n-mineralogic terms were also used in describing 

rock samples and a r e discused in the following sections. 

Crypta l ga l Structures 

The classification and environmental significance of cryptalgal 

structures has been well documented by Logan et al. (1964) and 

Aitken (1967 ) . Cryptalgal structures a r e by definition " thos e 

believed to originate through the sediment -binding and/or carbonate ­

precipitating activities of nonskeletal algae" (Aitken, 1967, p . 

1163) . Cryptalgal structures include : c r yptalgalaminations ; 

stromatolites; oncolites; and thrombolites . Stromatolites are 

further subdivided on the basis of their morphology and a n 

abbreviated classification scheme is provided by Logan e t al . 



( 1 964) . In this work, Aitken ( 1 967) and Logan et al . ( 1 964) will be 

used as the basis for describing rocks with cryptalgal s tructures . 

Allochems 

Folk ( 1962, p . 63) has defined allochems as " ... all the 

organized carbonate aggregates that make up the bulk of many 

limestones ." He further divided allochems into 4 groups : 1) 

intraclasts; 2) ooids; 3) fossils; and 4) pellets . These four groups 

are defined in the following sections . 

Intraclasts 

The term intraclast was proposed by Folk (1962, p . 63) as an 

allochem which was a'' ..• fragment of penecontemporaneous, 

generally weakly consolidated carbonate sediment that has been eroded 

from adjoini ng parts of the sea bottom and redeposited to form a ne"l 

sediment." They have been re>vorked from and deposited "lvi thin the same 

formation. Highly reworked intraclasts would probably be classified 

as peloids . 

Ooids and Pisolites 

Wilson ( 1975, p. 12) defined ooids as " • . . spherical multiple 

coated particles in which the laminae are smooth and constitute a 

relatively thick coating." Pettijohn ( 1975 , p . 83) set a size limit 

of 0 . 25 to 2 . 00 mm in diameter . Leighton and Pendexter (1962, P · 

60) defined pisolite as " .•. a grain type similar to an oolite , and 

generally 2 mm or more diameter." Pisolites are distinguished from 

onkolites (or onkoids) by their concentric unbroken laminations and 
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implied non - algal origin . 

Fossils 

Fossils are the lithified r emains of once - living organisms . 

They may form al lochems in the form of broken pieces or whole biotic 

units. 

Pellets and Peloids 

The term pellet has been used as a general term for a silt - to 

sand - size micr~tic grain , l acking internal structure, and havin a 

general oval shape ( Leighton and Pendexter , 1962 ) . _TcKee and 

Gutschick ( 1969) introduc ed the term peloid for a grain of ambiguous 

origin , which may include intraclasts, pelle ts, s keletal component • 

and ooids (Pettijohn, 1975) . In th is paper the t erm pellet shall 

imply a fecal origin and pelo id shall imply an unknown origin . 

Burr ows , Bioturbation, and Mottling 

Burrows are trace fossils, and are distinguished from body 

fossils in that they " represent the behavior or activity by 

organisms rather than the actual parts , or casts and molds of body 

parts " (Frey , 1975, p . 15 ) . The classification of trace fossils by 

Seilacher (1953, in Frey , 1975 , p . 49) is used i n t his s tudy. 

Vlhen a sediment is "churned ", the term bioturbat ed is applied 

(Moore and Scruton , 1957). In this paper the term bu r rowed is used 

to imply organic activity that has not destroyed all of the original 

depositional texture , while bioturbated is used to imply destruction 



of original depositional texture . The boundary between a burrowed 

and a bioturbated sediment is gradational. The texture created by 

bioturbation is termed mottling . A mottled texture usually results 

from bioturbation but is no t restricted to it. 

Bedding and Laminations 

16 

Bedding , as stated by Pettijohn (1975, p . 102), is 

characterized by rock units of a tabular or lenticular form, which 

contain a degree of lithologic or st ru ctural unity which in turn sets 

them apart from their interstratified counterparts . Pettijohn stated 

the lower limit for a bed is 1 em. Similar structures less than 1 em 

thick are termed laminations . There appears to be no accepted or 

standard classification for bedding , so bed thicknesses were measured 

and later defined in this report to be : 1- 5 em = thin bedded ; 5-25 

em = medium bedded; and 25+ em = thick bedded . Laminations were 

classified according to the modification of Potter et al . (1980) to 

the existing bedding-lamination schemes of Ingram (1954) and McKee 

and Weir (1953) . 

Compaction Features , Stylolites, and Pseudostylolites 

Ginsburg (1957) fo und that initial porosities of carbonate 

sediments range from 40 - 70% . In contrast, ancient limestones have 

less than 5% porosity . This gr ea t reducti on in porosity has resulted 

mainly from compaction (Shinn et al ., 1977) . Shinn et al . have 

found that compaction of carbonate muds can reduce original 

porosit i es by a minimum of 50% . This porosity reduction results in 

the production of compaction features, as shown by the molding of 



some structures around others . The concentrat i on of or ganic ma tt e r 

(and clay or fine silt?) results in compaction fea t ur es termed 

pseudostylolites (Shinn et al ., 1977) . The term compaction feature 

is used in this report to describe structures which are as sumed to 

have formed by compac ti on . The te r m ps eudos tylo l i te is use d 

specifical l y to designate a type of compac t ion whi ch has the 

appearance of a wis py, stylolite- like st r uctu r e . 

17 

Stylolites result from pressu r e solution , which results f rom 

late stage compaction , or more precisely , volume red uction, in 

carbonate rocks . Wagner (1913 , in Bathurst , 1975 , p . 469) was the 

first to explain stylolites in terms of pressure solution . The 

stylolites and compaction features of the Langston rocks are often 

closely interrelated . Compaction features often appear to se r ve as a 

nucleus or template for stylolite formation . This is shown by the 

crosscutting relationship of stylolit es s uperimposed on compact i on 

f eatures . The same relat ionship exi sts between stylolit es a nd 

clay/silt layers . The t erm sty lo l ite in t hi s repo t i s used to imply 

an agg r egate sty lo li te , r a the r than an int e r gr anul a r s tylolite (Park 

and Schot, 1968) . 

Wanl es s ( 1979) stat ed tha t stylo l it izat i on, espe ci a lly 

non-su tu r ed pr es sure solution , was reponsible for most of the volume 

r educti on in Pa l eozoic ca rbonat e ro cks . He s ta ted that t he physical 

c ompaction of Shinn e t a l. ( 1977) was insi gnificant in volume 

r educt i on . I n a reply t o Wanl es s ( 1979 ) , Pra t t ( 1982 ) disclaimed the 

theo ry a nd suppor ted t he the ory of s oft sediment compac tion as t he 

ma j or s ource of volume reduc tion . In Wanless ( 1982 ) , further 
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evi dence was provided in support of the volume reduction theory. It 

seems probable that bo~h processes contributed to the volume 

reduction in Paleozoic rocks . 

Birdseye Structures 

Birdseye structures, or fenestrae, are unsupported voids . They 

a r e usually associated with cryptalgal structures, but desiccation, 

oxidation , a nd lithificat ion are also important in their formation 

(Logan , 1974, p. 214) . Logan provided an excellent description and 

classification of birdseye structures and defined 3 maj or types: 

laminoi d ; irregular ; and tubular. Two of these types , laminoid and 

irregular, a re found in the Langston Formation . 

Evaporite Textures 

Precipitation of anhydrite and gypsum within a host sediment can 

produce unique structures and textures (Maiklem et al . , 1969) . The 

same minerals that form these unique features are highly susceptible 

to replacement and solution . 

Anhydrite may precipitate in closely- packed nodules within the 

host sediment . This produces a chicken- wire anhydrite texture 

(Tucker , 1981 , p . 163) or a nodular - mosiac (Maik l em and others, 

1969 , p . 196) . When be ds of evapo r ites a r e di ssolved , t he host 

sediment collapses to produce a brecciated textu r e (Maik l em et al., 

1969 , p . 196) . 



ROCK TYPES 

General Statement 

In order to simplify the lithologic jigsaw puzzle of 

paleoenvironments, rock samples were ca tegorized into groups with 

similar f eatures. Eleven rock type groups were isola ted. Some 

variation within these groups was encountered , and subtypes were 

created within the rock types to accommodate these variations . 

Rock Type A 

Rock type A is found in all sections . I n outcrop it may be 

exposed as small , steep cliffs or ledges , generally weathering to a 

sha de of brownish red . It is usually thin to medium ~edded and 

finely lamlnated . The maximum thickness of any one unit is 6 . 7 

meters . Thi s rock type may comprise up to 5% of a gi ven section . 

Afte r Dunham ( 1962), this rock type is classified as an algal 

bounds tone (Fig. 2) . In a ll sections it is composed of dolostone , 

except in section 2 where the re is a lateral change from limestone 

along the l ine of measurement to dolostone on either side . The 

dominant a l lochems are peloids or pellets, and intraclasts. Fossil 

fragments are rare and onkoids are never found. 

Insoluble residue cont ents average 3. 9% and x- ray diffraction 

analysis revealed the ir mineralogical composition to be (in order of 

decrea s ing abundance) quartz, illite, albite, microcline, and 

kaolinit e . Hematite pseudomorphs after pyrite were found during 

19 
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petrographic examination . 

Fresh color ranges from dark to light grey (N4- N6) and the 

organic matter content averages 0 . 12% . 

21 

The most characteristic sedimentary structures of this rock type 

are cryptalgalaminae and small stromatolites . They are similar to 

the structures produced by the smooth and tufted algal mats of Logan 

et al . (1974) . The stromatolites fit in Aitken's (1967) 

classification scheme as Laterally Linked Hemispheroids (LLH) . The 

cryptalgalaminae average about 1 mm thick . Within the laminations 

are peloids , pellets , and intraclasts which were deposited between 

the binding algal mats . Mud cracks are fairly common . Fine to 

medium laminoid and occasionally irregular birdesye structures are 

common in all but a few samples . 

Diagenetic features are mostly limited to stylolites . 

Stylolitic amplitudes average 1- 5 mm, but are frequently very 

numerous and may represent a large amount of volume loss . 

Rock Type B 

Rock type B is found in half of the sections (3 , 4 , 7 ,8) and forms 

steep cliffs or resistant outcrops . Bedding is highly variable and 

r anges from thin to th ick bedded , and may be massive. The thickest 

exposure of this rock type forms a unit of 40 meters, and comprises 

up to 32% of a gi ven sect ion . 
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Type B may be a peloidal wackestone to packstone (Fig . 3), but 

petrographic examination of some samples reveals only a crystalline 

dolostone (Fig . 3) . Section 2 contains rock type Bas limestone 

along the line of measurement, but it grades laterally into 

dolostone . In all other sections this rock type is dolostone . 

Peloids or pellets are the dominant allochems , although intraclasts 

of rock type A are locally abundant . Rock types A and B are 

associated with one another, and in section 2 these are interbedded 

on a small scale. 

Insoluble residues make up an average of 0 . 66% of this rock 

type . Quartz and illite constitute the principal minerals while 

microcline and albite are found in a few samples . 

Rock type B ranges in color from medium dark grey to light grey 

(N4- N7 ) . The mean organic matter content is 0 . 10%, and the organic 

materials appear to be concentrated in dark , wispy pseudostylolites. 

Fine to medium irregular birdseye structures a r e present to some 

degree in all samples . Most samples contain pseudostylolites . Some 

samples contain structures which may be relict chicken- wire anhydrite 

(Tucker , 1981 , p. 163-1 64) or a nodular-mosaic (Maiklem et al . 

1969, p. 196 ) . This texture results from precipitation of closely 

packed anhydrite nodules. Due to t he presen t mineralogy and 

crystalline state of the sample , this texture can not positively be 

attributed to anhydrite precipitation . This textu r e may possibly 

have resulted from compaction structures forming around 

early- cemented areas or irregular birdseye vo id s . 
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Rock Type C 

Rock type C is found in 5 of 8 sections (1 , 3 , 5,6,7). It is 

exposed as resistant outcrops or as steep cl iffs. This rock type 

forms units up to 35 meters thick, and comprises up to 23% of a given 

section . 

Peloidal - pelletal wackestones to packstones comprise the rock 

types with recognizable textures (Fig. 4) . Due to diagenesis, many 

samples must be classified as crystalline carbonates . In all 

sections rock type C is dolostone. The major allochems are 

peloids - pellets . 

The mean insoluble residue content is 5 . 6 , with the dominant 

minerals being quartz, illite, and albite with kaolinite , chlorite, 

microcline, montmorillonite, and goethite occurring locally . 

Rock type C ordinarily has a uniform characteristic color of 

medium light gr ey (N6) . Locally the color may vary slighty. The 

mean organic matt er content is 0 . 08% . This rock type commonly has 

streaks and areas which are just slightly darker than the rock as a 

whole . These darker areas may be due to concentrations of organic 

matter. 

Thin to coarse laminoid and irregular birdseye structures are 

normally present . As in rock type B, relict chicken- wire anhydrite 

structures may be present locally. 



FIG. 4 - Rock Type C, showing multiple 
orders of stylolitization. 

FIG. 5 - Rock Type C, Subtype 1 
N 
~ 
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Rock type C subtype 1, varies from type C in that it contains 

disruptive evaporite structures (Fig. 5). These structures resemble 

disturbed bedding and most likely resulted from dissolution of gyps 'm 

or anhydrite . This type of evaporite structure is classified as 

brecciated, according to r1aiklem et al. (1969 , p . 196 - 197) . It 

occurs in 4 sections and may totally or partially replace the 

birdseye texture . 

No distinct compaction features are observable but stylolites 

are common. 

Rock Type D 

Rock type D is found in 6 of 8 sections ( 1 ,2,3,4,5,8) . Rarely 

does it contain any bedding structure and therefore Lt is usually 

massive . It occurs in units up to 19 meters thick , and forms up to 

12% of a given section . 

This type is texturally a peloidal - pelletal wackestone to 

packstone (Fig . 6) . It occurs as dolostone or calcareous dolostone . 

Peloids and/or pellets are virtually the only allochems , with a f ew 

onkoids occurring locally . This rock type is gradational with rock 

type E, and is distinguished primarily by the large amount of 

bioturbation . The bioturbation usual ly produces an indistinct to 

distinct mottled texture (Moore and Scruton , 1957) . 
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Type D has an average insoluble residue content of 0 . 94%, which 

consists of quartz and illite with lesser amounts of albite and 

kaolinite. 

Since mottling is the most characteristic feature of this rock 

type, there are two major colors . The darker color is usually dark 

grey (N3) and its lighter counterpart is often light grey (N7) or a 

light red to yellow variation . The average organic matter content is 

0 . 09% . The organic material is probably concentrated within the dark 

nreas . 

Most sedimentary structures have been destroyed as a result of 

bioturbation . Some original layering is preserved and enhanced by 

sompaction in some samples , but only in a disrupted and irregular 

form . A few burrows are superimposed on the mottled texture, 

indicating at least two episodes of organic activity, the latter less 

intense than the former. 

Diagenetic features are limited mainly to compaction. Very few 

stylolites are found in this rock type . 

Rock Type E 

Rock type E is the most commonly found of the rock types and is 

found in all sections. It crops out in many forms, ranging from 

small , res istant ledges to steep, rugged cliffs. Bedding size also 

varies greatly , from thick to thin . It forms units as thick as 91 

meters, and comprises as much as 55% of a given section. 
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Textural classifications vary from mudstones to packstones, but 

wackestones are the most common (Fig . 7). Limestones form the major 

portion of type E, although calcareous dolostones and dolostones are 

locally present in small amounts . Fossil fragments, peloids, 

pellets, onkoids, and intraclasts make up the suite of allochems 

present . Peloids and/or pellets, and onkoids usually dominate, but 

fossil fragments or intraclasts may predominate locally. 

Insoluble residues average 3.8%, and a re composed of quartz, 

illite, and albite with lesser amounts of microcline , orthoclase, 

kaolinite, chlorite , and rarely goethite and hematite. 

This rock type is invariably dark grey (N3), but locally may be 

slighty mottled with a lighter grey (N6) . The mean organic matter 

content of type E is 0.16% . The uniform dark color may indicate that 

the organic matter is evenly dispersed throughout the rock. 

A few wispy pseudostylolites are present, indicating early 

compaction. Onkiods are often flattened parallel to bedding and may 

also indicate early compaction. It is equally likely that these 

flattened onkiods may simply reflect elongate nuclei . Many limonitic 

silt and c lay seams are often present in the samples . When they 

occur as wispy stylolite - like structures, simi lar to concentrations 

of organic matter , they are classified as psuedostylolites or 

compact~on features . Trace fossils are present in the form of 

feeding burrows, or Fodinichinia (F rey , 1975) . Textural mottling 

occurs to a limited extent, and may have resulted from organic 

activity , selective dolomitization, or from areas of high iron- rich 



29. 

clastic concentrations . This type of mottling is classified as 

primary or secondary irregular layers according to Moore and Scruton 

(1957) . 

Di agenetic structures include compac t ion features and some 

stylolites along compacted silt and clay layers . 

Thr ee subtypes have been i dentifi ed , based on the ir rela ti ve 

amounts of onkoids . Subtype 1 contains at least 50% onkoids and has 

a packstone texture (Fig . 8) . It also may contain a high percentage 

of peloids . 

Subtype 2 is similar to subtype in that it contains more than 

50% onkoids, but is distinguished by its grainstone texture , and the 

presence of fibrous rim cement concentrated on the bQttom side of the 

onkoids (Fig. g) . 

Subtype 3 contains less than 50% onk oids . The onko ids are 

supported in a ma t rix of peloids - pellets, and mud , in whi ch the 

peliods - pellets form more than 50% of the matrix . This subtype is 

normally a wackestone , but when peloids are ve r y abundant it is a 

packstone (Fig . 10 ) . 

Subtype 2 is dominated by equan t onkoids with a diameter of 

abou t 1/2 em. Fibrous - cemented ova l onkoids wi th e l ongate fossi l 

fragm ent nuclei are also classified in subtype 2 . The onkoids of 

s ubtypes 1 and 3 are oval to slightly round with a maximum length of 

2 em . 
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FIG. 10 - Rock Type E, Subtype 3 

fiG. 11 - Close-up of FIG. 7, showing compaction 
features around spar-filled voids. Field of 
view = 2 em. 
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One sample (Mc -2g ) contains a few coarse-spar-filled voids. 

Petrographic examination shows a ''desiccation'' crack infilled with 

coarse peloids (Fig 11) . The spar-filled voids were cemented early, 

as indicated by compaction features around them. These voids may 

have been created by evaporite growth, desiccation, 

gas-bubble - birdseye growth , or by burrowing. 

Rock Type F 

Rock type F is usually exposed as medium to thick bedded small 

resistant outcrops and small steep cliffs . It can form units up to 

15 meters thick , and forms as much as 13, of a given section. This 

type is found in three of the sections (4 , 5 , 6) . 

Type F is classified as a packstone to grainstone (Fig . 12) . 

It may be dolostone or dolomitic limestone. The only allochems 

present are peloids. Due to the destructive diagenetic effects of 

compaction and/or recrystallization, these peloids may originally 

have been pel lets or ooids. Evidence in most samples suggests that 

pellets were the original allochems. 

The allochems have a dark grey (N3- 4) color and the cement is 

slightly lighter . This gives an overall medium to medium dark grey 

(N4-5) color to type F. The organic matter content averages 0 . 07% . 

Medium to coarse laminoid birdeye structures are locally 

present . Rock type F is often interbedded with onkoidal subtypes of 

rock type E. 
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Rock Type G 

Rock cype G is found only at section 7, East Fork Canyon . It is 

exposed as medium bedded resistant outcrops on moderate slopes . It 

comprises 14% of the section in a unit 21 meters thick . 

Allochems include peloids, and pisoliths . Textures range from 

wackestones to packstones (Fig . 13). The carbonate component is 

dolomite . 

The average insoluble conten t is 28 . 7%, and is composed of 

quartz , illite, microcline, and orthoclase. These rocks have a 

gradational contact with the sandstones of the Brigham Group , and the 

high content of insoluble mat erial is probably due to the gradational 

lower contact . These rocks grade upward into relatively cleaner 

carbonates . 

Type G has an average organic matter content of 0 . 19% which is 

often concentrated in wispy pseudostylolites. The general color is 

medium grey (N4) slightly mottled with a light yellow- brown 

variation. 

Type G has a slightly mottled texture produced by bioturbation . 

Compaction has enhanced areas of organic matter concentration , 

producing pseudostylolites. Stylolites often occur with 

pseudostylolites . 



Rock Type H 

Rock type H ~s found in unbedded, massive units which a r e 

exposed as small cliffs and ledges. It forms uni ts up to 12 meters 

thick and comprises up to 9% of a given section. It occurs in 

sections 5 and 8 . 

Type H is very coarsely crys tal l i ne , wi th no recognizable 

allochems . It is classified as a crystalline dolostone (Fi g . 14) . 

Insoluble residues conprise an average of 0 . 72% of ro ck type H, and 

are composed of quartz , illite , albite , and orthoclase . 

The color is uniformly very light grey (N8) and organic matter 

avera es 0 . 07% -

The only recognizable depositi onal f ea tures of this rock type 

are medium i r regu l a r birdseye structures . Stylo lites are sometimes 

present . 

Rock type I 
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Rock type I is exposed as thin to medium bedded resistant 

ledges . It occurs in units up to 16 meters thick and forms up to 10% 

of a given section. This rock type is found in sections 2 and 8 . 

Textural l y, type I is a wackestone to a packstone (Fig . 15 ) . 

It is usually a silty limestone , but also includes end members of 

clean limestone and calcareous mudrock . Allochems i nclude peloids , 

pellets, fossil fragments, whole foss i ls , a nd a few intraclact s. 

Insoluble residues average 28% and are composed of quartz, illite , 
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albite, kaolonite , and chlorite . 

The limestone layers are dark grey (N3) , while the clastic areas 

are various shades of red or yellow . The average organic matter 

content is 0 . 53% and is probably concentrated in the carbonate 

layers . 

Sed imentary structures include irregular laminations and 

interbedded thin beds of 'clean' carbonate and silty carbonate or 

calcareous clastics . The laminated layers (0 . 05mm to 5mm) are 

parallel to slightly wavy, and irregular . The irregularities within 

the laminations seem to have resulted from slight burrowing or 

compaction . Laminated and unlaminated layers are interbedded, and 

bedding ranges from thin to medium . Intraclasts of the laminated 

layers are found within the unlaminated layers . Whole fossils of 

trilobites and brachiopods are numerous . 

Rock Type J 

Rock type J is often exposed as weathered outcrops on 

mostly- covered slopes. Medium laminae are most characteristic but 

th in to medium beds are not uncommon . Type J comprises up to 29% of 

a given section, and forms units as thick a s 47 meters . It is found 

in a l l sections except section 5 , Blacksmith Fork Canyon . 

Rock type J consists of mudrocks , more specifically, mudshales 

with some siltstones and cl aysha l es ( Lundegard and Samuels, 1980) . 

The mudrocks are usually calcareous , and often conta i n lenses of 

limestone (Fig. 16) . The dominant allochems are fossil fragments 
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and peloids . Whole - body fossils and t r ace f oss i ls are common . This 

rock type is often interbedded wi th r ock types I and E. 

Insoluble residues average 82 . 6% a nd are composed of quartz , 

illite , mi ca , albite , kaolinite , mi croc line , and ch lo ri te . 

Petrographic analysis proved some of the i ll ite to be muscovite mica . 

The ave r age organic matte r conten t is 0 . 82% . The or ganic ma t ter 

often appears to be concentrated in layers parallel to bedding . The 

color '.raries from dark grey (N3) , to yellowish grey (5Y7/2) , to light 

olive grey (5Y5/2) . Often shades of light red occur on highly 

we3thered surfaces . 

Bedding surfaces are usually wavy and often nodula r. Weatherin~ 

often results in fissile to flaggy plates (Potter et 31 . 1980) . 

Diagenetic effects are not too apparent . No stylolites are 

found . Some samples may have reached a very low gr ade of bur i al 

metamorphism. 

Roc k Type K 

Rock type K i s f ound i n t wo sections (2 , 8) and i s expos ed as 

thin to thi ck beds . In sect ion 2 i t forms a small unit at the base 

of the s ection and gr ades upward into rock type E, and is also 

present as th in beds or layers wi thin the l imes t one . It forms its 

thickest uni t at section 2 , where it is about 1 me t e r thick, but 

forms only the th in in t e rlaye r ed beds a t sec ti on 8 . It compris es 

less t ha n 1% of eithe r s ec tion . 
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fiG. 16 - Rock Type J 

FIG. 17 - Rock Type K 



It is classified as calcar eous arenite , but when it is found 

interlayered with limestone, a single sample may be classified as a 

limestone depending on sampling variability (Fig . 17) . 
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Insoluble residue ranges from 62 .4% to 77 . 2% , and is composed of 

only q artz at section 2 , with additional illite, albite, kaolinite, 

and montmorillinite at section 8 . Grain sizes range from silt to 

coarse sand. 

Color varies accordin to clastic content . Cleaner carbonate 

layers are medium grey (N5), ~hile clastic layers are much lighter. 

The average organic matter content is 0 . 10% at section 2 , and 0 . 82% 

at section 8 . 

Stylolites are present , especially at clastic/carbonate 

contacts . 
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INTERPRETATION OF DEPOSITI ONAL ENVIRONMENTS 

Gene r a l Sta t ement 

A depositional environment is defined as " a natural geographic 

entity in wh ich sediments accumulate' ' (Friedman and Sanders, 1978, p . 

195) . A great pool of knowledge pertaining to r ecent ca rbonate 

depositional environments has been accumulated within the past 2 

decades . Bathurst (1975) summarized mu ch of the work done on recen t 

carbonate depositional environmencs : the Great Bahama Bank ; southern 

Florida ; the Gulf of Batabano , Cuba; the Trucial Coast and Embayment, 

Persian Gu lf; a nd British Honduras . Ginsburg (1975) has edited an 

excel l ent book on tidal depos its which contains many re cent exampl es . 

Although much is known about recent ca rbonate depositional 

envi ronments , ma ny pr ob l ems aris e when trying to understand and 

reconstruct ancient environments . As time passes, diagenesis can 

slowly distort or destroy information onc e contained in a ro ck . 

Diagenetic processes can , therefore , cause great difficulties in the 

underst anding of a rock ' s ancient depositional history , and many 

times these di ffi culties can not be overcome (Bathurst, 1975 , P · 

138 ) . 

Raymond ( 1975) stated that some organic criteria operating today 

may not be valid in interpretations of the Late Precambrian and Early 

Cambr ian . Questionable criteria include: 1 ) restricting 

habitats of algal stromatolites to tidal flats ; 2) differentiating 

tidal flat from subtidal environments through the presence or a bsence 
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vertical or horizontal burrows; and 3) using taxonomic diversity and 

abundance of individuals to discriminate between subtidal, 

intertidal, and supratidal environments" (Raymond, 1975, p. 364). 

To furth e r complicate matters, the paleogeography of Utah during 

the Cambrian was characterized by a shallow epeiric sea 

(Lochman- Balk, 1971; Palmer, 1971; Maxey , 1958). Friedman and 

Sanders (1978, p. 373) stated " .•• the most striking thing about 

epeiric seas is that they are nowhere present in the mod e rn world." 

If the present is real ly the key to the past, then at least some , and 

probably most, of th e physical and chemical principles operating 

today must apply to the epeiric seas of the Cambrian . Friedman and 

Sanders (1978 , p. 373) further state that the Great Bahama Bank is 

presently the closest modern analog of the ancient epeiric seas . 

Chemical Considerations in Carbonate Production 

Presently aragonite and high - Mg calcite are the main carbonate 

minerals produced in the seas of the world. They can be precipitated 

inorganically as in the Abu Dhabi lagoon or physiologically by algae 

and other organisms (Bathurst , 1975) . Depending on the chemical 

circumstances, either aragonite or ca l cite may "gain the upper hand'' 

as the dominant precipitant, but with time aragonite eventually is 

converted to calcite (Bathurst, 1975). 



Precipitation of calc ium carbonate is basically controlled by 

the following reaction: 

+2 
Caco

3 
+ H

2
co3 = 2Ca + 2Hco; 

(Krauskopf, 1979, p . 51) . This reaction is strongly influenced by 

additional factors. The solubility of Caco
3
in water increases wi th 

increasing c~ pressure , decreasing temperature , and is greate r in 

salt water (Deer et al. , 1966). The principal control is the 

concentration of co
2

which affects the a bove reaction through the 

following reaction : 

(Bathurst, 1975, p . 231) . 

Dolomite, although it does not directly precipitate in large 

amounts in today's seas , forms a vast portion of the carbonates in 

the stratigraphic record (Bathurst , 1975) . Many models of dolomite 
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formation as a replacement mineral have been proposed to explain this 

problem , and are discussed later in the text • Tucker (1982) 

however, stated that some Precambrian dolomi tes may have been 

deposited as the original carbonate mineral, and furthermore that 

during the Precambrian , dolomite may have been the principal 

carbonate mineral precipitated from seawate r . Was this possibly true 

for Lower to Middle Cambrian t imes also? 
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Langston Depositional Environments 

Peritidal Complex 

Peritidal refers to margina l sea areas which are subject to t he 

e ffects of tidal flu ctuations . A pe ritidal complex can be divided 

into four zones: 1) areas tha t are a lways covered by water; 2) areas 

that are covered and uncovered during every tide; 3) areas that are 

covered and uncovered during some tides; and 4) areas that are 

covered by water only during the highest tides . Zone 1 is the 

subtidal zone , zones 2 and 3 are the intertida l zone, and zone 4 is 

the supratidal zone (Friedman and Sanders , 1978 , p . 540). The term 

upper perit idal in this report refers to zones 2 through 4, those 

zones not always covered by water. 

Upper peritidal flats have low to moderate , smooth gradi ents 

(0 . 8 to 0 .1 m/km) , with we ll-defined tidal zonat ion . The upper 

intertidal and supratidal zones are rarely flooded bu t are subjected 

to marine influences by tidal groundwaters and storm fl oods (Lo gan et 

al., 1974 , p. 141). 

Upper Peritidal Zone. - Shinn et al . (1965) defined the 

supratidal zone as an a rea above normal high tide but periodically 

flooded by spring tides and storm tides. The uppe r intertidal zone 

is that area which is covered and uncovered by some, but not all 

tides , while the lower intertidal zone is that area which is covered 

by all tides (Friedman and Sanders, 1978, p. 540). 



Palmer and Halley (1979 , p . 45) stated that in all major 

ca rbonate mud-producing- areas, the intertidal and supratidal zones 

display very similar characteristics and that they are often 

difficult to separate . They found algal boundstones, pellets, 

mudcracks, birdseyes, interbedded grainstones , lime mudstones, 

onkolitic lime mudstones, and occasionally shales in the peritidal 

deposits of the Cambrian Carrara Formation. 
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Lucia (1972) , in a study of Permian deposits, described 

irregular laminations, lithoclasts, desiccation features, 

LLH- stromatolites , and quartz silt beds in the supratidal zone . At 

Andros Island, Shinn et al . (1965) found laminated packstones, alga~ 

mats, mud crac 's , lithoclasts, birdseyes, and dolomite to be 

characteristic of the supratidal environment . Illing et al . (1965 / 

in a study of the Persian Gulf found the supratidal environment to 

contain mudstones to packstones, birdseyes, disrupted laminations, 

few marine organisms , gypsum crystals and dolomite. Within the 

intertidal zone , Shinn et al . (1965) found burrowed pellet 

packstones, algal mats , gypsum crystals , and dolomite. Wilson (1975 ) 

described birdseyes , mudcracks, storm layers , intraclasts , burrows, 

and trails as features commonly associated with intertidal deposits. 

Logan et al . ( 1974, p . 141) stated" ••• the intertidal­

supratidal platform is the main habitat of algal mats •.• ". They 

further stated (p . 184) that most cryptalgal structures are formed 

in the lower to middle intertidal zones . The supratidal zone is 

characterized by blister and film mats. The upper intertidal zone is 

characterized by blister, film, gelatinous, tufted , and pustular 



algal mats . The lower intertidal zone is characteriz ed by 

gelatinous, tufted , pustular , smooth , and col l oform a l gal ma ts. 

Shinn (1968 , p. 215) stated that birdseye structures are 
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preserved in suprat i dal sediments , sometimes in i ntertidal sediments, 

and never in subtidal sediments . He conc luded that in the absence of 

any diagnostic structures other than birdseyes , a s upratida l 

environment can be inferred . Logan (1974) implied tha t birdseye 

structu r es can occur in the upper subtidal to supratidal 

environments, with f i ne laminoid bi rdseyes restricted to the lowe r 

intertidal zone . 

Tucker (1981 , p . 163- 164) stated that today ' s gypsum- anhydrite 

cycle occurs in the high in ertidal and supra~idal zones . 

Chicken-wire anhyd r ite textures a r e typical textures vf many ancient 

sulfate deposits . In the uppe r supratidal zone anhydrite is 

precipita ted as thin beds or layers of coalesced nodules. Wilson 

(1975 , p. 85) described evaporite solution breccias and light rock 

colors as supratidal features. Dolomitization of carbonate particles 

is commonly associated with gypsum precipitation (Tucker , 1981, p. 

163 ) . 

Rock type C has a uniform light color of about medium light grey 

(N6) . Peloids are abundant. Fine to coarse irregu lar birdseyes and 

r el ict chicken-wire anhydr ite are abundant locally. Some of the 

me dium irregular birdseye structures testify to the past presence of 

pustular algal mats ( Logan et al . , 1974). This rock type is inferred 

to have been deposit ed in the middle intertidal to lower supratidal 



zones . 

Subclass 1 of rock type C contains brecciated evaporite 

structures and was likely deposited in the supratidal zone . 
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Rock type B is usually darker than type C, ranging from medium 

dark grey to light grey (N4- N7) . I t contains many peloids, fine to 

medium i rregular birdseyes, wispy irregula r pseu dos tylolites , and 

possible relict chicken- wire anhydrite struc tures . The 

pseudostylolites have resulted from concentrations of organic matter , 

and give a wispy, irregularly laminated appearance to the rock. 

Similar structure s have been produced by Shinn et al . (1977) . These 

pseudostylolites are interpreted to have resulted from the 

concentration of organic matter in algal mats du r ing compaction . 

This rock type is inferred to have formed in the upper intertidal 

environment . 

Rock type A usually contains cryptalga laminae , small 

LLH- st r omato lites , pellets , i ntraclas ts, mudcracks , and fine to 

medium laminoid birdseyes . It is usually dolostone . Fossi l 

fra gmen t s and onko ids a re very rare to absent . It is of ten 

interbedded with grainstones to wackestones . Ro ck type A is infe r red 

to have formed in the lower to upper intertidal zones . 

Rock type H contains only medium irregu l ar birdseye structures . 

Dolomitization has destroyed a l l other original sedimenta ry featu r es . 

Shinn (1968) stated that the presence of only bi rdseyes ind i cates a 

supratidal origin . Howeve r, Logan et al . (1974) fou nd that med ium 

irregula r birdseyes may form within an intertidal pustular alga l mat . 
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Therefore, this rock type may have formed in either the intertidal or 

supratidal zone . 

Subtidal Zone 

The subtidal zone comprises all the area below the mean low tide 

level. Wilson's (1975) facies 6 through 8 comprise most of the 

subtidal environments in this report. A great variety of 

depositional textures can occur and burrowing may be very prominent . 

Burro\ved pellet packstones to wackestones are common (Shinn et al., 

1965; :!:lling et al., 1965) . 

Agitated Shoal. - Wilson (1975) described a shoal environment 

in agitated water in his standard facies belt 6 . Belt 6 is 

characterized by depths of 5 to 10 meters to below sea level. High 

energy provides a well-oxygenated environment, and at the same time 

produces an inhospitable environment for most marine life. Standard 

microfacies 13 (Wilson , 1975) of belt 6 is characterized by onkoids 

formed in a very shallow water , moderately high ene rgy environment . 

Subtype 2 of rock type E is characterised by moderate to 

well - sorted onkoids with a grainstone texture. The bottom side of 

the onkoids are cemented with a fibrous rim cement . This r ock type 

pr obably formed in a high energy agitated shoal environment with in an 

inner carbonate shelf . 
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Restricted Marine Shoal . - These quiet water shoals are found 

in Wilson's (1975) belts 7 and 8 , which are shallow water environments 

vrith moderate circulation. Salinities may be normal to hypersaline . 

Sediments may be exposed subaerially at times . Standard microfacies 

16 (SMF -1 6) is a peloidal grainstone which was deposited in water 

with only slight movement . SMF-1 6 may grade into a peloidal 

wackestone , and may contain th ick, graded laminae and birdseye1 

structures . 

Rock type F is a peloidal packstone or grainstone which 

occasionally contains medium to coarse lamino id birdseyes and 

centimeter-thick laminations . This rock type probably was deposited 

in a restricted marine shoal within an inner carbonate shelf sea . 

Open Marine Platform or Inner Shelf Sea. - Wilson (1975) 

described facies 7 as a shallow marine environment with moderate 

circulation and variable salinities. Such environments are located 

in open lagoons , and bays behind the outer platform edge . Standard 

microfacies 19 is a " laminated to bioturbated pelleted lime 

mudstone-wackestone grading occas i onally into pelsparite 11 (or 

peloidal grainstone) 11 with fenestral fabric . 11 (Wilson, 1975, p. 

68) . Standard microfac ies 22 (SMF-22) contains onkoidal wackestones 

or packstones . SMF - 22 is characteristic of quiet water sedimentation 

in shallow back reef environments. 
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Wilson (1975) also characterized facies 7 as containing clastic 

sediments in well - segregated beds . Potter et al . (1980) 

cha rac terized the clastic sediments in marine inner shelves as being 

a few to tens of meters thick , commonly fine to silty muds , which may 

contain fecal pellets . Colors may be grey , green , brown, and black. 

The biotic assemblage is characterized by open marine fauna, and 

trace fossils may be abundant . Deposition results '' from suspension 

or biogenic pelletization along protected, low - energy coasts , but 

al s o on open coasts when the mud supply is great" (Potter et al . , 

1980 , p . 63 ) . The clastic sediments are usually found landwa rd a nd 

in te rfinge r with the carbonate sediments seaward. Potter e t a l . 

(1980) gave t he same genera l definition f or outer shelves , except the 

deposition oc curs f a rthe r from shore, below wave base. 

Rock type D is characterized by peloidal wackestones to 

packstone s with distinct , and sometimes indistinct , mottled textures. 

This mottling resulted from bioturbation . Rock type D was probably 

deposit ed in a shallow, low energy inner shelf sea. 

Rock type E is a mudstone to packstone, containing peloids, 

fossil fragments, pellets , onkoids , and int rac lasts. The color is 

normally dark grey (N3) . Burrows a r e usually present and some slight 

bioturbation occurs locally. Pe l oids are the dominant allochems, 

with onkoids and fossil fragments dominating locally. 



Rock type E was deposited in a shallow, l ow energy inner she lf 

sea . Subtype 1 and 3 of rock type E were deposited in a shallow, 

moderate energy , inner shelf sea close to the oute r restricting 

platform . 
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Rock type G contains peloids and pisoliths with a 

wackestone/packstone texture . Pseudostylolites are numerous, and 

probably reflect compactional concentrati on of organi c matter and 

clastic sediments . The average insoluble content is 28 . 7% . This 

high insoluble content may reflect either a nea rby clastic source cr 

a large influx of clastic sediment at some distance . The pisoliths 

are most likely onkoids with their primary structure destroyed by 

dolomitization . The high clastic content and well-rounded pisoliths 

or onkoids indicate deposition in a shallow , low to moderate energy 

inner shelf sea during a period of slow subsidence as clast i c 

deposits migrated seaward from an easte rn source area. 

Rock type I is a peloidal wackestone to packstone, with fossil 

fragments and intraclas ts abundant locally. Insoluble residues 

average 28%. Depending on clastic content , rock type I may grade 

into rock type E. Any one sample may be dominated by clastic 

sediment or carbonate sediment, with carbonates generally dominating . 

Rock type I represents a change from an environment of 

carbonate-dominated sedimentation (inner carbonate shelf) to one of 

clastic - dominated sedimentation (outer clastic shelf ) . The limestone 

was often deposited as lenses within the clastic areas . This rock 

type was probably deposited below wave base at the boundary of the 

inner and outer shelf during a period of slow subsidence. 
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Rock type J contains mudrock with peloids, fossil fragments, 

trace fossils, and relatively numerous whole body fossil . Bedding 

is often wavy and nodular , reflecting low energy. The mudrocks are 

often calcareous or they may contain carbonate lenses . This reflect s 

a diminishing, fluctuating, carbonate - producing environment , and the 

appearance of type J in the north and southeast parts of the study 

area reflects the progradation of clastic sediments from the two 

major source areas toward the carbonate bank . This model is very 

similar to the model proposed by Palmer and Halley (1979) for the 

Carrara Formation . Rock type J, of the upper shale member of 

sections 4,6, and 7 , is inferred to have been deposited in a shallow, 

low energy inner shelf sea in the southeastern part of the section 

and in a shallow low energy outer shelf sea in the north and western 

area of study. Deposition occurred during a period of slow 

subsidence . 

Rock type K is a calcareous sandstone which grades upward into 

limestones with sandy layers . Depending on sampling location, this 

rock type may have more or less than 50% clastic material. When it 

occurs as limestone with sandy layers , burrows infilled with 

sandstone are evident . It is found only within the Naomi Peak 

Limestone member . This rock type r eflects period of fluctuation 

between a depositional environment dominated by c lastic sedimentation 

and one of carbonate sedimentation . It was deposited in a shallow , 

inner shelf sea during a period of fluctuating subsidence . 
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Open Shelf or Outer Shelf Sea. - Wi lson (1975) described facies 

2 as having water depths of tens to a few hundred meters, good 

circula tion, oxygenated , and of normal marine salinity. Shales 

and / or carbonates may be deposited in facies 2 . Bedding may be 

burrowed, thin to medium , and wavy to lenticular . 

Wilson (1975) stated that the carbon2tes and shales occur in 

well-segregated beds . Pot ter et al . (1980) characterized the 

clastic sediments in the outer shelf as being a few to tens of meters 

thick , commonly fine to silty muds , which may contain fecal pe l lets . 

Co lors may be grey, green , brown, and bla ck. The biotic assemblage 

is characterized by open marine fauna and trace fossils may be 

abundant . Deposition results " f rom suspension and biogenic 

pelletization below wave base" (Potter et al., 1980 , p . 63) . The 

clastic or mud deposition is controlled by wave energy and clastic 

supply. When the clastic supply is limited then carbonate sediments 

are deposited. It should be pointed out that the descriptions of t he 

mudrocks or shales of the inne r and outer shelves by Wilson (1975) 

and Potte r et a l. ( 1980) are ve ry similar. Aitken (1978, p . 523) 

stated, while describing the paleogeographic elements of the Cambrian 

depositional grand cycl es , that " it is not known whether the open 

basin was oceanic or part of an epicratonic sea ." 

The Spence Sha le, which occu r s in sec tions 1 , 2, 3, and 8 , is 

cha ract e rized by thin to medium, wavy to lenticular bedding, with 

open marine fauna , and often trace fossils . Color varies from shades 

of gr een to black . The source area for the Spence Shale is to the 

north or northwes t and is different from that of the southeastern 
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unnamed shale member as indicated by their stratigraphic 

relationships and differences in insoluble residue mineralogy . It is 

proposed t hat the Spence Shale was deposited in a relatively shallow 

outer clastic shelf sea. 

Rock type I probably resulted from the gradational relationship 

between the inner and outer shelves, and was probably deposited near 

the boundary of the outer clastic shelf facies and the inner 

carbonate shelf facies . 

See figure 18 for a summary of the characteristics of 

environments, and figures 19, 20, 21 , 22 , and 23 for the distribution 

of environments in the study a rea. 



FIG . 18 - Generalized diagram of depositional environments 

with facies and related information . MHW = 

mean high water level, MLW = mean low water level . 
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Diagrammatic 
Cross Section MHW 

"MLv.r- - --.;?' ---
Facies Outer Clastic Upper Peritidal 

Shelf Sea 

Rock types J, I A,B,C,H 

Lithology Mudshales, and Wackestone/packstone, 

si lty mudstones and algal boundstones 

Color Green to black N6-N8 

Allochems Peloids and fossils Peloids, pellets, intraclasts, 
and rare fossil fra gments. 

Sedimentary Parallel to lenticular Birdseyes, mudcracks, 
Structures laminations, cryptalgal structures, 

and burrows relict evaporites. 

Insoluble residue 55.3% 3.4% 

~ ;::. --

Inner Carbonate 

Shelf Sea 
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grainstones 
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-
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Shelf Sea 

J, K, G 

Mudshales, 
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and sandstones 

Green to black 

Peloids and fossils 

Parallel to 
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laminations, 
and burrows. 

62.3% 
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FIG . 19 - Location of geologic sections 
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FIG . 23 - Fence diagram of the Langston Formation, north-central 

Utah and southeasternmost Idaho . Numbers indicate measured sections . 
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ANALYSIS OF INSOLUBLE RESIDUE 

"The small amount of terrigenous or biogenic siliceous c l astic 

materials in carbonate sediments may be very significant in 

environmental interpretation" (Wilson, 1975, p. 90). The analysis 

of the insoluble residues of the Langston Formation has provided some 

useful information. Data are in Appendix A. 

Quartz is found in all samples and is the dominant mineral 

species (based on x-ray diffraction peak heights) in all but one 

sample . Illite and/or mica is found in 95% of the samples, and 

shares the position of second most abundant along with one of the 

K-feldspars or kaolinite. Albite is found in 62% of the samples, 

microcline in 22%, and orthoclase in 6%. Kaolinite is found in 35% 

of the samples, chlorite in 12%, and montmorillonite in 2%. A small 

portion of the insoluble residue consists of iron mine r als : 

goethite , 5% ; and hematite, less than 1%. Hematite was found in many 

samples through petrographic methods, but probably constitutes such a 

small portion of the mineralogy that it could not be detected by 

x-ray diffraction methods . Limonite, an amorphous or 

cryptocrystalline iron hydroxide (Deer et al., 1966), is found 

concentrated along fractures or in silty layers in many samples . 

Analysis of the mineralogy of the Spence Shale member and the 

unnamed shale member indicates that the sediments were derived from 

two different s ource areas . Both shales contain quar~z and illite, 

but the dominant feldspar in the Spence Shale is albite, while 

the dominant feldspa r in the unnamed shale is microcline . This 
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general relationship holds true for the insoluble res idues of the 

carbonates : the north and east sections, which contain the Spence 

Shale, are characterized by an abundance of albite and the 

southeastern areas are usua lly low in albite and richer in 

microcline . The distribution of the two shales and the relationships 

of the insoluble residues ind icate two diffe rent areas for the source 

of the clastic sediments : one to the north or northwest, and one to 

the east or southeast . This conclusion is in agreement with the 

findings of Pa lmer (1971) and Williams ( 1948) . 

Environmental interpretat i on using minerals is valid only if the 

following assumptions are valid : 1) clay mineral formation is 

direc tly related to climatic parameters; 2) clay minerals have 

pre -burial stability; 3) and clay minerals have post-burial stability 

(S inger, 1980, p. 303). Singer further stated that all of the 

assumptions have only a limited probability. Krumbein and Sloss 

(1963) indicated that the illite group is the most abundant in 

ancient and modern sediments . Illite is particularly abundant in 

calcareous marine sediments (Grim, 1968 , p . 548). It is the 

dominant clay mineral i n shales and mudstone s (Deer et al ., 1966). 

Rateev et al . (1969) showed the dis tribution of illite in world 

oceans to be concentrated nea r detrital source areas and that there 

is no latitudinal control . The above indicates that illite should be 

abundan: in marine sediments with a proper source area . 
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Singer (1980) and Carroll (1970) stated that kaolinite is the 

product of a high-leaching , humid tropical environment . Kaolinite i s 

especially concentrated a l ong the equator (Rateev et al ., 1969) . 

Singer (1980) and Carroll ( 1970 ) a l so stated that 

montmorillonite is produced i n areas of less intense weathering in 

temperate or arid climates . Worldwide oceanic montmorillonite is 

often concentrated near the equator in spots but also in areas with 

volcanic sour ces (Rateev et al ., 1969). Chl orite has a minimum 

concentration along the equator and increases i n concentration toward 

the poles (Rateev et al . , 1969). Montmorillonite and chlorite would 

not be expected to make up a large percentage of the clays in a 

sediment deposited in a warm , non- volcanic , equatorial sea . 

The Langston sediments are dominated by i llite and kaolinite 

with minor amounts of chlorite and montmorillonite. This clay 

mi nera l assemblage indicates thac the Langson Formation .vas deposited 

in a wa~m to hot humid climate . This is in agreement with 

paleoequatoria l studies (Rowland, 1981; Ziegler et al ., 1979). 
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PALEOGEOGRAPHIC RECONSTRUCTION 

Paleomagnetic and faunal s t udi es of the Cambrian Peri od i ndicate 

that the equator ran northward ve r y near or through Utah (Rowland , 

1981 ; Ziegler et al. , 1979) . Stratigraphic studies indicate a marine 

transgr ess ion s l owly covered Utah wi th shallow seas (Maxey, 1958, P· 

685). Insoluble residue analysis indicates the climate in the study 

area was warm to hot , and humid . Eventua l ly in Late Cambrian time , 

essentially all of the state was covered by a shallow warm tropica l 

sea . This environment was ideal for carbona t e production . 

The creation of this epeiric sea introduced new and unique 

environments of deposition to the Cambrian scene . As Middle Cambrian 

time approached, a broad, linear, north - trending, peritidal carbonate 

shoal complex developed toward the edge of the Cordilleran 

miogeosyncline. This complex separated a deeper water outer basin 

fr om a wide, shallow water inner basin (Kepper , 1972 ; Aitken , 1978 ; 

Bush and Fisher, 1981 ; Palmer and Halley, 1979). In its infancy 

(during the Lang ~ ton deposition) it was probably analogous to the 

' Stephen-type' shoal complex of Aitken (1978) . This shoal complex 

was narrow (usually less than 20 km wide) and discontinuous . This 

allowed an unhindered tidal exchange, yet it restricted high energy 

events in t1e inshore basin . As time progressed , the shoal complex 

matured i nto Aitken's ' Sullivan type ' s hoa l complex . This shoa l 

complex was often 400 km wide and was breached only in a few 

locations . This type of shoal complex hindered tidal exchange and 

generated a tidal resonance which lead to a large tidal r ange . This 

Cambrian carbonate shoal complex has been found in Cambrian studies 



in northern Washington, northern Idaho, and northwestern Montana by 

Bush and Fischer (1981) . 
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Robison ( 1960) has shown that Cambrian stratigraphy can be 

divided into an inner detrital belt, a middle (relatively clean) 

carbonate belt, and an outer detrital belt. The middle ca r bonate 

belt and the inner detrital belt comprise the epeiric sea described 

by Shaw (1964) . Shaw stated that the Paleozoic epeiric seas had an 

average depth of 27 meters over thousands of square miles . He 

concluded that with these dimensions the average bottom slopes ranged 

from 0.02 to 0 .1 meters per kilometer (0 .1 to 0 . 5 feet per mile). 

Aitken (1978) related these be lts to grand cycles during th e 

Cambrian . Grand cycles were responsible for the intertonguing 

r e lationship between the carbonate sediments and the clastic 

s ed iments during the Cambrian . Grand cycles began with th~ 

a ppearance of an inner detrital facies which graded upward into e 

middle carbonate shoal complex, and then terminated abruptly with the 

deposition of another inner detrital facies , initiating the next 

cycl e . These cycles are defined to be 300 to over 1000 feet thick 

and must span one to three trilobite assemblage-zones (Aitken, 1978). 

Rigo (1968) believed the shale members of the Langston Formation 

represent small regressive tongues within the overall transgressive 

s equence. However , in most sections measured for this study, the 

snale members of the Langston and Ute Formations abrupty overlie 

peritidal deposits. A subtidal clastic depos i t conformably overlying 

a peritidal carbonate deposit hardly represents a regression! Palme r 



and Halley (1979) found a similar example and developed a model 

related to Aitken's depositional grand cycles . Their model related 

the clastic and carbonate deposition to changing rates of shelf 

subs idence . The Langston Formation qualifies as a grand cyc le and 

probably represents the firs t and lowermost Camb~ian grand cycle . 
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The Langston Formation was deposited in an area bordering the 

Cordil leran miogeosyncline during the Low er Middl e Cambrian as 

indicated by trilobi te assemblages . Furthermo r e , it was deposited 

partial ly as par t of a periti dal carbonate shoal complex, inland 

basin , and partially part of the outer s eawa rd basin. Specifically , 

the middle carbonate unit was deposited on a peritidal shoal complex 

or middle carbonate belt as indicated by a low insoluble residue 

content in the ca rbonates and a general shoaling upwar d sequence. 

The Spence Shale member (the lower shale member) in the north and 

west of the study area was deposited in the outer detrital belt . The 

upper unnamed shale membe r s in the southeastern part of the study 

Rrea were deposited in the inner detrital belt . 

There were two major terrigenous source areas during Langston 

time . To the no rthwest of the study area in western Idaho or 

northwestern Utah sediments were shed i nto the outer detrital belt 

(Williams. 1948 , p . 1157 ; Palmer, 1971, p . 61) . Some of these 

sedime~ts we re eventual ly deposited as t he Spence Shale . A problem 

arises in transporting the sediments from a northern source area to a 

southern depositional environment at a time when prevailing currents 

should have been travel i ng northward (westward du~ing the Cambrian) . 

It is pr oposed that the geogr a phy mu s t have been such as to create 



reverse currents passing by and transporting sediments from the 

northern source area to the southern site of deposition (Fig . 24). 
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To the east was a positive area of Pr ecambrian rocks (possibly the 

present day Uinta Mountains ) which shed sediments into the inner 

detrital belt (Williams, 1948 , p. 1157; Palmer , 1971, p . 61) . Some 

of these sediments were deposited as the upper unnamed shale members 

in the southeastern part of the study area . 

Subsidence was not uniform throughout the study area . Figure 25 

shows that the Langston thickens to the north, and is fairly uniform 

in the south . Section 3, Smithfield Canyon, is extremely thin 

compared to the other sections . The isopachous map indicates that 

subsidence was greatest in the northern area a nd fairly uniform in 

the southern area, but at section 3, either subsidence was at a 

minimum or the area was characterized by a topographic high . 

The fence diagram and l ithofacies cross sections (Figu res 19-23 ) 

show that in early Langston time the peritidal complex was located to 

the southeast, and the Spence Shale was accumulating in the north and 

west . This likel y occurred while subsidence was slow ; then as 

subsidence increased , carbonate production dominat ed the area and 

built a shoaling complex to the north and west. Toward the end of 

Langston time subsidence slowed again, as r epresented by the 

progradation o: inner detrital belt clastic sediments over the 

peritidal deposits in the southeastern area. The areas to t he nor t h 

and west must have been farther from their clastic source since the 

shales are absent . Finally, Langston deposition was concluded (the 
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FIG . 25 - Isopachous map of the Langston Formation, north - central 

Utah and southeastern Idaho . Contour interval = 25 meters. 
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end of a grand cycle) when subsidence slowed to the point whe r e the 

shales and s iltstones of the Ute Formation were deposited over the 

whole area. 
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DIAGENESIS 

General Statement 

Diagenesis of the carbonates can be divided into cementation, 

so lution, a ggrading neomorphism , degrading neomorphism, compaction, 

and dolomitization . Dolomitization will be discussed in a section by 

itself . Diagenesis may occur in the eogenetic , mesogenetic, and / or 

the epigenetic environment . Eogenetic diagenesis occurs within the 

first 100 met e rs of burial and within 10
3

to 10
6
years after 

deposition . The water of this environment is connate which may 

ci rculate fr e e l y to the surface . Mesogenetic diagenesis is 

synonymous with burial diagenesis , oc curs at depths of 1 to 10,000 

3 8 
me ters, a nd t akes place 10 to 10 years after deposition . Ascending 

alte red pore ~ juvenile waters characterize this environment. 

Te logenetic di agene 2is occurs at depths of 1 to 3000 meters, and may 

t ak e place 10
3

to 10
9

yea rs af t e r depositi on. Meteoric waters dominate 

t h is environmen~ . and diagenesis may take place above or below the 

wat e r table (Choquette and Pray, 1970) . 

Cementation 

Carbona te sediments may contain 40 to 70% porosity when 

de posited, yet aGcient carbonates usually have porosities of less 

t han 5%- Therefore the pore spa ce was eithe r filled with cement or 

considerab l e compaction occurred (Bathurst, 1975, p. 416). 
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The Langston Formation shows little evidence for large amounts 

of cementation. Dolomitization and/or recrystallization have 

distorted or destroyed much of the original depositional and 

eogenetic structures . Subtypes 1 and 2 of rock type E have fibrous 

rim cements. This type of cementation is characteristic of 

cementation in intertidal to subtidal environments (Scholle, 1978). 

The fibrous cementation was followed by a coarse mosaic cementation 

within the voids bounded by the fibrous isopachous cement. This 

indicates 2 stages of cementation: one early, which partially filled 

the original pore space and prevented compaction; and one later, 

possibly after cons iderable burial, which infilled the remaining pore 

space. The later stage may have occurred in either the eogenetic or 

mesogenetic environment. 

Rock type F is a peloidal packstone , and is moderately to well 

sorted . Early submarine cementation likely filled the pores of these 

rocks , but evidence for or against has been destroyed by 

dolomitization and/or recrystallization. 

Many samples contain voids or birdseye structures which are 

filled with cloudy, radial fibrous spar. This type of cement may 

represent alteration of early formed original submarine aragonite 

cement (Scholle, 1978) . Some of these spar-filled voids show 

prominent compaction features, also indicating early cementation of 

sediments . 
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A third, but r e lat i ve ly ·unimportant , stage of cementa t ion 

occurred in the te l ogenet i c envi r onment . This stage was simple 

infilling of f r actu r es , of ten accompanied by iron - staining . 

Some early cement ation definitely occur r ed in the Langston 

Formation as seen in some samples , bu t later diagenet i c events such 

as neomorphism and dolomit i zation destroyed most of the evidence 

needed to distinguish cemen t from original matrix in many samples . 

Often radiaxial carbonate mosaics occur within recrystall i zed 
-

samples . Cotter ( 1966) sugges t ed that this texture may have resulte d 

from the recrystallization of early fibrous aragonite cement . 

Pingitore ( 1971) , Glover and Pray (1971) , and many others have cited 

examples of early submarine cementation . It is most probable that 

most of the cementation in the Langston took place in the eogenetic 

environment . 

Aggrading Neomorphism 

Aggrading neomorphism , or grain growth , may involve only one 

element of a rock , such as synta xial overgrowths on echinoderm 

fragments, or it may encompass all or most of a rock , such as the 

formation of a coarse mosa i c (Pettijohn , 1975) . 

In the samples examined , both types are found . Syntaxial 

overgrowths on echinode r m fragments are common, especially in r ock 

types E and D. The formation of a coarse crystalline mosaic is most 

prominent in rock types B and C, but occurs in most samples to some 

degree . Dolomitization appears to be the root of this destructive 

neomorphic pr ocess, as is shown in some of the dolomitic limestones. 
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In these rocks, wel l-defined and recognizable primary depositional 

features within the calci te portion become obliterated as they grade 

into the coarser dolomite areas. Often the ' ghost ' of a single 

peloid can be seen within one dolomite rhomb . This diagenetic 

process is often associa ted with dolomite , and there fore most likely 

occurred during the dolomitizing pr ocess which probably be gan in the 

eogenetic environment and continued in to the mesogenetic environment . 

Degrading Neomorphism 

Degrading neomor phis m, or micritization, r esults in a reduction 

of overa ll crystal size (Pettijohn, 1975) . Mic rit ization of the r ims 

of many onkoids and l arge peloids is common . Bathurst (1966) 

attributed micritic envelopes to the infilling of algal borings by 

micritic carbonate mud. Total micritization is most common in the 

limestones of rock typeD and E. Micritization predates cementation 

as indicated by micritic r ims contained within envelopes of fibrous 

cement . Degrading neomorphism must have occurred in the eogenetic 

environment . 

Compaction 

Compaction features are often very evident in some of the 

Langston samples , but in others th ere is little or no evidence for 

compaction . Shinn et al . (1977) have demonstrated that carbonate 

muds are capable of at least 50% compaction . They also demonstrated 

that pseudostylolites can be created through the compaction of 

sedimen s . 



Rock types B, C, D, and E often contain some evidence of 

compaction . Pseudostylo li tes are common , and areas of early 

cementation show draped features above them . 
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Rock type A, cryptalgalaminated boundstone, contains no evidence 

of compaction , but it seems probable that, as the algal mats were 

buried and decomposition of the algal filaments occurred , some 

compaction must have occurred . 

Park and Schot ( 1968) described a stylolite classification based 

on two factors : 1) pure geometry; and 2) relation to bedding plane. 

The geometric classification is subdivided into six catagories : 1) 

simple wave-like type; 2) sutured type; 3) up - peak type; 4) down-peak 

type; 5) sharp-peak type; and 6) seismogram type. The Langston 

Formation stylolites generally fall within catagories 2 or 5. The 

bedding plane classification is subdivided into 6 catagori es also: 

1) horizontal ; 2) inclined; 3) horizontal -inclined - crosscutting ; 4) 

vertical; 5) interconnecting network; and 6) vertical-inclined­

crosscutting . The Langston Formation stylolites generally fall 

within catagories 1 and 5· These two catagories are both parallel to 

bedding . 

Evidence for large amounts of cementation is lacking , and 

evidence for compactlon is common. These facts lead to the 

conclusion that comuaction played a key role in reducing the volume 

o~ original pore space. Compaction began in ~he eogenetic 

environmen~ and probably continued into the mesogenetic. 



Stylolitization or pressure solution is extensive . Bathurst 

(1975 , P· 459) stated that volume reductions of 20 to 35% are 

commonplace . Stylolite amplitud es of 1mm to 1cm are common , but 

amplitudes of up to 6cm do occur. One sample shows 3 orders of 

stylolitization (Fig . 4) . Most stylo l i t ized samples contain less 

than 1 or 2 percent insoluble r esid ues in unstylolitized area , yet 

stylolit i c concentrations of inso luble residues are often extremely 

de nse . Stylolitization usual ly r equi r es overburdens of 600 to 900 

meters , wh ich places the process in the mesogenetic environment 

(Dunnington , 1967, cited in Bathurs t, 1975). The stylolitization 

within the Langston Formation is assumed to have occur r ed in the 

mesogenetic environment . 
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The final diagene tic events include fracturing and subsequent 

i nfilling with calcite or i ron - stained calcite . Hematite 

pseudomorphs after pyrite are common . Upon uplift i nto the fresh 

water environment, oxidation of py ri te supplied the source of iron 

for staining of calcite fractures and porous clastic areas . The iron 

stai~ may be hematite , limonite , and/or goethite. 
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DOLO !11 T I ZA T I 0 N 

General Statement 

"Clearly because of the variety of dolomite types that exist in 

nature , a single process of dolomitization does not exist and there 

is no one unique model to explain all dolomite" (Zenge r et al. 1980, 

p . 1 ) . Within the last decade or so , a large amount of information 

about dolomite , and its occurrence, has been published . Comparisons 

are made in the following section between the published literature 

and the ev idence found in this study . 

Dolomite of the Langston Formation 

The dolomites of the Langston Formation are partially, but not 

totally , facies-controlled. There is a significant relationship 

between dolomite occurrence and upper peritidal deposits . Dolomite 

is also found in s btidal deposits which are below upper peritidal 

deposits. The dolomitization contact often cuts across the bedding 

surfaces of subtidal units. Figure 26 shows this r elationship . The 

upper peritidal deposits of section 2 are undolomitized along the 

line of measurement , but within a few meters in either direction they 

are dolomitized , as are 2ome of the subtidal deposits . This must 

represent a very local environment unfavorable to dolomitization 

during the Langston time. On the other hand, at section 8 , all the 

upper peritid&l and subtidal deposits (75 ~) above the Spence Shale 

are dolomitized . Since most of the dolomitization is related to the 

upper peritidal deposits, a model for their dolomitization shall be 
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discussed first . 

Dolomite forma ti on is commonly refe r red t o one of t wo majo r 

moiels, either formation in asociation with evaporites (Friedman , 

1980 ; Zenger, 1972; and many others) or formation as a result of 

mixing of f r esh a nd sea water (Hanshaw et al . 197 1 ; Bad i ozamani , 

1973 ; Folk and Land, 1975 ; and others) . The mixing model proposes 

that mixtures of 5% to 35% seawater in fresh wate r will be 

undersaturated with respect to calcite but st i ll supersaturated with 

respect to dolomite . It does not require the high Mg/Ca ratios of 

other models , instead it needs ratios of only 1 : 1 (Folk and Lnnd , 

1975) . The upper peritidal deposits represent the emerged portion of 

a carbon&te shoal complex . This complex was o~ the outer edge of a 

wide epeiric sea . It was therefore many miles from any large , 

constant source of ~resh water . For th~s reason it lS assumed "hat 

the Dorag, or mixing model , could not have operated . 

The Langston Formation din not have a large source of fresh 

water available rut the upper peritidal environments could have 

provided solutions with high Mg/Ca ratios . Therefore a process 

similar to the seepage ref lux models of Adams and Rhodes ( 1960) and 

Deff eyes et al . (1965) is suggested for dolomitization of the 

Langston (Fig . 27) . The seepage reflux model requires an 

evaporative concentration of saline brines in upper peritida l 

environments . As salinit i es increase, sulfates such as gypsum and 

anhydrite would precipitate out of solution and drive up Hg/Ca r&tios 

in the solution . These saline , !tg- rich , dense fluids are then 

gravity - driven into lower limestone sediments . As they pass through 
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those sediments, favorable conditions are created for the replacement 

of relatively unstable aragonite and calcite by more stable dolomite . 

Evidence for a seepage reflux process is very abundant . The 

dolomite of the Langston Formation is almost always found in uppe r 

perit idal l ithofac ies , it is usually found below the upper peritidal 

lithofacies in the uppermost part of subtidal depos its, but is almost 

never found in subtidal lithofacies unassociated with uppe r peri ti da l 

lithofacies . Adams and Rhodes (1960) implied that dolomite is 

commonly associated wi th evapori t es and shallow marine limestones . 

Evidence for evaporation in the Langs ton is common in the upper 

peritidal deposits . Gypsum cas ts are found, although t hey may 

occasionally be confused with birdseye structures. Relict 

chicken -v1ire anhydrite is locally common , and even solution br eccias 

of once - bedded sul~ates a r e found . Presence of sulfates is also 

inferred from the presence of many euhedral pyrite pseudomorphs. It 

~as been proposed that the sulfur for the pyrite formation was 

provided by th e dissolution of the sulfate evaporites (Braun and 

Friedman , 1969, p . 118) . Desiccation features such as mudcracks and 

laminoid birdseyes are a lso common. This evidence leads to the 

conclusion that much of the Langston Formation represents 

environments in \vhich extensive evaporation took place . 

The paleoclimate during the Langston tlme was warm and humid 

based on the clay mineralogy. The paleola~itude places Utah in an 

equa t or ia l setting during Langston time (Rowland, 1981; Ziegler et 

al ., 1979) . Could sulfates precipita t e in thi s type of climate? 

Kinsman (1976) has found repetitive carbonate/sulfate l ayers in the 
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Permian Castile Formation of the Delaware Bas in. Smith et al ( 1973 , 

as cited by Kinsman , 1976) have determined the paleolatitude of the 

Delaware Basin to have been 5 - 10 N during the Permian. Kinsman 

stated that thea gypsum- anhydrite evaporite facies can precipitate in 

relative humidities as high as 93% · It therefore does not seem 

unreasonable to have produced evaporites in the Langston upper 

peritidal deposits . 

These peritidally produced, Mg-rich , dense fluids then filtered 

downward through the permeable substrates and dolomitized the 

relatively unstable aragonite and Mg- calcite . The downward migration 

of the fluids is well demonstrated in a few samples with obviously 

high original permeabilities. One dolomite sample from section 8 

contains burrows which are coarsely dolomitized around their light 

colored peripheries for a distanc e of 2 to 10 times their diame ter 

(FIG . 28) . The coarsely dolomitized burrowed areas show distinct 

compaction features which formed around them but are themselves 

uncompacted , indicating one stage of dolomitization occurred before 

compaction . The darker areas , which show compaction features , are 

a lso dolomite but are not coarsely crystallized . This represents a 

later stage of dolomitization , possibly by Mg- rich interstitial 

fluids after compactio~ . Sone of the mottled dolostones are more 

coarsely dolomitized in their lighter areas which probably r ep r esent 

t he reworked portions cf the rock. These two types of examples 

re present primary conduits for the seepage reflux brines. Other 

evidence for seepage reflux dolomitization of non - peritidal sediments 

is found in the cross - cutting relationships between bedding surfaces 



FIG. 28 -- Photograph showing early dolomitized 
burrows with compaction features around them. 
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and dolomite contacts . This is best exempl i f i ed in section 3 (Fig. 

26) where dolomitized subt i dal de pos i ts , app r oximately 10 meters 

below upper peritidal deposits , have an irregular contact with 

undolomitiz ed subtidal beds of identical lithologies . 
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One characteristic of the seepage reflux brines is that thei r 

compositions change and their dolomitizing potential diminishes away 

from their evaporative source (Adams and Rhodes, 1960) . Field 

st~atigraphic relationships demonstrate this well (Fig . 29) . In 

sections 4 through 7, l arge upper peritidal dolomite deposits are 

found , and almost all of t he subtidal carbonate depo s its below t hem 

are dolomitized also . In sections 1 through 3, thin peritidal 

deposits occur at the top of the sections and dolomitization is 

restricted to he uppermost subtidal deposits below them . Section 8 

also has a thin upper peritidal deposit at the top of the section, 

but the carbonates a r e dolomitiz ed down to the impermeable shales. 

This must have resulted f rom dolomitizing fluids seeping down fr om 

the upper peritidal deposits at the top and from dolomitizing fluids 

migra ting west from the thicke r upper peritidal deposits in the east . 

These westward - migrating brines originated as the downward - seeping 

brines came in contact with less permeable layers and began migrating 

away from their source . Tney flowed west and aide d in the 

dolomitization of section 8 , but their dolomitizing potential must 

have diminished befo r e they reached t he northern sections. 



FIG . 29 - Fence diagram showing relationship betw een , 

and the distribution of , dolostone, limestone, and 

non - carbonate rocks within the study area . 
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There is evidence that the dolomitizing fluids were not always 

constant . The presence of alternating zones of dolomite, ferroan 

dolomite, and calcite within the dolomite rhombs (Fig. 30) suggests 

that the interstitial solutions were quite variable . Katz (1971) has 

f ound that zoned dolomite crystals resul t from dilution of 

interstitial brines with normal sea water or fresh water within the 

eogenetic environment . The ferroan dolomite was deposited as Fe/Mg 

ratios increased under reducing conditions. During periods of high 

turbulence , well-oxygena ted waters dilu ted the dolomitizing fluids 

and oxidized the ferroan dolomite to produce the hematite - stained 

zones now present . Calc'an dolomite and polycrystalline calcite 

zones were deposited as the dolomitizing brines were diluted also. 

The calcian dolomite (which can only be detected by electron-p robe 

analysis) was deposited upon increase of Ca/Mg ratios , and the 

polycrystalline calcite was deposited as Ca/Mg ratios increased 

further. This depositional process was actually a dedolomitizing 

process. Katz further s tated that zoned dolomite crystals are 

replacement products of a calcium caroonate sediment which was 

dolomitized before lithification . 

One sample (Mh- 3) contains many vugs infilled with zoned 

dolom~te srystals and further infil le' with quartz and quartz 

euhedra. The vugs may have resulted from either birdseye formation 

or sulfate precipitation and dissolution. Many euhedral crystals of 

hematite after pyrite are also found, suggesting nissolution of 

sulfate in a reducing environment . The presence of quartz within the 

vugs indicates a change in the interstitia l fluid compostion . 
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. FIG. 30- Two photographs of zoned dolomite rhombs. 
Field of view for both photographs = 1.8 mm. 



Fri edman and Shulk l a ( 1980) have found authigenic qua rtz euhedra in 

sulfa t e solution vugs . 
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Wanless (1979 , 1982) stated that pressure solut i on can supply 

the needed Mg for dolomitization . I n this model, dolomitization is 

initiated and concent r ated along areas of volume reduction by 

pressure s olution . The crystals a re zoned due to inclusions of clay 

and ferrous iron. The zoned dolomite rhombs of the Langson Formation 

contain dolomite, ferrous dolomite, and calcite . The dol omite rhombs 

in Wanless ( 1979, 1982 ) had no calcite . The Langston dolomi t e r hombs 

a r e not necessarily concentrated near stylolites . Fo r these reasons 

Wanless' model of dolomitization was rejected for the Langston 

Formation. 

The zoned dolomite crystals of the Langston Formation probably 

formed in birdseye vugs and/or sulfate solution vugs as indicated by 

their euhedral cores and rhombohedral inner zones . Precipitation 

stopped as the crystals grew in contact with each other . 

Although seepage r e flux appea rs to have been responsible for 

most of the dolomitization , a few other processes may have been 

operating . 

Cryptalgal boundstones are found near the top of the dolomite 

portion in most sections. Gebelein and Ho ff~an (1973) have proposed 

that sediment bi~ding Mg - rich algae may have been responsible for the 

dolomitization of a lternating l ayers within algal bo~ndstones . The 

decomposition of the se Mg- rich algae produced local environments 

favorable to dolomitization within the algae - rich laminae . Most of 
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the Langston algal boundstones are all dolomite , therefore the 

mineralogical evidence alone does not support Gebelein and Hoffman ' s 

model . However , there is a noticeable textural difference between 

some laminae . Alte rnat ing l ayers of coarse and finer crystals are 

found within the samples . This may indicate th&t early 

dolomitizat i on did occur i n the algal - rich layers , and then other 

processes later dolomiti zed the rest of the r ock . 

Another process may have ope rated in t he Naomi Peak member of 

section 8 . The Naomi Peak member contains uppe r pe ri t idal and 

subtidal carbonates , and it is capped by the impermeable Spence Sha le 

member above. The dolomitization i n this area is very i rreg~lar . 

The lower contact grades into limestone to the north, and many l arge 

limestone lenses occur in the dolomite portion . Dolomitization 

surfaces often cross - cut bedding surfaces . The presence of pe~itidal 

deposits suggests that seepage reflux was the main dolomitizing 

process . The limestone lenses may have been less permeable to the 

seepage reflux brines or may have contained solutions more 

un:avorable to dolomite formation . Gebelein et al . ( 1980) have 

found lenses of fresh wa t e r beneath elevated ridges on t idal fl ats . 

The lenses and areas of limestone in the Naomi Pe ak member may have 

~emained undo lomitized as a result of chemically unfavorable 

interstitial solutions , although it is probably more likely that the 

seepage r e flux brines were just not potent eno ugh to dolomitize all 

of tne carbonates in the area . 
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SUI~ARY OF ENVIRONMENTAL AND DIAGENETIC EVENTS 

The Lower Middle Cambrian Langston Formation is characte riz ed by 

shallow subtidal to upper pe ritidal carbonate sequences and subtidal 

clas tic sequences . Four major lithofacies were recognized : 1) upper 

peritidal; 2) inner carbonate shelf; 3) inner clastic shelf ; and 4) 

outer clastic shelf. The distributional relationship between these 

facies probably was controlled mainly by fluctuating subsidence 

rates, but fluctuations in the clastic source area and sea level 

fluctuations may also have been important periodically. 

The Langston Formation r epresents the first of the Cambrian 

grand cycles. In early Langston time subsidence was relatively slow. 

This allowed a large carbonate shoal complex to develop on the 

southeastern part of the study area. To the west and north of this 

complex, clastic sediments were accumulating in the outer shelf . 

These sediments were derived from the north or northwest and formed 

t he Spence Shale. The Spence Sha l e deposition ended as subsidence 

increased . ·The upper peritidal deposits were eventually covered by 

inner carbonate shelf sediments . Finally, toward the end of Langston 

time subsidence began to slow again . The carbonate shoal complex 

shifted to the northwest, and clastic sediments from an eastern 

source prograded over the carbonates in the southeastern part of the 

section . These clastic sediments accumulated for a relatively short 

period of time, and inner carbonate shelf sediments were quickly 

deposited above them . Lastly, upper peritidal deposits we r e 

depos ited throughout most of the sect ion. This progradation of upper 



96 

peritidal sediments over the area represents the end of the Langston 

deposition . The Langston Formation was then covered by the clastic 

sediments of the Ute Formation, representing the end of the first 

Cambrian grand cycle . 

Eogenic diagenetic features include relict evaporite structures, 

birdseye structures, and compaction features . Dolomitization and 

possibly pressure solution began in the eogenetic environment, and 

probably continued into the mesogenetic environment . Diagenesis in 

the telogenetic environment was dominated by fracturing and infilling 

by calcite . Some fracturirtg and infilling may have also taken place 

in the late mesogenetic environment . 

Dolomitization is thought to have resulted from a process 

similar to the seepage reflux model. Hypersaline brines flowed 

downward from upper peritidal sediments into the inner carbonate 

shelf sediments below. Favorable chemical conditions were created to 

oring about the replacement of calcium carbonate sediments by 

dolomite . Sediments containing algal mats may have been dolomitized 

as a result of algal concentration of Mg . The dolomitizing brine 

composition was not always constant , due to periodic dilution by 

normal marine water and/or fresh water . 
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Petrogra phic , Insoluble Residue, Organic Matter , and X- ray Data 
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Explanation 

Samples are described according to one of three Tecognized 

classification schemes: 1) carbonates by Dunham (1962); 2) mudrocks 

by Lundegard and Samuels ( 1980); 3) sandstones by Folk (1968) . 

Sample descriptions consist of two fundamental parts : the basic 

rock name (limestone, mudrock, sandstone) , and the compositional or 

textural classification term (packstone, mudshale, arkose) with 

appropriate modifiers . 

Grain descriptions in thin sections include sphericity, 

roundness, size (maximum, minimum, average), and type of grains . 

Sphericity : Roundness: 
p Platy A Angular 

E : 1 
Bl Bladed SA Subangular 

2:1 
SE Subequant SR Subround 

1 1/2:1 
E Equant R Rounded 

(Te rminology of Folk, 1968 ) 

Samples are listed in order of their stratigraphic position; the 

lowernost sample is listed first. The symbol * in front of the 

sample number indicates t he description is that of a thin section and 

those w~thout are 6escriptions of polished slabs. 

The ~lneralogical composition of the insoluble residues of the 

samples is listed in order of decreasing peak height . 



------------------- ----- -------------- -------------------------------------------------------------------
Mapl e Creek - Section 1 

- --------- - - ·- ----- - ---------------------- ~~ -- ---------------- ----- --- -- -- -- ------- ----- -- -- --- --- ---------
Sample 
Number 

Unit Rock 
Name 

Percent Percent Inso luble Residue 
Organic Insoluble Composition 

----------- ·------------------------------------ ----------------------------------------------------------
1a' 

1a 

1 b 

1 c 

1 d 

1 e 

Mudrock : lenticular, medium laminated, 
trilobite- (agnostid), and feeding-tra il ­
bearing , mudshale 

Mudrock: wavy, thin to medium bedded 
vertical burrow-bearing, siltstone 

Mudrock : parallel to wavy , medium 
bedded, thin curving cross laminated 
siltstone 

Mudrock: parallel to wavy , medium 
laminated mu dshale 

Mudroc k: parallel t o wavy, medium 
laminated mudshale with limestone 
nodules 

Mudro ck: wavy, very th i n bedded 
mud shale with limestone nodules 

0-47 89 . 07 

0.39 93.06 

0 . 39 93.68 

0.94 84 . 31 

0.20 79 . 78 

quart z, orthoclase, 
mica, albite 

quartz, microcline, 
mica , albite 

quartz, mica, 
kaolinite , mi c rocline, 
albite 

quartz , mica , 
albite, microcline 

quartz, mica , 
albite, mi crocline , 
kaolinite 

I-' ,_... 
0 



2c ,., 
Llme s tone : bnrro',v ed , brecciated , c_ 

peloidal wackestone wi~h silty 
limonitic compaction featurPs and 
styloli t es 

2b 2 Limest one : intraclast -bearing, pPloidal 
wackestone with silty limonitic 
compaction fe at ures 

2a 2 Limestone : burrowed , peloi dal 
wackestone with silty compaction feature s 

2d 2 Limestone: burrow ed , peloidal 
wackestone with silty compaction 
features 

2e 2 Limestone : burrowed, peloidal 
wackestone with silty limonitic 
psuedostylolit es and stylolites 

2f 2 Limestone : bu rrmv ed, pelletal 
wackestone with silty pockets and 
stylolite 

0 . 14 4·32 

0 .18 4 . 61 

0.19 5.22 

0 . 08 4 . 80 

0.11 1.89 

0 .1 3 1. 37 

quartz , illite , 
chlorite, kaolinite , 
orthoclase 

quartz , illite, 
anorthclase 

quartz , illite, 
microcline 

quartz , kaolinite , 
chlo r ite , albite 

quartz , illite , 
albite , kao l inite 

quartz , illite, 
kaolinit e , chlorite , 
albite 

...... ..... 

...... 



-'k ~ ,., 
Limestone : SE - E, SH - R, (0 . 1mn, 0 . 0'1mm 0 . 20 1 . 73 quartz, illite, c:.g c 

0. 07mm) , desiccation ~r~ck-b8arins, kaoltnite , albite, 
pelletal packstone chlo rite 

2h 2 Limestone : brachiopod -bearing , pelletal 0 . 14 1 .1 0 quartz, illite 
packfltone with silty compactiol'l features albite, kaolinite 

*3a 3 Dolostone : SE-E , SR-R , (2mm,0.08mm 0 . 04 o.gs quartz, illite, 
o. 25) . bioturbat ed , pelletal wackestone/ kaolinite 
packstone with organic-rich compaction 
features 

3b 3 Dolostone : peloidal crysta l line 0 . 06 0 -32 quartz , illite , 
carbonate kaolinite 

*3c 3 Dolostone : gypsum cast-bearing , vuggy ' 0 . 13 0 . 41 K- feldspar , quartz , 
peloidal wackestone ill ite 

3d 3 Dolostone : medium irregular birdseye - 0 .1 0 0 -56 quartz, illite , 
rich , limonitic, peloidal wackestone kaolinite , chlori te 

3e ) Dolostone : coarse crystalline, flne 0 . 11 0 . 74 i llit e, quartz , 
laminoid birdseye - rich , peloidal kaolonite , chlorite 
wackestone with stylolites 



3f ) 

*3g 3 

Dolostone : intr3clas~-, mudcrack-, and 
fine j rregular birdseyr>. - bearillf, 
cryptalga laminat ed boundstone with 
stylolites 

Dolostone : fine laminoid birdseye­
rich , ?peloidal crystalline carbonate 
with ?relict chicken wire anhydrite 
and stylolites 

0 . 04 0 . 64 

o. 11 17 . 89 

quartz , illite , 
albite 

quartz , illite 

...... 

...... 
w 



------- ----------------------- ----------------- ---------- ·--------- ------------------ ------------------ ---
High CrePk - Section 2 

----- ---------- --- ----------- ----- ---------- --- ------------ --- ---- ---------- -- --------- ------ ------------
SamplP 
Number 

Unit Rock 
IJamP 

Percent Percent Insoluble Residue 
Organic Insoluble Composition 

--- - - ~ - - - -----~~---- - --------- - - -- -- -- --- -- --- --- -------------··---- - -------- - ------------ --- - -- -- ---------
* 1a 

1 c 

-)(-1 d 

*1b 

Sandstone : BL- SE , SA-SH , (1 . )mm, 0 . 10 
0.005mm , 0 . 25mm), echinoderm- rmd trilobite 
fragment-bearing, calcareous , quartz arenite 
with stylolites 

Limestone : hematite - and Jimoniie- 0 .1 7 
bearing, trilobite fragment - rich , burrowed , 
wackestone with compaction features 
and stylolites 

Limestone : P-E , SA- R, (1cm , 0 . 05mm, 0 .05 
0 .11 mm) , algal tubule (Girvenella) -, 
echinoderm fragment-bearing , trilobite 
fragment - rich , burrowed, pelletal 
dolomitic packstone with stylolites , 
compaction f eatures , nnd quartz silt 
limoniti c pockets 

Limestone : P-E , A- R, ( 1. 5cm ,0. 005mm , ?) , 0 . 09 
ostracod-, nnd echinoderm fragment -bearing , 
pelletal , trilobite fragment-rich dolomitic 
wackestone/packstone with stylolites and 
quartz silt limonitic layers and pockets 

n . 2 

16 . 97 

0 . 76 

1. 07 

quartz 

quartz , i ll ite , 
albite 

quartz , illite 

quartz , i ll ite , 
albite 

,_. ,_. 
~ 



*2ii 2 

2b 2 

3a 3 

3b 3 

3c 3 

3d ) 

3e 3 

Limeslone : P- E , :->A - SH , (0.15mm,0 . 01)5mm , 
0 . 60mm) , hema tite-hearing , silLy, 
trilobite fragment-rich, fossiliferous , 
peloidal , ?oolitic, burrowed, 
laminated to lenticular packstone 

Limes tone : hematite-bearing , 
silty, fossiliferous , peloida1 , 
para llel to lenticular bedded 
wackestone/pa ckstone 

Mudrock : parallel to lentjcular , medium 
laminated , non- calcareous mudshale 

Mudrock : para llel , m8dium laminat ed , 
trilobite - bearing , calcareous mudshale 

r·1udrock : lenticular , thick laminated ' 
trilobite - and horizontal burrow - bea ring, 
rnudshale 

Mudrock : lenticular , lhick laminated , 
trilobite - bearing , slightly calcareous 
muds hale 

Mudrock : wa vy to parall e l, thin bedded, 
slightly calcareous mudshale 

0 . 76 21. '11 

0 . 60 38 -75 

0.25 86 . 72 

0 - 15 78 -49 

o. 51 88 .1 6 

0 . 05 83 -85 

0- 15 84 -47 

quartz , illite , 
kaolinite, a l bite 

quartz , illite, 
albit e , kaolinite 

quartz, illite, 
a lbite 

quartz, kaolinite , 
illite, albi t e 

quartz, ilJite, 
kaolinite , a l bite 

quartz , illit e , 
kaolinite 

quartz , illite, 
kaolinite , ?albite 



*3f ·~ 

5a 5 

6a 6 

7a 7 

Ba 8 

8b H 

Hudrock : BL- SE, Sll.-R , (0 . 03r~m , ? , 

0.05mrn) , organic -, trilobite fragment­
rich, silty , slightly calcareous, 
mud shale 

Limestone : trilobite frae;ment-b'-!aring, 
burrowed , peloidal w~ckestone with 
silty limonitic pseudostylolites 

Limestone : parallel laminated , 
peloidal wack estone with silty limonitic 
pseudostylolites and stylolites 

Limestone : trilobite fragment - bearing , 
intraclastic , peloidal , pisolitic , 
fibrous-cemented packstone/grainston 

Limestone : bioturbated peloidal 
Hackestone 

Dolostone : bioturbated peloidal 
wackestone 

1.97 

0 . 22 

0 .1 2 

0.15 

0 . 21 

0.1 1 

87 . 63 

8. 04 

3· 79 

0 . 75 

1. 95 

0 . 94 

qu8rtz , i l lite, 
kaolinit e , ?albite 

quartz, illite , 
kaolinite, chlorite, 
?albite 

quartz , illite , 
albite 

quartz, illite, 
?albite 

quartz , illite, 
?albite 

quartz , illite , 
?albite 

...... 

....... 
0\ 



Be 8 

9R 9 

9b 9 

LimPstone : BL- E, SR-R , (2 . 5cm , O . ~~m , 
2 . 5mm), intracLtsti c: , '?fi.brous-cemented 
grainstone with silty stylolites 

Limestone : pe loid-, intraclast- , 
mudcrack- bearing, thin luminoid and 
irregular birdseye-rich, cryptalgalaminated 
boundstone with stylolites 

0 .07 

Dolostone : medium laminoid and 
irregular birds eye - rich stromatolitic 
cr yp talga l a minated bound s tone with 
stylolites 

o. 11 
( LLH) , 

2 . 58 

2 . 32 

quartz , i lli t e , 
?albjte 

quartz , illite 

,_. 
,_. 
-...J 



-------- -- ------------ - ----- ~-- -- -- -- -------------------------------- - - - - ---- - --- - - - -- --------------------
Smithfield Canyon - Section 3 

----------------------- --------w--------- -------- ----- ------ ----------------------------- ---------· --------
Sample 
Number 

Unit Roc k 
Name 

Percent Percent 
Organjc Insoluble 

Insoluble Residue 
Composition 

------- ----------- -------- ------ ----------------------------- ---------- -------------- ---- ------- -- -------
1a 

1b 

l c 

2a 2 

-rt· 2 b 2 

2c 2 

,"l!udrock : parB..Llel to wavy , merl.i.um 
laminated , calcareous mudshale 

I'1udrock: parnllel, thick l01minated, 
calcareous , mudshale 

Mudrock : parallel , medium laminated, 
non-calcareous , mudshale 

Mudrock : wavy to lenticular , thick 
laminated, calcareous, mudshale 

Mudrock : wavy to lenticular , thin to 
medium laminat ed , trilobite-bearing , 
pe loidol , calcareous , mudshale 

Mudshale : wavy to lenticular, thin to 
medium laminated , calcareous , mudsh~le 

0 . 65 

1.1 8 

0.66 

0.38 

0 . 8 1 

87 . 98 

87 . 50 

84. 46 

85 . 07 

80 . 72 

84 . 88 

quartz, illite , 
kaolinite, albite 

quartz , illite , 
alb ite 

quartz , illi ie , 
albite , kaolinit e , 
?microcline 

quartz , illite , 
kaolinite , a lbite, 
chlorite 

quartz , mica , 
kaolinit e , albite , 
chlorite 

quartz , illite , 
kaolinite, albite , 
chlorite 

>--' 
>--' 
00 



*6a 6 

7a 7 

*Sa G 

8b 8 

Be 8 

9a 9 

1 On 10 

Limes tone : BL-E , SR-R , (4 . 0mm , 0 .1 7 
0 . 05mm , 0 . 10mm ) , eclli.nodcrn and trilobite 
fragrnent -ric11, pellr;tul , peloicl.al , dolo mi tic 
pDckstone 

Limestone : burrowed , peloicl.al 
wackestone 

Limestone : E, R, (0 . 5mm , 0 . 1mm , 
0 . 4mm) , burrow-bearing , silty , 
pelo idal, wackestone with stylolites 

Limestone : burrow- bearing, silty , 
peloidal , wac kestone with styl olites 

Doloston e : burrow - bearing , silty, 
peloidal, wackestone with stylolites 

Dolostone : highly bioturbated , peloicl.al 
wackestone with stylolites 

Dolostone: relict chicken-wire 
anhydrite-bea rine , peloidal , wackestone 
with stylolitPs 

0 .1 5 

0.22 

0.22 

0 .1 0 

0 . 07 

o.o9 

2 -23 

1. 58 

3 . 21 

1. 93 

2 -37 

0 . 30 

0 . 54 

qua rtz , illite , 
kaolinite , a l bite 

quartz, illite , 
kaolinite , albite 

qua rtz , illite , 
kaolinite, a lbite 

quartz , illite , 
kaolini te , al bite 

qua rtz , illite, 
?albite 

quartz, illite, 
?albite 

quartz , il l ite, 
albit e 

....... 

....... 
~ 



·ii-10b 10 Dol0stone : medium irregular birdseye-
rich , peloidal , vwckes tone •ri t;h 
stylolites 

10c 10 Dolostone : medium irrPgul~r bjrJsPye-
rich , peloidal , wackestone with stylolites 

0 . 10 0.62 

0.01 o.n 

quartz , 
?albite 

quartz , 
albite 

illite , 

illite , 

,_. 
N 
0 



--------- -- ---------------------- -· ------ ------
]0rt F,rk- Section 4 

------------ -- --- ------------------------------ ---------- -- --- --------- ------ --------- ----------------- ---
Sample 
Numbr;r 

Uni t Rock 
Name 

Perce nt Percent Inso luble Residue 
Organic Insoluble Compos it ion 

----- --- --- ------------- ---------------- -- -- ---- --- ---- ----- ---- ---- -- ----- ---------------------------- --
1a 

1b 

1 c 

1d 

1 e 

2a 2 

-K· 3a 3 

Dolostone : gypsum cast -bearing , 
bioturbated packstone 

Do los Lone : merli urn LJ.minoid bird :o;cye ­
bearlng , peloidal packstone 

Dolostone : onkoidal, peloidal packstone 

Dolos tone : peloidal, onkoidal 
packstone 

Dolostone: bioturbated , peloidal , 
wackes tone with compaction feat ures 

Dolostone : medium irregular birdseye- , 
and peloid - bea ring , bioturbated 
wackestone wit stylolites and 
compaction f eatures 

Dolostone : crystalline carb01~te with 
p ~eudos tyl olites , stylolites Knd reli c 
chicken- wire anhydrite 

0 . 14 13. 15 

0 . 01 2-33 

0 . 07 2-35 

0 - 05 0 -79 

0 . 07 0 -93 

o.os 0-35 

o.os o.n 

quartz , mi0 rocline , 
illite 

quartz 

qua rtz , illite, 
microc l ine , kaolinite 

quartz , ill i te, 
mi crocline 

quartz , illite 

quart z , illite 

quar tz , ill i te 

...... 
N ...... 



*jb 

3c 

3d 

4a 

*5a 

6 

) 

3 

3 

4 

5 

G 

Dolostone : crystalline ca1 \ •w1te with 
medium irreeular birds eye s i ' l f i 1led 
with concentrically banded dolomite and 
relict chicken- wire anhydrite 

Dolostone: [inP to medium irregular 
birdseye - bearing , peloidal mudstone/ 
wackestone with pseudostylolites and 
stylolites 

Dolostone : medium irregular birdseye ­
bearing , l imonitic mudstone with 
stylo l ites and pseudostylolites 

Dolostone : intraclast -, mudcrack ­
bearing , stromatolitic (LLH) , 
cryptalgalaminated boundstone with 
stylolites 

Dolostone : SE- E, R, (0 . 22mm , 0 . 05mm , 
0 .1 2n~) , hematite - and limoniL e-bearing 
peloidal packstone with pseudostylolites 
and stylolites 

Mudrock : float , pa rallel to l enticular 
medium l aminaLed , trilobite - and Rnnelid ­
pellet - f i lled burrow-bearing mudshale 

0 . 01 0 . 79 

0. 13 0 . 41 

0 . 05 0.79 

0 . 06 2 . 42 

0 . 04 0 . 94 

1. 38 87 . 83 

quartz , illite , 

K- feldspar , 
quartz , illite , 
microcl i ne 

quartz , illite 

quartz , illi t e , 
?albite 

quartz , illite , 
?K- fel dspa r 

quartz , illite , 
microcline 

...... 
N 
N 



.y,'7 a 7 1imE's tone : BL-E , R ( 2 c rn , 0 . ' , dun , 4 . Ornm ) , 0 . 14 2 .1 4 quartz , illite 
?triJobite- , calcisphere- , archc1eocyat hid -, 
echinode rm-, and brachiopod-bear ing , 
fibrous calcite CHmented , peloidal , 
dolomitic grainstone 

8a 8 Dolostone : poorly sorted , sparry , 0 . 08 1. 59 quartz , ill ite 
peloidal , onkoidal , cnlcareous grainstone 

8b 8 Dolostone : onkoid-bea ring , bioturbated , 0 . 15 0 . 80 quartz , ill it e , 
peloida l , calcareous wackestone/packstone ?K- fel ds par 
with silty layers and pockets , and sty l olites 

8c 8 Dolostone : thin laminoid birdseye - 0 .1 0 4 . 42 qua r t z , illite , 
intraclast -, and peloid - bearjng , 
stroma tolitic (11H) , cryptalgalaminated 
bounds t one with stylolites 



-----·----------------------- ------------- -- -- ------------ -- -- -------------------------------------------
Illack~3rni ~l! Fork - Section 5 

-- ---------·--------- -- -------- --------- --- -------------- ---- ----------------- --- -- ----- --- --- ------------
Srimple 
Number 

[Jni t Rock 
Nmne 

Percent Percent Insoluble Res idue 
Organic Insolubl e Compositio n 

----- ------------------ ----------------- --- ------------------------------- ------------------------------
* 5a 

* 5b 

*6a 2 

-*6a ' 2 

*8a 4 

*8b 4 

Dolostone : BL- E, A- SR , (0 .1 8mm, 0 . 03mm , 
0 .1 2mm), medium laminoid birdseye-rich , 
silty , wackestone 

Dolostone : BL- SE , A- SR , (0 . 27mm , 
0 . 05mm, 0 . 24mm ) , gypsum cast-rich , silty , 
wackestone with stylolites 

Dolostone : SE- E, A- SA , (0 .1 2mm, 0 . 05mm , 
0 .1 0mm) , peloid - bearing, silty , medium 
crystalline carbonate with styloli t es 

Dolostone : SE- E, SA- R, silt-bearing , 
peloidal and onkoidal wackestone 

Dolostone : E, SR-R, ( 1 . 0 em , 0 .1 mm , 
0 . 02 mm), pisolitic, ?onkoidal , and 
peloidal , bioturbated p0ckstone 

Dolostone : T-E , SR - R, ( 1 . 8 em , o.og mm , 
0 .1 5mm) , trilobite fragment - and silt -
bearing , pisoliti c and peloirl>l, 
wackestone with stylolites 

0 . 06 5 -83 

0 . 07 38 -70 

0 .1 3 5 -46 

0 .1 2 2 -74 

0 . 24 4 . 10 

o.og 2 - 57 

quartz , plagioc lase, 
mic rocline 

quartz , 
montmorilloni te 

quartz, microcline, 

illite 

quartz , illite 

quartz , illit e 

quartz , il lite , 
kaolinite 

...... 
N 
-"" 



*9a ) 

*9b 5 

*9c 5 

* 11 a 7 

*13a 9 

-x·14a 10 

Dolostone : vuggy crystal l: ~ n r arbonate 0 . 0 1 

Dolostone : S~ , SR , (0 . 12 mm, 0 . 06 mm , 0 . 01 
0 . 10 mm) , laminoid birdseye- bnaring , 
bioturbated , ?peloidal , wackestone 

Dolostone : vuggy , euhedral quartz - 0 .03 
bearing , medium to thick irregular birdseye ­
rich, crystalline carbonate 

Dolostone : B- SE , A-SR, (3 em, 0 . 05 mm , 0 . 06 
0 . 18 mn) , trilobite fragment - , mudcrack- , 
intrac l ast-bearing, thin laminoid to 
irregular birdseye-rich , silty, 
stromatolitic (LLH), peloidal, c ryptal­
galaminat ed boundstone with stylolites 

Limes tone : ?ooid-bearing, intraclast- 0 . 48 
trilobite , archaeocyathid- , and echinode rm ­
fra cment - rich , dolomitic wackestone 

Limestone : B- E, SR-R , (1 em, 0 . 01mm , 0.09 
0 .2 mm) , intraclast-, onkoid-, silt -, 
trilobit e - fragment- , and peloidal, 
wackestone/packstone 

0 . 90 

1. 12 

. 052 

9 . 88 

6 . 52 

4 . 87 

quartz, illite , 
albite 

quartz , illite , 
albite 

quartz 

quartz , i ll ite , 
K- f eldspar , kaol inite 

quartz , illi t e , 
orthoclase , a l bite 

quar tz , illite , 
goethite 

....... 
N 
V1 



*15a 11 Dolostone: archaeocyRthirl - ann 
trilobite - fragment-b ea ring, burrowed , 
onkoiclal , and peloidal , 1-Tackes tone 
with stylolites 

*15b 11 Dolostone : E-SE, R-SR , (0 . 25 mm, 
0 . 05 mm , 0 .1 8 mm), bioturbated, peloidal 
packstone with styl~lites 

*15c 1 1 Dolostone : I;-3E , R- SR , (0 . 5 mm , 
o . o5 mm , 0 . 20 mm) , bioturbated peloidal 
wackestone with stylolites 

0.03 1. 61 

0 .1 4 1.18 

0 . 05 0 . 65 

quartz , illite, 
hematite 

quartz, illite, 
albite 

quartz, i llite , 
kaolinite 

,_. 
N 
()\ 



Sample 
Number 

2a 

21 

2b 

4II 

*4III 

Unit 

2 

2 

Ea~L ~ork - Section 6 

Rock 
Name 

Percent Percent Insoluble Residue 
Organic Insoluble Composition 

Dolostone : silty Lo sandy, peloidal , 
pisolitic, calcareous packstone with 
stylolites 

Dolostone : hematite (pseudomorph after 
pyrite) - bearing, silty to sandy , 
limonitic, peloidal wackestone/packstone 
wi th pseudostylolites and stylolites 

Dolostone : silty to sandy , slightly 
bioturbated , peloidal wackestone with 
stylolites 

Limestone: burrowed, peloidal packstone 
with limonitic stylolites 

0 .1 4 

0 . )5 

0 . 25 

0 . 23 

Limestone : BL- E, SR-R , (0 . 85mm , 0 . 0 1mm, 0 . 17 
0 .1 2mm) , trilobite fragment-bearing, 
burrowed , silty, dolomitic pelletal packstone 
with stylolites and silty dolomite pockets 

21.45 

47 . 76 

35 . 85 

3 . 22 

6 . 79 

quartz , illite, 
microcline, orthoclase 

quartz, mic rocl ine, 
illite 

quartz, microcline 

quartz , orthoclase, 
illite , mic roc line, 
albite 

quartz, illit e, 
orthoclase, microcline , 
albite, kaolinite 

1--' 
N 
'-1 



41 2 

6a 4 

6I 4 

*611 4 

* 6b 4 

7a 4 

Limestone : trilobite fr1pmd1t-rearing , 
peloidal , onkoida l, fi hron :; -cemen ted 
grainstone 

Dolostone: peloidal packstone 

Dolostone : peloidal, onkoidal packstone 
with stylolites 

Dolostone : SE - E, R, (1mm,0 . 25mm , 
0.50mm) , pelletal packstone/grainstone 

Dolostone : SE- E, SR-R, (0.7mm,0 . 08mm , 
0 . 5mm) , thin irregular birdseye-rich , 
peloidal packstone 

Dolostone : medium laminoid and 
irregular birdseye - rich , peloidal 
wackestone with stylolites and ?relict 
chicken- wire anhydrite 

0 .11 1. 46 

0 . 06 2 . 32 

0 .17 2 . 45 

0 . 08 2 . 04 

0 . 01 1. 99 

0 .11 1. 77 

quartz , illite, 
orthoclase , mic r ocline , 
albite 

quartz , illite 

quartz , illite , 
microc l ine 

quartz , ill i te , 
microc line 

quartz , il lite 

quartz , illite , 
chlorite , kaolinite 

I--" 
N 
00 



8a 5 Dolostone : mudcru ck-be ~ri ng , 

stromatolitic ( LL!l) , peloidal, 
cryptalgalaminated boundstone with 
stylolites 

9a 5 Dolostone : mudcrack-, intraclast -
bearing , stromatolitic ( LLH) , peloidal , 
cryptalgalaminated boundstone with 
stylo lites 

0 . 14 9· 39 

0 . 20 12 . 28 

quartz , illi te , 
albite 

qua rt z , illite , 
mi croc line , ?albite 

....... 
N 
1.0 



-------- ---------------·---------------·--------------------- ---- --------------- --- ---------- --- -----------
H3rdware RRnch - Section 7 

------ --- -------- ----------- ----- -------------------- ---- -- ------ ------ ----------·---------- --------------
Sample 
Number 

Unit Rock 
Name 

Percant Percent Insolub l e Residue 
Organic Insoluble Composi t ion 

---- ----- -- --- -- ---- -- ------------- -- ---- ---------- ---- ------- -------------------------------------------
*1a 

*1 c 

1 d 

*1 e 

* 1f 

1g 

Dolostone : E, R, (4 rom, 0 . 35 rom , 
0 . 8 rom) , limonitic , peloidal, grainstone 
lvi th styl olites 

Dolostone : SE- E, SR - R, ( 1 rom , O. Og rom , 
0 . 22 rom) , relict chicken-wire anhydrite ­
bearing , pe l oidal, packstone with 
compacti on features 

Dolostone : thin to medium laminoid 
birdseye - and intraclas t-bearing, 
cryptalgalaminated boundstone 

Do l os t one : ?pe l oidal , crystalline 
carbonate with stylolites 

Dolostone : coarse laminoid ?birdseye­
bearing , peloidal crystalline carbonate 

Dolostone : coarse crystalline , medium 
laminoid birdsey e -bea ring , ?peloidal 
packstone 

0 . 06 0 . 76 

0 . 05 1.1 5 

0 . 02 0 . 82 

0 .1 5 1. 50 

0 . 02 0 . 82 

0 .1 5 0 . 8 4 

quartz , goethite , 
i llite 

quartz , illite 

qua rtz , ill ite 

quar t z , illi te 

quartz , i l l i te 

quartz, ill ite , 
goethite 

~~ 

w 
0 
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2a 2 

2b 2 

2c 2 

?d 2 

Dolostone : coarse crys b.ll ille , co~use 

irregular bird seye -bearin~ , mudstone 
0.05 

Limestone : onkoid - bearing, slightly 0 . 13 
biotu rbated , burrowed , limonitic, pe loidal , 
wackestone with compaction featu res 

Mudrock : l enti cular , medium l ami nat ed , 2 . 95 
trilobi t e - bearing, mudshale 

Limes tone : ?fossil fragment - bea ring , 0.14 
onkoidal , peloidal, burrowed , wackestone 
with hematite stained stylo l ites 

Dolostone : hematit e crystal-bea ring, 0 .1 7 
intrac l astic , and stromato litic (LLH), 
cryptalgalaminated boundstone and 
intraclastic wackestone 

1. 09 

1. 53 

90 .1 8 

1. 8 1 

8 . 90 

quartz , i l l ite , 
goeth i te 

quart z , goethite , 
illite 

quartz , i llite , 
?microc l i ne 

quartz , ill ite , 
goeth i te 

quartz , illite , 
microcl i ne , ?a l bite 

,_.. 
w ,_.. 



------ --·---------------------------------------··------------------------------------------ ---------------
Miners Hollow - Section 8 

-------------------------------- ---------------------------- --------- ------ ------- ----------------- ------ -
Sample 
Humber 

Unit Rock 
Name 

Percent Percent Insoluble Residue 
Orgnnic Insoluble Composition 

-----------------------------------------------------------------·---------------------- --- ---------------
*1 

*2 

*3 

-x"4 

5 2 

Dolostone : coa rs e lamiDoid birds0ye-, 0 . 04 
pisolite- , and hem~tit2 (pseudomorph afte r 
pyrite) - bearing , euhedral quartz crystal­
bearing and peloidal, wackestone/ 
packstone 

Limestone : pyrite -, pisolite-, 0.15 
trilobite and echinod e rm fragment - bearing, 
burrowed, mottled, peloidal , dolomitic , 
wackestone 

Dolostone : E , R, (0.19 mm, 0 . 05 mm, 
0 . 12 mm) , medium irregular birdseye -rich, 
silty , peloidal wackestone 

Dolostone : SE-E , A-SR , (0 .1 5 mm, 
0 . 05 mm , 0 . 9 mm) , silty , burrowPd , 
?pploidal wackestone with stylolites 

Mudrock : lenticular , medium laminated , 
trilobite fragment - bearing , calcareous , 
mudshale 

0 . 03 

0 .85 

o.n 

3. 03 

8 . 23 

4· 53 

62.41 

80 . 59 

quarLz , il lite , 
albit e , ka olinite , 
montmorillonite 

quartz, illite, 
albite, kao linite , 
microcline 

quartz, illite, 
albite 

quartz , illite, 
albite 

quartz , illite , 
albite , kaolinite 

,_. 
w 
N 



*6 2 

7 3 

8 3 

9 3 

·l!-1Q 3 

* 11 4 

Limestone : SE-E, SR- R, (0 . 07 mm, 0 . 23 
0 . 04 mm , 0 . 05rnm), intrAclast - and 
trilobite fragment-bearing, silty, 
limoni tic, laminated, peloidal, 
mudstone/wackestone 

Mudrock : wavy, thin l aminated , 1 . 01 
tri lobite fragment - bearing , calcareous, 
mud s hale 

Mudrock : lenticular to parallel, 1.09 
thin laminated, trilobite fragm ent-bearing , 
calcareous , mudshale 

Mudrock : para llel to Havy , thin to 1. 02 
medium laminated , trilobite fragment and 
brachiopod-bea ring, calcareous , mudshale 

Mudrock: parallel to wavy , medium 0 . 74 
l amina ted, trilobite fragment - bearing, 
peloidal , calcareous , and dolomitic , 
muds hale 

Hudrock : parallel to wavy , thin to 0 . 55 
medium laminated , trilobite fragment-
bearing , peloidal, calca reous, mudshale 

24 . 53 

75 .1 8 

80 .1 7 

75 . 83 

66 . 61 

51 .1 0 

quartz , il lite , 
albite , ka olinite , 
chlorite 

quartz , illite , 
kaolinite , albite , 
chlorite 

quartz, illite , 
kaolinit e , albite , 
chlorit e 

quartz , illite , 
kaolinite , albite , 
chlorite , microc line 

quartz, illite , 
kaolinite, albit e , 
chlori t e 

quartz , illite, 
kaol ini te , albite 

...... 
w 
w 



*12 4 Limestone : BL-E, ::3/\-H, (6 rnm, 0 . 01 mm, 0.21 29 . 70 quartz, illite , 
0.10 mm) , fos s ilife rous, silty, peloidal , kaolinite , albite 
dolomitic , wackestone 

13 4 Hudrock : parallel to wavy, menium 1 . 20 81.40 quartz, i llite , 
laminated , fossiliferous, calcareous , albite, microcl i ne 
mudshale 

*13.5 4 Dolostone : BL-E, SA-R, (2.5 mm, ? 0 . 25 21 . 05 quartz, i ll ite , . ' 
0 . 14 mm) , echinoderm and trilobite fragm ent - albite 
bearing , limonitic, calcareous, wackestone 
with stylolites, compaction features, and 
fn=tc tures 

•*14 5 Dolostone : SE- E, RS-R , ( 1 0 mm, 0 . 05 mm , 0 . 03 1 . 08 quartz , illite, 
0 . 10 mm) , very highly fractured, peloidal , albite 
calcareous , wackestone/packstone 

"*15 5 Dolostone : SE-E , SR-R , (0 . 25 mm, 0 . 14 2 .1 0 quartz, illite , 
0 . 05 mrn , 0 .1 5 mm) , hematit e -stained , albite 
mottled , peloidal , wackestone wi..th 
compaction features and silty layers 

* 16 5 Dolostone : SE- E, SR- R, (0 .1 4mm, ? 0.10 0 . 76 quartz , illite , . ' o.og mm) ' burrowed, mottled (non- biotic) , orthoclase , albite 
peloidal , wackestone with compaction 
features , and stylolites 

~ 

w 
-I'-



*17 5 

*17.5 5 

*18 5 

'*"19 5 

* 20 5 

Dolostone : SE-E , SR -R, (0 . 09 mrn , ? , 0 . 07 
o.rn mm) , bioturbated, mottled , ?peloidal, 
wackestone with compa c tion feature s , 
stylolites, and dolomite rhombs with 
alternating calcite bands 

Dolostone : SE- E, SR-R , (0 . 20 mm , 0 . 22 
0.05 mm , 0 . 15 mm) , ?birdseye-bearing , 
slightly bio turbated , peloidal , wackestone 
with stylolites and compaction features 

Dolostone : E , R, (1 . 5 em, 0 . 08 mm, 0. 10 
0 . 70 mm), ooid -, intraclast-, and peloid ­
bearing , onkoidal, wackestone/packstone 
with compaction features and styloli tes 

Dolostone: SE- E, SR-R , (1 . 0 mm , 0 .1 0 
0 . 05 mm , 0 . 09 mm) , mottle d, peloidal 
wackestone 

Dolomi t e : SE-E, SR -R, ( 1. 0 mm , 0 .1 0 
0 . 08 mm , 0 .1 5 mm) , very thick laminated , 
peloidal, calcareous , wackestone with 
styloli t es and alternating dark grey (N3) , 
fine crystalline laminations and moderate 
yellowish brown (10 YR 5/4) medium 
crystalline lami nat ions 

0 . 61 

1 • 1 2 

0 .19 

0 . 44 

1. 66 

quartz , illite , 
alblte 

quartz , illite , 
albite 

quartz , illite , 
albite 

illite, qua rtz 

quartz , i ll ite , 
albite , orthoclase 

...... 
w 
\.11 



*21 6 

*22 6 

Do los tone : tiJin to medium laminoid and 
medium irregular birds eye - beannp;, 
calcareous , crystalline doJosLone with 
stylolites 

0 . 17 

Dolostone : BL- E, SA-R, (1 . 0 mm, 0 . 34 
0 . 05 mm , 0 . 10 mm) , hematite - and medium 
laminoid and fine irrPgular birdseye-bearing, 
intraclastic , peloidal , stromatolitic (LLH) , 
cryptalgalamin~ted boundstone and wackestone 
with stylolites 

0 -74 

2 . 16 

quartz , il l ite , 
albite , orthoc lase 

qunrtz , illite , 
a lbi te 

,_. 
w 
0\ 
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Appendix B 

Measured Stratigraphic Sections 



Explanation of Stratigraphic Sections 

Rock Symbols 

Limestone 

Dolostone 

Poorly exposed 
or cove red 

N2- N5 

N6 - N8 

138 
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Section 1 

Location : Maple Creek Ca nyon, measured west to east along ridge 
crest north of Maple Creek, approximate l y 7 miles nor t heast of 
Franklin, S. E. 1/4 , S. E. 1/4 , Sec . 33 , T. 15 S ., R. 41 
E., Franklin County , I daho . 

Ute Formation , mudrock 

Contact : sha rp , wavy 

Langston Formation, dolostone 

Unit 

Mc - 3 : Dolostone, medium to very light grey 
(N5 .5- N8) , weathers to sugary , ve ry pale 
orange (10 YR 8/2) to moderate brown (5 YR 
4/4) , medium to thick bedded (10- 60 em), often 
massive, fine to medium crystalline , 
containing bioturbation in lower part (mottled 
with pale red (5 R 6/2) to yellowish grey (5 Y 
7/2)) , birdseye structures in middle, 
cryptalgalaminae, intraclasts , mudcracks, and 
stylolites at top, and peloids and small vugs 
throughout ; exposed as resistant ledges and 
rugged cliffs • •... . .••..•.................... • ...•... 

Mc - 2 : Limestone, medium dark grey (N4), weathers to 
medium light grey (N6) , thin to thick bedded 
(2- 30 em) , finely crystalline , containing 
vertical to horizontal bu r r ows , wavy 
laminations, ?stromatolites, and birdseye 
structures; highly bioturbated in places ; 
lower part contains a 30 em bed of spar 
cemented limestone breccia; rema r kably 
consistent litho logy ; bedding surfaces weather 
to smooth humps or knobs ; exposed as resistant 

Thickness 
in mete rs 

65 . 5 

outcrops and rugged cliffs ..... . ...... . ........ . ..... 63 . 1 



Mc-1: Siltstone and mudshale, pale olive grey (5 Y 
6/2) to olive grey (5 Y 4/1), weathers to 
light grey (5 Y 5/2) to yellowish grey (5 Y 
7/2), thin to thick bedded (3 - 45 em) , 
laminated, conteining silt to medium sand (< 
1/16 -1 /4 em), cross -laminations , 
parallel -laminations, trails, burrows, and 
body-fossils ; the siltstone and mudshale are 
interbedded; exposed as poor outcrops on 
moderate s lope; approximately 3/4 covered, 
with shale f loat in cove r ed section ••••.•..•••.•••... 

Total 

Contact : gr ada ti onal, conformable 

Prospec t Moun t a in Quartzi t e , sandstone/orthoqua~tzite 

140 

58.2 

186 . 8 
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Section 2 

Location : High Creek, Cache County , Utah, 7 miles northwest of 
Richmond, Utah on ma in ridge of High Creek in Sect ion 11, T. 
14 N. , R. 2 E., line of section measured follows up ri dg8 on 
south fork side. Very well exposed . 

Ute Formation, red shale 

Con t act : sharp, mostly planar 

Langst on Fo rmati on , limestone 

Unit 

Hc - 9 : Limestone, medium dark grey (N4) , weathe rs to 
very light grey (N8) , thin to med ium bedde d 
(1 /2-1 2 em), fi nely crystalline , containing 
cryptalgalaminae , st romatol i tes (LLH- S) , 
peloids, and birdseyes , i n terbedded with 
l imestone, medium dark gr y (N4) , weathers to 
medium grey (N5), unlaminated, finely 
crystalline , containing rip- up clasts of 
cryptalgalaminated beds, peloids , birdseyes ; 
stylolites well developed along contacts ; 
partially dolomit iz ed northwest of measured 

Thickness 
in meters 

section; exposed as large steep ledge . . ....... ....... 5 · 9 

Hc - 8 : Limestone , dark grey (N3) mottled with medium 
light gr ey (N6) , weathers to medium da r k grey 
(N4) mottled with l ight grey (N7) , massive , 
fine to medium c rystal line, bioturbated , 
containing vertical to horizontal burrows, 
onkoids in lower part ( 1mm- 2cm) , a 0 .6 m bed 
of ~ntraformational conglomera te (1mm- 2cm) at 
top; part i ally dolomitized no rthw est of 
measured section ; exposed as moderate slope .......... 19.4 

nc - 7: Limestone , dark ·grey (N3) , weathers to medium 
grey (N5) , medium bedded (5 - 20cm) , finely 
crystalline , containi ng silty partings along 
belding planes (hematite and/or l i monite 
st&ined), onkoids ( 1/2 - 2cm) more concentra ted 
in lower third of unit and thinning out toward 
t op; exposed as steep ledges and moderate 
slope .................•...........•....•.•.....•. • ... 28 . 5 



Hc - 6 : Limestone , dark grey (N3), weathers to medium 
grey (N5) and medi um light grey (N6) with 
smal l sharp knobs , thin to medium bedded 
(5 - 15cm), finely crystalline , containing some 
wavy , silty partings (limonite and/or hematite 
stained ) , vertical to horizontal 
recrystallized burrows which increase toward 
top of Hc- 6, some fine cross - bedded 
la~inations with planar bottoms : exposed as 
steep ledges and moderate slopes . . .• • . • .•. • . .. ... •• .. 

Hc - 5 : Limestone, dark grey (N3) , weathers to medium 
da r k grey (N4 . 5), medium bedded (10- 15cm) , 
finely crystalline, slightly bioturbated , 
containing fossils (trilobites), vertical to 
horizontal recrystallized burrows ; oscillatory 
cross - ripple marks in float; breaks apart at 
silty (10 YR 7/4) partings ; exposed as 
moderate to steep slope • • . • . .• .. .. ••..... .... ..• . .... 

Hc -4: Covered , limestone float , contact of above 
limestone and lower shale is within this unit, 
and most likely at bottom as indicated by loss 

17.4 

1 5. 1 

of shale float; moderate to steep slope .. . . ...... .... 3 . 4 

Hc-3 : Mudrock , mudshale, color r anbes from dark grey 
(N3) to light olive grey (5 Y 5/2), weathered 
color ranges from medium grey (N5) to greyish 
brown (5 YR 3/2) to light olive grey (5 Y 6/1) 
and weathers to small (1/2- 1cm) chips, finely 
lamir-ated to thin bedded (1 1/2cm), fissile, 
wavy and nodular, mat rix is clay to very fine 
grained silt with macroscopic fossil and 
peloid grains, calcareous and non- calcareous, 
trilobite and brachiopod bearing; contains 
oscillation ripple ma rks in float ; exposed as 
moderate slopes ...• . ..•••.••..•..•.•..... • •..• • .. . ... 

Hc - 2 : Covered , sample holes amd weathered gully 
s outheas t of measured section revealed 
limestone , medium dark grey (N4) , weathers to 
medium grey (N5) through light grey (N7), thin 
bedded (1/2 - 10cm), nodular, finely 
crystal line, fossiliferous ( trilobites and 
orachiopods), contains limonite pseudomorphs 
of py rite pyritohedrons interbedded with silty 
claystone, pale red (5 R 6/2) and greyish red 
(5 R 4/2), weathe rs to same, thin bedded 
( 1/2- 1cm), pinching and swelling, contains 
same fossils, and peloids ; forms moderate 
slopes .. . ..... . ........... . .................... . .... . 

47 . 4 

16 . 8 

14 3 



Hc-1 : Limestone, greyish black (N2) to dark grey 
(N3) , weathers to da rk grey (N3) to medium 
dark grey (N4) , thin bedded (2- 8crn) , finely 
crystalline , contains fossils, peloids, silty 
partings (5 Y 8/1), some recrystallized 
vertical to horizontal burrows; lower o.g rn is 
a calcareous sandstone, very light grey (N8) , 
moderate yellowish brown (10 YR 5/4 ) , and 
moderate red (5 R 5/4) , weathers same color , 
con~ains vugs (3rnrn-4cm high by 2 . 5- 30crn wide ) 
mostly parallel to bedding , cross - bedded, very 
fine sand to fine sand; middle of unit is 
highly bioturbated and massive; calcite 
leaches out 2- 8 em deep ; interbedded with a 
5-10 ern bed of slightly mottled limestone with 
same sandstone filling burrows within it; many 
greyish red shale chips in float , may indicate 
intercalated relationship with limestone ; 
exposed as moderate slopes and small ledges .•..... .•• 

Total 

Contact: gradational , conformabl e 

Prospect Mounta in Quart3ite ( ?), non - ca l careous sandstone 

144 

11.6 

165 . 4 
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Section 3 

Location : Smithfield Canyon, measured east to west a l ong the ridge 
crest 1.2 miles north of U. S . Forest Service Smithfield 
Canyon road , Sec . 3 , T. 13 N., R. 2 E., Cache County , Utah . 

Ute Formation , green mudshale 

Contact: sharp, conformable 

Langston Formation, dolostone 

Unit 

Sm- 10: Dolostone, med i um grey (N5) , we a thers to 
sugary , pale greyish orange (10 YR 7/2 ), thin 
bedded (0 . 5- 2 em) to massive, fine to medium 
crystalline, containing birdseye structures, 
stylolites, and faint ? c ryptalgalaminae ; 
lower contact with Sm-9 is gra ational; upper 
1.7 meters are very light grey (N8) with more 
distinct algal laminations; exposed as steep 
rugged l edges and sma~l cliffs .......... . ...... . . . .•. 

Sm- 9 : Dolostone, dark grey (N3) mottled with medium 
light grey (N6 .5), weathers to sugary , pale 
greyish orange (10 YR 7/2) mottled with medium 
dark grey (N4), massive , medium crystalline , 
highly bio t urbated; exposed as rugged ledges 

Thickness 
in meters 

17.8 

and cliffs .. . . • .....•...•........ . • . •..........•.•..• 11 . 7 

Sm - 3: Limestone , dark grey (N3) , weathers to medium 
dark grey (N4), thin to medium bedded (5 - 13 
em) , fin e to medium crystalline, containing 
laminations , lenses , and pockets of pale r ed 
(5 R 6/2) to very l"ght grey (N8) silt, which 
causes a mottled texture, also containing 
vertical to hori zontal burrows , large 
fractures, and stylolites ; upper 1 . 7 meters is 
dolomite, medium grey ( N5) , weathers to 
sugary, pale greyish orange (10 YR 7/2) , 
dol omite contact is lrregular and crosscuts 5 
em beds; mottling increases upward ; exposed as 
rugged ledges .. . .. . .. • ...• . • •. .... . ... . ••.......•..•• 21.9 



SM-7: Limestone, dark grey (N3), weathers to medium 
grey (N5), massive, fine crystalline, slightly 
mott led , containing calcite filled fractures, 
burrows, and cross -lami na tions; lower contact 
is sharp and wavy ; expos ed as sheer cliff ............ 3 . 4 

Sm- 6 : Limestone , medium dark grey (N4), weathers to 
medium li gh t grey (N6), thin to medium bedded 
(2-12 em), fine to medium crystalline , 
containing vertical to horizon tal burrows, 
fossils (brachiopods ) , peloids, and 
stylolites; throughout unit there are very 
light grey (NB) t o greyish orange pink (5 YR 
7/2) wavy , silty laminations up to 0.5 em 
thick; upper contact has small erosional 
channel cut in it; exposed as sheer 
cliff. ........ . ..... ... .............................. 5 . 3 

Sm- 5: Cove red, limestone float like S~- 6 , forms 
talas slope; contact of Sm- 6 and Sm- 4 is 
with i n this unit .. . . • • • • • • . • • . . • . . . . . . . . . . . . . . . . . . . . . 2 . 4 

Sm- 4 : Limestone , medium da r k grey (N4), weather s to 
medium ligh t grey (N6) , massive , fine 
crystalline containing ve rti cal to horizontal 
burrows; possibly out of place; exposed as 
small resistant ledge in middle of dense 
talus slope .......................................... 1 .4 

Sm- 3 : Covered, limstone float like Sm- 6 , contact of 
limestone and mudshale is vvi thin this unit 
toward base; forms steep, covered talus 
slop9 ........ . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . • . . . . • . 7 . 5 

Sm- 2 : Mudrock , mudshale , light olive grey (5 Y 6/1 ) , 
weathers to l i ght olive brown (5 Y 6/2) , 
calcareous , thin and nodular laminated (0 .1-2 
em), ve r y fine grained , containing trails, 
burrows, and fossils (t rilobites and 
brachiopods) ; exposed as gentle slope in ridge 
saddle ...................... . ... ······ · ············ ·· 16 . 8 

147 



Sm-1 : Mudrock , mudshale, moderate reddish brown ( 10 
R 4/6) to olive grey (5 Y 4/1 ) , weathers to 
same, noncalcareous, thin to thick laminated 
(0.05-1 em), ve ry fine grained , containing 
trai l s and f ossils; unit covered and samples 
taken from holes 0.5 m deep ...................... . .. . 8 . 4 

Total 

Contact: covered, probably gradational 

Brigham Group, quartzite 

148 
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Section 4 

locc.tion : Left Fork Canyon, measured south to north on north side of 
Forest Service access road, approximately 3.2 miles east of 
Here Hollovr, S.E . 1/4, N. W. 1/4, Sec . 23 , T. 11 N., R. 3 
E., Cache County , Utah . 

Ute Formation, mudrock 

Contact: sharp, wavy 

~angston Formation, dolostone 

Unit 

Lf- 8 : Dolostone , medium dark grey (N4), weathers to 
sugary light brown (5 YR 5/6) , fine to medium 
bedded (5 - 20 em) , fine to medium crystalline, 
containi1g onkoids and pellets in lower half , 
vertical and ho r izontal burrows and slight 
bioturbation in middle, and 
cryp~algalaminations and stromatolites (LLH) 
at top; lower half is highly fractured in 
placec; exposed as large ledges and tall sheer 

Thickness 
in meters 

cliffs ...... . . . • . . . . . . . . . . . • . . . . . . . . . • . • . . . . . . . . . . . . 21 . 0 

~f-7: Limestone , dark grey (N3) , weathers to medium 
grey (N5) , thin to med i um bedded (5 - 15 em) , 
medium crysta l line , containing poorly sorted 
onkoids (0 . 1- 2 em , elongate to oval) , ? 
pisoliths , and fossil fragments (brachiopods) ; 
beds thin toward t op; l imestone grades into 
dolos~one upward; exposed as small cliff •••..•••.••• 1. 5 

Lf-6: Covered , limestone float , dark grey (N3) , 
weathers to medium grey (N5) a nd some shale 
float at bottom , light olive grey (5 Y 5/2) ... •. • •. · • .. 10 . 3 

L~ - 5: Dolos~one , medium dark grey (N4), weathers to 
sugary light brown (5 YR 5/4), fine to medium 
bedded (8- 20 em) , fine crystalline , containing 
some faint laminations; exposed as a steep 
slope.. ............... . .......................... . .. . 1.5 



Lf-4: Doloscone, medium light grey (N6) , weathers to 
pale yellowish orange (10 YR 8/6) , thin 
bedded, containing cryptalgalaminae , 
stromatolites , and stylolites; exposed 
as a small cl iff .•.•••..•.....•..•..••.•.....•.••.... 

Lf-3: Dolostone, very light grey (N5), weath ers to 
sugary, pale greyish orange ( 10 YR 8/4) , 
massive to thick bedded (0.3-1. 0 rn), fine to 
coarse ~rystalline, containing stylolites , 
faint laminat i ons (?algal?), and birdseye 
structures; lower contact contains a large 
( 1 . ox 6 .0 m) channel with cross -beds above 
channel; exposed as steep hi gh cliff •.•••.•....•••.•• 

Lf-2: Doloscone , medi um dark grey (N4) , weathers to 
sugary, medium grey (N5) to pale greyish 
orange (10 YR 7/2) , thin bedded ( 1 . 0- 3 . 0 em), 
fine crystalline , containing peloids, wavy 
laminations (?algal?) , burrows, slight 
mottling, and cross - bedding; exposed 
as steep hi h cli f f . • •..•..•.....•..•...••......•..•• 

Lf- 1: Doloscone , medium dark grey (N4) to light grey 
(N7), weathers to suga r y , moderate yellowish 
brown (5 YH 5/2) to dark greyish orange (10 YR 
6/4), mostly massive bedded with some medium 
beds toward top , fine to coarse crystalline , 
containing blrdseye structures at bottom and 
peloi ds, onkoids , and slight bioturbation 
at top: exposed as steep slope and cliff ....• ..•. .... 

Total 

Contact : gradational , conformable 

Brigham Group, sandstone 

151 

7-3 

39 -0 

1. 9 

46 . 0 

128 . 6 



• 
I 

~ 

I 

I 
• I • • • 

I I 

SECTION 4 

~ • • 

I I 

I 

U. 

-c: .. 
E 

"0 c 
.. 0 .. ~ ... 
... > 
- c c: w 

Pe.ritidal 

Inner 
Co rbonote 

s Fl e If 
Sea 

I. Clastic 

s.s. 

Upper 

Peritidal 

Inner 
Carbonate 

She If 

Sea 

... .... .. -Q) 

::E 

130 -

120 --

110 --

8 

7 

100 6 

5 
90 
--4 

80 --

70 3 --

60 --

50 --
2 

40 --

30 --

20 I 

10 --

0 

\I I I 

I I 

I I 
I I 

5:-=-= 
f---
1----

I 
1. 
I 
I 

y I 
I 

.I I 
I I 
I 

I 
IT 7 
v I 

I 
)I I 

.. ., .., 
e 
:::t 
z 

.! 
a. 
E 
0 

1.1) 

8C 

8b 

Sa 
7a 

6 

Sa 

4a 

3d 

3e 

3f 

3a 
20 
le 

I d 
c 1 

I b 

I a 

152 



Section 5 

Location: Blacksmith Fork Canyon , measured east to west , 
approximately one mile sou t h of Blacksmith Fork Canyon on 
east -facing slope i n South Cottonwood Canyon, N. E. 1/4 , N.E . 
1/4, and S . E. 1/4, N. E. 1/4 , Sec . 18 , T. 10 N., R. 3 E. 
Cache County, Utah . 

Ute Formation, green mudshale 

Contact : sharp, wavy, conformable 

Langston Formation, dolost one 

15 3 

Unit Thickness 
in meters 

Bf-1 1: Dolostone , medium grey (N5) , weathers medium 
grey (5 . 5), medium bedded (10- 20 em), fine 
crystalline, upper part mottled with pale red 
purple (5 RP 6/2) and me-lum light grey (N6) , 
containing onkoids (1 . 5 em , elipticcl) , 
vertical to horizontal burrows, ? birdseye 
structures , s tylolites and calcite- filled 
fractures ; exposed as part of steep rugged 
cliff . . . . ... . ... . ....... . . .... . . ... . ..... .. . ... ..... . 15 . 4 

Bf-1 0 : Limestone , medium dark grey (N4) , weathers to 
medium grey (N5 .5 ) , thin to medium bedded 
(5 - 20 em), medium crystalline , containing 
onkoids (0 . 15- 1 . 2 em) , stylolites , pockets of 
l i monite-stained silt/clay , and intraclasts ; 
onkoids often replaced by limoni te; exposed as 
part of steep rugged cliff ...... . . . ... . ...... . ....... 6 . 7 

Bf- 9 : Limestone , medium dark gr ey (N4) , weathers 
medium grey (N3) , thin be dde d (1 - 3 em), f i ne 
crystalline, containing onkoids, fossi l 
f r agments (brachoipod s, and tr i lobites ) , many 
recrystal~ized oval allochems which are 
probably onkoids , stylolites , calcite filled 
fractures and intraclasts; grain sizes range 
from 0 . 05 to 1 . 5 em ; exposed as a ta lus slope 
1-l" ith few outcrops ...... . . . ...... . .................... 8 . 1 



Bf- 8: Dolostone, medium grey (N5) , weathers sugary , 
light brown (5 YR 5/6) to greyish orange (10 
YR 7/ 4) t o medium grey (N5) , massive bedded, 
very coars e c ryst a lline, containing f a int 
cryp t algalaminae and stromatolites ( LLH); 
erosiona l contact at base; exposed as upper 
pa r t of cliff ............................... .. ....... 3 . 7 

Bf- 7 : Dolostone , medium grey (N5 ), weathers light 
brown (5 YR 7/4) to greyish orange (10 YR 7/4) 
to medium grey ( N5 ) , thin bedded, containi ng 
crypta l galaminae, stromatolit es ( LLH), and 
stylolites; exposed as lower part of cli f f ........... 1. 8 

Bf- 6 : Covered, float conta ins rocks from above 
cliff; forms talus slope ............................. 4.7 

Bf- 5 : Dolostone, very light grey (N8 . 5) , weathers to 
same and mod erate yellowish brown (10 YR 5/4) , 
massi ve bedde d with some thin beds, medium to 
very coarse crystalline , containi ng some small 
vugs, onkoids, fai nt cryptalgalaminae , and 
stromatolites ; 12 mete r s above base there is a 
4 . 5 m bed of mottled dolostone , da r k grey (N4) 
to dark yellowish brown ( 10 YR 4/2), massive 
bedded, coarse to very coarse crystalline , 
contair.ing pellets, birus eye structures , and 
calc~te-filled fractures; upper 7 meters are 
also darke r than most of unit ; exposed as 
small resistant outcrops and cliffs .•................ 

Bf-4: Dolostone , medium dark grey (N4), weathers 
dark greyish orange pink (5 YR 6/2) , mostly 
massive with some thin to medium beds (2 - 20 
em), medium to coarse crystalline , slightly 
mottled in spots (medium yellowish grey (5 Y 
7/1), conta ini ng pe lo ids, fractures , and 
recrystallized onkoids or piso l iths ; some 
calcite-fi l led fra c tures are stained with 
hematite and/or limonite; exposed as 
re s i s tan t 0 11 tcrops . .. . ... , .. .. ... . ................... . 

Bf- 3 : Cove red, float contains rocks like Bf- 6; 

43 · 9 

26.4 

f::~rms slope ....... . .................................. 5.6 

154 



Bf-2 : Dolostone : medium dark grey (N4), weathers to 
dark orange pink (5 Y 6/2) , massive bedded 
with some thin beds , medium to coarse 
crystalline, highly fractured, containing 
onkoids ( 1 . 5- 2 . 0 em) and peloids; 
approximately 4 . 5 m up from base is a large 
fracture (3 em wide) which is fi l led with 
Fe -stainec calc ite , quartz, and malachite; 
exposed as small cliff . .. . .. ..... ... ... . . . . . ...... . .. 6. 9 

Bf- 1 : Dolostone, medium light grey (N6 . 5) and pale 
reddish brown (10 R 5/ 4), weathers to sugary , 
brounish grey (5 YR 4/ 1 ), medium bedded ( 10- 15 
em ) with 2 mm laminations , fine to coarse 
crystalline, containing cryptalgalaminae, 
birdseye structures, highly disturbed internal 
structures (so lu tion breccia of evaporites) 
and some cross - laminat ions; exposed as 
resistant ledges . .. .. ... . . .... .. . ..... . . .. .. . . .... . . . 12 . 6 

Total 135.7 

Contact: sharp, conformable 

Bri gham Group, sandstone 

155 
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15 7 

Section 6 

Location : East Fork Canyon, 
miles west of Avon in 
Sec. 7 , T. 9 N. , R. 

measured east to west , approximatel~ 8 . 5 
East Fork Canyon on SE facing slope, 

3 E., Cache County, Utah . 

Ute Formation, mudrock 

Contact : covered, probably sharp 

Langston Formation, dolostone 

Unit 

Ef-6: Covered, dolostone, limestone, and mudrock ; 
measured by Rigo ( 1967) ...............•......•....... 

Ef-5 : Dolostone , light grey (N7), weathers to 
sugary , light yel~owish brown (10 YR 6/4) in 
bottom half and pale orange (10 YR 7/2) in top 
half, thin bedded (5 c~) , fine crystalline , 
containing cryptalgalaminae, stromatolites 
(LLH) , and a few onkoids in the upper half ; 
cryptalgalaminae are ve ry faint in upper 2 m; 
exposed as resistant outcrops and small 
cl1ffs on moderate slope ..................• . ......... 

Ef- 4 : Dolostone, medium grey (N5.5) , weathers to 
sugary, very pale greyish orange (10 YR 8/4) 
t o pinkish grey (5 YR 8/1) , medium bedded 
(10- 25 em), fine to coarse crystalline, 
containing peloids, birdseye structures , 
cross - bedding, onkoids (1/2 em) , and 
stylolites ; slightly mottled in upper 1/3 of 
unit ; exposed as steep high cliffs . ..... .. . . ........ . 

Ef - 3: Covered , float like Ef- 4 ; unit forms well 
vegetated gen t le slope at base of cliff • . ...•....... • 

Ef - 2: Limestone, medium dark grey (N4) , weathers to 
medium grey (N5) , thin to medium bedded (5 - 7 
em) to massi¥e, fine crystalline , containin 
bu rrows, onkoids (1/2 em) , anc wavy silty 
laminations; onkoids are concentrated in upper 
part of unit and are overlain by a thin bed of 
wavy silty laminated limestone with few 

ThicY.:ness 
in meters 

51.9 

4 -3 

18.9 



onkoids; exposed as resistant outcrops 
on moderate slope . . .............. . ................... 12 . 2 

Ef-1 : Dolostone , dark to medium gr ey (N3 - N5) , 
weathers to moderate yellowish brown (10 YR 
5/2), medium bedded (8- 20 ern), medium to 
coarse crystalline , cont~ining wavy silty 
laminations , onkoids (1 ern) , cross-bedding 
(p l ana r bottoms), and 2 few birdseye 
structures; exposed as resistant outcrops 
on moderate slope • • . • . • . • . • .. . . . . . •.•.. • .•. · . . ··• • ··· 

Total 

Contact : gradational, conformable 

Brigham Group, sandstone 

21.8 

138 . 5 
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Section 7 

Location: Hardware Ranch: measured west to east , approximate l y one 
mile east of Anderson Ranch , on south facing slope of 
Blacks mith Fo r k , S. E. 1/4 , Sec . 25, T. 10 N., R. 3 E., 
Cache County. Utah . 

Ute Formation , flaggy mu dro ck 

Contact : sharp , wavy , conformable 

Langston Forma tion, dolostone 

160 

Unit Thickness 
in meters 

Hr-2 : Limest one , medium grey (N5), weathers to 
medium light grey (N6), t hin to -medium bedded 
(5 - 20 em) , fine crystalline , containing 
onkoids ( 1 em), trails, burrows, silty 
la~inatlo s a~d pockets, and calcite - filled 
fractures; uppe rmost bed weathers moderate 
crown (5 IR 4/4) , and contains 
cryptalgalaminae, stromatolites (LLH- S), 
i m;raclasts , and mudcracks; 8 m do•m from top 
of formation is a 2 m bed of mudshale, dark 
yellowish grey (5 Y 6/ 2) , weathers to pale 
ye~lowish brown (10 YR 6/2), very fissile, 
containing trilobite fragments; lower 
dolomicization contact with Hc - 1 is very 
irregular and cuts upward as much as 45 em; 
exposed as resistant outcrops on moderate 
slope; approximately 1/4 of unit covered ....• • ..•• . .. 29. 0 



Hr-1: Dolostone, medium dark to medium light grey 
(N4-6), weathers to medium grey (N5) to dark 
yellowish brown (10 YR 4/2), most l y massive 
with some medium bedding (10- 20 em) , medium to 
very coarse crystal line, containing peloids, 
faint crypta lge laminae , birdseye structures , 
and slight mottling (5 YR 4/4); lower 15m are 
very poorly exposed; exposed as resistant 
outcrops on gentle to moderate slope and steep 
rugged cliffs ••••..•• .• .. ••• • ..••...•...•••...•..• •. . 

Total 

Contact : gradational, conformable 

Brigham Group , sandstone 

161 

96 . 0 

125 . 0 
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Section 8 

Locat ion: Miners Hollow , measured wes t to east on west facing slope , 
on north side of Miners Hollow, approximately 1 mile east of 
Utah Highway 69 , C, Sec . 14 , T. 10 N., R. 2 W., Box Eld e r 
County , Utah . 

Ute Formation, green shale 

Contact : sharp , wavy 

Langston Formation , dolostone 

Unit 

~h -6: Dolostone, medium light grey (N6) , weathers to 
sugary l ight grey (N7), thin to thick bedded 
(1/2 - 25cm), finely crystalline , unlaminated , 
containing rip - up clasts of cryptalgalaminated 
beds, and birdseyes , interbedded with 
dolostone , pale yellowish brown ( 10 YR 6/2), 
weathers to sugary very pale orange ( 10 YR 
8/2), thin to thick bedded (1/2- 25cm), finely 
crystalline, containing cryptalgalaminae, 
stromatolites ( LLH- S), stylolites, and 
birdseyes ; stylolites occur within beds and 
especially at bedding contacts of laminated 
a nd unlaminated beds; minor calcite fracture 

Thickness 
in meters 

filling; exposed as steep ledges. ... . ... . ... . ... . .. . . 6.7 

Mn - 5: Dolostone , medium grey (N5), weathers to 
sugary very pale yellowish brown (10 YR 7/2), 
thin to medium bedded , mostly massive , fine to 
coarse crystalline , containing lighter colored 
silty pockets and wavy layers in lower half , 
onkoids (1/2- 3cm) i n middle, birdseyes in 
upper half, slightly bioturbated throughou t; 
upper 5 meters change color to light grey 
( 17), weathering to sugary mode r ate yellowish 
brown (10 YR 5/4); stylolites occur through 
Cf- 5 ; at 8 . 5 meters from base of Cf- 6 a 15 em 

bed of interlayered dolostone and siltstone 
crops out, the beds above and below are highly 
mottled; exposed as steep ledges and cliffs ••• . •.•..• 62 . 5 

16 3 



Mh-4: Siltstone , medium grey (N5) , weathers to 
moderate brown (5 YR 4/4) , thin bedded , very 
fine grained , calcareous, fissile, containing 
fossils (abundan t trilobi tes), vertical to 
horizontal burrows, interbedded and 
interlensed with limestone , medium grey (N5), 
weathers to medium light grey (N6) , thin 
bedded (1 - 5crn) , finely crystalline , contains 
fossils , vertical burrows, trails , and 
slightly bioturbated; some beds have a "brick 
and mortar" appearance ; upper meter consists 
of silty dolostone; exposed as steep 
resistant ledge s ...... ......... ....... . ............. . 

1'1h- 3 : Mudrock, rnudshale, g r eyish black (N2) , 
weathers to dark reddish brown (10 YR 3/4) , 
olive grey (5 Y 3/2) and medium grey (N5) , 
thin bedded (2-5 ern) , nodular, fissile, very 
fine grained, containing vertical burrows , 
trails, and fossils (trilobites and 
brachiopods ); mostly calcareous ; exposed as 
steep ledges ••••••.•.••.•............. . .•.........••. 

Mh-2: Limestone, brownish black (5 YR 2/1) , weathers 
to medium light grey (N6) and pale yellowish 
brown (10 YR 6/2) , thin bedded (1 - 3 ern), fine 
crystalline, fissile, silty, containing 
fossils, intraclasts, and ?ripples; occurs as 
alternating laminated and unlarninated beds ; 
contains 2 calcareous shale beds at bottom, 
dark grey (N3) , weather to brownish black (5 
YR 2/1 ), finely laminated and fissile, very 
ine grained, containing fossi ls (trilobites 

and brachiopocs); shale and limestone contacts 

18 . 8 

17. 0 

are gradational ; exposed on moderate slope . .... ...... 12 . 7 

164 



Mh-1: Dolostone, medium light grey (N6) , weathe r s to 
s ugary , moderate brown (5 YR 4/4) , thin to 
medium bedded to massive (5 -10 em) , medium to 
coarse crystalline , containing pelo ids , 
birdseye structures , solution vugs , 
in traclasts , stylolites (3 em amplitude ) , 
burrows, silty pa rtings, fossi l hash and ? 
onko ids; dolomitization is extreme ly 
irregular ; large lenses of limestone (1m x 5m) 
occur within the dolostone, and laterally 
lenses of dolostone occur within limestone ; 
exposed as steep rugged l edges and cliffs . ..•.••.••.• 

Total 

Contact : gradational , conformable 

Brigham Group , sandstone 

165 

7-3 

125.0 
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