
Utah State University Utah State University 

DigitalCommons@USU DigitalCommons@USU 

All Graduate Theses and Dissertations Graduate Studies 

5-2017 

The Effects of Previous Concussions on the Physiological The Effects of Previous Concussions on the Physiological 

Complexity of Motor Output During a Continuous Isometric Complexity of Motor Output During a Continuous Isometric 

Visual-Motor Tracking Task Visual-Motor Tracking Task 

Adam C. Raikes 
Utah State University 

Follow this and additional works at: https://digitalcommons.usu.edu/etd 

 Part of the Medical Sciences Commons 

Recommended Citation Recommended Citation 
Raikes, Adam C., "The Effects of Previous Concussions on the Physiological Complexity of Motor Output 
During a Continuous Isometric Visual-Motor Tracking Task" (2017). All Graduate Theses and 
Dissertations. 5803. 
https://digitalcommons.usu.edu/etd/5803 

This Dissertation is brought to you for free and open 
access by the Graduate Studies at 
DigitalCommons@USU. It has been accepted for 
inclusion in All Graduate Theses and Dissertations by an 
authorized administrator of DigitalCommons@USU. For 
more information, please contact 
digitalcommons@usu.edu. 

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/etd
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/etd?utm_source=digitalcommons.usu.edu%2Fetd%2F5803&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/664?utm_source=digitalcommons.usu.edu%2Fetd%2F5803&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/etd/5803?utm_source=digitalcommons.usu.edu%2Fetd%2F5803&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/


THE EFFECTS OF PREVIOUS CONCUSSIONS ON THE PHYSIOLOGICAL 
 

COMPLEXITY OF MOTOR OUTPUT DURING A CONTINUOUS 
 

ISOMETRIC VISUAL-MOTOR TRACKING TASK 
 
 

by 
 
 

Adam C. Raikes 
 

A dissertation submitted in partial fulfillment 
of the requirements for the degree 

 
of 
 

DOCTOR OF PHILOSOPHY 
 

in 
 

Disability Disciplines 
 
 

Approved: 
 
 
    
Sydney Schaefer, Ph.D.  Thomas S. Higbee, Ph.D. 
Major Professor  Committee Member 
 
 
    
Breanna Studenka, Ph.D.  Eadric Bressel, Ph.D. 
Committee Member  Committee Member 
 
 
    
Idalis Villanueva, Ph.D.  Mark R. McLellan, Ph.D. 
Committee Member  Vice President for Research and 
  Dean of the School of Graduate Studies 
 

UTAH STATE UNIVERSITY 
Logan, Utah 

 
2017  



ii 
 

Copyright © Adam C. Raikes 2017 
 

All Rights Reserved 
  



iii 
 

ABSTRACT 
 
 

The Effects of Previous Concussions on the Physiological Complexity of Motor  
 

Output During a Continuous Isometric Visual-Motor Tracking Task 
 
 

by 
 
 

Adam C. Raikes, Doctor of Philosophy 
 

Utah State University, 2017 
 
 

Major Professor: Sydney Schaefer, Ph.D. 
Department: Kinesiology and Health Science 
 

 The majority of clinical impairments following a concussion resolve within 7-10 

days. However, there is limited clarity as to long-term impact of this injury on 

neurocognitive function, motor control, and particularly integration of these domains. 

While repetitive head trauma is associated with numerous neurological disorders, the 

link is not well described. Visual-motor tracking tasks have been used to identify 

differences in visual processing, error detection, and fine motor control in aging and 

numerous pathologies. Examining the complexity of motor output from visual-motor 

tracking provides insight into multiple cognitive and motor function domains, and into fine 

motor control used for daily living, work, and sport. The purpose of this dissertation was, 

therefore, to: (1) use multiple regression to determine the extent to which concussion 

history and symptoms (loss of consciousness and amnesia) influence visual-motor task 

performance multiscale complexity, and (2) determine whether task performance 

complexity can distinguish, through logistic regression and prediction, between 

individuals with and without a history of concussion. In study 1, individuals with (n = 35) 

and without (n = 15) a history of concussion performed a visual-motor tracking task. Men 



iv 
 
and women exhibited linear decreases in task performance complexity, as well as mid- 

and high-frequency task performance components, with increasing numbers of 

concussions. However, men and women exhibited differing patterns, as did those with 

and without a history of concussion-related loss of consciousness. Finally, trial-to-trial 

complexity variability increased with increasing numbers of concussions. Findings 

indicate (1) a cumulative reduction in the way in which previously concussed individuals 

process and integrate visual information to guide behavior and (2) gender is an 

important consideration in concussion-related visual-motor outcomes. In Study 2, 

individuals with (n = 85) and without (n = 42) a history of concussion performed a visual-

motor tracking task. Linear and nonlinear measures of task performance were used to 

build gender-specific logistic classification models using 10-fold cross-validation. When 

ensuring 80% sensitivity, the best models were 75-80% accurate in predicting a history 

of concussion. Such discrimination has clinical value in identifying individuals who merit 

further evaluation and observation over time for conditions related to repetitive head 

traumas. 

(169 pages) 

  



v 
 

PUBLIC ABSTRACT 
 
 

The Effects of Previous Concussions on the Physiological Complexity of Motor  
 

Output During a Continuous Isometric Visual-Motor Tracking Task 
 
 

Adam C. Raikes 
 

 The long-term ramifications of single and multiple concussions are unclear, 

though they exist in the forefront of present social and scientific inquiry. While suicides 

linked to concussion histories by prominent current and former athletes sensationalize 

the issue, questions abound as to the safe and timely return to work, sport, and active 

military duty following a concussive event in addition to the link between concussion 

history and neurological disorders. As such, identifying lingering or persistent alterations 

in function following concussion is essential. 

 Nonlinear characteristics of visual-motor task performance, including the 

complexity of the performance, provide an avenue for quantifying visual processing, 

error detection, and visual-motor integration. In the context of concussion, we observed 

that complexity decreases as individuals sustain increasing numbers of concussions. 

Though clinically asymptomatic, these individuals presented with performance that 

differed from those with no history of concussion. This suggests that concussions may 

impart lasting changes in the ways in which individuals use visual information to guide 

behavior. 

 Furthermore, nonlinear measures of visual-motor task performance may provide 

a way to identify individuals who have previously sustained a concussion. In fact, 70-

80% of the individuals predicted to have had a previous concussion based on their task 

performance did have such an history. Consequently, this task may provide clinically 
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relevant indications of individuals who may merit further observation and evaluation as 

our understanding of the relationship between concussions and long-term neurological 

dysfunction, as well as additional related risk factors, continues to evolve. 
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CHAPTER 1 
 

INTRODUCTION 
 
 

Background 
 
 
 The short- and long-term consequences and management of concussion have 

taken center stage in many scientific disciplines. Though sensationalized by popular 

media reports of death and long-term disability due to repetitive head traumas, definitive 

links between concussions and the development of Alzheimer’s Disease, Parkinson’s 

Disease, chronic traumatic encephalopathy, and depression among other neurological 

and cognitive impairments exist (H. Chen, Richard, Sandler, Umbach, & Kamel, 2007; 

Factor & Weiner, 1991; Harris, Shen, Marion, Tsui, & Teschke, 2013; Kerr, Marshall, 

Harding, & Guskiewicz, 2012; Lehman, Hein, Baron, & Gersic, 2012; McKee et al., 2009; 

Stern et al., 2011). Consequently, scientific inquiry into the pathophysiology as well as 

the short- and long-term effects of single and multiple concussions has increased 

dramatically in the last 30 years. A PubMed search for the term “brain concussion” 

yielded 2,252 citations total before 1990, while 433 studies have been published 

between January and May 2016 alone. While the acute neurocognitive and postural 

effects of concussion are well documented, less is known about the long-term effects in 

these domains as well as the acute and long-term effects in others commonly reported 

to be associated with concussion. For reference, “neurocognitive effects” include 

cognitive impairments in attention, memory, executive function, and reaction time (Giza 

et al., 2013; McCrory et al., 2013). Further, ‘postural effects’ generally are increases in 

postural sway and a reduced capacity to maintain balance (Giza et al., 2013; McCrory et 

al., 2013).  

An estimated 1.6 to 3.8 million sport-related concussions (SRCs) occur each 
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year (Daneshvar, Nowinski, McKee, & Cantu, 2011; Langlois, Rutland-Brown, & Wald, 

2006). Estimates of concussion risk indicate that the overall rate in collegiate sports from 

2009-2010 to 2012-2013 was 4.47 per 10,000 athlete-exposures (AEs; one athlete 

competing in one practice or competition), a 130% increase from 2003-2004 and a 260% 

increase from 1988-1989 (Daneshvar et al., 2011; Zuckerman et al., 2015). Furthermore, 

concussion rates in high school athletes are estimated to be 2.5 per 10,000 AEs, 

representing approximately 9% of all injuries at this level (Gessel, Fields, Collins, Dick, & 

Comstock, 2007; Marar, McIlvain, Fields, & Comstock, 2012). However, these numbers 

may underestimate the actual number of concussions sustained by many individuals 

who either seek non-hospital care or do not report their injuries (Faul, Xu, Wald, & 

Coronado, 2010; Kerr, Register-Mihalik, Kroshus, Baugh, & Marshall, 2016; McCrea, 

Hammeke, Olsen, Leo, & Guskiewicz, 2004). In addition to SRCs, concussions are 

among the most common injuries in recent military endeavors, sustained by an 

estimated 15-25% deployed servicemen and servicewomen (Hoge et al., 2008; Terrio et 

al., 2009). Furthermore, the economic impact of concussions and mild traumatic brain 

injuries in the United States is approximately $22 billion annually (Finkelstein, Corso, & 

Miller, 2006; National Center for Injury Prevention (US), 2003). 

 
Concussion Definition and Pathophysiology 

 

A concussion is a complex pathophysiological condition affecting the brain, which 

is the result of either direct (a blow to the head, face, or neck) or indirect (forces 

transmitted to the head from elsewhere on the body) biomechanical forces (McCrory et 

al., 2013). These forces result in a neurometabolic crisis in the brain (Giza & Hovda, 

2001, 2014). However, concussions are rarely associated with structural abnormalities 

seen on conventional neuroimaging (Giza et al., 2013; McCrory et al., 2013). Thus, this 
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injury is generally considered to be functional in nature. 

Acutely after injury, the consequences of this crisis include somatic symptoms 

(e.g., headache, dizziness, blurred vision, photosensitivity, phonosensitivity), 

neuropsychological and cognitive function impairment (e.g., working memory, reaction 

time, and executive function impairments), altered postural control (e.g., balance 

problems), behavioral changes (e.g., increased irritability, secondary attention deficit-

hyperactive disorder), and sleep disturbance. From a clinical perspective, these 

symptoms and deficits resolve in the majority of cases within the first 7-10 days following 

injury (Guskiewicz, Ross, & Marshall, 2001; Iverson, Brooks, Collins, & Lovell, 2006; 

McCrea et al., 2003, 2005). Additionally, this neurometabolic crisis has been linked to an 

increased risk for subsequent concussion within the first 10 days of injury (Giza et al., 

2013; Giza & Hovda, 2014; Guskiewicz et al., 2003; McCrea et al., 2009). Outside of this 

time frame, the risk of sustaining a concussion is higher for individuals with a previous 

concussion as compared to those with no history of concussion (Giza et al., 2013; 

Guskiewicz et al., 2003). Subsequent concussions often have protracted recovery times 

compared to the first concussion (Guskiewicz et al., 2003). Additionally, prior history of 

concussion, particularly multiple concussions, has been linked to the development of 

neurological conditions including depression (Kerr, Evenson, et al., 2014; Kerr et al., 

2012), Alzheimer’s disease (Guskiewicz et al., 2005; Lehman et al., 2012), Amyotrophic 

Lateral Sclerosis (ALS; H. Chen et al., 2007; Chiò, Benzi, Dossena, Mutani, & Mora, 

2005), Parkinson’s disease (Factor & Weiner, 1991; Goldman et al., 2006; Harris et al., 

2013; Rugbjerg, Ritz, Korbo, Martinussen, & Olsen, 2008), and chronic traumatic 

encephalopathy (CTE; McKee et al., 2009, 2013; Omalu et al., 2005; Stern et al., 2011).  

Given the prevalence of concussions, the associations between adolescent/early 

adulthood concussions and neurological and cognitive impairments in later adulthood, 
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and the high annual cost associated with concussions, there is a need for discovering 

cost-effective biomarkers that can be used to track an individual’s recovery from a 

concussive event, and potentially identify those individuals at risk for developing 

negative long-term outcomes. 

 
Structure of Dissertation 

 

 The general purpose of this dissertation is to describe a method for quantifying 

the integration of cognitive and motor functions following a concussion. The available 

literature supports the idea that this approach is appropriate for quantifying changes in 

function and may be useful in discriminating between individuals with and without a 

history of concussion. First, in Chapter 2, an overview of the literature regarding current 

practices and research for identifying and monitoring the effects of concussion on 

cognitive and motor function is presented. Second, a definition and explanation of 

physiological complexity, as well as the effects of aging and disease on complexity are 

provided. Third, the effects of concussion on physiological complexity are described. 

Fourth, a description of continuous isometric visual-motor force tracking is given along 

with an explanation of the advantages of this task over others in quantifying 

physiological complexity. Fifth, current gaps in the literature base regarding both the 

visual-motor force tracking task and the effects of concussion on complexity are 

identified. In Chapter 3, the results of a study identifying group differences in complexity 

during the visual-motor tracking task between healthy controls and previously concussed 

are detailed. In Chapter 4, the results of a study in which measures of complexity and 

gender were used to distinguish individuals with a history of concussion from those 

without such an history are presented. Finally, Chapter 5 includes a summary of the 

findings from these two studies as well as suggestions for future research. 
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CHAPTER 2 
 

LITERATURE REVIEW 
 
 

Identification and Monitoring of Concussive Effects: Current  
 

Practice and Research 
 
 

Neurocognitive Deficits 

Neurocognitive testing provides significant information guiding the clinical 

management of the acute concussion (Grindel, Lovell, & Collins, 2001) and has been 

described as a cornerstone of the clinical evaluation (Aubry et al., 2002). Acutely (within 

the first 5-7 days) concussed individuals exhibit deficits across multiple domains of 

function, including attention (Collie, Makdissi, Maruff, Bennell, & McCrory, 2006; 

Makdissi et al., 2001; McCrea et al., 2003; McCrea, Kelly, Kluge, Ackley, & Randolph, 

1997), working and delayed memory (Barr & McCrea, 2001; Guskiewicz et al., 2001; 

Iverson et al., 2006; McCrea et al., 2003, 1997; Sim, Terryberry-Spohr, & Wilson, 2008), 

executive function (Gaines, Soper, & Berenji, 2016; Guskiewicz et al., 2001; Makdissi et 

al., 2001), and reaction speed (Bleiberg et al., 2004; Broglio, Macciocchi, & Ferrara, 

2007; Iverson et al., 2006; Iverson, Lovell, & Collins, 2005; Maroon et al., 2000; Schatz, 

Pardini, Lovell, Collins, & Podell, 2006). The majority of these deficits generally resolve 

within 5-7 days following injury (Barr & McCrea, 2001; Bleiberg et al., 2004; Iverson et 

al., 2006; McCrea et al., 2003, 2005; T. M. Parker, Osternig, van Donkelaar, & Chou, 

2007; Sim et al., 2008). 

Numerous test batteries are available that can be used to identify neurocognitive 

deficits immediately following a concussion. These tests include the Standardized 

Assessment of Concussion (SAC; McCrea et al., 1998, 1997), Immediate Post-

Concussion Assessment and Cognitive Testing (ImPACT; Maroon et al., 2000), 
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Headminder Concussion Resolution Index (Erlanger et al., 2001), and Cogsport 

(Makdissi et al., 2001), all of which have all been developed specifically for concussion 

assessment. These are valid and reliable tests, sensitive to cognitive impairments within 

the first 14 days after a concussive event (Barr & McCrea, 2001; Broglio et al., 2007; 

Collie et al., 2003; Erlanger et al., 2001; Gardner, Shores, Batchelor, & Honan, 2012; 

Iverson et al., 2006; Lau, Collins, & Lovell, 2011; Louey et al., 2014; McCrea et al., 

2003). In addition to the rapid resolution of the many symptoms within 5-7 days, 

individuals tested using these metrics are typically considered to be entirely 

asymptomatic by three months (Broglio & Puetz, 2008; Rohling et al., 2011). 

However, there is evidence that individuals have longer-lasting cognitive 

impairments beyond the clinically accepted trajectory of recovery. Neuroimaging studies 

on asymptomatic persons in the post-acute and chronic stages of concussion recovery 

have shown persistent alterations in brain activation to working memory and executive 

function tasks as compared to healthy individuals, despite equivalent task performance 

(J.-K. Chen et al., 2004; J.-K. Chen, Johnston, Petrides, & Ptito, 2008a, 2008b; Gosselin 

et al., 2011; McAllister et al., 1999, 2001; Witt, Lovejoy, Pearlson, & Stevens, 2010). 

However, the nature of these alterations is unclear. In several studies, a focal increase in 

the activation of the prefrontal cortex (PFC), an area particularly involved in working 

memory and executive function, was observed in previously concussed individuals 

(Gosselin et al., 2011; McAllister et al., 1999, 2001). In other studies, a decrease in 

activation was observed in this region with a simultaneous increase in brain activity in 

temporal and parietal regions during working memory tasks (J.-K. Chen et al., 2004, 

2008a, 2008b).  

Additionally, individuals with a history of concussion demonstrate reductions in 

neuroelectric activity, quantified by electroencephalography (EEG), in response to 



7 
 
memory, attention, and executive function tasks (De Beaumont et al., 2009; De 

Beaumont, Brisson, Lassonde, & Jolicoeur, 2007; Segalowitz, Bernstein, & Lawson, 

2001; Thériault, De Beaumont, Gosselin, Filipinni, & Lassonde, 2009). Furthermore, 

asymptomatic individuals with a history of concussion have decreased physiological 

arousal, as measured by electrodermal activity, to both error detection (O’Keeffe, 

Dockree, & Robertson, 2004) and decision-making tasks (van Noordt & Good, 2011) 

tasks as compared to healthy, never-concussed individuals. 

In all of these cases, individuals with a history of concussion had equivalent 

performance on the cognitive tasks to healthy controls groups. Therefore, long-term 

changes in cognitive function subsequent to concussion are generally subtle and require 

a combination of cognitive tasks and neuroimaging or EEG studies to detect. However, 

both chronic traumatic encephalopathy and Alzheimer’s Disease, whose development 

and onset have been linked to prior history of concussion (Cantu, 2007; Guskiewicz et 

al., 2005; Lehman et al., 2012; McKee et al., 2009, 2013; Omalu et al., 2005), present 

with cognitive deficits and decline (Albert et al., 2011; McKee et al., 2009; Omalu et al., 

2011; Stern et al., 2011; Terry et al., 1991). Therefore, these subtle differences in brain 

function may be important indicators of later decline. 

 From a clinical perspective, repeated neuroimaging to identify alterations in 

neurocognitive function, particularly in light of minimal differences in task performance, is 

impractical. A single neuroimaging session using functional magnetic resonance imaging 

(fMRI) can cost between $800-$1,200 (Centers for Medicare and Medicaid Services, 

2016) and take at least 30 minutes, or longer depending on the task, at a time (Birn et 

al., 2013). There is, therefore, a need for clinically available and resource (time, money, 

personnel) appropriate methods for quantifying cognitive function and detecting subtle 

deficits in the long-term recovery from a concussion. This is particularly true given the 
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increased risk of subsequent concussions over the course of an athletic or military 

career once first concussed.  

 
Motor Impairments 

Motor impairments are among the most recognizable, yet under-investigated, 

long-term consequences of repetitive head trauma. First described in boxers by Martland 

(1928), the term “punch drunk” was used to describe patterns of “clumsiness in one 

foot,” ataxia, and transient confusion in boxers as a result of repetitive blows to the head. 

This was further described by (H. L. Parker, 1934) and given the term “traumatic 

encephalopathy.” In its persistent and chronic state, this condition has variously been 

termed “dementia pugilistica” and more commonly as chronic traumatic encephalopathy. 

Regardless of terminology, these conditions have been associated with repetitive head 

traumas sustained over time. While boxers served as the earliest examples of 

individuals with these impairments, more recent focus has shifted to all contact sports, 

particularly American football. 

Acutely after a concussion, the most common motor impairments are related to 

maintaining balance. Clinically, balance impairments are commonly assessed using the 

Balance Error Scoring System (BESS; Riemann & Guskiewicz, 2000). Additionally, 

balance can be evaluated using instrumented methods including force plate assessment 

of sway velocity and displacement. On both clinical and instrumented tests of balance, 

concussed individuals consistently demonstrate increased instability, which generally 

improves to pre-injury levels within 3-10 days of injury (Furman et al., 2013; Guskiewicz, 

Perrin, & Gansneder, 1996; Guskiewicz et al., 2001; Hammeke et al., 2013; L. A. King et 

al., 2014; McCrea et al., 2003, 2005; McCrea, Guskiewicz, et al., 2013; Peterson, 

Ferrara, Mrazik, Piland, & Elliott, 2003; Register-Mihalik, Mihalik, & Guskiewicz, 2008; 
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Riemann & Guskiewicz, 2000). These measures have limited utility outside of the acute 

phase specifically because identified balance impairments tend to resolve quickly. There 

is further evidence that asymptomatic, previously concussed individuals have persistent 

alterations in sway patterns that are not detectable on clinical measures of balance 

(Buckley, Oldham, & Caccese, 2016; Cavanaugh et al., 2005, 2006; Sosnoff, Broglio, 

Shin, & Ferrara, 2011). 

 Additionally, acutely concussed individuals adopt conservative gait patterns, 

including slower gait speed (Buckley, Munkasy, Tapia-Lovler, & Wikstrom, 2013; 

Catena, van Donkelaar, & Chou, 2007a, 2007b; Howell, Osternig, & Chou, 2013), 

increased stride time (Catena et al., 2007b), decreased stride length (T. M. Parker, 

Osternig, Lee, van Donkelaar, & Chou, 2005; T. M. Parker, Osternig, van Donkelaar, & 

Chou, 2006), decreased midstance anterior-posterior sway velocity (Catena et al., 

2007b; Catena, van Donkelaar, & Chou, 2009; T. M. Parker et al., 2006), and increased 

mediolateral midstance sway velocity (Catena et al., 2007a, 2007b) as compared to 

healthy individuals. Aspects of this altered gait pattern persist at least three months 

(Buckley et al., 2015; Catena et al., 2009; Howell et al., 2013) post-injury and as many 

as 3 years after injury (Basford et al., 2003; Chou, Kaufman, Walker-Rabatin, Brey, & 

Basford, 2004).  

Furthermore, acutely concussed individuals exhibited decreased finger dexterity, 

measured as greater total movement time on the O’Connor Finger Dexterity test, as 

compared to healthy controls (Pearce et al., 2015). There is, however, limited clarity on 

the long-term effects of concussion on fine motor control. Individuals with a history of 

one or more concussions exhibit decreased finger dexterity (Pearce et al., 2014), greater 

movement times (Brown, Dalecki, Hughes, Macpherson, & Sergio, 2015; Dalecki, 

Albines, Macpherson, & Sergio, 2016), greater movement precision (children; decreased 
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error in a point-to-point finger sliding task) (Dalecki et al., 2016), decreased movement 

precision (adults; increased error in a point-to-point finger sliding task; Brown et al., 

2015), and decreased ability to control isometric finger contractions over short durations 

(Slobounov, Sebastianelli, & Simon, 2002) relative to those with no such history. By 

contrast, athletes with a history of concussion have demonstrated equivalent 

performance on finger-to-target tasks compared with healthy athletes and healthy non-

athletes (Locklin, Bunn, Roy, & Danckert, 2010). Additionally, children with a history of 

mild (defined as [1] loss of consciousness < 30 min; [2] amnesia lasting < 24 hours; [3] 

Glasgow Coma scale score 13-15 within 30 minutes of injury) traumatic brain injury 

demonstrated no difference in visuomotor control or dexterity on a gross- and fine-motor 

test battery (Bruininks-Oseretsky Test of Motor Proficiency) when compared with 

children with no history of brain injury (Dahl & Emanuelson, 2013). 

Beyond the direct acute and chronic decreases in motor function following 

concussion, individuals with a history of concussion are predisposed to neurological 

conditions with motor impairments, including Parkinson’s disease (Factor & Weiner, 

1991; Goldman et al., 2006; Harris et al., 2013; Rugbjerg et al., 2008), amyotrophic 

lateral sclerosis (ALS; H. Chen et al., 2007; Chiò et al., 2005), and chronic traumatic 

encephalopathy (McKee et al., 2013; Omalu et al., 2005; Stern et al., 2011). These 

conditions generally present later in life with decreases in both cognitive and motor 

function.  

 
Integration of Cognitive and Motor  
Processes 

Sport, military, and daily activities require interacting with objects within an 

environment with both gross and fine motor skills. Many of these activities, such as 

holding a cup or shooting a basket, involve the combined action of sensory feedback 
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mechanisms for posture and error detection, cognitive processing, and motor output. 

Thus, it is necessary to consider both functional and ecologically-appropriate tasks that 

assess these systems. Despite observations of cognitive and motor symptoms in both 

the short- and long-term following a concussion, there has been limited effort address 

the integration of cognitive and motor skills. One method for evaluating the integration of 

sensory, cognitive, and motor functions is through quantifying physiological complexity 

(Lipsitz & Goldberger, 1992; Vaillancourt & Newell, 2002a). 

 
Physiological Complexity 

 

 Physiological complexity can be defined in a number of ways. In this dissertation, 

there are two complementary definitions of complexity. First, complexity is the presence 

of a broad spectrum of frequencies within a signal (Lipsitz & Goldberger, 1992). Second, 

complexity is the coupling between components that work together to produce some 

physiological output (Vaillancourt & Newell, 2002a).  

 
Complexity as A Broad Spectrum of  
Frequencies 

Under this definition, complexity is identified through the presence of low- and 

high-frequency oscillations contained within a signal. For reference, these signals can be 

the measured output of any physiological system, including heart rate (R-R interval), 

blood pressure, postural sway, and continuous voluntary motor production among 

others. Generally speaking, healthy individuals exhibit greater complexity in these 

systems than individuals who are unhealthy or impaired in some way (Lipsitz & 

Goldberger, 1992; Vaillancourt & Newell, 2002a). For example, healthy individuals 

exhibit two dominant oscillatory patterns in heart rate variability (R-R interval) – a low-

frequency (0.04-0.15 Hz) oscillation related to cardiovascular arrhythmia and a higher 
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frequency (0.2-0.4 Hz) oscillation stemming from the respiratory system (Hayano et al., 

1990; Ryan, Goldberger, Pincus, Mietus, & Lipsitz, 1994). 

 With respect to motor system outputs, healthy individuals exhibit postural sway 

frequencies ranging from 0.05 Hz to 10 Hz. The majority of the spectral power occurs in 

frequencies lower than 1 Hz in both the anterior-posterior and medial-lateral directions 

(Aoki, Tokita, Kuze, Mizuta, & Ito, 2014; Lizama, Pijnappels, Reeves, Verschueren, & 

van Dieën, 2016; Loughlin & Redfern, 2001; Singh, Taylor, Madigan, & Nussbaum, 

2012). These oscillations serve to maintain the center of pressure within the base of 

support. Additionally, individuals producing isometric finger force at a target level over 

time exhibit frequencies ranging from 0.05 Hz to 12 Hz, though the majority of the signal 

is observed at frequencies below 4 Hz (Baweja, Patel, Martinkewiz, Vu, & Christou, 

2009; Hu & Newell, 2010; A. C. King & Newell, 2013, 2014, 2015; Slifkin, Vaillancourt, & 

Newell, 2000; Studenka & Newell, 2013). Therefore, both postural sway and isometric 

finger force exhibit complexity through the presence of multiple component frequencies 

that together produce the resultant sway pattern. 

 
Complexity as Component Integration 

The inclusion of multiple frequencies in a resultant signal can be viewed as the 

combined actions of the physiological components required to effect the task (Kello, 

Beltz, Holden, & Van Orden, 2007; Vaillancourt & Newell, 2002a). For example, in 

postural sway, maintaining the center of pressure within the base of support is the 

combined effect of proprioceptive, visual, and vestibular information to provide body 

position sense and motor neurons that make postural corrections based on that 

information (Kennedy & Inglis, 2002; Oie, Kiemel, & Jeka, 2002; Peterka, 2002; Roll, 

Kavounoudias, & Roll, 2002; Thompson, Bélanger, & Fung, 2011; Welgampola & 
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Colebatch, 2001). The resultant sway of the individual, which can be decomposed into 

component frequencies, is the combined behavioral outcome of all of these systems. 

Visual contributions to postural sway may exist across the spectrum of frequencies 

indicated above, while proprioceptive contributions appear in low-frequency (<1 Hz) and 

midrange (3-4 Hz) frequencies (Loughlin & Redfern, 2001; Singh et al., 2012). By 

contrast, maintaining the isometric force at a constant level is largely the interaction 

between visual information, feed-forward and feedback cognitive systems, and motor 

system integration. Therefore, in healthy individuals, complex signals are created 

through the combined action of multiple system components. 

 
Complexity Is Not Variability 

One essential distinction to make is that complexity and variability are not the 

same. Variability in a signal is a function of the amplitude of deflections and reflects an 

average characteristic of the signal, whereas complexity quantifies changes over the 

time course of the signal (Kaplan et al., 1991; Newell, Van Emmerik, Lee, & Sprague, 

1993; Pincus, 1991; Vaillancourt & Newell, 2002a). For a sine wave with a single 

frequency, the complexity is relatively fixed (see QUANTIFYING COMPLEXITY). 

However, the variability in that sine wave is different depending on the amplitudes of the 

peaks (see Figure 2-1). Further, compared to a sine wave, a signal with multiple 

frequencies may be either more or less variable depending on the amplitudes contained 

within the signal, despite greater complexity (see Figure 2-1). In the example in Figure 2-

1, the more complex signal has six component frequencies and has lower variability 

about its mean than the pure sine wave. Thus, though often used in conjunction with one 

another, complexity and variability are not the same (Kaplan et al., 1991; Newell et al., 

1993). 
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Figure 2-1. Example waveforms variance and target error. 
 

  
Complexity as Error Reduction 

A signal with greater complexity can exhibit reduced target error. In a system 

that fluctuates around a certain value, such as heart rate or isometric force produced at 

a target level, increased complexity reduces the variability relative to the target (Hu & 

Newell, 2010; Sosnoff & Newell, 2006a, 2008; Sosnoff, Vaillancourt, & Newell, 2004). 

Increasingly complex signals exhibit reduced root mean squared error (RMSE) relative 

to less complex signals (Hu & Newell, 2010; Mazich, Studenka, & Newell, 2015; Sosnoff 

& Newell, 2005b, 2006a, 2008; Sosnoff et al., 2004). For example, in Figure 2-1, the 

pure sine wave has an RMSE of 0.708, while the more complex signal composed of six 

frequencies has an RMSE of 0.433. Thus, complexity may serve to reduce error in 

systems where a relatively constant level of output is expected. 

 
Loss of Complexity 

 

 In contrast to healthy individuals, loss of complexity can be the result of a number 



15 
 
of factors, particularly related to the integration of components. Here again, there are two 

primary ways in which loss of complexity can occur. The first is the loss of structural 

components. Given the previous examples, this may be the loss of sinus node cells 

affecting heart rate or dopaminergic cells from the basal ganglia in Parkinson’s disease 

resulting in decreased tremor complexity (Hayano et al., 1990; Vaillancourt & Newell, 

2002a; Vaillancourt, Slifkin, & Newell, 2001). Furthermore, this could reflect the loss of 

sensory input from the vestibular system, altering the complexity of postural sway and 

increasing reliance on the proprioceptive and visual systems to remain upright (Aoki et 

al., 2014).   

Secondly, loss of complexity can occur through changes in the coupling between 

elements. This may be reflected in either a loss or reduction in connectivity between 

elements or an alteration in the time-scales at which certain connections operate (Lipsitz 

& Goldberger, 1992; Vaillancourt & Newell, 2002a). Manifestations of complexity loss 

are generally seen as increased regularity, reduced high-frequency contributions and 

increased low-frequency contributions to the outcome of interest (Lipsitz & Goldberger, 

1992). 

Across multiple systems, older individuals and those with defined pathologies 

exhibit reduce complexity. People with coronary artery disease are characterized by the 

low-frequency oscillation and a reduced presence (lower power – squared amplitude at a 

given frequency) of the higher frequency respiratory oscillation (Hayano et al., 1990). 

This decrease with the disease is enhanced with increasing numbers of affected 

vessels. Additionally, reduced power is observed in both heart rate frequency bands with 

increasing age (Ryan et al., 1994). 

For healthy individuals holding a constant joint angle, resting is in the 8-12 Hz 

range (Deuschl, Raethjen, Lindemann, & Krack, 2001; Stiles & Randall, 1967). However, 
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in individuals with Parkinson’s disease, this tremor shifts to the 4-7 Hz range, with a 

commensurate reduction in the higher frequencies’ power (Findley, Gresty, & Halmagyi, 

1981; Vaillancourt et al., 2001). Thus, the complexity of resting tremor for an individual 

with Parkinson’s disease is lower than that for a healthy individual. Similarly, reductions 

in complexity have been observed for persons with Parkinson’s disease in handwriting 

(Ünlü, Brause, & Krakow, 2006), isometric force production (Vaillancourt & Newell, 2000; 

Vaillancourt et al., 2001), and postural sway (Morrison, Kerr, Newell, & Silburn, 2008).  

 Furthermore, older individuals (generally 60-70 year-olds) exhibit lower 

complexity for postural sway and isometric force production as compared to younger 

individuals (Ko & Newell, 2016; Sosnoff & Newell, 2006a, 2008; Sosnoff et al., 2004). In 

both cases, there is a relative reduction in the higher frequencies typically observed for 

these tasks in healthy and younger individuals and a relative increase in the lower 

frequencies. Additionally, for isometric force production, this decrease in complexity 

appears to be partially explained by visual feedback (Hu & Newell, 2010; A. C. King & 

Newell, 2015; Mazich et al., 2015; Slifkin et al., 2000; Sosnoff & Newell, 2005b, 2006a). 

With either increased or decreased frequency of visual feedback, older individuals’ force 

production tends to become more variable (greater error) and less complex as compared 

to younger individuals.  

 Cumulatively, with increasing age and/or pathology individuals exhibit reductions 

in complexity across multiple physiological systems. These reductions in complexity may 

reflect the loss of structural components within systems as well as the loss of, or 

alterations in the timing of, functional coupling between components. The behavioral 

result of this loss of complexity is a reduction in the capacity to minimize error.  
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Quantifying Complexity 
 

 There are numerous ways to quantify complexity. In light of the definitions 

previously provided, Fast Fourier Transforms (FFTs), which decompose a signal into 

individual frequencies and their respective power, are appropriate (Welch, 1967). 

However, many of the physiological systems display nonlinear properties that 

necessitate the use of other methods to fully explore complexity (Lipsitz & Goldberger, 

1992; Vaillancourt & Newell, 2002a). Among the various methods of nonlinear 

assessment, the use of entropy is among the most common. 

 Broadly speaking, entropy measurements are an extension of information theory 

(Lipsitz & Goldberger, 1992; Pincus, 1991). Entropy reflects the degree to which future 

systems states are predictable based on the past and current states. These 

measurements provide a metric of regularity within a signal, where highly regular signals 

(such as a pure sine wave) are more predictable and have lower entropy as compared to 

a complex signal. The following sections explain the mathematical calculations of 

several forms of entropy, as well as discuss their relative merits and drawbacks. 

 
Approximate Entropy 

Approximate entropy (ApEn) is one of the earliest forms of entropy calculations 

applied to physiological systems. Originally devised for assessing heart rate variability 

(Pincus, 1991; Pincus & Goldberger, 1994; Pincus & Viscarello, 1992), ApEn has 

become a ubiquitous measure of physiological complexity (Cerutti et al., 2014; De 

Beaumont et al., 2011; Deutsch & Newell, 2004; Sosnoff et al., 2011; Studenka & 

Newell, 2013; Weippert, Behrens, Rieger, Stoll, & Kreuzfeld, 2013; Zhang et al., 2014). 

Approximate entropy is, in short, the logarithmic likelihood that matching patterns of 

points m points apart remain close at m + 1 points. The calculation of approximate 
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entropy is as follows (Pincus & Goldberger, 1994; Pincus & Viscarello, 1992): 

1. Define m as a vector length and r as the tolerance, generally set between 0.1 

and 0.2 standard deviations of the data. 

2. Given N data points designated ݑሺ1ሻ, ,ሺ2ሻݑ …  ሺ݅ሻݔ ሺܰሻ, form vectors defined asݑ

through ݔሺܰ	– 	݉	 ൅ 	1ሻ, such that 

ሺ݅ሻݔ ൌ ሾݑሺ݅ሻ, … , ሺ݅ݑ ൅ ݉ െ 1ሻሿ ሺ2.1ሻ 

3. Define the distance 

݀ሾݔሺ݅ሻ, ሺ݆ሻሿݔ ሺ2.2ሻ 

between vectors ݔሺ݅ሻ and ݔሺ݆ሻ as the maximum difference between their scalar 

components. 

4. For ݅	 ൑ ܰ െ݉ ൅ 1 and the sequence ݔሺ1ሻ, ,ሺ2ሻݔ … , ሺܰݔ െ ݉ ൅ 1ሻ, 

௜ܥ
௠ሺݎሻ ൌ

the	number	of	ݔሺ݆ሻ	such	that	݀ሾݔሺ݅ሻ, ሺ݆ሻሿݔ ൑ ݎ
ܰ െ݉ ൅ 1

ሺ2.3ሻ 

5. Define 

Φ௠ሺݎሻ ൌ ln൫ܥ௜
௠ሺݎሻ൯ ሺ2.4ሻ 

 

6. Finally, define approximate entropy as 

,ሺ݉݊ܧ݌ܣ ,ݎ ܰሻ ൌ Φ௠ሺݎሻ െ Φ௠ାଵሺݎሻ ሺ2.5ሻ 

 

 Lower values of approximate entropy indicate that there are higher numbers of m 

+ 1 length vectors. Thus, within tolerance r, there are more repeating patterns within the 

signal. This high degree of repetition increases the predictability of the system and thus 

lowers the index of complexity.  

However, approximate entropy has two major drawbacks. First, each template 

vector is counted as a match to itself (Richman & Moorman, 2000). Thus the calculation 
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of approximate entropy biases toward increased regularity, and thus less complexity. 

Second, ApEn is calculated on the raw signal. Template vectors are, therefore, 

temporally close. For a signal sampled at 100 Hz, each point in a template vector is 

separated by 10 milliseconds. This close temporal proximity limits the range of 

frequencies that can be identified by this process. Thus, the points used for template 

vectors are likely to be highly correlated with one another. Consequently, ApEn is biased 

toward quantifying regularity in high-frequency components and may leave out lower 

frequencies of interest. Furthermore, it is important to note that because ApEn may not 

capture the lower frequencies, it provides a measure of the regularity of data. To quantify 

the complexity requires metrics that address both low and high frequency components 

(Costa, Goldberger, & Peng, 2002a; Wu, Wu, Lee, & Lin, 2013). However, increases and 

decreases in regularity have been previously associated with increases and decreases 

in complexity, respectively (Vaillancourt & Newell, 2002b). 

 
Sample Entropy 

Sample entropy (SampEn) was developed to overcome the first drawback to 

approximate entropy (Lake, Richman, Griffin, & Moorman, 2002; Richman, Lake, & 

Moorman, 2004; Richman & Moorman, 2000). Here, the entropy of the signal is 

calculated as successive templates. Thus, there is no self-matching of vectors. The 

calculation is shown below (Richman & Moorman, 2000). 

1. Define m as a vector length and r as the tolerance, generally set between 0.1 

and 0.2 standard deviations of the data. 

2. Define ܰ െ݉ vectors of length ݉, such that ݔ௠ሺ݅ሻ and ݔ௠ାଵሺ݅ሻ are defined 

for 1 ൑ ݅ ൏ ܰ െ݉ 

3. Define: 
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௜ܤ
௠ሺݎሻ ൌ

the	number	of	vectors	ݔ௠ሺ݆ሻwithin	ݎ	of	ݔ௠ሺ݅ሻ

ܰ െ ݉ െ 1
, 1 ൑ ݆ ൑ ܰ െ݉, ݆ ് ݅ ሺ2.6ሻ 

4. Define: 

ሻݎ௠ሺܤ ൌ
1

ܰ െ݉
෍ ௜ܤ

௠ሺݎሻ
ேି௠

௜ୀଵ

ሺ2.7ሻ 

 

5. Further, define: 

௜ܣ
௠ሺݎሻ ൌ

the	number	of	vectors	ݔ௠ሺ݆ሻwithin	ݎ	of	ݔ௠ሺ݅ሻ

ܰ െ ݉ െ 1
, 1 ൑ ݆ ൑ ܰ െ݉, ݆ ് ݅ ሺ2.8ሻ 

 

 

6. And likewise define: 

ሻݎ௠ሺܣ ൌ
1

ܰ െ݉
෍ ௜ܣ

௠ሺݎሻ
ேି௠

௜ୀଵ

ሺ2.9ሻ 

7. Finally, sample entropy is quantified as 

,ሺ݉݊ܧ݌݉ܽܵ ,ݎ ܰሻ ൌ െ lnሾܣ௠ሺݎሻ ⁄ሻݎ௠ሺܤ ሿ ሺ2.10ሻ 

Sample entropy has a similar interpretation to that of approximate entropy. Here, 

SampEn is the conditional probability that two vectors of length m + 1 are close together 

within tolerance r, given that they were close together at length m. Here again, the data 

points are temporally close and therefore SampEn quantifies the regularity of the higher 

frequency signal components (Costa et al., 2002a). Sample entropy was further 

extended to incorporate a time delay (ߜሻ between the points in order to minimize the 

effect of the correlation between points (Govindan, Wilson, Eswaran, Lowery, & Preißl, 

2007). This modification improved the ability to distinguish between healthy individuals 

and persons with congestive heart failure (Govindan et al., 2007). However, the 
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drawback remains that points in each vector are temporally close, may be highly 

correlated, and capture only high-frequency components. 

 
Multiscale Entropy 

To address the limitation in both approximate and sample entropy that points are 

temporally close and therefore entropy measures capture only high-frequency 

components, multiscale entropy (MSE) was developed (Costa et al., 2002a). MSE has 

two steps. First, the signal is course-grain averaged (averages computed in non-

overlapping sections of the data) over windows of length ߬, where ߬ ൌ 1 is the original 

signal. This scaling procedure has the effect of down-sampling the data by ܰ ߬⁄ . This 

scaling is calculated at a scale factor of ߬ and for an original time series x (Figure 2-2) 

(Costa et al., 2002a; Wu et al., 2013): 

௝ݕ
ఛ ൌ

1
߬

෍ ௜ݔ

௝ఛ

௜ୀሺ௝ିଵሻఛାଵ

, 1 ൑ ݆ ൑ ඌ
ܰ
߬
ඐ ሺ2.11ሻ 

 

 
Figure 2-2. First two scaling factors under multiscale entropy (adapted from Costa et al. 
[2002]). 
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Sample entropy without the time delay is then calculated for each of the ܰ ߬⁄  

length signals. The lowest frequency upon which sample entropy is calculated at a given 

scaling factor is determined by  

௅݂ ൌ
ఛܰெ

2	 ൈ ሺ݉ ൅ 1ሻ ൈ ݐ
ሺ2.12ሻ 

where ఛܰெ is the number of data points remaining at scale factor ߬ ( ఛܰெ ൌ ሺ ௦݂ ൈ ሻݐ ⁄ܯ߬ , 

௦݂= the sampling rate), t is the duration of the signal, and m is the vector length is the 

sample entropy calculation (Gow, Peng, Wayne, & Ahn, 2015). Thus for a signal 

sampled at 100 Hz with m = 2, the lowest frequency at which sample entropy is 

calculated in the original signal, the signal upon which sample entropy would traditionally 

be computed, is 16.67 Hz. As previously identified, heart rate variability, postural sway, 

and isometric force all have frequencies less than 12 Hz and dominant frequencies 

below 5 Hz. Thus, sample entropy, without multiscale considerations, captures only high 

frequency information above what may be of interest. 

MSE yields sample entropy values at each scaling factor, which correspond to 

successively lower frequencies in the signal. The overall complexity of the signal can be 

calculated as the sum of the sample entropy values for all scaling factors. This 

procedure has been used to quantify complexity in heart rate variability (Costa, 

Goldberger, & Peng, 2002b, 2005; Costa & Healey, 2003; Ferrario, Signorini, Magenes, 

& Cerutti, 2006; Huikuri, Perkiömäki, Maestri, & Pinna, 2009), gait (Costa, Peng, 

Goldberger, & Hausdorff, 2003; Qumar, Aziz, Saeed, Ahmed, & Hussain, 2013; Tao, 

Zhang, Chen, Wu, & Zhou, 2015), electrical activity in the brain via 

electroencephalogram (Catarino, Churches, Baron-Cohen, Andrade, & Ring, 2011; 

Mizuno et al., 2010; Park, Kim, Kim, Cichocki, & Kim, 2007; Takahashi et al., 2010), 

postural sway (Duarte & Sternad, 2008; Fournier, Amano, Radonovich, Bleser, & Hass, 
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2014; Kirchner, Schubert, Schmidtbleicher, & Haas, 2012; Yeh, Lo, Chang, & Hsu, 

2014), and isometric force (Vaillancourt & Newell, 2002b; Vieluf, Temprado, Berton, 

Jirsa, & Sleimen-Malkoun, 2015).  

However, MSE has several drawbacks. First, the repetitive scaling of the data 

and subsequent calculation of sample entropy is computationally intensive (Costa et al., 

2002a). Thus, the time to compute MSE is dramatically greater than for approximate or 

sample entropy. Further, the number of data points required is substantive. The 

minimum number of points identified by Richman for calculating sample entropy is 

between 10m, though 14m to 23m points provide reliable sample entropy calculations 

(Richman & Moorman, 2000).  

For example, taking ఛܰெ ൌ 100 (10m = 2) points as the smallest number of 

necessary data points, 20 seconds of postural sway sampled at 100 Hz (2000 data 

points) can be used to calculate sample entropy as low as 0.83 Hz at scale factor ߬ ൌ

20. However, if ఛܰெ ൌ 196 (14m = 2) data points are used as the minimum number of 

points, then for 20 seconds of postural sway sampled at 100 Hz the maximum scale 

factor is ߬ ൌ 10 and the lowest frequency that can inform complexity is 1.67 Hz. This 

frequency is considerably greater than the frequencies (< 1 Hz) associated with 

variables of interest including, for example, proprioceptive contributions to postural sway 

(Aoki et al., 2014; Loughlin & Redfern, 2001; Singh et al., 2012). In order to quantify the 

complexity and include frequencies as low as 0.5 Hz, the sampling time required would 

be 65.33 seconds, rather than 20 seconds, based on Eq. 2.12. 

Two approaches may be taken to overcome this. One is to increase the sampling 

rate. While this has the effect of increasing the number of data points available, the only 

aspect of the calculation that changes is the scaling factor used to reduce the original 

dataset down to the minimum (Gow et al., 2015). The denominator of Equation 11 does 
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not change, and, therefore, the end result is the same lower frequencies. The second 

approach is to increase the sampling duration. Increasing from 20 seconds to 30 

seconds in the original example ( ఛܰெ ൌ 100), the maximal scaling factor is ߬ ൌ 30 and, 

the lowest frequency is 0.56 Hz. However, increasing the sampling duration may not be 

feasible due to constraints such as fatigue (Gow et al., 2015). 

 
Modified Multiscale Entropy 

Modified multiscale sample entropy (MMSE) deals with the shortcomings 

imposed from short ( ఛܰெ ൏ 100) time series (Wu et al., 2013). This calculation has two 

principal differences from multiscale entropy. First, instead of course-grain averaging 

and down-sampling at a scale factor ߬, a windowed moving average is computed at 

scale factor ߬ (Figure 2-3; Wu et al., 2013): 

௝ݕ
ሺఛሻ ൌ

1
߬
෍ ,௜ݔ

௝ାఛିଵ

௜ୀ௝

	1 ൑ ݆ ൑ ܰ െ ߬ ൅ 1 ሺ2.13ሻ 

 
Figure 2-3. First two scaling factors for the moving average procedure in modified 
multiscale entropy (adapted from Wu et. al. [2013]). 
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The windowed moving average has the same effect of filtering high-frequency 

components out of the data. However, there is no subsequent down-sampling. Thus for 

a given series of points, the total number of points after averaging is ෩ܰሺ߬ሻ ൌ ܰ െ 	߬ ൅ 1 

rather than ෩ܰሺ߬ሻ ൌ ܰ ߬⁄ . 

 After applying the moving average for a given scale factor, sample entropy is 

then computed as the time-delayed modified sample entropy. Here the time delay is ߜ ൌ

߬. Like the down-sampling in MSE, the time-delayed sample entropy evaluates vectors 

of points which are more temporally remote from each other than in the original signal, 

thereby accessing lower frequencies in the signal. Thus, by applying the time delay, the 

spectral components described by Equation 2-11 are preserved, so that there is scale 

factor equivalence between MSE and MMSE (Wu et al., 2013). Previous investigations 

using MMSE and MSE have shown that MMSE can provide estimates of complexity for 

short time series ( ఛܰெ ൑ 100) where MSE is undefined. Furthermore, MMSE provides 

more precise estimates of sample entropy (smaller standard deviations) at each scale 

value. This permits MMSE to capture lower frequency components in the complexity 

calculation of shorter time series than MSE does. 

 The major limitation in MMSE is that it is more computationally intensive than 

MSE (Wu et al., 2013). Therefore, MMSE is appropriate for short time series (where 

lowest target frequencies can only be obtained with ఛܰெ ൑ 100), whereas MSE is 

preferred for longer time series.  

 
Physiological Complexity and Concussion 

 

There has been limited application of nonlinear measures to concussion 

outcomes. Principally, entropy measures have been used to quantify changes in postural 



26 
 
sway following a concussion. There is evidence of subtle and persistent changes in 

postural sway regularity when analyzed using various forms of entropy in asymptomatic 

individuals with a history of concussion (Buckley et al., 2015; Cavanaugh et al., 2005, 

2006; De Beaumont et al., 2011; Sosnoff et al., 2011). Specifically, previously 

concussed individuals demonstrate persistently more regular sway patterns than 

individuals with no history of concussion. In accordance with the definitions of complexity 

previously provided, these findings suggest that persons with a history of concussion 

have persistent alterations in the functional connections between proprioceptive, visual, 

vestibular, and postural effectors (Kennedy & Inglis, 2002; Oie et al., 2002; Peterka, 

2002; Roll et al., 2002; Thompson et al., 2011). This is despite no clinical evidence of 

impairment. 

Furthermore, in Studenka and Raikes (in press) asymptomatic individuals with a 

history of multiple concussions had greater regularity, as measured by sample entropy, 

than individuals with a single concussion during a seated continuous isometric visual-

motor tracking task. Additionally, individuals with multiple concussions demonstrated 

greater regularity than people with no history of concussion. Interestingly, males in the 

sample exhibited few differences from each other in regularity across levels concussion 

history. Possible explanations for this outcome may include the presence of multiple 

sub-concussive impacts due to more “contact” sport participation and/or under-reporting 

of concussions (Gysland et al., 2012; Kerr et al., 2016; McCrea et al., 2004).  

As opposed to postural tasks that integrate proprioception, vision, and vestibular 

function to maintain upright posture (Kennedy & Inglis, 2002; Oie et al., 2002; Peterka, 

2002; Roll et al., 2002; Thompson et al., 2011), the visual-motor tracking task relies 

almost exclusively on visual information for error detection and correction (Cole & 

Sedgwick, 1992; Gandevia, Macefield, Burke, & McKenzie, 1990; Hu & Newell, 2011; 
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Teasdale et al., 1993; Tracy, 2007; Vaillancourt & Russell, 2002). Consequently, 

quantifying complexity in this task may provide valuable information about previously 

reported deficits in both visual information processing (Lachapelle, Bolduc-Teasdale, 

Ptito, & McKerral, 2008; Malojcic, Mubrin, Coric, Susnic, & Spilich, 2008) and error 

detection and correction processes following a concussion (De Beaumont, Beauchemin, 

Beaulieu, & Jolicoeur, 2013; Pontifex, O’Connor, Broglio, & Hillman, 2009). 

Only one study to date has quantified complexity after concussion rather than 

solely regularity (Kelty-Stephen, Qureshi Ahmad, & Stirling, 2015). The authors used a 

circle tracing task and computed multiscale entropy (MSE). Complexity in this task 

provides information about the integration between proprioceptive and visual systems 

(Kelty-Stephen et al., 2015; Stirling et al., 2013). Concussed individuals exhibited 

decreased complexity in a circle tracing task within 1-11 days of injury, as compared to a 

pre-injury assessment. Additionally, concussed individuals’ task complexity increased as 

time from injury increased. However, the authors do not indicate the time frame over 

which this increase occurred or whether performance returned to preinjury status (Kelty-

Stephen et al., 2015).  

Thus, across multiple studies, previously concussed individuals exhibit persistent 

decreases in the regularity of task-related motor outcomes. The findings of these studies 

suggest that, following concussion, there may be altered functional connectivity in task-

relevant visual and error detection systems, thus reducing the ability to utilize this 

information to minimize error relative to a target (Buckley et al., 2016; Cavanaugh et al., 

2005, 2006; De Beaumont et al., 2011; Kelty-Stephen et al., 2015; Sosnoff et al., 2011; 

Studenka & Raikes, in press). Additionally, it remains unclear what personal (sex, 

gender, age), activity (sport, concussion reporting norms, subconcussive impact risk), 

injury characteristics (concussion presentation, symptoms, duration, recurrence), and 
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time course (time from injury) characteristics may influence motor output complexity.  

 
Continuous Isometric Force Tracking 

 

 Continuous isometric force tracking tasks, also referred to as visual-motor 

tracking, are a method for quantifying sensorimotor processing following a concussion. 

In these tasks, individuals attempt to maintain a constant force at a specified level or to 

produce an oscillating level of force at a shifting target level. These tasks have been 

used to examine various aspects of sensorimotor function in motor control, aging, 

Parkinson’s disease (Deutsch & Newell, 2004; Hong, James, & Newell, 2008; Ko & 

Newell, 2016; Lafe, Pacheco, & Newell, 2016; Morrison & Newell, 2012; Newell, Mayer-

Kress, & Liu, 2009; Newell, Vaillancourt, & Sosnoff, 2006; Sosnoff & Newell, 2005a, 

2006a, 2006b, 2008; Sosnoff et al., 2004; Vaillancourt & Newell, 2000; Vaillancourt et 

al., 2001; Vaillancourt, Sosnoff, & Newell, 2004). Additionally, these tasks have 

pragmatic relevance given that fine motor tasks, such as manipulating objects for 

activities of daily living or work, require precision with respect to magnitude, direction, 

and timing of force. Collectively, such tasks require the integration of sensory information 

and the appropriate timing of motor output while accommodating time delays stemming 

from numerous sources, including neural depolarization, sensory information processing, 

and interactions at the neuromuscular junction.  

 Furthermore, specific regions of the frequency spectrum have been identified in 

this task to be associated with various task related processes. Low-frequency 

oscillations, 0-4 Hz, are associated with control related to sensory-motor processing and 

feedback (Miall, Weir, & Stein, 1985; Pew, 1974; Slifkin et al., 2000; Sosnoff & Newell, 

2005a). These frequencies are also generally associated with cognitive processing, 

given that typical reaction times are approximately 200 milliseconds (ms). For reference, 
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a single cycle of a 4 Hz oscillation occurs over 250 milliseconds. 

Midrange and high frequencies, those falling between 4 and 12 Hz, have been 

associated with feedforward and predictive control (Desmurget & Grafton, 2000; Pew, 

1974; Sosnoff & Newell, 2005a; Sosnoff & Voudrie, 2009). Additionally, visual feedback 

processing occurs within this band, between 6-7 Hz (Slifkin et al., 2000). Higher 

frequency oscillations, those between 8 and 12 Hz, are associated with physiological 

aspects of tremor in healthy individuals (Deuschl et al., 2001; Stiles & Randall, 1967; 

Vaillancourt & Newell, 2000). Therefore, the visual-motor tracking task provides 

information about multiple processes that contribute to motor output. 

Motor output in this task is highly dependent on multiple factors, including the 

frequency of visual feedback and the target force level. When visual feedback is 

withheld, there is an increase in error and variability of the signal as well as an increase 

in regularity (Miall et al., 1985; Slifkin et al., 2000; Sosnoff & Newell, 2005a, 2005b, 

2006a). With increasing frequency of visual feedback, there is a subsequent decrease in 

error and variability as well as reduced regularity. Additionally, variability increases with 

force level. However, both regularity and complexity follow an inverted-U shaped 

distribution and complexity is maximized between 40% and 60% of participants’ 

maximum voluntary contraction (MVC) force (Vieluf et al., 2015). 

Prior studies have demonstrated that with increasing age, there is a reduction in 

the proportional contribution of higher frequency oscillations in the resultant motor 

output, when compared to younger individuals (Morrison & Newell, 2012; Newell et al., 

2009, 2006; Sosnoff & Newell, 2006a; Sosnoff et al., 2004). Additionally, with increases 

in age, there is a concomitant increase in the regularity of the motor output and increase 

in the target error (deviation from the output target). Generally speaking, younger 

individuals have greater irregularity in their motor output in this task, which is often 
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viewed as a sign of greater complexity. However, few studies have quantified the 

complexity of this task using multiple-scale metrics.  

This pattern of reduced high-frequency oscillations and greater regularity has 

additionally been observed for individuals with Parkinson’s disease. Here, not only is 

there a reduction in the high-frequency oscillation associated with tremor, but the tremor 

frequency also shifts to the mid-range frequencies. Thus, the resultant motor output is 

composed of low- and mid-range frequency oscillations. Concomitant with this shift 

increased regularity and error. 

With respect to concussions, the visual-motor tracking task has the added benefit 

of being heavily reliant on visual, not proprioceptive, feedback. By contrast, postural 

tasks integrate multiple sources of sensory feedback and therefore increases in error or 

deviation from a target may arise from alterations in functional couplings between many 

systems. The visual-motor task isolates effects on visual-motor processing beyond the 

clinical course of the injury as well as beyond the sensitivity of neurocognitive tasks that 

quantify visual-motor function and visual memory (Baker & Cinelli, 2014; Brown et al., 

2015; Dalecki et al., 2016; Dean & Sterr, 2013; Gardner et al., 2012; Iverson et al., 2005; 

Locklin et al., 2010; Schatz & Maerlender, 2013; Schatz et al., 2006). 

Studenka and Raikes (in press) used a constant continuous force tracking task 

with participants with and without a history of concussion, all of whom exhibited and 

reported no symptoms of concussion at the time of testing. Individuals with a history of 

multiple concussions exhibited increased error and decreased sample entropy, as 

compared to those with no history or history of one diagnosed concussion. Additionally, 

concussed individuals had decreased average power in the 8-12 Hz frequency band 

associated with physiological tremor. These findings indicate that previously multiply 

concussed individuals have a shift away from high-frequency oscillations resulting in an 
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increase in signal regularity. Thus, there are persistent changes in motor output in 

visual-motor tracking beyond the clinical course (generally 7-21 days) of the injury. 

However, no studies have looked at the multiscale complexity of this task with respect to 

a concussion. Given the observed alteration in the power spectrum of individuals with a 

history of multiple concussions, there is the need to examine the multiscale complexity of 

this task for people with any history of concussion. 

 
Current Gaps in Knowledge 

 

Visual-Motor Tracking 

To date, there has been a limited effort to examine the multiscale complexity of 

performance on the visual-motor tracking task. Multiple studies demonstrate that aging 

individuals and people with certain pathologies exhibit critical shifts in the power 

spectrum of motor output and increased regularity in the fastest frequencies of motor 

output. Consequently, it is reasonable to examine the complexity across multiple time 

scales to determine whether this increase in regularity is confined to frequencies above 

the region of interest (0-12 Hz) or whether it affects lower frequencies as well.  

 
Concussion and Visual-Motor Tracking 

With respect to concussions, there remains much to be explored with visual-

motor tracking. Studenka and Raikes (in press) demonstrated increased regularity in 

females with a history of concussion relative non-concussed females and males with 

prior history of concussion. For males, there were few differences in regularity, 

regardless of concussion history. In that sample, 73% of the males, including those 

reporting no prior concussions, previously or currently played football. Thus, the role of 

unreported concussions and sub-concussive impacts merits investigation. Individuals, 
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particularly in sports, may have numerous motivations for not disclosing the occurrence 

of a concussion (Kerr, Register-Mihalik, et al., 2014; Kerr et al., 2016), and estimates of 

nondisclosed concussion occurrence may range from 30-50% (Kerr et al., 2016; McCrea 

et al., 2004). Thus, thorough screening of individuals to more completely determine a 

history of concussion, including those suspected or undisclosed by the individual, is 

essential. 

 Additionally, gender may be an important consideration in this task. As stated, 

men and women with varying histories of concussion demonstrated differing patterns of 

regularity and performance on the seated visual-motor tracking task (Studenka & 

Raikes, in press). Additionally, gender-specific visual-motor differences in complexity 

and performance are evident in circle tracing (Stirling et al., 2013). Furthermore, men 

tend to have better visuospatial performance and worse motor processing speed than 

females both prior to (baseline) and following concussion (Broshek et al., 2005; Colvin et 

al., 2009; Covassin et al., 2006; Covassin & Elbin, 2011; Covassin, Elbin, Harris, Parker, 

& Kontos, 2012; Covassin, Schatz, & Swanik, 2007). However, to date, none of these 

studies has accounted for educational differences or differences in visual-spatial task 

exposure. 

 Finally, injury characteristics may play a role in recovery and merit examination 

as potential factors in subsequent visual-motor processing and motor output. 

Particularly, history of loss of consciousness has been associated with white matter 

damage after concussion (Wilde et al., 2016), decreased behavioral and altered 

neuroelectric outcomes in a visual oddball task (Parks et al., 2015), as well as increased 

postconcussive symptom duration (Barlow et al., 2010; Heyer et al., 2016; McCrea, 

Guskiewicz, et al., 2013; Taylor et al., 2010). Additionally, amnesia following a 

concussion has been indicated as a potential indicator of concussion symptom duration 
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(Barlow et al., 2010; Heyer et al., 2016; McCrea, Guskiewicz, et al., 2013; Yeates et al., 

2009). These are in addition to gender, concussion history, age, and symptom severity 

at the time of injury. 

 
Statement of Purpose 

 

 While the vast majority of clinical impairments due to one or more concussions 

resolve within the first 7-10 days, there is still limited clarity as to the long-term impact of 

this injury on neurocognitive function, motor control, and particularly the integration of 

these domains. Visual-motor tracking tasks have been used to identify differences in 

visual processing, error detection, and fine motor control in aging and numerous 

pathologies. Examining the complexity of the motor output in this task provides insight 

into multiple domains of cognitive and motor function, as well as insight into fine motor 

control used for activities of daily living, work, and sport, and therefore is appropriate for 

evaluating function following a concussion. Therefore, the purpose of this dissertation is, 

therefore, (1) to use multiple regression to determine the extent to which concussion 

history and concussion symptoms influence task performance multiscale complexity and 

(2) to determine whether task performance complexity can distinguish, through logistic 

regression and prediction, between individuals with and without a history of concussion. 
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CHAPTER 3 
 

THE IMPACT OF CONCUSSION HISTORY AND SYMPTOMS ON MULTISCALE 
 

COMPLEXITY OF A VISUAL-MOTOR TRACKING TASK 
 
 

Abstract 
 
 

Concussions, particularly in sport and military activity, are an issue of social and 

medical inquiry and concern. The prevalence of concussions, reported associations 

between repeated concussions and neurological and cognitive impairments in later 

adulthood necessitates methods of tracking recovery from a concussive event and 

identifying individuals at risk for developing negative long-term outcomes. Nonlinear 

dynamics, including measures of complexity and spectral power, may provide insight 

into functional connectivity within and between cognitive and motor processes following 

concussion. Individuals with (n = 35) and without (n = 15) a self-reported history of 

concussion completed 10 trials of a visual-motor tracking task. Individual multiple 

regressions were computed with gender, number of concussions, history of loss of 

consciousness, and history of post-concussion amnesia predicting average multiscale 

complexity, spectral power within three frequency bands (0-4Hz, 4-8Hz, and 8-12Hz), 

root mean squared error (RMSE), as well as intra-individual variation for these 

outcomes. We observed linear reductions in complexity, 4-8Hz average power, 8-12Hz 

average power, and increased RMSE and intra-individual variation in complexity with 

increasing numbers of concussions. Gender altered the slopes of these variables, as did 

the presence of loss of consciousness following concussion. These findings indicate a 

cumulative reduction in the way in which previously concussed individuals process and 

integrate visual information to guide behavior. 
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Introduction 
 
 

Currently, an estimated 1.6 to 3.8 million sport-related concussions (SRCs) occur 

each year (Daneshvar et al., 2011; Langlois et al., 2006) and this likely underestimates 

the actual number due to underreporting of concussions (Faul et al., 2010; Kerr et al., 

2016; McCrea et al., 2004). The economic impact of concussions and mild traumatic 

brain injuries in the United States is approximately $22 billion annually (Finkelstein et al., 

2006; National Center for Injury Prevention (US), 2003). Considerable research attention 

is, and has been, paid to the short- and long-term cognitive impacts of concussions (Barr 

& McCrea, 2001; Collie et al., 2006; Grindel et al., 2001; Guskiewicz et al., 2003, 2005, 

2001; Iverson, 2006; McCrea et al., 2003, 2005; McCrea, Kelly, Randolph, Cisler, & 

Berger, 2002). Additionally, short-term postural instability has been documented 

following concussion (Covassin et al., 2012; Guskiewicz et al., 1996, 2001; McCrea et 

al., 2005).  

However, despite links between concussion history and the onset of neurologic 

diseases such as Parkinson’s disease and amyotrophic lateral sclerosis (H. Chen et al., 

2007; Chiò et al., 2005; Factor & Weiner, 1991; Goldman et al., 2006; Harris et al., 2013; 

Rugbjerg et al., 2008), there is only limited evidence of impaired motor function in 

measures of gait and fine motor control following concussion (Buckley et al., 2013; 

Catena et al., 2007a, 2007b; Dalecki et al., 2016; Pearce et al., 2014, 2015; Slobounov 

et al., 2002). The prevalence of concussions, the associations between adolescent/early 

adulthood concussions and neurological and cognitive impairments in later adulthood, 

and the high annual cost associated with concussions necessitates a search for cost-

effective biomarkers that can be used to track an individual’s recovery from a concussive 

event and identify those individuals at risk for developing negative long-term outcomes. 
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One such way of tracking and identification is the use of nonlinear complexity measures. 

Physiological complexity is defined as the presence of a broad spectrum of low-

to-high frequency oscillations within a physiological signal, such as heart rate (Lipsitz & 

Goldberger, 1992; Vaillancourt & Newell, 2002a). In healthy individuals, complex signals 

are created through functional connections between multiple system components 

(sensory, cognitive, motor) and are characterized by multiple frequencies in measured 

physiological output (Aoki et al., 2014; Hayano et al., 1990; Hu & Newell, 2010; Kello et 

al., 2007; Kennedy & Inglis, 2002; A. C. King & Newell, 2014, 2015; Lizama et al., 2016; 

Loughlin & Redfern, 2001; Oie et al., 2002; Peterka, 2002; Roll et al., 2002; Ryan et al., 

1994; Singh et al., 2012). Such complexity can be observed for the measured signal 

(Pincus, 1991; Richman et al., 2004) as well as across multiple time scales, or oscillation 

frequencies (Costa et al., 2002a; Gao, Hu, Tung, & Blasch, 2011; Wu et al., 2013). 

Decreases in motor system output complexity have been observed in individuals with 

Parkinson’s disease (Liao, Wang, & He, 2008; Ünlü et al., 2006; Vaillancourt & Newell, 

2000; Vaillancourt et al., 2001), amyotrophic lateral sclerosis (Liao et al., 2008), tardive 

dyskinesia (Newell, Gao, & Sprague, 1995), normal aging (Newell et al., 2006; 

Vaillancourt et al., 2004) and following concussion (Buckley et al., 2016; Cavanaugh et 

al., 2005, 2006; Kelty-Stephen et al., 2015; Sosnoff et al., 2011).  

As noted, complexity occurs over multiple time scales. When considering a single 

time scale, complexity is often indexed with regularity. Regularity is a reflection of the 

degree to which future systems states are predictable based on the past and current 

states (Lipsitz & Goldberger, 1992). These measurements, including approximate and 

sample entropy, provide a metric of regularity within a signal, where highly regular 

signals (such as a pure sine wave) are highly predictable and therefore have lower 

entropy as compared to a complex signal (Govindan et al., 2007; Pincus, 1991; Pincus & 
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Goldberger, 1994; Richman et al., 2004; Richman & Moorman, 2000). Thus, increased 

regularity is often associated with less complexity (Lipsitz & Goldberger, 1992; Pincus, 

1991; Vaillancourt & Newell, 2002a).  

Nonlinear regularity has been used to quantify changes in postural sway 

following concussions. Asymptomatic individuals with a history of concussion exhibit 

subtle and persistent increases in postural sway regularity when analyzed using 

approximate entropy (ApEn; Cavanaugh et al., 2005, 2006; De Beaumont et al., 2011; 

Sosnoff et al., 2011), as well as Shannon and Renyi entropies (Buckley et al., 2016). 

Given the definitions of complexity, these findings indicate that previously concussed 

individuals may have altered functional connections between sensory inputs 

(proprioceptive, visual, vestibular) and postural effectors to maintain upright posture 

(Kennedy & Inglis, 2002; Oie et al., 2002; Peterka, 2002; Roll et al., 2002; Thompson et 

al., 2011).  

Studenka and Raikes (in press) observed that motor behavior of individuals with 

a history of multiple concussions had greater regularity, measured with sample entropy, 

than persons with a history of a single concussion or no concussion history during a 

seated visual-motor isometric force tracking task. This task relies on visual information 

for error detection and correction (Cole & Sedgwick, 1992; Gandevia et al., 1990; Hu & 

Newell, 2011; Teasdale et al., 1993; Tracy, 2007; Vaillancourt & Russell, 2002) with 

limited proprioceptive input and thus may provide valuable information about visual 

information processing and integration with error detection and correction processes.  

Only one study to date has quantified complexity, observed over multiple time 

scales, after concussion rather than solely regularity (Kelty-Stephen et al., 2015). The 

authors used a circle tracing task, whose complexity provides information about the 

integration between proprioceptive and visual systems (Kelty-Stephen et al., 2015; 
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Stirling et al., 2013). Concussed individuals exhibited decreased complexity in a circle 

tracing task within 1-11 days of injury, as compared to a pre-injury assessment. In 

addition, concussed individuals’ task complexity increased as time from injury further 

increased. However, the authors did not indicate the time frame over which this increase 

occurred or whether performance returned to preinjury status (Kelty-Stephen et al., 

2015).  

The purpose of this study is, therefore, to identify the impact of concussion 

history on the multiscale complexity of a continuous isometric finger contraction during a 

seated visual-motor tracking task. We hypothesized that individuals with a history of 

concussion would produce less complex multiscale force output as compared to 

individuals without a history of concussion. We additionally hypothesized that this effect 

would be greater for individuals with a history of unreported and undiagnosed 

concussions as compared to individuals in whom concussions were diagnosed. 

Furthermore, individuals with a history of concussion have been observed to have 

increased performance variability in visual-motor tasks (Maruta, Suh, Niogi, Mukherjee, 

& Ghajar, 2010; Robertson, Manly, Andrade, Baddeley, & Yiend, 1997; Stuss et al., 

1989). Therefore, we further hypothesized that individuals with a history of concussion 

would have increased variability in trial-to-trial complexity. Given the extensive literature 

on complexity methodology, yet relative dearth in applying it to concussions as well as to 

fine motor control, these hypotheses test both logical and empirical extensions of 

previous work. 

 
Methods 

 

Participants 

For this study, we recruited 50 participants through the Utah State University 
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Research Participation Portal (https://usu.sona-systems.com). Participants self-reported 

hand dominance and all were right-handed (n = 49) or ambidextrous (n = 1) (Appendix 

A). Descriptive characteristics of this sample can be found in Figure 3-1 and Table 3-1. 

These data collection procedures were approved by the Utah State University 

Institutional Review Board (Appendix B and C). 

Individuals were screened for concussion history using a standardized form 

(Appendix A). Information regarding concussion history included self-reported numbers 

of diagnosed and suspected concussions as well as potential indicators of prolonged 

recovery including concussion-related loss of consciousness and post-concussive 

amnesia (Barlow et al., 2010; McCrea, Iverson, Echemendia, Makdissi, & Raftery, 2013; 

Parks et al., 2015; Taylor et al., 2010; Wilde et al., 2016; Yeates et al., 2009). Due to 

high rates of underreporting of concussions in athletics (Kerr et al., 2016; McCrea et al.,  

 

 
Figure 3-1. Study 1: Sport participation by gender and concussion history. 
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Table 3-1 

Participant Demographic Information and Concussion History 

Participant 
characteristics 

Concussion history 
───────────────────── 

  

No history History Test p value 

n 15 35   

Height (cm) 167.64 (7.57) 174.73 (9.04) t = -2.85 0.008 

Weight (kg) 67.31 (13.92) 71.89 (12.31) t = -1.1 0.282 

Age (years) 20.92 (2.21) 20.92 (1.98) t = -0.01 0.995 

Athletic exp. (years) 34.67 (14.93) 48.71 (22.14) t = -2.61 0.013 

Male/Female (n) 4/11 19/16 Χ2 = 0 1 

Right-handed (n) 15 34   

Race or Ethnicity (n)     

Caucasian/White 15 34   

Mexican  1   

Diagnosed 
concussions (n) 

 

0 (25) 
1 (7) 
2 (1) 
3 (2) 

  

Suspected 
concussions (n) 

 

0 (3) 
1 (18) 
2 (7) 
3 (4) 
4 (3) 

  

Total concussions 
(n) 

 

1 (18) 
2 (7) 
3 (5) 
4 (2) 
5 (2) 
6 (1) 

  

History of LOC (n)  17   

History of RA (n)  5   

History of AA (n)  4   
Note. Values are mean ± SD, unless noted otherwise. Athletic experience is cumulative 
experience across all sports played. LOC = loss of consciousness; RA = retrograde amnesia; AA 
= anterograde amnesia. 
 
 
 
2004), these self-reports of suspected concussions help to more completely describe the 

participants’ injury history than self-reported diagnosed concussion alone (Studenka & 

Raikes, in press). All participants reporting a history of concussion (n = 35) also self-

reported no known persistent concussion symptoms. Further demographic data included 
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sport history and cumulative years of athletic experience. 

 
Apparatus 

Participants were seated at a table, facing a 22” (29 x 47 cm horizontal and 

vertical) LCD (Dell) monitor. An ATI Industrial Automation load cell (diameter 1.27 cm; 

Apex, NC) was affixed to a wooden block and secured with the load cell mounted just 

right of the center of the monitor and 35 cm from the bottom edge of the monitor. The 

output from the load cell was amplified through a National Instruments DAQ board 

(National Instruments, Austin, TX) with a resolution of 3.125 microNewtons. The 

participants pressed the load cell with the lateral aspect of the right index finger’s distal 

interphalangeal joint. Abduction of the index finger registered force through the load cell. 

Data were sampled at 100 Hz, in keeping with recommendations that sampling rates be 

set to 5x the highest frequency of interest when calculating sample entropy (Gow et al., 

2015). Physiological signals are generally observed between 0 and 20 Hz, making 20 Hz 

the upper limit of interest. 

The task was administered in, and all data collected through, MATLAB (v. 2015a, 

The Mathworks Inc., Natick, MA, 2015). A white line displayed on the screen 

represented the force administered by the index finger. The delay between finger force 

application and output display is unavoidable but minimized and undetectable by the 

experimenters (~60 ms) (Studenka & Raikes, in press). A straight red line was displayed 

on the screen for the duration of each trial and served as the target waveform. The white 

line moved across the computer monitor from left to right, leaving a trace of its previous 

position (see Figure 3-2). For each trial, the line was centered in the middle of the screen 

at 40% of a participant’s MVC. This value was chosen to maximize complexity (Vieluf et 

al., 2015). The entire screen ranged from 35–45% of a participant’s MVC, which  
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Figure 3-2. Study 1: Visual-motor tracking task apparatus and display. The horizontal line 
is the target line. The white line is the participant’s produced force. 
 
 
provides sufficient visual gain for minimizing spurious error due to low resolution around 

the target line (Hu & Newell, 2011). 

 
Procedures and Instructions 

Three trials (5 s) of maximal finger force were performed. The maximal value of 

these three trials was recorded as that participant’s maximal voluntary contraction 

(MVC). Each participant then performed 10 trials of tracking, which was enough trials to 

evaluate trial-to-trial consistency. Participants were instructed to minimize the difference 

between the white (participant produced) and red (target) lines. Each trial lasted 30 

seconds.  
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Data Analysis 

All data were processed using a custom-written Python (Python Software 

Foundation, https://www.python.org/) module (https://github.com/araikes/physiologic-

complexity). Trial data were visually inspected for adherence to task instructions. 

Individual trials were excluded for the following reasons. 

1. Trials with fewer than 20% of the data points appearing on the screen 

2. Trials with a loss of force applied to the load cell, indicating that the 
participant had removed the finger during the trial 

3. Trials with visually abnormal patterns relative to the task, including rapid 
oscillations, delayed force application more than 4 seconds into a trial, or 
multiple oscillations approaching zero force. 

Data were filtered with a 9th order forward-backward digital 20 Hz low-pass Butterworth 

filter. Prior to analyses, the first 4 s (1 s of the recorded trial following a 3 second “warm 

up”) and the last 1 s of force output were removed to account for changes that might 

occur as an individual acclimates to the task and changes that might occur as a person 

completes the task. Because sample entropy is influenced by non-stationarity in the 

data, all data were detrended using an adaptive fractal detrending method prior to 

complexity calculations (Gao, Hu, & Tung, 2011). Detrending was computed using a 2nd 

order polynomial fit over segment lengths of 129 data points to preserve data shape 

without overfitting (see Figure 3-3).  

Amount of force variability. Root mean square error (RMSE) was calculated as 

a metric of overall task performance with the equation 

ܧܵܯܴ ൌ ඨ
∑ሺݏ െ ௜݂ሻଶ

݊ െ 1
ሺ3.1ሻ 

where s is the target value (40% MVC), ௜݂ is the ith force sample, and n is the number of 

data samples (Sosnoff & Newell, 2005a).  
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Figure 3-3. Study 1: Example of original signal and trend (A) and detrended signal (B). 
1981; Stiles & Randall, 1967; Vaillancourt et al., 2001).  

 

Structure of force variability. Frequency domain characteristics of the force 

output were calculated using custom-written software in Python. The Fourier transform 

of the force output yields the amplitude and phase of the time series in the frequency 

domain. The power in a given time series is equal to the square of the amplitude. Power 

within three different frequency bandwidths was examined. These bandwidths are 

associated with sensory-motor feedback and cognitive processing (0-4 Hz) (Miall et al., 

1985; Pew, 1974; Slifkin et al., 2000; Sosnoff & Newell, 2005a), feedforward processing 

(4-12 Hz) (Desmurget & Grafton, 2000; Pew, 1974; Sosnoff & Newell, 2005a; Sosnoff & 

Voudrie, 2009), and physiological tremor (8-12 Hz; Deuschl et al., 2001; Findley et al., 

Force complexity was quantified with modified multiscale sample entropy 

(MMSE; Wu et al., 2013), an adaptation of multiscale entropy (Costa et al., 2002a) 

designed for short time series. In MMSE, sample entropy (Govindan et al., 2007) is 

calculated over multiple time scales of data to quantify the multiscale complexity of the 

signal. 

Sample entropy quantifies the negative natural logarithm ratio of the likelihood 
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that a pattern (m samples long) and a longer pattern (m + 1) repeat throughout the time 

series. It is calculated as follows (Govindan et al., 2007; Wu et al., 2013): 

1. Construct the ith template vector of length m as 

௜ݔ
௠ሺߜሻ ൌ ቄݔ௜	ݔ௜ାఋ	…	௫೔శሺ೘షభሻഃ

ቅ , 1 ൑ ݅ ൑ ܰ െ݉ߜ ሺ3.2ሻ	

where ߜ is a time delay between successive vector components. 

2. Calculate the Euclidean distance ݀௜௝
௠ for each pair of template vectors: 

݀௜௝
௠ ൌ ฮݔ௜

௠ሺߜሻ െ ௝ݔ
௠ሺߜሻฮ

ஶ
, 1 ൑ ݅, ݆ ൑ ܰ െ݉ߜ, ݆ ൐ ݅ ൅ ߜ ሺ3.3ሻ 

3. ݊ሺ݉, ,ߜ  ሻ is the total number of matched vector pairs of length m. A matchedݎ

pair is defined as any pair such that ݀௜௝
௠ሺߜሻ ൑  where r is a pre-defined ݎ

tolerance threshold. Increment ݊ሺ݉, ,ߜ ሻ by one each time ݀௜௝ݎ
௠ሺߜሻ ൑  .holds ݎ

4. Repeat steps 1 through 3 for m + 1. 

5. Sample entropy is thus: 

,݉,ݔሺ݊ܧ݌݉ܽܵ ,ߜ ሻݎ ൌ െ ln
݊ሺ݉ ൅ 1, ,ߜ ሻݎ

݊ሺ݉, ,ߜ ሻݎ
ሺ3.4ሻ 

In MMSE, sample entropy is calculated on the original time series. A scale-factored 

moving average of the time series of window length ߬ (see Figure 3) is computed as: 

௝ݕ
ሺఛሻ ൌ

1
߬
෍ ,௜ݔ

௝ାఛିଵ

௜ୀ௝

	1 ൑ ݆ ൑ ܰ െ ߬ ൅ 1 ሺ3.5ሻ 

and sample entropy recalculated at each scale factor as: 

,݉,ݔሺܧܵܯܯ ߬, ሻݎ ൌ ,݉,ఛݕሺ݊ܧ݌݉ܽܵ ߜ ൌ ߬, ሻݎ ሺ3.6ሻ 

We used scale factor values ߬ ൌ 1 to ߬ ൌ 34. This allows the calculation of 

complexity for frequencies from 16.7 Hz to 0.5 Hz (Gow et al., 2015). In previous work, 

individuals completing this task at 10% MVC exhibited frequencies from 0–12 Hz 

(Studenka & Raikes, in press). Consistent with previous work an ݉ ൌ 2, and ݎ ൌ 0.15 ∗
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 ,.௦௘௥௜௘௦ were used to calculate the sample entropy of the force output (Wu et al	௧௜௠௘ܦܵ

2013). Finally, the overall complexity (complexity index, CI) for the time series was the 

sum of the sample entropies for each scale factor (Figure 3-4). As with single-scale 

sample entropy, higher complexity index values indicate more complex force structures.  

Intra-individual variability. To assess intra-individual variability for each 

outcome measure, the coefficient of variation for the trials was computed as 

ܸܥ ൌ 	
௜ߪ
௜ݔ̅
, ሺ3.7ሻ 

where ߪ௜ is the standard deviation of the trial measurements for each outcome and ̅ݔ௜ is 

the mean outcome for participant i.  

 
Statistical Analyses 

All statistical calculations were performed in R v.3.3.2 (R Core Team, 2015), 

using the dplyr (Wickham & Francois, 2015), tidyr (Wickham, 2016), MASS (Venables & 

 

 
Figure 3-4. Study 1: Example complexity curves for two participants. At each scale factor, 
lower values indicate more regular signals. Complexity is the sum of the sample entropies 
at each scale factor. Lower values indicate less complex signals. 
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Ripley, 2002), gvlma (Pena & Slate, 2012, 2014), and heplots libraries (Fox, Friendly, & 

Monette, 2016).  

To evaluate differences between concussed and unconcussed participants, 

individual multiple linear regressions for the average complexity index (CI) per 

participant, the mean RMSE, the mean average power in the frequency bands 0-4 Hertz, 

4-8 Hertz, and 8-12 Hertz, as well as the coefficients of variation for all outcomes were 

fit. Prior to model fitting, continuous predictors were assessed for normality using 

quantile-quantile plots (Q-Q plots) and Shapiro-Wilk test. These variables were 

transformed as needed.  

Initial models were fit with the number of diagnosed and suspected concussions, 

as well as self-reported histories of loss of consciousness (yes/no) and amnesia (yes/no) 

directly resulting from a concussion. Loss of consciousness and amnesia have both 

been shown to influence recovery trajectories following concussion (Barlow et al., 2010; 

Heyer et al., 2016; McCrea, Iverson, et al., 2013; Parks et al., 2015; Taylor et al., 2010; 

Wilde et al., 2016; Yeates et al., 2009). Initial models included both main and all two-way 

interaction effects. Residuals for the initial models were plotted and evaluated for 

approximate normality (Q-Q plot) and non-constant variance (plot of residuals vs. fitted 

values). Covariates included in the final model were determined using an automated 

step-down procedure that minimizes Akaike’s Information Criterion (AIC). Final model 

fits were described using adjusted R2 to evaluate overall model fit, as well as individual 

predictor coefficients and 95% confidence intervals as well as partial R2 values 

(indicating variance explained by an individual variable, a measure of effect size). Partial 

R2 was calculated as: 

ܴଶ ൌ
ܵܵ௘௙௙௘௖௧

ܵܵ௘௙௙௘௖௧	 ൅ ܵܵ௘௥௥௢௥
	 ሺ3.9ሻ 
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where values between 0.02 – 0.13 are generally interpreted as small effects, 0.13 – 0.26 

as medium effects, and above 0.26 as large effects. 

 
Results 

 

A Priori Predictors 

 Complexity index. Two observations were dropped to meet assumptions of 

normality and homoscedasticity. Retained predictors and model fit statistics following the 

step-down AIC procedure are presented in Table 3-2. Partial R2 values for retained 

predictors are shown in Table 3-3. This model was not significant, and none of the 

predictors exhibited any statistical significance. 

 The model for the complexity index coefficient of variation required log 

transformation [ݕ ൌ 	 lnሺܥ ஼ܸூሻ] to meet the assumptions of normality and 

homoscedasticity. Retained predictors and model fit statistics following the step-down 

AIC procedure are presented in Table 3-2. Partial R2 values for retained predictors are 

presented in Table 3-3. The model was significant. However, none of the retained 

predictors were statistically significant. 

Root mean squared error. The model for the averaged RMSE required log 

transformation to meet the assumption of normality. After the step-down AIC procedure, 

no variables were retained, indicating that no concussion-related predictors provided 

information about a linear relationship between concussions and task-related error. The 

model for the RMSE coefficient of variation required log transformation to meet the 

assumption of normality. After the step-down AIC procedure, no variables were retained, 

indicating that there were no concussion-related variables that provided information 

about a linear relationship between concussion-related predictors and intra-individual 

RMSE variability. 
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Table 3-2 
 
A Priori and Best Alternative Models for Complexity Multi-Trial Mean and Coefficient of 
Variation 
 

 Mean 
──────────────────────

Coefficient of variation 
─────────────────────── 

Predictor A priori Best alternative A priori Best alternative 

Diagnosed conc.   0.724 
(0.405, 1.294) 

1.132 
(0.743, 1.723) 

Suspected conc. 0.504 
(-0.658, 1.665) 

 1.065 
(0.892, 1.271) 

1.053 
(0.852, 1.303) 

Males  4.695*** 
(2.167, 7.223) 

 0.620 
(0.346, 1.109) 

Total conc. 
 

 -0.815*
(-1.554, -0.077)

  

LOC 1.215 
(-3.035, 5.464) 

2.343 
(-1.042, 5.728) 

1.058 
(0.654, 1.712) 

0.837 
(0.210, 3.341) 

Amnesia -1.458 
(-5.855, 2.938) 

2.448 
(-0.349, 5.245) 

1.036 
(0.440, 2.441) 

0.880 
(0.354, 2.190) 

Males x  
diagnosed conc. 

   0.441 
(0.168, 1.156) 

Males x 
suspected conc. 

   0.961 
(0.655, 1.409) 

LOC x  
suspected conc. 

-1.577 
(-3.898, 0.744) 

  0.959 
(0.478, 1.926) 

Diagnosed x  
suspected conc. 

  1.202 
(0.927, 1.558) 

 

LOC x amnesia 4.963 
(-1.005, 10.930) 

 0.413 
(0.133, 1.283) 

 

Males x amnesia 
x diagnosed 
conc. 

   6.249* 
(1.155, 33.809) 

Males x LOC x  
suspected conc. 

   1.899 
(0.766, 4.705) 

Males x LOC  -3.432 
(-7.866, 1.002) 

 0.795 
(0.152, 4.168) 

(table continues)
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 Mean 
──────────────────────

Coefficient of variation 
─────────────────────── 

Predictor A priori Best alternative A priori Best alternative 

Males x amnesia    0.369 
(0.098, 1.390) 

Amnesia x  
diagnosed  

   0.615 
(0.169, 2.234) 

Observations 48 50 50 50 

R2 0.149 0.327 0.255 0.451 

Adjusted R2 0.048 0.250 0.151 0.253 

Residual Std. 
Error 

3.543 (df = 42) 3.462 (df = 44) 0.620 (df = 43) 0.581 (df = 36) 

F Statistic 1.474 (df = 5; 
42) 

4.266** 
(df = 5; 44) 

2.457* 
(df = 6; 43) 

2.278* 
(df = 13; 36) 

Note. Values are reported as b (95% CI). Coefficient of variation models required log 
transformation to meet model assumptions. Those coefficients and confidence intervals have 
been re-exponentiated and reflect ratios of increase or decrease between unit increases. Conc. = 
concussions; LOC = loss of consciousness.  

* p < 0.05. 

**  p < 0.01. 

*** p < 0.001. 
 

 

 0-4 Hertz average power. A single outlier was dropped to meet the assumptions 

of normality and homoscedasticity for 0-4 Hertz average power. Retained predictors and 

model fit statistics following the step-down AIC procedure are presented in Table 3-4. 

Partial R2 values for retained predictors are shown in Table 3-5. This model was not 

significant. However, average power in this frequency band was higher for individuals 

with a history of loss of consciousness. The model for the 0-4 Hertz average power 

coefficient of variation met assumptions for both normality and homoscedasticity without 

transformation. Retained predictors and model fit statistics following the step-down AIC 

procedure are presented in Table 3-4. Partial R2 values for retained predictors are  
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Table 3-3 
 
Partial R2 Values for Retained Predictors in Complexity Mean and Coefficient of Variation 
Models  
 

 
Mean 

───────────────── 
Coefficient of variation 

───────────────── 

Predictor A priori Best alternative A priori Best alternative 

Gender 0.219 0.157 

LOC 0.000 0.003 0.010 0.004 

Amnesia 0.016 0.066 0.082 0.080 

Diagnosed conc. 0.001 0.026 

Suspected conc. 0.001 0.049 0.066 

Total conc. 0.101 

Gender x amnesia 0.004 

Gender x LOC 0.052 0.065 

Gender x diagnosed conc. 0.007 

Gender x suspected conc. 0.007 

LOC x amnesia 0.063 0.054 

LOC x suspected conc. 0.043 0.061 

Amnesia x diagnosed conc. 0.053 

Diagnosed conc. x suspected 
conc. 

0.045 

Gender x amnesia x diagnosed 
conc. 

0.119 

Gender x LOC x suspected 
conc. 

0.054 

 Note. Conc. = concussions; LOC = loss of consciousness, RA = retrograde amnesia. 
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Table 3-4 
 
A Priori and Best Alternative Models for 0-4 Hertz Average Power Multi-Trial Mean and 
Coefficient of Variation 
 

 Mean 
───────────────────── 

Coefficient of Variation 
──────────────────── 

Predictor A priori Best alternative A priori Best alternative 

Suspected Conc. -0.070 
(-0.486, 0.346) 

 -0.010 
(-0.038, 0.017) 

 

LOC 2.043* 
(0.228, 3.858) 

 -0.033 
(-0.130, 0.065) 

 

Males  0.476 
(-0.503, 1.456) 

  

Diagnosed Conc.  0.241 
(-0.616, 1.098) 

-0.050* 
(-0.091, -0.009) 

 

Amnesia 0.969 
(-0.810, 2.748) 

-0.444 
(-1.975, 1.086) 

  

LOC x  
Suspected Conc. 

-0.681 
(-1.616, 0.254) 

 0.048 (-0.009, 
0.105) 

 

LOC x  
Amnesia 

-2.151 
(-4.605, 0.303) 

   

Males x  
Diagnosed Conc. 

 -1.781* 
(-3.516, -0.045) 

  

Amnesia x 
Diagnosed Conc. 

 1.846 
(-0.040, 3.733) 

  

Total LOC    1.009 
(0.875, 1.163) 

Total RA    0.637** 
(0.473, 0.857) 

Total LOC x  
Total RA 

   1.775* 
(1.088, 2.896) 

Observations 49 50 50 50 

R2 0.133 0.109 0.171 0.182 

Adjusted R2 0.032 0.008 0.097 0.129 

Residual Std. Error 1.449 (df = 43) 1.542 (df = 44) 0.094 (df = 45) 0.322 (df = 46) 

F Statistic 1.320 
(df = 5; 43) 

1.077 
(df = 5; 44) 

2.320 
(df = 4; 45) 

3.412* 
(df = 3; 46) 

Note. Values are reported as b (95% CI). The best alternative CV model required log-transformation. The 
coefficients and confidence intervals for this model have been re-exponentiated. Conc. = concussions; LOC 
= loss of consciousness; RA = retrograde amnesia. 
 
* p < 0.05. 
** p < 0.01. 
*** p < 0.001. 
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Table 3-5 
 
Partial R2 Values for Retained Predictors in 0-4 Hertz Average Power Mean and 
Coefficient of Variation Models 
 

 
Mean 

────────────────── 
Coefficient of variation 

────────────────── 

Predictor A priori Best alternative A priori Best alternative

Gender 0.000 

LOC 0.037 0.025 

Amnesia 0.002 0.008 

Diagnosed Conc. 0.003 0.121 

Suspected Conc. 0.028 0.000 

Total LOC 0.011 

Total RA 0.085 

Gender x Diagnosed Conc. 0.089 

Amnesia x Diagnosed Conc. 0.081 

LOC x Amnesia 0.068 

LOC x Suspected Conc. 0.048 0.060 

Total LOC x Total RA 0.108 

Note: Conc. = Conc.; LOC = loss of consciousness, RA = retrograde amnesia. 

 

presented in Table 3-5. This model was not significant. However, the coefficient for the 

number of diagnosed concussions was significant, reducing the coefficient of variation 

by 0.05 per diagnosed concussion.  

4-8 Hertz average power. A single outlier was dropped to meet the assumptions 

of normality and homoscedasticity for 4-8 Hz average power. Retained predictors and 

model fit statistics following the step-down AIC procedure are presented in Table 3-6. 

Partial R2 values for retained predictors are shown in Table 3-7. This model was 

marginally significant (F5,43 = 2.396, p = 0.053). 4-8 Hz average power decreased by 

0.089 per diagnosed concussion. This relationship was mediated by a history of loss of 

consciousness, increasing average power in this frequency band by 0.14. Furthermore,  
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Table 3-6 
 
A Priori and Best Alternative Models for 4-8 Hertz Average Power Multi-Trial Mean and 
Coefficient of Variation 
 

 
Mean 

─────────────────────── 
Coefficient of variation 

─────────────────────── 

Predictor A priori Best alternative A priori Best alternative 

Males 
 

1.591* 
(1.105, 2.290) 

-0.234** 
(-0.375, -0.092) 

Diagnosed Conc. -0.089* 
(-0.163, -0.014) 

0.216* 
(0.066, 0.702) 

-0.229 
(-0.469, 0.011) 

Suspected Conc. 0.003 
(-0.020, 0.026) 

-0.002 
(-0.053, 0.048) 

LOC 0.140** 
(0.053, 0.226) 

0.926 
(0.523, 1.640) 

-0.292** 
(-0.496, -0.088) 

Diagnosed x 
Suspected Conc. 

0.037* 
(0.004, 0.071) 

LOC x  
Suspected Conc. 

-0.062* 
(-0.111, -0.012) 

0.186** 
(0.074, 0.298) 

Amnesia 0.896 
(0.525, 1.529) 

-0.014 
(-0.197, 0.170) 

Males x  
Diagnosed Conc. 

2.684 
(0.901, 7.996) 

Males x LOC 1.248 
(0.607, 2.565) 

LOC x  
Diagnosed Conc. 

 
5.180* 

(1.502, 17.865) 
0.267* 

(0.025, 0.508) 

Amnesia x  
Diagnosed Conc. 

1.717 
(0.829, 3.556) 

0.200 
(-0.061, 0.461) 

Males x LOC x 
Diagnosed Conc. 

0.206* 
(0.054, 0.789) 

Total Conc.    -0.011 
(-0.063, 0.042) 

Total LOC    -0.202* 
(-0.384, -0.020) 

Total RA    -0.133 
(-0.333, 0.068) 

Males x  
Total Conc. 

   0.063 
(-0.018, 0.145) 

(table continues)
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Mean 

─────────────────────── 
Coefficient of variation 

─────────────────────── 

Predictor A priori Best alternative A priori Best alternative 

Males x  
Total LOC 

   0.152 
(-0.014, 0.318) 

Total Conc. x  
Total LOC 

   0.062* 
(0.012, 0.111) 

Total LOC x  
Total RA 

 
0.240 

(-0.050, 0.529) 

Observations 49 50 50 50 

R2 0.218 0.350 0.302 0.428 

Adjusted R2 0.127 0.204 0.186 0.316 

Residual Std. Error 0.076 (df = 43) 0.479 (df = 40) 0.172 (df = 42) 0.157 (df = 41) 

F Statistic 2.396 (df = 5; 43) 2.395* 
(df = 9; 40) 

2.601* 
(df = 7; 42) 

3.836** 
(df = 8; 41) 

Note. Values are reported as b (95% CI). The best model for the trial averages required log-
transformation. The coefficients and confidence intervals have been re-exponentiated. Conc. = 
concussions; LOC = loss of consciousness; RA = retrograde amnesia.  

* p < 0.05. 

** p < 0.01. 

*** p < 0.001. 
 

while the interaction between diagnosed and suspected concussions increased the 

average power, the interaction between suspected concussions and a history of loss of 

consciousness decreased the average power.The model for 4-8 Hz average power 

coefficient of variation met assumptions for both normality and homoscedasticity without 

transformation. Retained predictors and model fit statistics following the step-down AIC 

procedure are presented in Table 3-6. Partial R2 values for retained predictors are 

shown in Table 3-7. This model was significant. A history of loss of consciousness and 

diagnosed concussions were associated with reduced trial-to-trial variability in 4-8 Hz 

average power, while the interactions between suspected concussions and loss of 

consciousness and between diagnosed concussions and loss of consciousness increase  
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Table 3-7 
 
Partial R2 Values for Retained Predictors in 4-8 Hertz Average Power Mean and 
Coefficient of Variation Models 
 

 Mean 
─────────────────── 

Coefficient of variation 
─────────────────── 

Predictor A priori Best alternative A priori Best alternative 

Gender 0.217 0.061 

LOC 0.089 0.024 0.000 

Amnesia 0.004 0.011 

Diagnosed Conc. 0.019 0.006 0.001 

Suspected Conc. 0.000 0.065 

Total Conc. 0.097 

Total LOC 0.052 

Total RA 0.001 

Gender x LOC 0.002 

Gender x Diagnosed Conc. 0.001 

Gender x Total Conc. 0.056 

Gender x Total LOC 0.077 

LOC x Suspected Conc. 0.129 0.211 

Amnesia x Diagnosed Conc. 0.053 0.054 

Diagnosed x Suspected Conc. 0.104 

Total Conc. x Total LOC 0.132 

Total LOC x Total RA 0.064 

Gender x LOC x Diagnosed 
Conc. 

0.124 

Note: Conc. = concussions; LOC = loss of consciousness, RA = retrograde amnesia. 
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trial-to-trial variability. 

8-12 Hertz average power. The model for 8-12 Hz average power required log 

transformation to meet the assumption of normality. Retained predictors and model fit 

statistics following the step-down AIC procedure are presented in Table 3-8. Partial R2 

values for retained predictors are presented in Table 3-9. This model was significant 

(F6,43 = 4.090, p = 0.002). 8-12 Hz average power decreased approximately 78% per 

diagnosed concussion, and individuals with a history of loss of consciousness had 7.58 

times greater average power than individuals without. The interaction between 

suspected concussions and a history of loss of consciousness further reduced this 

average power. Finally, the interaction between diagnosed and suspected concussions 

increased 8-12 Hz average power by 0.037. 

The model for 8-12 Hz average power coefficient of variation met assumptions for 

both normality and homoscedasticity without transformation. Retained predictors and 

model fit statistics following the step-down AIC procedure are presented in Table 3-8. 

Partial R2 values for retained predictors are shown in Table 3-9. This model was significant 

(F3,46 = 3.532, p = 0.022). A history of loss of consciousness was associated with reduced 

trial-to-trial variability in 8-12 Hz average power, while the interaction of suspected 

concussions and loss of consciousness increases trial-to-trial variability. 

 
Alternative Models 

After adjusting for the number of retained predictors, the variance explained by the 

models for both trial-averaged outcomes and the intra-individual variation was low. The 8-

12 Hertz average power model explained the greatest amount of variance of any model, 

after adjusting for the number of retained predictors (adj. R2 = 0.2745).   
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Table 3-8 
 
A Priori and Best Alternative Models for 8-12 Hertz Average Power Multi-Trial Mean and 
Coefficient of Variation 

 
Mean 

────────────────────── 
Coefficient of variation 

────────────────────── 

Predictor A priori Best A priori Best 

Males 
 

2.016* 
(1.085, 3.746) 

-0.112 
(-0.227, 0.004) 

Diagnosed Conc. 0.320** 
(0.153, 0.669) 

0.207** 
(0.083, 0.517) 

 

Suspected Conc. 1.021 
(0.813, 1.282) 

0.909 
(0.719, 1.149) 

-0.013 
(-0.070, 0.045) 

-0.006 
(-0.062, 0.050) 

LOC 7.580*** 
(3.056, 18.797) 

7.825*** 
(2.606, 23.495) 

-0.200 
(-0.407, 0.006) 

-0.153 
(-0.359, 0.053) 

Amnesia 0.587 
(0.306, 1.127) 

Males x Suspected 
Conc. 

1.306 
(0.883, 1.932) 

Males x LOC 0.422 
(0.165, 1.078) 

Diagnosed x 
Suspected Conc. 

1.504* 
(1.079, 2.098) 

1.463* 
(1.042, 2.056) 

LOC x Diagnosed 
Conc. 

1.814 
(0.944, 3.487) 

LOC x Suspected 
Conc. 

0.412*** 
(0.249, 0.683) 

0.432*** 
(0.269, 0.693) 

0.178** 
(0.056, 0.300) 

0.158* 
(0.038, 0.278) 

Observations 50 50 50 50 

R2 0.363 0.540 0.187 0.251 

Adjusted R2 0.275 0.437 0.134 0.184 

Residual Std. Error 0.757 (df = 43) 0.667 (df = 40) 0.201 (df = 46) 0.196 (df = 45) 

F Statistic 4.090** 
(df = 6; 43) 

5.219*** 
(df = 9; 40) 

3.532* 
(df = 3; 46) 

3.760* 
(df = 4; 45) 

Note. Values are reported as b (95% CI). Mean models required log-transformation. Coefficients and 
confidence intervals have been re-exponentiated. Conc. = concussions; LOC = loss of consciousness; RA = 
retrograde amnesia.  

* p < 0.05. 

** p < 0.01. 

*** p < 0.001.  
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Table 3-9 
 
Partial R2 Values for Retained Predictors in 8-12 Hertz Average Power Mean and 
Coefficient of Variation Models 
 

 Mean 
───────────────────

Coefficient of variation 
───────────────────

Predictor A priori Best alternative A priori Best alternative 

Gender 0.248 0.078 

LOC 0.154 0.105 0.009 0.025 

Amnesia 0.059 

Diagnosed Conc. 0.085 0.203 

Suspected Conc. 0.004 0.010 0.024 0.031 

Gender x LOC 0.080 

Gender x Suspected Conc. 0.045 

LOC x Diagnosed Conc. 0.078 

LOC x Suspected Conc. 0.225 0.244 0.158 0.135 

Diagnosed x Suspected Conc. 0.125 0.114 

Note: Conc. = concussions; LOC = loss of consciousness, RA = retrograde amnesia. 
 
 
 

Exploratory data analyses of the current data indicated between-gender 

differences on all outcomes. This was further supported by gender-specific findings in 

visual-motor tasks (Stirling et al., 2013; Studenka & Raikes, in press) as well as 

visuospatial and motor processing tasks (Broshek et al., 2005; Colvin et al., 2009; 

Covassin et al., 2006; Covassin & Elbin, 2011; Covassin et al., 2012, 2007). Therefore, 

new models were fitted with gender as a predictor. For each outcome of interest, three 

alternative models were fit. 

1. The original model with the addition of gender as a main effect and all three-
way interactions. 

2. It is possible that the role of diagnosed and suspected concussions 
separately is less informative than the cumulative number of concussions. 
Therefore, a model with main effects of gender, total concussions (diagnosed 
+ suspected), history of loss of consciousness, and history of amnesia along 
with all three-way interactions was fit. 
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3. Additionally, there may be differences related to the number of concussions 
with a loss of consciousness or amnesia that gets over-simplified by 
considering only history (yes/no). Consequently, a model with main effects of 
gender, total concussions (diagnosed + suspected), the number of 
occurrences of loss of consciousness, the number of occurrences of 
retrograde amnesia, and the number of occurrences of anterograde amnesia 
along with all three-way interactions was fit. 

 
Models were fitted in the same way as the original models, including verification that the 

models met assumptions of normality and homoscedasticity as well as the step-down 

AIC procedure for variable selection. Results from these models are described in the 

same manner as the original models. 

 Complexity index. The alternative model that explained the greatest variance 

for the trial-averaged complexity index was model 2; however, all three models 

performed comparably. Model 2 was statistically significant and retained predictors and 

model fit statistics following the step-down AIC procedure are presented in Table 3-2. 

Partial R2 values for retained predictors are presented in Table 3-3. This model met the 

assumptions of normality and homoscedasticity without transformation. Males in this 

sample had significantly greater complexity than females, and this difference had a 

moderate to large effect. Additionally, complexity decreased by 0.815 for each 

concussion, diagnosed or sustained, and this was statistically significant (Figure 3-5 A).

 For the complexity index coefficient of variation, the alternative models required 

log-transformation to meet the assumptions of normality and homoscedasticity. Model 1 

explained the greatest variance and was statistically significant. Retained predictors and 

model fit statistics for this model following the step-down AIC procedure are presented in 

Table 3-2. Partial R2 values for retained predictors are shown in Table 3-3. The three- 

way interaction between gender, amnesia, and diagnosed concussions was significant 

and had a small to moderate effect on the model. Though the coefficient was not 
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 Figure 3-5. Study 1: Complexity mean (A) and coefficient of variation (B) models. 
 

 
significant, gender also had a moderate effect. Males with no history of concussion had 

38% lower complexity than females with no history. Males demonstrated increasing trial-

to-trial variability with increasing numbers of concussion regardless of a history of 

amnesia. Additionally, males with a history of amnesia had lower trial-to-trial variability 

across diagnosed numbers of concussions. By contrast females with no history of 

amnesia demonstrated little change in trial-to-trial variability with increasing numbers of 

diagnosed concussions, and females with a history of amnesia demonstrated a 

decrease in trial-to-trial variability (Figure 3-5 B).  

Root mean squared error. The alternative models for root mean squared error 

required log-transformation to meet assumptions of normality and homoscedasticity. 

None of the models were significant. Model 2 provided the greatest explanation of 

variance after adjusting for the number of predictors; however, the model was not 

significant, and the adjusted R2 remains very low. Retained predictors and model fit 

statistics for model 2 are presented in Table 3-10. Partial R2 values for retained 

predictors are shown in Table 3-11. Males with a history of loss of consciousness have  
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Table 3-10 
 
A Priori and Best Alternative Models for RMSE Multi-Trial Mean and Coefficient of  
Variation 
 

 
Mean 

──────────────────── 
Coefficient of variation 

──────────────────── 

Predictor A priori Best A priori Best 

Males 1.177 
(0.630, 2.199) 

0.604** 
(0.432, 0.844) 

Total Conc. 1.246 
(0.978, 1.586) 

Diagnosed Conc. 0.050*** 
(0.010, 0.248) 

Suspected Conc. 1.040 
(0.915, 1.183) 

LOC 1.342 
(0.338, 5.333) 

0.024 
(-0.112, 0.159) 

1.452 
(0.806, 2.618) 

Amnesia 1.632 
(0.910, 2.927) 

0.223 
(-0.018, 0.463) 

14.274*** 
(3.733, 54.580) 

Males x Total Conc. 0.719 
(0.513, 1.008) 

Males x Diagnosed Conc. 25.278*** 
(4.068, 157.075) 

Males x LOC 0.396 
(0.081, 1.936) 

0.880 
(0.421, 1.839) 

LOC x Total Conc. 0.725 
(0.437, 1.202) 

Males x LOC x Total 
Conc. 

1.983* 
(1.033, 3.805) 

LOC x Amnesia -0.286 
(-0.606, 0.034) 

Males x Amnesia 0.299* 
(0.118, 0.761) 

Diagnosed Conc. x 
Suspected Conc. 

1.549** 
(1.172, 2.048) 

LOC x Diagnosed Conc. 6.704* 
(1.590, 28.272) 

Amnesia x Suspected 
Conc. 

0.159*** 
(0.063, 0.404) 

Males x LOC x 
Diagnosed Conc. 

0.023*** 
(0.003, 0.196) 

(table continues)
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Mean 

──────────────────── 
Coefficient of variation 

──────────────────── 

Predictor A priori Best A priori Best 

Observations 50 50 49 50 

R2 0.000 0.184 0.080 0.506 

Adjusted R2 0.000 0.025 0.019 0.346 

Residual Std. Error 0.669 (df = 49) 0.661 (df = 41) 0.197 (df = 45) 0.434 (df = 37) 

F Statistic 1.155 (df = 8; 41) 1.308 (df = 3; 45) 3.163** 
(df = 12; 37) 

Note. Values are reported as b (95% CI). All models except the a priori CV model required log-
transformation. Those coefficients and confidence intervals have been re-exponentiated. Conc. = 
concussions, LOC = loss of consciousness.  
* p < 0.05. 
** p < 0.01. 
*** p < 0.001. 
 

Table 3-11 

Partial R2 Values for Retained Predictors in RMSE Mean and Coefficient of Variation 
Models 

 Mean 
───────────────────

Coefficient of variation 
───────────────────

Predictor A priori Best alternative A priori Best alternative

Gender 0.012  0.316 

LOC 0.017 0.005 0.003 

Amnesia 0.065 0.013 0.005 

Diagnosed Conc.  0.013 

Suspected Conc.  0.035 

Total Conc. 0.020  

Gender x LOC 0.020  0.028 

Gender x Amnesia  0.157 

LOC x Amnesia 0.067 

Gender x Diagnosed Conc.  0.010 

Gender x Total Conc. 0.025  

Amnesia x Suspected Conc.  0.301 

Diagnosed x Suspected Conc.  0.214 

LOC x Total Conc. 0.004  

Gender x LOC x Diagnosed Conc.  0.257 

Gender x LOC x Total Conc. 0.099  

Note: Conc. = concussions; LOC = loss of consciousness, RA = retrograde amnesia. 
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approximately twice the RMSE for each concussion sustained (diagnosed and 

suspected). This contrasts with males with no history (approximately 38.1% lower RMSE 

per concussion) and females with a history of loss of consciousness (approximately 

RMSE 37.5% lower per concussion; see Figure 3-6 A).  

Alternative models for RMSE intra-individual variation required log-transformation 

to meet assumptions of normality and homoscedasticity. Model 1 provided the greatest 

explanation of variance, and the model was significant. Retained predictors and model fit 

 

 

Figure 3-6. Study 1: Root mean squared error mean (A) and coefficient of variation (B, C) 
models. 
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statistics for this model after the step-down AIC procedure are presented in Table 3-10. 

gender, as well as the interactions between amnesia and suspected concussions, and 

between gender, loss of consciousness and diagnosed concussions, were observed.  

Males and females in the sample showed differing responses with respect to 

diagnosed concussions and history of loss of consciousness, and this effect was large. 

Females with no history of loss of consciousness in this sample had lower RMSE intra-

individual variability per diagnosed concussion than the males (Figure 3-6 B). 

Additionally, the intra-individual variability was approximately 6.7 times greater per 

diagnosed concussion with a history of loss of consciousness than without. Large effects 

of concussion for the women with a history of loss of concussions than without. By 

contrast, males without a history of loss consciousness showed an increase in intra-

individual variability with increasing numbers of concussions while those with a history of 

loss of consciousness showed relatively no change (Figure 3-6 B). 

Additionally, males had lower trial-to-trial variability than females in this sample 

across all numbers of suspected concussions regardless of amnesia history. However, 

men with a history of amnesia trended toward greater variability than women with 

increasing numbers of suspected concussions (Figure 3-5 C). 

0-4 Hertz average power. Alternative models for the trial-averaged 0-4 Hertz 

average power did not require transformation to meet assumptions of normality or 

homoscedasticity. The retained predictors and model fit statistics for model 1 were 

presented in Table 3-4. None of the models were significant and none of the models 

greater variance than the a priori model.  

Alternative models 1 and 2 for 0-4 Hertz average power intra-individual variation 

did not require transformation to meet assumptions. However, alternative model 3 

required log transformation to meet assumptions, explained the greatest amount of 
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variance after adjusting for the number of covariates, and was significant. Retained 

predictors and model fit statistics after the step-down AIC procedure were presented in 

Table 3-4. Effect sizes reported as partial R2 values for retained predictors were 

presented in Table 3-5. For individuals with no history of loss of consciousness, trial-to-

trial variability in 0-4 Hertz average power decreased by approximately 46.3% for each 

concussion (up to two) resulting in retrograde amnesia. By contrast, individuals who had 

also sustained a loss of consciousness (up to one) saw a 77% increase in variability 

(Figure 3-7).  

4-8 Hertz average power. The alternative models of trial-average 4-8 Hertz 

average power required log transformation to meet the assumptions of normality and 

homoscedasticity. Model 1 explained the greatest variance in the observations, and the 

model was statistically significant. Retained predictors and model fit statistics alternative 

models after the step-down AIC procedure were presented in Table 3-6. Partial R2 

values for retained predictors were shown in Table 3-7. Gender had a moderate effect 

on the model, as did the interaction between gender, loss of consciousness and 

diagnosed concussions. 

 
 

 
Figure 3-7. Study 1: 0-4 Hertz average power coefficient of variation model. 
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Males and females showed differing patterns of responses to both numbers of 

diagnosed concussions and history of loss of consciousness. Males with no history of 

concussion had greater 59% greater 4-8 Hertz average power than females. For each 

diagnosed concussion, 4-8 Hertz average power decreased approximately 78.4%. 

Additionally, males with a history of concussion exhibited a greater decrease in average 

power per diagnosed concussion than those without. By contrast, 4-8 Hertz average 

power in females with a history of loss of consciousness was approximately five times 

greater per diagnosed concussions than for those without showed a decrease (Figure 3-

8 A).  

The first alternative model for the coefficient of variation for 4-8 Hertz average 

power required log transformation to meet model assumptions. Model 3 explained the 

greatest amount of variance after adjusting for the number of retained predictors and 

was significant. Retained predictors and model fit statistics after the step-down AIC 

procedure were presented in Table 3-6. Partial R2 values for retained predictors were 

presented in Table 3-7. Males with no history of loss of consciousness had lower trial-to-

trial variability in 4-8 Hertz average power than similar females. Additionally, trial-to-trial 

 

 
Figure 3-8. Study 1: 4-8 Hertz average power mean (A) and coefficient of variation (B) 
models. 
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variability significantly increased with increasing total numbers of sustained concussions 

and total numbers of occurrences of loss of consciousness (Figure 3-8 B). 

8-12 Hertz average power. The trial-averaged 8-12 Hertz average power 

required log-transformation to meet the assumptions of normality and homoscedasticity. 

Model 1 explained the greatest amount of variance in the observations and the model 

was significant. Retained predictors and model fit statistics after the step-down AIC 

procedure were presented in Table 3-8. Partial R2 values for retained predictors were 

shown in Table 3-9. Moderate effects were observed for gender, diagnosed 

concussions, and the interaction between history of loss of consciousness. 

The average power in this frequency was approximately twice as high for males 

as for females with no history of concussion. Additionally, average power in this 

frequency band decreased approximately 79.3% per diagnosed concussion. For females 

with a history of loss of consciousness, average power was approximately 7.8 times 

greater than for those without and 57.8% lower for males with a history of loss of 

consciousness. For individuals with no history of diagnosed concussion, men and 

women with no history of loss of consciousness, men’s average power in this frequency 

band increased slightly and women’s decreases slightly over the range of suspected 

concussions. By contrast for those with a history of loss of consciousness, both males 

and females had a steep decrease in average power with increasing numbers of 

suspected concussions (Figure 3-9 A). Additionally, males and females with a history of 

one diagnosed concussion and a history of loss of consciousness, average power 

decreases with increasing numbers of suspected concussions. However, this decrease 

is much more pronounced for men than for women. 

The models for the coefficient of variation for 8-12 Hertz average power did not 

require a transformation in order to meet assumptions of normality and  
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Figure 3-9. Study 1: 8-12 Hertz average power mean (A) and coefficient of variation (B) 
models. 
 

homoscedasticity. Model 1 explained the greatest variance after controlling for the 

retained predictors and was significant. Retained predictors and model fit statistics 

following the step-down AIC procedure for all three alternative models were presented in 

Table 3-8. Partial R2 values for retained predictors were shown in Table 3-9. For those 

with no history of loss of consciousness, intra-individual variability remains relatively 

consistent across the total number of suspected concussions. For those with a history of 

loss of consciousness, there was a decrease in intra-individual variability increasing 

numbers of concussions (Figure 3-9 B). 
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Discussion 
 

The purpose of this study was to identify the impact of concussion history on the 

multiscale complexity of fine motor control as quantified by a continuous isometric 

contraction during a seated visual-motor tracking task. We hypothesized that individuals 

with a history of concussion would produce less complex multiscale force output as 

compared to individuals without a history of concussion. We additionally hypothesized a 

greater effect for individuals with a history of unreported and undiagnosed concussions 

as compared to individuals in whom concussions were diagnosed. We further 

hypothesized that individuals with a history of concussion would have increased trial-to-

trial complexity variability (Maruta et al., 2010; Robertson et al., 1997; Stuss et al., 

1989).  

 
Average Outcomes 

The a priori models for complexity, average power, and RMSE included only 

numbers of diagnosed and suspected concussions as well as histories of loss of 

consciousness and amnesia. These models for complexity, RMSE, and average power 

from 0-4 Hertz explained little variance and predictors were not significant. Alternative 

models including gender significantly increased the amount of explained variance, with 

the exception of 0-4 Hertz average power, and included predictors that significantly 

predicted the trial-averaged outcomes.  

Our initial hypotheses regarding complexity were confirmed in the gender-

stratified model. For both men and women, complexity was lower with increasing 

cumulative numbers of concussions. Males in this sample had greater overall complexity 

than females. These findings agree with previous single-scale sample entropy findings 

from this task (Studenka & Raikes, in press), suggesting that men generally produce 
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more complex waveforms in response to this particular task and that increasing numbers 

of concussions increase signal regularity.  

Additionally, 4-8 Hertz average power decreased with increasing numbers of 

diagnosed concussions for women with no history of loss of consciousness and men 

regardless of the loss of consciousness history, while increasing for women with a 

history of loss of consciousness. Additionally, 8-12 Hertz average power decreased with 

increasing numbers of suspected concussions for women with any history of diagnosed 

concussions and loss of consciousness, as well as men with any history of loss of 

consciousness. By contrast, 8-12 Hertz average power increased with increasing 

numbers of suspected concussions in men without a history of diagnosed concussions 

and loss of consciousness. Taken together, both diagnosed and suspected concussions 

were generally related to reduced average power in these frequency bands, with the rate 

of reduction being moderated by a history of loss of consciousness.  

The loss of average power in these frequency bands cumulatively results in lower 

signal complexity, as previously observed. Additionally, processes related to feedforward 

and predictive control (Desmurget & Grafton, 2000; Pew, 1974; Sosnoff & Newell, 

2005a; Sosnoff & Voudrie, 2009), visual feedback processing and physiological aspects 

of tremor in healthy individuals (Deuschl et al., 2001; Stiles & Randall, 1967; Vaillancourt 

& Newell, 2000) generally correspond to frequencies in these frequency bands. Thus, 

loss of average power in these frequency bands for this task suggests alterations in 

processes ranging from sensory-motor processing to visual feedback processing and 

physiological tremor for individuals with increasing numbers of concussions.  

Finally, men and women with no history of loss of consciousness exhibited 

different patterns task-related performance with increasing numbers of concussions. 

Women’s error increased while the men's’ error decreased and this is reasonable and 
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expected, given that their complexity was lower than the men’s. This pattern reversed, 

however, for those who had experienced any loss of consciousness. Because loss of 

consciousness was not also significantly associated with reduced complexity, this finding 

is less easy to explain. However, the increase in 4-8 Hertz average power for women 

with a history of loss of consciousness and decrease in both 4-8 Hertz and 8-12 Hertz 

average power for men with a history of loss of consciousness may partially account for 

these differing patterns of RMSE responses. 

These results echo previous findings related to nonlinear measurements from 

other motor performance tasks following concussions. Postural sway is more regular 

both immediately after a concussion (within the first 7-10 days of injury) (Buckley et al., 

2016; Cavanaugh et al., 2005, 2006; Fino, Nussbaum, & Brolinson, 2016; Gao, Hu, 

Buckley, White, & Hass, 2011), as well as when asymptomatic (De Beaumont et al., 

2011; Quatman-Yates et al., 2015; Sosnoff et al., 2011). It is important to note that these 

studies found differences between concussed individuals and their pre-injury 

assessments or healthy participants without considering gender. We observed a 

significant linear decrease in complexity with increasing numbers of concussions only 

when stratifying by gender, which supports previous concussion-related findings for this 

task (Studenka & Raikes, in press).  

Additionally, these results agree with those from a circle-tracing task. Concussed 

individuals demonstrated lower complexity in this task at the time of injury with a 

progressive increase in complexity as time from injury increased (Kelty-Stephen et al., 

2015). Though those authors did not stratify outcomes by gender, a significant gender 

effect has been noted, with healthy males producing more complex circles than healthy 

females in a previous study of that particular task (Stirling et al., 2013). Thus, gender is 

an important consideration for visual-motor tracking tasks when single- and multi-scale 
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metrics of complexity are of interest. 

It is also important to note that, though the present findings of reduced 

complexity with increasing numbers of concussions echo those from other motor tasks, 

the reasons and mechanisms for this reduction are not well-documented and are not 

necessarily the same across tasks. From a task-performance perspective, maintaining 

upright posture requires the integration of proprioceptive, visual, and vestibular 

information (Oie et al., 2002; Thompson et al., 2011). By contrast, the visual-motor 

tracking task in the present study is a vision-dominant task with little input from 

proprioceptors (Hu & Newell, 2011). Therefore, the present findings contribute to a larger 

body of findings of decreased complexity across multiple motor tasks in individuals with 

a history of concussion but do not implicate a common mechanism. 

With respect to postural sway, proposed mechanisms for increased regularity 

post-concussion include reductions in neurophysiological adaptation (Lipsitz & 

Goldberger, 1992; Quatman-Yates et al., 2015; Sosnoff et al., 2011), sensorimotor 

integration (Quatman-Yates et al., 2015), and lower extremity muscle stiffness (Fino et 

al., 2016), as well as more broad alterations in motor cortex activation (Fino et al., 2016). 

While these mechanisms may also contribute to decreased visual-motor tracking output 

complexity, individuals with a history of sports-related concussion may also have 

reduced functional connectivity in visual attention networks as well as the cerebellum 

(Churchill, Hutchison, Leung, Graham, & Schweizer, 2016). If this is the case, then 

decreases in visual-motor tracking complexity may provide behavioral evidence of these 

functional connectivity changes. Additionally, the loss of complexity in aging and disease 

hypothesis would support this interpretation, where decreases in complexity are the 

result of either the loss of, or a change in, the connectivity between structural units 

(Lipsitz & Goldberger, 1992; Vaillancourt & Newell, 2002a).  
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Additionally, the gender-specific findings are supported by neurocognitive 

findings of greater task performance for men than women in visuospatial tasks (Broshek 

et al., 2005; Colvin et al., 2009; Covassin et al., 2006; Covassin & Elbin, 2011; Covassin 

et al., 2012). While the relationship between task performance and gender was altered 

by the history of loss of consciousness, men exhibited greater task performance than 

women with no history of loss of consciousness with increasing numbers of concussions. 

These findings are in concert with the findings for the complexity of the force output and 

suggest that, like single-scale measures of regularity for this task (Studenka & Raikes, in 

press), gender is an important consideration when reporting multiple-trial average 

outcomes. 

 
Coefficient of Variation 

As with the trial-averaged outcomes, the inclusion of gender as a predictor 

improved the coefficients of variation models. Additionally, our initial hypothesis about 

increased trial-to-trial variability in complexity was partially confirmed with a gender-

stratified model, rather than the a priori predictor model. The men’s trial-to-trial 

complexity variability increased with the number of diagnosed concussions, whereas 

women showed a decrease. For the women, this effect was driven by a history of 

amnesia, whereas men demonstrated similar patterns of increase regardless of amnesia 

history.  

We additionally observed differing patterns of trial-to-trial variability for the low-

frequency band (0-4 Hertz). While this relationship was not driven by increasing 

numbers of concussions, increasing numbers of occurrences of concussion-related 

retrograde amnesia were associated with a reduction in 0-4 Hertz average power trial-to-

trial variability. This relationship is additionally influenced by the total number of 
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occurrence of concussion-related loss of consciousness. For those with a history of loss 

of consciousness, variability increases with occurrences of retrograde amnesia, while 

those with no history see a decrease.  

Furthermore, the total number of concussion-related loss of consciousness 

events was associated with increased 4-8 Hertz and decreased 8-12 Hertz trial-to-trial 

variability for both men and women with increasing numbers of total concussive events. 

These findings were in contrast to the overall findings for complexity, where increasing 

numbers of concussions were associated with decreased complexity and increased 

variability. In these frequency bands, increasing numbers of concussions and loss of 

consciousness are associated with both decreased average power and decreased 

variability.  

The pattern of observations for trial-to-trial performance variability is more 

complex than for the trial-averages. Broadly, men’s RMSE variability increased with 

diagnosed concussions, while the women’s variability decreased. History of amnesia 

was associated with more rapid increases in variability for men and decreases in 

variability for women, while a history of loss of consciousness had an opposite effect. 

Furthermore, for those with suspected concussions, a history of amnesia was associated 

with increased trial-to-trial variability.  

Trial-to-trial variability in measures of complexity and spectral properties have not 

been previously reported. The findings of the present study demonstrate that increasing 

numbers of concussion are related to altered consistency in these measures. 

Additionally, concussion-related loss of consciousness appears to moderate the 

relationship between complexity and the spectral components. The patterns observed 

here suggest that individuals with a history of concussion-related loss of consciousness 

have increasingly stable trial-to-trial high-frequency components and more variable low-
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frequency components with increasing numbers of concussions. This in turn leads to 

more variable complexity and lower overall complexity. Additionally, these patterns have 

a gender-specific influence on task performance. For those without a history of loss of 

consciousness, women had more task-related error with lower variability as the number 

of concussions increased. This pattern was reversed in the men in this sample. 

Previous studies have also reported increased performance variability on visual-

motor tasks in the presence of concussion (Maruta et al., 2010; Robertson et al., 1997; 

Stuss et al., 1989). One possible explanation for this increase in performance variability 

is the observation of damaged white matter tracts in the anterior corona radiate and the 

genu of the corpus callosum (Maruta et al., 2010). These areas are centers of attention 

and spatial processing, along with the dorsolateral prefrontal cortex (DLPFC), and may 

be susceptible to damage with concussions (Jonides et al., 1993; Miller & Cohen, 2001). 

Given the potential disruption of visual attention networks with concussion, damage in 

these areas may explain increases in performance variability as well as decreases in 

task performance and motor complexity. Furthermore, post-concussion syndrome 

(persistent concussive symptoms lasting beyond the usual time course of recovery) may 

be related to damage in the connections to the right DLPFC (Stein & McAllister, 2009). 

Thus, visual-motor tracking performance may provide insight into DLPFC function and 

be useful as a metric of long-term concussion-related outcomes. However, gender-

related differences in performance variability, such as those in the present study, have 

not been reported and merit further investigation. 

The present findings contribute to a larger body of work indicating that 

concussion results in increased intra-individual variability across multiple domains of 

cognitive, motor, and behavioral function (Beaupré, De Guise, & McKerral, 2012; Hill, 

Rohling, Boettcher, & Meyers, 2013; Maruta et al., 2010; Parks et al., 2015; Raikes & 
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Schaefer, 2016; Robertson et al., 1997; Stuss et al., 1989; Stuss, Pogue, Buckle, & 

Bondar, 1994). Intra-individual variation is an indicator of overall neurological health and 

increases in such variability tend to reflect reductions in health (MacDonald, Nyberg, & 

Bäckman, 2006). The findings of the present study, in conjunction with these other 

findings, indicate that not only should multiple-trial averages be considered in the 

evaluation of long-term concussion recovery, but that intra-individual variability is an 

additionally important indicator of function. 

 
The Role of Loss of Consciousness 

The role of loss of consciousness in concussion is not well understood. 

Individuals with concussion-related loss of consciousness often have prolonged recovery 

times and trajectories (Heyer et al., 2016; Parks et al., 2015; Taylor et al., 2010; Yeates 

et al., 2009), though this is not always the case (Collins et al., 2003; Howell, O’Brien, 

Beasley, Mannix, & Meehan, 2016; Lovell, Iverson, Collins, McKeag, & Maroon, 1999; 

Mickevičiene et al., 2002, 2004; Sterr, Herron, Hayward, & Montaldi, 2006; Umile, 

Sandel, Alavi, Terry, & Plotkin, 2002). Neuroimaging findings related to traumatic brain 

injury, including concussion, have consistently revealed reduced brain stem white matter 

structure (Delano-Wood et al., 2015), ventral prefrontal areas (Sorg et al., 2014), as well 

as areas related to visual and prefrontal cortex integration (Wilde et al., 2016) for 

individuals with concussion-related loss of consciousness. Notably, the reduced 

brainstem white matter integrity occurred in the pontine tegmentum, whose fibers have 

projections to both ascending sensory and descending motor tracts (Delano-Wood et al., 

2015). Additionally, the upper brainstem is involved in the integration of eye movement, 

which may be related to post-concussion syndrome (Heitger et al., 2009). Therefore, the 

relationship between loss of consciousness and the outcomes observed in the present 
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study may reflect such losses of white matter integrity in areas related to visual 

integration, attention, and motor control. 

 
Limitations 

There are several limitations in the present study. First, all participants provided 

only a self-reported history of concussion. It is possible that individuals who reported no 

history of concussion did indeed have a history. For those who reported diagnosed 

concussions, it is reasonable to assume that these individuals recalled receiving a 

diagnosis by a medical professional. Additionally, to better account for the high 

prevalence of underreporting of concussions (Gysland et al., 2012; Kerr et al., 2016; 

McCrea et al., 2004), individuals also self-reported their history of suspected 

concussions. This required participants to retrospectively self-diagnose themselves and 

therefore, individuals may have reported suspected concussions that were indeed not 

concussions. This applies, in particular, to those who only reported suspected 

concussions without any diagnosed concussions for reference (n = 25). However, 

conservative approaches to concussion management suggest that any time a 

concussion is suspected, individuals should be held out for evaluation and observation 

(Giza et al., 2013; McCrory et al., 2013). Therefore, if individuals are able to 

retrospectively self-identify times at which they likely should have been evaluated but 

were not, then these results approximate the effects of concussions under the most 

conservative management plans. 

Secondl there is an unavoidable delay between force being applied to the load 

cell and being plotted on-screen (≤ 60ms). However, the delay was consistent for all 

individuals, and therefore any influence that such visual lag had on task performance 

should also be consistent across individuals. Furthermore, short delays (< 100ms) have 
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minimal on task performance and nonlinear metrics (Sosnoff & Newell, 2008). 

Additionally, participants task performance may have improved with practice and 

therefore may have influenced the findings. However, previous research related to this 

task has demonstrated minimal within-day learning effects for the structure of force 

output, though there may be an improvement in RMSE (Studenka, King, & Newell, 

2014). Future research should identify the extent to which within-day and across-day 

learning occurs and alters task performance, temporal structure, and spectral 

characteristics of visual-motor tracking tasks following a concussion. Additionally, though 

gender differences were observed, these analyses do not take into account education 

level or prior visuo-spatial task exposure. Finally, other tracing patterns (e.g., sine wave, 

circles) may identify other patterns of impairment and merit further investigation. 

In light of the fact that individuals with a history of concussions, and particularly 

females, generally exhibited lower complexity irrespective of target error, this information 

may be useful in informing the clinician of persistent, subclinical visual-motor 

impairments. Nonlinear characteristics of visual-motor tracking performance, in addition 

to common assessments of cognition and balance as well as intra-individual variability in 

these measures, may help to provide a complete view of the overall neurological 

recovery of the concussed individual. Doing so may lead to better identification of 

individuals at risk for poor long-term outcomes that are currently associated with 

repetitive head trauma (H. Chen et al., 2007; Chiò et al., 2005; Factor & Weiner, 1991; 

Goldman et al., 2006; Harris et al., 2013; Kerr, Evenson, et al., 2014; Kerr et al., 2012; 

McKee et al., 2009, 2013; Omalu et al., 2005; Rugbjerg et al., 2008; Stern et al., 2011) 

 
Conclusion 

 

 Asymptomatic individuals with a history of concussion exhibit altered patterns of 
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visual-motor tracking performance, signal complexity, and high-frequency oscillations as 

compared to individuals with no such history. These metrics are linearly associated with 

increasing numbers of concussions and are influenced by both gender and a history of 

concussion-related loss of consciousness. These findings indicate a cumulative 

reduction in the way in which previously concussed individuals process and integrate 

visual information to guide behavior and this may be related to losses of white matter 

integrity in the brainstem, visual networks, and prefrontal areas.  
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CHAPTER 4 
 

DISCRIMINATING PREVIOUSLY CONCUSSED INDIVIDUALS FROM HEALTHY 
 

CONTROLS WITH MEASURES OF PHYSIOLOGICAL COMPLEXITY 
 

 
Abstract 

 
 

The occurrences of concussion, particularly in sport and military activity, are 

presently an issue of social and medical inquiry and concern. Given the associations 

between repeated concussions and later adulthood neurological and cognitive 

impairments, screening methods to identify individuals with a past history of concussion 

are of value. Nonlinear dynamics, including measures of complexity and spectral power, 

may provide insight into the functional connectivity in cognitive and motor processes 

following concussion, and thus may provide insight into the presence of past 

concussions. Individuals with (n = 84) and without (n = 43) a self-reported history of 

concussion completed 10 trials of a visual-motor tracking task. We fit individual 10-fold 

cross-validated logistic regressions using average multiscale complexity, root mean 

square error, detrended fluctuation α, and spectral power in three frequency bands (0-

4Hz, 4-8Hz, and 8-12Hz) and gender (all models) to predict prior history of concussion. 

Outcomes included sensitivity (true positive rate), specificity (true negative rate), positive 

(probability of concussion history given a positive prediction) and negative predictive 

value (probability of no concussion history given a negative prediction). Positive 

predictive value, reflecting the capacity to predict a positive concussion history from a 

clinical perspective, was high (≤ 70%) despite moderate sensitivity (49.41%-76.47%) 

and specificity (47.62%-71-47%) in the gender-stratified models. Such clinical prediction 

capacity is valuable in identifying individuals who merit further evaluation and 

observation over time for conditions related to repetitive head traumas. 
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Introduction 
 
 

 Physiological systems exhibit complex patterns under healthy conditions. 

Complexity is typically defined as functional connectivity between sensory, cognitive, 

and motor systems and manifested as multiple frequencies present in a produced signal 

(Lipsitz & Goldberger, 1992; Vaillancourt & Newell, 2002a). With respect to motor output, 

quantifying complexity provides information about both sensory-motor function and 

motor control (Hu & Newell, 2011; Newell et al., 2006; Sosnoff & Newell, 2005a; Vieluf et 

al., 2015). Complexity has been quantified through measures of regularity (approximate 

entropy, sample entropy; Govindan et al., 2007; Pincus & Goldberger, 1994; Pincus & 

Viscarello, 1992; Richman & Moorman, 2000; Slifkin et al., 2000), multiscale complexity 

(multiscale entropy; Costa et al., 2002a, 2003; Kelty-Stephen et al., 2015), Fourier 

transform-based spectral analyses (Slifkin et al., 2000; Sosnoff & Newell, 2008; 

Vaillancourt et al., 2001), and long-range correlations between points across multiple 

time scales (detrended fluctuation analysis; Peng, Hausdorff, Goldberger, & Walleczek, 

2000; Peng, Havlin, Stanley, & Goldberger, 1995; Penzel, Kantelhardt, Grote, Peter, & 

Bunde, 2003; Vaillancourt & Newell, 2003).  

 Additionally, with both aging and disease, individuals exhibit a loss of complexity 

across multiple physiological systems including cardiac, respiratory, sleep, and motor 

(Hayano et al., 1990; Kelty-Stephen et al., 2015; Lee, Kim, Kim, Park, & Kim, 2002; 

Morrison & Newell, 2012; Newell et al., 2009; Peng et al., 2000; Penzel et al., 2003; 

Pincus & Goldberger, 1994; Sosnoff et al., 2011; Sosnoff & Newell, 2006b; Vaillancourt 

et al., 2001). This loss of complexity is generally reflected by a relative reduction in the 

contribution of high-frequency components, an increase in single-scale metrics of 

regularity, decreases in multiscale complexity, and deviations away from long-range 
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correlations into either random or uncorrelated structures (Costa et al., 2005, 2003; 

Lipsitz & Goldberger, 1992; Loughlin & Redfern, 2001; Morrison & Newell, 2012; Newell 

et al., 1995, 2009, 2006; Ofori, Samson, & Sosnoff, 2010; Peng et al., 2000; Pincus & 

Goldberger, 1994; Richman & Moorman, 2000; Singh et al., 2012; Sosnoff et al., 2011; 

Sosnoff & Newell, 2005a; Vaillancourt & Newell, 2002a, 2003).  

 There have been limited applications of these methods to outcomes following 

concussions. Concussions are defined as biomechanical events resulting from a blow to 

the head or body resulting in a disruption of normal brain function (McCrory et al., 2013). 

Concussions present as impairments in multiple domains of cognition (Barr & McCrea, 

2001; Bleiberg et al., 2004; Collie et al., 2006; Gaines et al., 2016; Guskiewicz et al., 

2001; Iverson et al., 2006; Makdissi et al., 2001; McCrea et al., 2003; Schatz et al., 

2006) and motor control (Buckley et al., 2013; Catena et al., 2007b, 2009; Furman et al., 

2013; Guskiewicz et al., 1996; Hammeke et al., 2013; Pearce et al., 2015; Riemann & 

Guskiewicz, 2000) among others. The majority of these impairments resolve within 5-7 

days (Barr & McCrea, 2001; Bleiberg et al., 2004; Furman et al., 2013; Guskiewicz et al., 

1996, 2001; Iverson et al., 2006; McCrea et al., 2003; Peterson et al., 2003; Register-

Mihalik et al., 2008; Riemann & Guskiewicz, 2000; Sim et al., 2008). However, there is 

accumulating evidence of long-term impairments in cognitive and motor functions 

(Buckley et al., 2015, 2016, J.-K. Chen et al., 2004, 2008a, 2008b; De Beaumont et al., 

2009; Gosselin et al., 2011; Howell et al., 2013; Pearce et al., 2014; Slobounov et al., 

2002; Witt et al., 2010). Additionally, history of concussion is a predictor of the eventual 

development of later-in-life cognitive and motor disorders including Alzheimer’s disease, 

Parkinson’s disease, amyotrophic lateral sclerosis, and chronic traumatic 

encephalopathy (Cantu, 2007; H. Chen et al., 2007; Chiò et al., 2005; Factor & Weiner, 

1991; Goldman et al., 2006; Guskiewicz et al., 2005; Harris et al., 2013; McKee et al., 
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2009, 2013; Rugbjerg et al., 2008). At present, there are no ways to discriminate those 

individuals who are at risk for these conditions, and there are only limited ways for 

identifying people with residual impairments that do not present clinically. Additionally, 

there is evidence that a significant proportion of individuals may not report the 

occurrence of a concussion (Gysland et al., 2012; Kerr, Register-Mihalik, et al., 2014; 

Kerr et al., 2016; McCrea et al., 2004). Therefore, there is a need for objective methods 

that discriminate between persons with a history of concussion and those without. 

Quantifying complexity in motor output may provide such a metric for identification. 

Nonlinear regularity has been used to quantify changes in postural sway 

following concussions. There is evidence of subtle and persistent increases in postural 

sway regularity during stationary stance when analyzed using approximate entropy 

(ApEn) (Cavanaugh et al., 2005, 2006; De Beaumont et al., 2011; Sosnoff et al., 2011), 

as well as Shannon and Renyi entropies (Buckley et al., 2016), in asymptomatic 

individuals with a history of concussion. Given the definitions of complexity, these 

findings indicate that previously concussed individuals have altered functional 

connections between sensory inputs (proprioceptive, visual, vestibular) and postural 

effectors to maintain upright posture (Kennedy & Inglis, 2002; Oie et al., 2002; Peterka, 

2002; Roll et al., 2002; Thompson et al., 2011).  

Studenka and Raikes (in press) observed greater regularity in individuals with a 

history of multiple concussions than individuals with a single concussion during a seated 

visual-motor tracking task. This task relies on visual information for error detection and 

correction (Cole & Sedgwick, 1992; Gandevia et al., 1990; Hu & Newell, 2011; Teasdale 

et al., 1993; Tracy, 2007; Vaillancourt & Russell, 2002) and thus may provide valuable 

information about visual information processing and integration with error detection and 

correction processes following concussion.  
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Only one study to date has quantified complexity, observed over multiple time 

scales, after concussion rather than solely regularity (Kelty-Stephen et al., 2015). The 

authors used a circle tracing task, whose complexity provides information about the 

integration between proprioceptive and visual systems (Kelty-Stephen et al., 2015; 

Stirling et al., 2013). Concussed individuals exhibited decreased complexity in a circle 

tracing task within 1-11 days of injury, as compared to a pre-injury assessment. 

Additionally, concussed individuals’ task complexity increased as time from injury further 

increased. However, the authors do not indicate over what time frame this increase 

occurred or whether performance returned to preinjury status (Kelty-Stephen et al., 

2015). 

While group differences have been observed between individuals with and 

without a history of concussion, there have been few, if any, efforts to determine the 

extent to which these measures may be able to predictively distinguish individuals with a 

history of concussion from those without. Accurate discrimination would provide valuable 

clinical information regarding a person’s health status, including past concussion history 

as well as recovery from a concussion. Additionally, given the relationship between prior 

concussion history and later-in-life conditions, such measures may help to discriminate 

at-risk individuals.  

There are a limited number of reports focusing on distinguishing people with a 

history of concussion from those without. The majority of these studies report use of 

neurocognitive testing to distinguish persons with acute concussions from healthy 

individuals (Barr & McCrea, 2001; Broglio et al., 2007; Collins et al., 1999; Iverson et al., 

2006; Louey et al., 2014; Lovell et al., 2003; Schatz et al., 2006; Van Kampen, Lovell, 

Pardini, Collins, & Fu, 2006). Additionally, several studies have utilized neurocognitive 

testing outcomes and symptoms to distinguish acutely concussed individuals at risk for 
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prolonged recovery times from those with shorter recovery times (Lau et al., 2011; Lau, 

Collins, & Lovell, 2012). One study utilized a neurocognitive screening tool to 

differentiate between individuals with traumatic brain injuries from nonbrain injured 

individuals (McKay, Wertheimer, Fichtenberg, & Casey, 2008). Though the participants 

in that study included individuals with concussions, the traumatic brain injury group had 

people with a range of severities and most had moderate-to-severe TBIs. Thus, few 

studies have undertaken to differentiate between asymptomatic persons with and 

without a history of concussion, particularly with a motor-based task.  

The purpose of this study was to determine whether various measures of 

nonlinear regularity and complexity accurately discriminate between individuals with and 

without a history of concussion. We applied these measures to the output of a 

continuous isometric visual-motor tracking task. This task has been previously used to 

study changes in sensory-motor integration and motor control in aging individuals with 

various conditions, including concussions.  

 
Methods 

 

Participants 

One hundred twenty-seven right-handed participants were recruited from club 

sports at Utah State University as well as through the Utah State University Research 

Participation Portal (https://usu.sona-systems.com). Descriptive characteristics of this 

sample can be found in Table 4-1 and Figure 4-1. These data collection procedures 

were approved by the Institutional Review Board (Appendix B and C).  

Individuals were screened for concussion history using a standardized form 

(Appendix A). Information regarding concussion history included self-reported numbers 

of diagnosed and suspected injuries as well as potential indicators of prolonged recovery  
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Table 4-1 
 
Study 2: Participant Demographic Information and Concussion History 

 Concussion history 
─────────────────────── 

  

 No History History Test p value 

n 42 85   

Height (in) 66.30 (3.26) 68.63 (3.68) t = -3.625 < 0.001 

Weight (kg) 146.29 (27.44) 157.90 (27.85) t = -2.229 0.028 

Age 20.55 (2.03) 20.58 (1.91) t = -0.010 0.935 

Athletic exp. (years) 35.95 (22.62) 47.27 (23.26) t = -2.629 0.01 

Male/Female 12/30 43/42 Χ2 = 4.689 0.03 

Right-handed  41 83   

Race or Ethnicity     

 Caucasian or White 40 82   

 Asian 1    

 Mexican 3 3   

 Spanish 1    

 Argentinian 1    

 Peruvian  1   

 Multiple 1 1   

Note. Athletic experience is cumulative experience across all sports played. LOC = loss of 
consciousness; RA = retrograde amnesia; AA = anterograde amnesia.  

 

including loss of consciousness and post-concussive amnesia (Barlow et al., 2010; 

McCrea, Iverson, et al., 2013; Parks et al., 2015; Taylor et al., 2010; Wilde et al., 2016; 

Yeates et al., 2009). Due to high rates of underreporting of concussions in athletics (Kerr 

et al., 2016; McCrea et al., 2004), these self-reports more completely describe the 

participants’ injury history than self-reported diagnosed concussion alone (Studenka & 

Raikes, in press). All participants who reported a history of concussion also self-reported 

no known persistent concussion symptoms. Further demographic data collected sport 

history and cumulative years of athletic experience. 
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Figure 4-1: Study 2: Sport participation by gender and concussion history. 
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Apparatus 

Participants were seated at a table, facing a 22” (29 x 47 cm horizontal and 

vertical) LCD (Dell) monitor. An ATI Industrial Automation load cell (diameter 1.27 cm; 

Apex, NC) was affixed to a wooden block, and secured with the load cell mounted just 

right of the center of the monitor and 35 cm from the bottom edge of the monitor (Figure 

4-1). The output from the load cell was amplified through a National Instruments DAQ 

board (National Instruments, Austin, TX) with a resolution of 3.125 microNewtons. The 

participants rested their right hands on the right side of the load cell and pressed the 

load cell with the lateral aspect of the right distal interphalangeal joint. Abduction/ 

adduction of the index finger registered force through the load cell. Data were sampled 

at 100 Hz, in keeping with recommendations that sampling rates be set to 5x the highest 

frequency of interest when calculating sample entropy (Gow et al., 2015). Physiological 

signals are generally observed between 0 and 20 Hz, making 20 Hz the upper limit of 

interest. 

The task was administered in, and all data collected through, MATLAB (v. 2015a, 

The Mathworks Inc., Natick, MA, 2015). A white line was displayed on the screen 

representing the force administered by the index finger. The delay between finger force 

and output display is unavoidable but is minimized and undetectable by the 

experimenters (~60 ms; Studenka & Raikes, in press). A straight red line was displayed 

on the screen for the duration of each trial and served as the target waveform. The white 

line moved across the computer monitor from left to right, leaving a trace of its previous 

position (see Figure 4-2). For each trial, the target line was centered in the middle of the 

screen at 40% of a participant’s MVC. This value maximizes complexity (Vieluf et al., 

2015). The entire screen ranged from 35%–45% of a participant’s MVC. 
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Figure 4-2. Study 2: Visual-motor tracking task apparatus and display. The horizontal line 
is the target line. The white line is the participant’s produced force. 
 
 
 
Procedures and Instructions 

Participants performed three trials (5 s) applying maximal finger force. The 

maximal value of these three trials was recorded as that participant’s maximal voluntary 

contraction (MVC). Each participant then performed 10 trials of tracking. Participants 

were instructed to minimize the difference between the white (participant produced) and 

red (target) lines. Each trial lasted 30 seconds.  
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Data Analysis 

All data were processed using a custom-written Python (Python Software 

Foundation, https://www.python.org/) module (https://github.com/araikes/physiologic-

complexity). Trial data were visually inspected for compliance with instructions and 

validity. Individual trials were excluded for the following reasons. 

1. Trials with fewer than 20% of the data points appearing on the screen 

2. Trials with a loss of force applied to the load cell, indicating that the 
participant had removed the finger during the trial 

3. Trials with visually abnormal patterns relative to the task, including rapid 
oscillations, delayed force application more than 4 seconds into a trial, or 
multiple valleys approaching 0 force. 

 
Data were filtered with a 9th order forward-backward 20 Hz low-pass digital Butterworth 

filter. Prior to analyses, the first 4 s (1 s of the recorded trial following a 3 second “warm 

up”) and the last 1 s of force output were removed to account for changes that might 

occur as an individual acclimates to the task and changes that might occur toward task 

completion. Because sample entropy is influenced by nonstationarity in the data, all data 

were detrended using an adaptive fractal detrending method prior to complexity 

calculations (Gao, Hu, & Tung, 2011). Detrending was computed using a 2nd order 

polynomial fit over segment lengths of 129 data points to preserve data trends without 

overfitting (see Figure 4-3). 

Amount of force variability. Root mean square error (RMSE) was calculated as 

a metric of overall task performance as 

ܧܵܯܴ ൌ ඨ
∑ሺݏ െ ௜݂ሻଶ

݊ െ 1
, ሺ4.1ሻ 

where s is the target value (40% MVC), ௜݂ is the ith force sample, and I is the number of 

data samples (Sosnoff & Newell, 2005a). 
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Figure 4-3. Study 2: Example of original signal and trend (A) and detrended signal (B). 
 
 

The structure of force variability. The structure of force variability was 

examined using several time- and frequency-domain analytic methods. We used sample 

entropy, modified multiscale entropy, detrended fluctuation analysis, and frequency 

analysis. 

Sample entropy. Sample entropy quantifies the negative natural logarithm ratio 

of the likelihood that a pattern (m samples long) and a longer pattern (m + 1) repeat 

throughout the time series. It is calculated as follows (Govindan et al., 2007; Wu et al., 

2013): 

1. Construct the ith template vector of length m as 

௜ݔ
௠ሺߜሻ ൌ ቄݔ௜	ݔ௜ାఋ	…	௫೔శሺ೘షభሻഃ

ቅ , 1 ൑ ݅ ൑ ܰ െ݉ߜ ሺ4.2ሻ 

where ߜ is a time delay between successive vector components. 

2. Calculate the Euclidean distance ݀௜௝
௠ for each pair of template vectors: 

݀௜௝
௠ ൌ ฮݔ௜

௠ሺߜሻ െ ௝ݔ
௠ሺߜሻฮ

ஶ
, 1 ൑ ݅, ݆ ൑ ܰ െ݉ߜ, ݆ ൐ ݅ ൅ ߜ ሺ4.3ሻ 

3. ݊ሺ݉, ,ߜ  ሻ is the total number of matched vector pairs of length m. A matchedݎ

pair is defined as any pair such that ݀௜௝
௠ሺߜሻ ൑  where r is a pre-defined ݎ



93 
 

tolerance threshold. Increment ݊ሺ݉, ,ߜ ሻ by one each time ݀௜௝ݎ
௠ሺߜሻ ൑  .holds ݎ

4. Repeat steps 1 through 3 for m + 1. 

5. Sample entropy is thus: 

,݉,ݔሺ݊ܧ݌݉ܽܵ ,ߜ ሻݎ ൌ െ ln
݊ሺ݉ ൅ 1, ,ߜ ሻݎ

݊ሺ݉, ,ߜ ሻݎ
ሺ4.4ሻ 

Sample entropy is a metric of regularity. It is applied to the original data and 

considers only a single time scale 

Modified multiscale entropy. Force complexity was quantified with modified 

multiscale sample entropy (MMSE; Wu et al., 2013), an adaptation of multiscale entropy 

(Costa et al., 2002a) designed for short time series. In MMSE, sample entropy 

(Govindan et al., 2007) is calculated over multiple time scales of data to quantify the 

multiscale complexity of the signal. 

In MMSE, sample entropy is calculated on the original time series. A scale-

factored moving average of the time series of window length ߬ (see Figure 3) was then 

computed as: 

௝ݕ
ሺఛሻ ൌ

1
߬
෍ ,௜ݔ

௝ାఛିଵ

௜ୀ௝

	1 ൑ ݆ ൑ ܰ െ ߬ ൅ 1 ሺ4.5ሻ 

and sample entropy recalculated at each scale factor as: 

,݉,ݔሺܧܵܯܯ ߬, ሻݎ ൌ ,݉,ఛݕሺ݊ܧ݌݉ܽܵ ߜ ൌ ߬, ሻݎ ሺ4.6ሻ 

Scale factor values ranged from ߬ ൌ 1 to ߬ ൌ 34. This allows complexity calculations for 

frequencies from 16.7 Hz to 0.5 Hz (Gow et al., 2015). In our previous work, individuals 

completing this task at 10% MVC exhibited frequencies from 0–12 Hz (Studenka & 

Raikes, in press). Consistent with previous work, an ݉ ൌ 2, and ݎ ൌ 0.15 ∗

 were used to calculate sample entropy (Wu et al., 2013). Finally, we	௦௘௥௜௘௦	௜௠௘்ܦܵ

computed the overall complexity (complexity index, CI) for the time series as the sum of 
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the sample entropies for each scale factor (Figure 4-4). As with single-scale sample 

entropy, higher complexity index values indicate more complex force structures. 

Detrended fluctuation analysis. Detrended fluctuation analysis (DFA) 

quantifies long-range correlations across multiple timescales. In the presence of long-

range correlations, data exhibit self-similarity, where smaller units of the whole data 

resemble increasingly larger units of data at various scaling factors. Additionally, DFA 

has been used to identify long-range correlations in non-stationarity data (those with a 

trend) as well as avoids detecting long-range correlations that exist due to non-

stationarity. 

To calculate DFA, the entire time series is first integrated as (Peng et al., 2000, 

1995): 

ሺ݇ሻݕ ൌ 	෍ሾܤሺ݅ሻ െ ௔௩௘ሿܤ
௞

௜ୀଵ

ሺ4.7ሻ 

where B(i) is the ith force sample, and Bave is the average force. The integrated 

time series is then divided into bins of length n. A least squares line is fit within each bin, 

 

 
Figure 4-4. Study 2: Complexity curves for two different participants. At each scale factor, 
lower values indicate more regular signals. Complexity is the sum of the sample entropies 
at each scale factor. Lower values indicate less complex signals. 
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reflecting the trend in that bin. The integrated time series is detrended by subtracting the 

trend in each bin. The size of fluctuation for the detrended time series is calculated as: 

ሺ݊ሻܨ ൌ ඩ
1
ܰ
෍ሾݕሺ݇ሻ െ ௡ሺ݇ሻሿଶݕ
ே

௞ୀଵ

. ሺ4.8ሻ 

This process is repeated over multiple bin sizes, reflecting multiple time scales.  

After computing ܨሺ݊ሻ over all time scales, the slope of the line relating log	ሺܨሺ݊ሻሻ 

and log	ሺ݊ሻ is computed as ߙ, the self-similarity parameter. Uncorrelated data (white 

noise) is reflected by ܽ ൌ 0.5. 0.5 ൏ ߙ ൑ 1 reflect persistent long-range correlations. 

Correlated data with ߙ ൐ 1 is associated with brown noise, the integration of white noise 

in which correlations are the result of random walk processes. Consistent with previous 

work calculating DFA on continuous isometric force tracking, bin sizes of length 10 ൑

݊ ൑ 122, corresponding lengths of data ranging from 100 ms to 1.2 seconds, were used 

(Vaillancourt & Newell, 2003).  

Spectral analysis. Frequency domain characteristics of the force output were 

calculated using custom written software in MATLAB (2015). The Fourier transform of 

the force output yields the amplitude and phase of the time series in the frequency 

domain. The power in a given time series is equal to the square of the amplitude. Power 

within three different frequency bandwidths was examined. These bandwidths are 

associated with sensory-motor feedback and cognitive processing (0-4 Hz) (Miall et al., 

1985; Pew, 1974; Slifkin et al., 2000; Sosnoff & Newell, 2005a), feedforward processing 

(4-12 Hz) (Desmurget & Grafton, 2000; Pew, 1974; Sosnoff & Newell, 2005a; Sosnoff & 

Voudrie, 2009), and physiological tremor (8-12 Hz) (Deuschl et al., 2001; Findley et al., 

1981; Stiles & Randall, 1967; Vaillancourt et al., 2001). 
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Statistical Analyses 

All statistical calculations were performed in R (v. 3.3.2; R Core Team, 2015), 

using the dplyr (Wickham & Francois, 2015), tidyr (Wickham, 2016), pROC (Robin et al., 

2011), and caret packages (Wing et al., 2016). To examine the predictive capability of 

RMSE, SampEn, complexity, DFA ߙ, and frequency domain characteristics to 

discriminate between individuals with and without a history of concussion, separate 

logistic regressions were fit and validated using a 10-fold cross-validation procedure. 

The dependent variable was previous concussion status (TBI or control), determined as 

any history of self-reported diagnosed or suspected concussion. The individual 

independent variables were the 10-trial averages of RMSE, SampEn, complexity, DFA 

  .and average power between 0-4 Hz, 4-8 Hz, and 8-12 Hz ,ߙ

Logistic regressions were fitted using a 10-fold cross-validation method. In this 

approach, the dataset was divided 10 times into two groups. For each division, a logistic 

regression was fit on 90% of the participants (training group) and this model was used to 

predict the history of concussion of the remaining 10% (test group). This process was 

repeated until each individual served in the test group once. The predictions made onto 

the testing groups are the probability that a person sustained a concussion. Receiver 

operating characteristic (ROC) curves were used to determine cutoff values 

distinguishing positive from negative results for each variable (Hanley & McNeil, 1982). 

For this study, cutoff values maximized the sum of sensitivity and specificity (Table 4-2). 

Sensitivity, in this case, is the proportion of predictions of correctly predicted TBI 

participants out of all TBI predictions. Specificity is the proportion of correctly predicted 

control participants out of all of the predicted controls. Positive predictive value is the 

proportions of individuals predicted to have had a concussion who in fact did. Negative 

predictive value is the proportion of individuals predicted not to have a concussion who  
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Table 4-2 

Example Confusion Matrix 

 
Predicted 

─────────────────────────── 
 

Actual History No History Diagnostic metrics 

History True positive (A) False Negative (B) 
ݏ݊݁ܵ ൌ 	

ܣ
ܣ ൅ ܤ

 

No history False Positive (C) True Negative (D) 
ܿ݁݌ܵ ൌ 	

ܦ
ܥ ൅ ܦ

 

Clinical metrics 
ܸܲܲ ൌ 	

ܣ
ܣ ൅ ܥ

 ܸܰܲ ൌ
ܦ

ܤ ൅ ܦ
ܿܿܣ  ൌ 	

ܣ ൅ ܦ
ܣ ൅ ܤ ൅ ܥ ൅ ܦ

 

Note. Sens = Sensitivity; Spec = Specificity; PPV = Positive Predictive Value, a measure of 
precision; NPV = Negative Predictive Value, a measure of precision; Acc = Accuracy 
 

 
really did not. Finally, overall accuracy is the proportion of correct predictions out of all 

predictions. Sensitivity and specificity provide metrics of diagnostic value, while positive 

and negative predictive value provide metrics of clinical value. Additionally, the area 

under the curve (AUC) for each ROC curve is reported as a measure of the overall 

discriminability and its associated p-value tests the degree to which this discrimination is 

greater than 50% (ܪ଴: ܥܷܣ ൌ 0.5). Additionally, to evaluate the predictive capacity of  

multiple nonlinear metrics of complexity, an additive model was fitted with using both 

complexity and DFA ߙ, as well as an additive model with all of the signal characteristics. 

The same model fitting and prediction methods were applied. 

 
Results 

 

A Priori Models 

With respect to the discriminability of these models, none of the AUC’s were 

statistically significant (Figure 4-5 and Table 4-3). Diagnostic and clinical utility 

measurements maximizing the sum of sensitivity and sensitivity for each of the models  
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Figure 4-5. Study 2: Areas under the curve for a priori (A) and gender-stratified (B) models. 
 

 

Table 4-3 

Receiver Operator Characteristic Curve AUC and p Values 

 A priori models 
───────────── 

Gender models 
───────────── 

Predictor AUC p value AUC p value 

DFA α 0.506 0.372 0.604 0.014 

Complexity 0.518 0.194 0.639 0.002 

Sample entropy 0.532 0.247 0.628 0.004 

0-4 hertz average power 0.500 1.000 0.592 0.025 

4-8 hertz average power 0.505 0.417 0.620 0.003 

8-12 hertz average power 0.517 0.239 0.616 0.007 

Root mean squared error 0.540 0.178 0.604 0.014 

Additive model 0.506 0.400 0.622 0.005 

Note. AUC = Area under the curve; DFA = detrended fluctuation analysis; The 
additive model included DFA α and complexity as predictors. The gender models 
included gender as a main effect as well as the interaction between gender and 
the predictor. 
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are presented in Table 4-4. Models for 0-4 Hertz average power and DFA ߙ exhibited 

high sensitivity, indicating that individuals with a history of concussion were identified as 

such 100% and 96.4% of the time, respectively. However, this is at the cost of a high 

number of false positives. In these models, nearly all of the individuals in the sample are 

classified as having had a history of concussion. By contrast, models with high specificity 

(> 90%) had very low sensitivity, indicating that individuals without a history of 

concussion were accurately classified, but individuals with a history of concussion in 

these models are misclassified almost completely.  

 
Alternative Models 

Exploratory analyses of the present data indicated that the independent variables 

in each of the models differed in magnitude by gender. This is further supported by prior 

visual-motor tracking findings (Stirling et al., 2013; Studenka & Raikes, in press). 

Consequently, the a priori models were refit with the original predictors, an additional 

 
Table 4-4 

Sensitivity, Specificity, and Predictive Values for Linear and Nonlinear Metrics 
 

Predictor Sens. (%) Spec. (%) PPV (%) NPV (%) Acc. (%) 

DFA α 96.47 4.76 67.21 40.00 66.14 

Complexity 5.88 97.61 83.33 33.88 36.22 

Sample entropy 56.47 50.00 69.57 36.21 54.33 

0-4 hertz average power 100.00 0.00 66.93 - 66.93 

4-8 hertz average power 8.24 92.86 70.00 33.33 36.22 

8-12 hertz average power 8.24 95.24 77.78 33.90 37.01 

RMSE 31.75 76.19 72.97 35.56 46.46 

Additive model 5.88 95.24 71.43 33.33 35.43 

Note. Sens. = sensitivity; Spec. = specificity; PPV = positive predictive value; NPV = negative 
predictive value; Acc. = accuracy; DFA = detrended fluctuation analysis; RMSE = root mean 
squared error; The additive model included DFA α and complexity as predictors. 
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main effect of gender, and the interaction between the predictor and gender. The AUC’s 

for these models were all significant (Table 4-3 and Figure 4-5). These gender-stratified 

models exhibited a greater balance between sensitivity and specified, avoiding an 

extremely high value for one and an extremely low value for the other (Table 4-5). All of 

these models had positive predictive values between 75-80%, indicating that 75-80% of 

the individuals for whom the metrics predicted a history of concussion did indeed have a 

history of concussion. However, these metrics correctly identified individuals with a 

history of concussion between 50-76% of the time and those without a history between 

48-71% of the time.  

Additionally, using cutoffs that ensure 80% sensitivity when using neurocognitive 

tests to predict both acute concussion and lengthy recovery times (> 14 days) have 

improved clinical diagnostics and identification of those requiring greater recovery  

 

Table 4-5 

Sensitivity, Specificity, and Predictive Values for Models Including Gender and Linear and 
Nonlinear Metrics 
 

Predictor Sens. (%) Spec. (%) PPV (%) NPV (%) Acc. (%) 

DFA α 51.76 69.05 77.19 41.43 57.48 

Complexity 58.82 69.05 79.37 45.31 62.20 

Sample Entropy 56.47 69.05 78.69 43.94 60.63 

0-4 Hertz Average Power 49.41 69.05 76.36 40.28 55.91 

4-8 Hertz Average Power 76.47 47.62 74.71 50.00 66.93 

8-12 Hertz Average Power 51.76 71.43 78.57 42.25 58.27 

Root mean squared error 51.76 69.05 77.19 41.43 57.48 

Additive model 57.65 66.67 77.78 43.75 60.63 

Note. Sens. = sensitivity; Spec. = specificity; PPV = positive predictive value; NPV = negative 
predictive value; Acc. = accuracy; DFA = detrended fluctuation analysis; The additive model 
included DFA α and complexity as predictors.  
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opportunity (Collins et al., 1999; Iverson et al., 2006; Lau et al., 2011, 2012; Lovell et al., 

2003; Schatz et al., 2006; Van Kampen et al., 2006). For comparison with this literature 

base, specificity, as well as positive and negative predictive value when holding 

sensitivity constant at 80%, are presented in Table 4-6. Overall, specificity of these 

models decreases as sensitivity increases. However, positive predictive value remains at 

approximately 70%. 

 
Discussion 

 

 The purpose of this study was to determine whether various individual linear 

(RMSE) and nonlinear (complexity, DFA α, average power) metrics of the motor output 

from an isometric visual-motor tracking task could be used to discriminate individuals 

with a history of concussion from those without, based on a logistic regression classifier. 

The models based on individual metrics exhibited a limited capacity to discriminate 

between those with and without a history of concussion. In general, low-frequency (0-4  

 
Table 4-6 
 
Specificity and Predictive Values for Models Including Gender and Linear and Nonlinear 
Metrics at 80% Sensitivity 
 

Predictor Spec. (%) PPV (%) NPV (%) Acc. (%) 

DFA α 38.10 72.34 48.48 66.14 

Complexity 33.33 70.83 45.16 64.57 

Sample entropy 33.33 71.13 46.67 65.35 

0-4 hertz average power 16.67 66.67 31.82 60.63 

4-8 hertz average power 42.86 74.19 52.94 68.50 

8-12 hertz average power 26.19 69.00 40.74 62.99 

Root mean squared error 28.57 69.70 42.86 63.78 

Additive model 35.71 71.58 46.88 65.35 

Note. Sens. = sensitivity; Spec. = specificity; PPV = positive predictive value; NPV = negative 
predictive value; Acc. = accuracy; DFA = detrended fluctuation analysis; The additive model 
included DFA α and complexity as predictors. 
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Hertz) average power and long-range correlations in the data (DFA alpha) predicted  

nearly 100% of the individuals in the study, regardless of concussion history, as having 

had a history of concussion. Likewise, complexity and mid- (4-8 Hertz) and high-

frequency (8-12 Hertz) average power classified more than 90% of the participants as 

having no history of concussion, misclassifying those with a history of concussion.  

 Previous studies with this task and measures of multiscale complexity on another 

visual-motor tracking task indicate that gender is an important consideration when using 

these metrics in the context of a concussion (Stirling et al., 2013; Studenka & Raikes, in 

press). When gender was included in the models in the present study, the discrimination 

capacity of each of the models was significant (Tables 4.3, 4.5). From a diagnostic 

perspective, the sensitivity and specificity of these models were lower than desirable. 

Approximately 56% of the individuals with a history of concussion were predicted to have 

such a history. The specificity of the models was higher, with approximately 67% of 

those with no history of concussion being classified as such. These metrics indicate that 

approximately 44% of the individuals with a history of concussion were classified as 

having never had a concussion and 33% of the individuals without a history were 

classified as having had a concussion. From a clinical perspective, however, the positive 

predictive values are encouraging. For individuals predicted to have had a concussion in 

the gender-stratified models, approximately 77% of those individuals had a history of 

concussion.  

 The ability to discriminate between individuals with and without a history of 

concussion is of clinical value when considering the potential long-term ramifications of 

concussions. Previous work has linked concussion history to conditions including ALS, 

Parkinson’s disease, and chronic traumatic encephalopathy. Additionally, there is 

substantive evidence that, despite efforts to educate coaches and athletes on 
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concussions and concussion management, the nonreporting rate for concussive events 

remains high. Indeed, 45% of the participants in the present sample reporting suspecting 

at least one concussion without ever having received a diagnosis. This level of 

undiagnosed, but suspected, concussions agrees with previously reported levels of non-

diagnosed concussions in athletics (Gysland et al., 2012; Kerr et al., 2015, 2016; 

McCrea et al., 2004). Consequently, metrics that can distinguish individuals who have 

previously sustained a concussion from those who have not, regardless of diagnosis, 

may provide methods for screening individuals at risk for those conditions associated 

with repetitive head traumas. 

 There are a limited number of reports focusing on distinguishing people with a 

history of concussion from those without. A number of studies using neurocognitive 

testing have been able to distinguish individuals with acute concussions from healthy 

individuals with reasonably high sensitivity and specificity (Barr & McCrea, 2001; Broglio 

et al., 2007; Collins et al., 1999; Iverson et al., 2006; Louey et al., 2014; Lovell et al., 

2003; Schatz et al., 2006; Van Kampen et al., 2006). Additionally, several studies have 

reported the ability to distinguish concussed individuals at risk for prolonged recovery 

times from those with shorter recovery times (Lau et al., 2011, 2012). One study 

reported high sensitivity and specificity in distinguishing individuals with traumatic brain 

injuries from non-brain injured individuals (McKay et al., 2008). Though the participants 

in that study included people with concussions, the traumatic brain injury group’s injuries 

ranged in severity and most had moderate-to-severe TBIs. Thus, the present study is 

one of few to provide diagnostic and clinical metrics for distinguishing between 

asymptomatic individuals with a history of concussion and those with no such history. 

Importantly, when jointly maximizing the sensitivity and specificity, the findings 

reported here are similar in magnitude to those reported for neurocognitive tests, when 
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used to identify individuals at risk for a lengthier recovery (> 14 days) than for those 

whose recovery time is shorter (≤ 7 days) (Lau et al., 2011, 2012). When ensuring 80% 

sensitivity (80% of the individuals with a history of concussion are classified as such) to 

compare with the findings of these studies, the specificity and positive predictive values 

were greater on average than those reported for predicting prolonged recovery (Lau et 

al., 2012).  

When ensuring higher sensitivities in the present study, the false positive rate 

increased. Thus, individuals with no history of concussion are more likely to be classified 

as having a history of concussion than not (low specificity). Though the specificity is 

lower than would be desired, the risks of false positives, in this case, are minimal. At 

present, there are no effective preventative measures available to reduce the incidence 

of conditions related to repetitive head traumas. Consequently, classification of an 

individual as having had a history of concussion at this point only indicates that a person 

may be at risk for such conditions and merits follow-up evaluation. This reflects the 

similarly conservative approach advocated in recent international consensus statements 

regarding sport-related concussion management, advocating that individuals be held out 

for evaluation and observation any time a concussion is suspected (Giza et al., 2013; 

McCrory et al., 2013). Thus, being classified as having had a history of concussion in the 

present study provides a conservative approach to long-term evaluation and 

observation. However, with high sensitivity and positive predictive values of 70%-75%, 

those individuals classified as having had a history of concussion generally do. 

It is additionally important to note that the various measures of clinical and 

diagnostic utility are presented when the linear and nonlinear measures from this visual-

motor tracking task are considered in isolation from each other and consider only one 

aspect of overall function. Furthermore, with the exception of the individual’s gender, 
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these predictions did not take into account other personal characteristics, including age, 

or types and years of athletic experience (indicating concussion exposure risk). Studies 

distinguishing between individuals on concussion recovery time suggest that variables 

from multiple domains, including neurocognitive function and concussive symptoms, 

improve sensitivity, specificity, and positive predictive value (Lau et al., 2011). Thus, the 

inclusion of additional metrics, including neurocognitive function, in conjunction with the 

linear and nonlinear outcomes from the visual-motor tracking task may improve the 

discrimination between individuals with a history of concussion and those without, and 

therefore merit further investigation. 

 
Limitations 

There are several limitations in the present study. First, all participants provided 

only a self-reported history of concussion. It is possible that individuals who reported no 

history of concussion did indeed have a history. For those who reported diagnosed 

concussions, it is reasonable to assume that these individuals recalled receiving a 

diagnosis by a medical professional. Additionally, to better account for the high 

prevalence of underreporting of concussions (Gysland et al., 2012; Kerr et al., 2016; 

McCrea et al., 2004), individuals also self-reported their history of suspected 

concussions. This required participants to retrospectively self-diagnose themselves. 

Thus, individuals may have reported suspected concussions that were indeed not 

concussions or neglected to report a concussion because of a limited capacity to 

remember such occurrence and self-diagnose. This applies in particular to individuals 

reporting only suspected concussions without any diagnosed concussions for reference 

(n = 58). However, conservative approaches to concussion management suggest that 

any time a concussion is suspected, individuals should be held out for evaluation and 
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observation (Giza et al., 2013; McCrory et al., 2013). Therefore, if individuals are able to 

retrospectively self-identify times when they likely should have been evaluated but were 

not, then the sensitivity, specificity, and positive predictive values reported here reflect 

the more conservative views of concussion management. 

Additionally, the generalizability of these findings is presently limited. Our 

participants were all college-aged individuals. Previous work has demonstrated that the 

linear and nonlinear metrics used in the prediction models here are affected by aging. 

Consequently, the current models may have limited utility with different age groups. 

Further research is needed to identify the generalizability of this predictive method 

outside of early adulthood. 

Finally, the outcomes in the present study reflect only logistic regression and 

subsequent prediction. Other machine learning methods – such as random forests, 

support vector machines, and naïve Bayes methods – may provide better discrimination 

between groups but require substantively larger sample sizes. However, the findings 

from this study provide a proof-of-concept that linear and nonlinear characteristics of 

continuous isometric force production can be used to discriminate previously concussed 

individuals from those with no history of concussion. 

 
Conclusion 

 

 Individuals with a history of concussion exhibit different patterns of linear and 

nonlinear metrics on a continuous isometric force tracking task. The findings here 

indicate that these metrics can be used, in conjunction with the individual’s gender, to 

discriminate between people with and without a history of concussion. Approximately 

75% of the individuals predicted to have a history of concussion did indeed have such a 

history. Such discrimination has clinical value in identifying individuals who merit further 
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evaluation and observation over time for conditions related to repetitive head traumas, 

including ALS, Parkinson’s disease, and chronic traumatic encephalopathy. These 

findings merit further validation in larger samples, other age groups, with other large-

sample appropriate machine learning methods, and in conjunction with measures of 

neurocognitive function known to be sensitive to the acute effects of a concussion. 
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CHAPTER 5 
 

CONCLUSION AND RECOMMENDATIONS 
 
 

Summary of Findings 
 
 

 The research in the two studies in this dissertation contributes to an increasing 

body of work demonstrating lasting reductions in motor output complexity subsequent to 

sustaining a concussion. First, individuals exhibited a decrease in complexity and an 

increase in target error in a continuous isometric force tracking task. This reduction 

exhibited a linear relationship with the number of sustained concussions, with individuals 

with greater numbers of concussions exhibiting lower complexity than those with fewer 

or none.  

 Physiological complexity requires the inclusion of a wide range of frequencies in 

a physiological signal (Lipsitz & Goldberger, 1992) and reflects the coupling of 

components that work together to produce physiological output (Vaillancourt & Newell, 

2002a). Reduced complexity is a natural consequence of aging and is additionally linked 

to pathology across multiple physiological systems (Findley et al., 1981; Hayano et al., 

1990; Ko & Newell, 2016; Mazich et al., 2015; Morrison et al., 2008; Ryan et al., 1994; 

Sosnoff & Newell, 2006b, 2008; Sosnoff et al., 2004; Ünlü et al., 2006; Vaillancourt & 

Newell, 2000; Vaillancourt et al., 2001). Such reductions are purportedly the result of 

either the loss of structural components (Aoki et al., 2014; Hayano et al., 1990; 

Vaillancourt et al., 2001) or changes in the connectivity of these components (Lipsitz & 

Goldberger, 1992; Vaillancourt & Newell, 2002a). 

 So to have reductions in complexity been reported following a concussion, both 

in postural sway and visual-motor tracking as well as both acutely following concussion 

and remotely. The findings in Chapter 3 extend these findings to self-reported 
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asymptomatic individuals with a history of concussion and a continuous isometric force 

production task with a target force at 40% of a person’s MVC, where previously only 

10% MVC had been used. There was a significant decrease in the average complexity 

and an increase in the trial-to-trial variability in complexity, which was associated with an 

increase in the number of concussions sustained. In light of the loss of complexity 

hypothesis previously described and the linear nature of the relationship between 

decreased complexity and increased numbers of concussions, these results suggest that 

there may be a cumulative effect of concussions on visual-motor pathways. 

Whether this effect is related to the loss of structural components or to alterations 

in connectivity between components is not yet clear. There is evidence to suggest that 

individuals with a history of concussion have a reduction in the functional connectivity in 

visual attention networks (Churchill et al., 2016), which could certainly influence task 

performance in the present task. Furthermore, previous work has linked concussions to 

white matter reductions in areas related to attention, spatial processing, visual networks, 

dorsal and ventral prefrontal areas, as well as areas related to the integration of these 

centers. Consequently, reduced visual-motor tracking complexity may reflect some of 

these structural and functional alterations. If this is the case, then complexity in visual-

motor tracking tasks could provide a metric for quantifying such alterations without the 

need for monetarily costly and time-consuming neuroimaging studies. 

Importantly, the findings here reiterate previous findings that motor complexity in 

visual-motor tracking tasks has significant gender effects that must be considered. The 

men in Chapter 3 exhibited greater complexity than the women. However, both exhibited 

similar patterns of reduced complexity. Additionally, a history of concussion-related loss 

of consciousness was associated with altered rates of reduced complexity. Individuals 

with a history of loss of consciousness have reduced white matter structure in areas of 
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the brainstem and ventral prefrontal cortex on neuroimaging, lending further evidence for 

the viability of complexity on this task as a potential indicator of damage to, or altered 

function in, these regions. 

 Furthermore, signal characteristics for the visual-motor tracking task exhibited 

potential as metrics for discriminating between individuals with and without a history of 

concussion. Participants in Chapter 4 were correctly identified as having a history of 

concussion or not approximately 60% of the time when considering both gender and 

signal characteristics. When holding the sensitivity at 80% (identifying 80% of the 

individuals with a history of concussion correctly), this accuracy increased to 65-68% of 

the time. More importantly, however, 70-80% of the individuals predicted to have 

sustained a concussion based solely on gender and signal characteristics did indeed 

have a history of concussion. In light of the association between concussion history and 

the later development neurological and neuropsychological conditions (H. Chen et al., 

2007; Factor & Weiner, 1991; Harris et al., 2013; Kerr, Evenson, et al., 2014; Lehman et 

al., 2012; McKee et al., 2009), this prediction rate provides a clinically-relevant metric for 

identifying individuals who may be at risk for these conditions and merit further 

evaluation. 

Importantly, these predictions included a substantial number of individuals in 

whom one or more concussions were suspected but had never been diagnosed. 

Consistent with previous reports of concussion nonreporting rates (Gysland et al., 2012; 

Kerr et al., 2015, 2016; McCrea et al., 2004), 45% of the individuals in Chapter 4 

reported sustaining a concussion or concussion-like event that had never been 

diagnosed by a medical professional. Thus, gender and outcomes related to this visual-

motor tracking task may provide a pathway toward identifying individuals with previously 

undiagnosed concussions. 
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Taken together, the results from the present research affirm that persons with a 

history of concussion exhibit differences in the linear and nonlinear characteristics of 

motor output in response to a visual-motor tracking task. These differences appear to 

have a cumulative response to the number of previously sustained concussions and may 

reflect altered functional connectivity in visual-motor pathways. Furthermore, these 

differences are substantive enough that these measures may provide a screening 

method to identify individuals with a history of concussion, even those that went 

undiagnosed. Finally, given the evolving evidence linking repetitive head trauma to 

neurological and neuropsychological conditions, outcomes from this task may be useful 

in both quantifying persistent dysfunction following one or more concussions as well as 

identifying individuals for whom follow-up evaluation and long-term monitoring may be 

beneficial. 

 
Future Research Considerations 

 

 There are numerous opportunities to expand upon the research presented here. 

While previous research has identified altered functional connectivity in visual networks 

as well as reduced white matter structure in relevant visual-motor areas, the connection 

between the outcomes observed here and such findings is, at present, speculative. 

Additional research is needed to link visual-motor tracking outcomes with neuroimaging 

findings.  

Additionally, though the predictive utility of the measures from the visual-motor 

tracking task is promising, there are additional considerations that should be expanded 

upon in future research. These include the addition of other metrics, such as 

neurocognitive outcomes, to improve the specificity of the predictions as well as adding 

other age groups and larger samples to develop robust predictive models. 
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With concussion rates exceeding 3 million annually and the economic cost to 

manage such injuries topping $22 million per year, the impetus to develop cost- and 

time-effective metrics for identifying not only acute but persistent changes in function 

following a concussion is high. The findings here provide yet another pathway toward 

understanding the long-term implications of single and multiple concussions. With 

additional refinement, larger samples, and in tandem with measures of function in other 

domains, nonlinear measures of visual-motor tracking performance may help to provide 

a complete view of how to identify concussion-related deficits as well as to identify those 

most at risk for the more severe consequences of repetitive head trauma. 

 
Implications for Clinicians 

 

The findings from Chapters 3 and 4 offer several clinical applications. First, the 

findings in Chapter 3 indicate that there is a cumulative effect of multiple concussions on 

visual-motor tracking task complexity. The lower complexity with multiple concussions 

suggests that there may be a change in the way in which visual information is utilized. 

Therefore, this may be an opportunity for the clinician to engage in rehabilitative 

exercises that selectively target visual-motor tracking processes to restore functionality 

that may be impaired (Gallaway, Scheiman, & Mitchell, 2017; Leddy, Baker, & Willer, 

2016). 

With respect to the predictive modeling in Chapter 4, there are discrepancies 

between self-reported and predicted histories. However, the predictive capability of the 

gender-specific models still offers clinically useful information. Though it may be more 

feasible to ask an individual about his or her concussion history, having a measure that 

can discriminate between those with and without a history allows the clinician some 

more objective corroboration of the individual’s history. While this may not be particularly 
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necessary for individuals with a history of diagnosed concussions, it may be very 

important for those with suspected concussions. For those individuals, the clinician is, in 

effect, asking the individual to retrospectively self-diagnose an injury based upon the 

best recollection of symptoms and prior events. While this provides a starting point, it is 

valuable to be able to substantiate these self-reports.  

Additionally, the effects of a concussion exist along a continuum (from mild to 

severe impairments) and the long-term trajectories of specific impairments may likewise 

exist along similar continuums (from quickly resolving to persistent; mild to severe). 

Thus, measures such as the nonlinear aspects of visual-motor tracking may provide 

insight into those for whom the effects of one or more concussion have fully recovered, 

leading to a negative predicted history despite sustaining a concussion, as opposed to 

those in whom there are residual deficits. Therefore, such discrimination may improve 

the identification of individuals whose concussion histories and clinical presentation merit 

follow-up evaluation to provide early identification of conditions associated with repetitive 

head trauma. 
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