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Abstract

In high dimensional data analysis (such as gene expression, spatial epidemiology, or brain

imaging studies), we often test thousands or more hypotheses simultaneously. As the num-

ber of tests increases, the chance of observing some statistically significant tests is very

high even when all null hypotheses are true. Consequently, we could reach incorrect conclu-

sions regarding the hypotheses. Researchers frequently use multiplicity adjustment meth-

ods to control type I error rates—primarily the family-wise error rate (FWER) or the false

discovery rate (FDR)—while still desiring high statistical power. In practice, such studies

may have dependent test statistics (or p-values) as tests can be dependent on each other.

However, some commonly-used multiplicity adjustment methods assume independent

tests. We perform a simulation study comparing several of the most common adjustment

methods involved in multiple hypothesis testing, under varying degrees of block-correlation

positive dependence among tests.

Introduction

A common initial question in a genomic study is to identify genes whose expression levels

change with the different levels of some variable of interest such as a covariate or response vari-

able. The response variable could be a clinical outcome or survival time, whereas the covariate

could be the dose of a drug, time, treatment/control group, and so forth [1]. Questions in spa-

tial epidemiology can involve identifying locations where disease risk is associated with an

environmental variable [2]. Brain imaging studies can involve identifying voxels (essentially

very specific brain regions) that exhibit different levels of brain activity in response to some

stimulus [3, 4]. These three fields (genomics, spatial epidemiology, and brain imaging), among

many other fields, all can involve situations where potentially thousands (or more) features

(genes, locations, voxels) are tested for differential abundance (expression, risk, brain activity)

between levels of some variable of interest.
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Multiple hypothesis testing is often applied to identify differentially abundant features

across different levels of the variable of interest. The null hypothesis for each feature is that the

abundance levels are not associated with the variable of interest. With thousands (or more) of

null hypotheses to test, it becomes important to control the overall type I error rate at level α
while maintaining the desired statistical power (= 1—type II error rate). Because of the mixture

of true and false null hypotheses, the obtained p-values follow different types of distributions,

for example Beta distributions instead of the Uniform distribution (which would result if all

null hypotheses were true). Multiple comparison adjustment methods can control the FWER,

FDR [5], or positive false discovery rate (pFDR) [6]. In higher-dimensional studies, most often

controlling the FDR, or the pFDR, ensures more statistical power than controlling the FWER

[1].

Some commonly-used multiple testing adjustment methods (such as the original FDR

method by Benjamini and Hochberg (1995) [5]) assume independence of tests, which in gene

expression studies translates to a questionable assumption that all genes operate indepen-

dently. (Corresponding and similarly questionable assumptions in other fields would be the

independence of spatial locations, or the independence of different regions of the brain.)

Other multiple testing adjustment methods claim to provide error rate control under certain

(or even arbitrary) dependence types among test results [7, 8]. It would be useful to know how

various adjustment methods perform under various levels of test dependence. The objective of

this paper is to make such an evaluation so that a methodological recommendation can be

made, leading to better-justified conclusions from high-dimensional data analysis. The paper

is arranged in the following manner: first, in the “Methods: controlling the error rates” Section

(and greater detail in Section A of S1 File) we summarize several procedures in the literature to

control error rates in multiple comparisons. Then in the “Methods: simulation analysis” Sec-

tion we propose a simulation framework and analyze several multiple comparison procedures

using simulation data sets. Finally in the “Results and Discussion” Section, we finish with

some observations and recommendations.

Methods: Controlling the error rates

Many multiple testing adjustment methods exist for controlling error rates. For our current

purposes, we focus on several that are most commonly used and widely available to applied

researchers. To ensure the main body of this article focuses on our novel contributions, we

have summarized in Section A of S1 File the background literature on these methods, as well

as a brief discussion on dependence structures. For control of the FWER, we consider the Bon-

ferroni procedure [9], Šidák’s single step and step-down procedures [10, 11], the Holm proce-

dure [12], the Hommel procedure [13], and the Hochberg procedure [14, 15]. For control of

the FDR, we consider the Benjamini and Hochberg procedure [5], the Benjamini and Yekutieli

procedure [7], the adaptive Benjamini and Hochberg procedure [16], the two stage Benjamini

and Hochberg procedure [17], the q-value method [6], and the principal factor approximation

method [8]. The multiple comparison procedures discussed in Section A of S1 File are shown

in Table 1. These procedures are used to adjust p-values in our simulation analysis in the

“Methods: simulation analysis” Section and to visualize results in the “Results and Discussion”

Section.

Methods: Simulation analysis

In this section we evaluate the performance of the multiple testing procedures from the “Meth-

ods: controlling the error rates” Section (and Section A of S1 File), under various dependence

scenarios using simulated data sets. We simulated m test statistics (corresponding to m features

Error rate control with positively-dependent tests

PLOS ONE | https://doi.org/10.1371/journal.pone.0176124 April 28, 2017 2 / 12

role in the study design, data collection and

analysis, decision to publish, or preparation of the

manuscript. Specific roles of all authors are

articulated in the ‘author contributions’ section.

Competing interests: During the preparation of

this work, one author (AS) was employed by

BioStat Solutions, Inc. (see funding statement), but

that author’s involvement in this work was done on

their own time, and outside of their employment

responsibilities. This does not alter our adherence

to PLOS ONE policies on sharing data and

materials.

https://doi.org/10.1371/journal.pone.0176124


in a hypothetical study) as Z
�
� N ðm

�
;S
�
Þ. Here m

�
is a length m vector of the expected differ-

ences for each test; in the high-dimensional study context, μi is the true magnitude of differen-

tial abundance for feature i. We considered two levels of m: 2000 (where the control of the

FDR would generally be more meaningful) and 100 (where control of the FWER would gener-

ally be more meaningful). Our scenario of dependent test statistics (and subsequent p-values)

is represented in the covariance matrix (S
�

), where we considered different numbers of corre-

lated tests (or features) and varying levels of correlation. In addition, we considered different

sizes of μi in order to compare the performance of these multiple comparison procedures. Our

general hypothesis is constructed as follows:

H0
i : mi ¼ 0 vs H1

i : mi 6¼ 0 for i ¼ 1; 2; . . . ;m:

In our study the first and the most important dependency scenarios are represented in the

covariance matrix (S
�m�m

) of test statistics (Z
�

). Thus, the construction of S
�

addresses two

issues: (1) number of total correlated Z
�

(corresponding to features) and (2) correlation value

(ρ) of dependent Z
�

. Regarding the first issue, our main motivation is to examine the perfor-

mance of various multiple comparison procedures when increasing the total number of corre-

lated Z
�

. We considered two different total numbers of correlated Z
�

: 120 and 360 (out of 2000

total) for FDR control; 18 and 36 (out of 100 total) for FWER control. We also considered

these dependent test statistics in blocks in order to distribute the number of dependent Z
�

into

six disjoint but equal-sized sets of correlated tests. For example, in the case of 120 dependent

tests, we have six blocks, each with twenty dependent Z
�

. In each case, the dependent Z
�

of the

first three blocks were always associated with the alternative hypothesis being true (μi 6¼ 0),

while the dependent Z
�

of the remaining three blocks were associated with the null hypothesis

being true (μi = 0). Then, we set all remaining test statistics to be independent. Therefore, the

diagonal elements of the entire S
�m�m

matrix consist of six blocks with the remaining diagonal

elements being ones, and the off-diagonal elements being zeros. So all blocks under a specific

total number of correlated Z
�

always appear at diagonal positions of the entire S
�

matrix.

Indeed, each block is a symmetric matrix inside the S
�

matrix.

As off-diagonal elements of the blocks on the diagonal of S
�

, we considered correlation coef-

ficient values ρ 2 {0, .2, .4, .6, .8, .99}. The values of ρ are chosen to represent a reasonable

Table 1. Abbreviations of multiple comparison procedures (and their corresponding controlled error

rate), used in the text and in summary figures.

Procedure Abbreviation Error Rate

Bonferroni procedure Bonferroni FWER

Šidák single step procedure Sidak SS FWER

Šidák step down procedure Sidak SD FWER

Holm procedure Holm FWER

Hommel procedure Hommel FWER

Hochberg procedure Hochberg FWER

Benjamini and Hochberg procedure BH FDR

Benjamini and Yekutieli procedure BY FDR

Adaptive Benjamini and Hochberg procedure ABH FDR

Two stage Benjamini and Hochberg procedure TSBH FDR

q-value method q-value FDR

Principal factor approximation PFA FDR

https://doi.org/10.1371/journal.pone.0176124.t001
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range of values. Non-negative ρ ensures that the covariance among Z
�

is always non-negative.

Thus, with such Gaussian Z
�

with positive correlation, we satisfy the condition of positive

regression dependency [18] (see “Dependence among test results: PRDS and MTP2” in Section

A of S1 File). These correlation values measure how much the dependent Z
�

are correlated with

each other. Specifically, ρ = 0 indicates features are completely independent; in contrast, ρ =

0.99 indicates that the linear association between features’ test statistics is almost exact. Con-

sidering this block-correlation dependence structure, it helps to compare the performance of

various multiple comparison procedures under the same degree of dependency in the same

number of both true null and false null hypotheses. By changing the ρ values we obtain differ-

ent off-diagonal elements in the blocks. Thus, we summarize the construction of our general

S
�m�m

matrix in such a way so that, under a given number of correlated Z
�

, all blocks (or sym-

metrical sub-matrices) appear along the diagonal of the S
�

matrix, and the off-diagonal ele-

ments of the blocks preserve the degree of dependency of correlated Z
�

. The following is the

general form of our S
�m�m

matrix:

S
�
¼

1 r

r 1

2

6
4

3

7
5 0 0 � � � 0

0

1 r

r 1

2

6
4

3

7
5 0 � � � 0

0 0

1 r

r 1

2

6
4

3

7
5 � � � 0

� � � � � � � � � � � � � � �

0 0 0 � � � 1

2

6
6
6
6
6
6
6
6
6
6
6
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6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
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7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

ð1Þ

This block-diagonal structure of the S
�

matrix affects the construction of our mean vector m
�

for our Z
�

. For tests with a true null hypothesis, μi = 0, while for tests with a false null hypothe-

sis, we set μi = A for some A> 0. For demonstration purposes, we use the same A for all false

null hypotheses, allowing an inspection of the effect of A, and consider separately A 2 {0.5, 1,

2, 3, 4, 5}. These values of A are chosen to represent a reasonable range of values.

Three of the six dependent blocks in the S
�

matrix correspond to true null hypotheses (so

their corresponding μi = 0), and the remaining three dependent blocks correspond to false null

hypotheses (so their corresponding μi = A). In our simulations to consider FDR control, we

considered 200 false null hypotheses (out of 2000 total hypotheses), thus we have either 140 (=

200 − 3 × 20) or 20 (= 200 − 3 × 60) completely independent tests with false null hypotheses,

depending on the dependence group size. In simulations to consider FWER control, we con-

sidered 20 false null hypotheses (out of 100 total hypotheses), with either 11 (= 20 − 3 × 3) or 2

(= 20 − 3 × 6) completely independent tests with false null hypotheses, depending on the

dependent group size. Notice that implicit in our simulation is the assumption that a group (or

block) of dependent hypotheses will have a shared truth (nulls all true or all false). This

assumption is made for computational convenience and to facilitate interpretation. The

Error rate control with positively-dependent tests
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following is the general form of our m
� 1�m

vector:

m ¼ A A � � � A 0 0 0 � � � A½ � ð2Þ

For any total number of dependent Z
�

and for each simulation, we simulated mZ
�

under a

specific A and ρ combination. We performed our simulation 1,000 times considering a given

number of total dependent Z
�

. Thus for each combination of m
� 1�m

vector and S
�m�m

matrix, we

generated 1,000 sets of m p-values. Next, we adjusted these p-values with the multiple compari-

son methods listed in the “Methods: controlling the error rates” Section (and Table 1) above to

control the FDR (when m = 2000) or FWER (when m = 100) at α = 0.05. Finally, we estimated

power, FDR, and FWER of the corresponding multiple comparison procedures by averaging

for each procedure across simulations for each combination of ρ, A, and specific total number

of dependent Z
�

. Because there is, of course, chance variability across simulations, we also obtain

the standard deviations (across simulations) of the power, FDR, and FWER, allowing construc-

tion of approximate 95% confidence intervals of the true power, FDR, and FWER of each

method by considering the average ± 2 SEM, where SEM is the standard error of the mean.

It is important to keep in mind the limitations and intent of this simulation. In practice,

when features are dependent, it will not necessarily be with the same constant correlation in

each dependent group, as represented in Eq 1. Similarly, in practice, when features are differ-

entially abundant, they will not all be differentially abundant with the same magnitude (or

even direction), as represented in Eq 2. Instead, there will be something of a mixture—depen-

dent groups with varying strengths of dependence, and differentially abundant features with

varying magnitudes (and direction) of change. However, the block correlation structure

(which is a standard exploratory initial tool) and the differential abundance framework used in

this simulation are not intended to fully recreate a complex biological system. Rather, the sim-

ulation is intended to give some insight into how the various multiplicity adjustment methods

will perform on various components of this mixture—particularly as the strength of depen-

dence (even if narrowly defined within this block correlation framework) and magnitude of

differential abundance vary.

Finally, in this simulation the proportion of differentially abundant features is held constant

at 10% (arbitrarily a low percentage), and the total number of features is held constant. When

considering the FDR, we use m = 2000 features—arbitrarily a high number, which involves sub-

stantial-but-manageable computational expense in dealing with S
�

, and which is close to the

number of features in a microRNA study [19, 20]. When considering the FWER, we use

m = 100 features, arbitrarily a low number, but one which is reasonable in a pharmacogenomics

PGx subgroup analysis [21] or methylation quantitative trait loci study [22]. We fix the percent

differential abundance and number of features thus in the simulation, not because in practice

we could assume the same percentage differentially abundant or the same number of features in

all studies, but rather because our focus is on how the degree of dependence and magnitude of

differential abundance (and not percentage differentially abundant or number of features) affect

the performance of the multiplicity adjustment methods considered here. Accordingly, rather

than varying all simulation characteristics (such as percentage differentially abundant, or the

total number of features), we instead vary the simulation characteristics of greatest interest for

our purposes (degree of dependence and magnitude of differential abundance).

Results and discussion

In comparing the performance of the multiple testing adjustment methods considered in the

“Methods: controlling the error rates” Section, it is important to consider the trade-off between

specificity (one minus the type I error rate) and sensitivity (statistical power). A statistical
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method could achieve high power by automatically rejecting all null hypotheses, but this

would negatively affect specificity. Conversely, adopting an overly-conservative approach that

would reject hardly any (or even no) null hypotheses could maintain excellent specificity (i.e.,

a very low type I error rate rate) but would have poor statistical power. For this reason, the sim-

ulation results summarized here in Figs 1, 2, 3 and 4 consider both the average FDR (or

FWER) control (as a form of specificity) and average statistical power (sensitivity). For conve-

nience and clarity in visualization, the FDR (or FWER) and power are considered separately in

Figs 1, 2, 3 and 4. For a simultaneous representation of the FDR (or FWER) and power results,

see Section C of S1 File.

Figs 1 and 2 summarize the results of the simulation for the FWER-controlling methods. If

the interest is to control the FWER, we note that all the FWER methods do indeed control the

FWER equally well at the chosen α level (0.05 here), even in the presence of block-correlation

positively-dependent tests, regardless of effect size (A), degree of dependence (ρ), or size of

dependence group (Fig 1). As expected, Fig 2 shows these methods’ power increases for larger

magnitudes of differential abundance (i.e., larger effect sizes A). Power does not appear to be

affected by increasing levels of dependence (i.e., larger ρ) or dependence group size. Regardless

of effect size (A) or degree of dependence (ρ), it appears best to use the Sidak SD, Hommel,

Holm, or Hochberg methods, as there is a modest (but consistent) power loss in the Bonfer-

roni and Sidak SS methods (Fig 2).

Figs 3 and 4 summarize simulation results for the FDR-controlling methods. FDR control

(Fig 3) and statistical power (Fig 4) both improve, as expected, for larger magnitudes of differ-

ential abundance (i.e., larger effect sizes A.)

Fig 3 shows that increasing levels of dependence (i.e., larger ρ) appears to improve FDR

control for tests of small effects (such as A = 0.5), but has no clear effect for larger A.

Fig 3 indicates that increasing the dependence group size (360 vs. 120) results in lower FDR

when the effect is small (A = 0.5) and ρ is larger. Larger dependence group size also appears to

result in a modest gain in (already poor) power (see Fig 4) among most FDR-controlling meth-

ods when the effect is moderate (such as A = 2) and ρ is larger. However, for larger A and larger

ρ, Fig 4 shows a possible (if negligible) loss of power.

Of the methods purporting to control the FDR, the PFA method generally has the best

power (Fig 4), but Fig 3 shows that, at least for this large number of tests and for the block-cor-

relation positively-dependent covariance structure shown in Eq 1, the PFA method fails to pro-

vide even reasonable control of the FDR. We note that this PFA performance includes the

best-case scenario of treating the covariance matrix as known. Additional simulations

described in Section B of S1 File suggest that, at least for certain block-correlation positively-

dependent covariance structures, the PFA method may provide better FDR control for smaller

numbers of tests, but for larger numbers of tests (in the thousands), the PFA method does not

provide the desired FDR control.

If the interest is to control the FDR, we note that, for at least moderate effect sizes (A� 2),

the FDR methods (other than PFA) do indeed control the FDR at the chosen α level (0.05

here), regardless of the degree of dependence (ρ) (Fig 1). The Benjamini and Yekutieli proce-

dure (BY) gives the most conservative control of the FDR (Fig 1), but at a noticeable loss of

power (Fig 2). Regardless of effect size (A) or degree of dependence (ρ), it appears best to use

the two stage Benjamini and Hochberg procedure (TSBH), the q-value method, or the adaptive

Benjamini and Hochberg procedure (ABH) to control the FDR, even when positive block cor-

relation dependence is present.

We conclude with a few caveats. First, the multiple hypothesis testing literature is evolving,

so the above recommendations will not necessarily remain the best in perpetuity. Also, we

only considered a certain class of dependence among test results, and any simulation study can

Error rate control with positively-dependent tests
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Fig 1. Average FWER for different methods purporting to control the FWER at α = 0.05. A can be

thought of as the magnitude of differential abundance for truly differentially abundant features, and ρ is the

true correlation within blocks of dependent tests. The blue solid circles represent the case of 18 dependent

tests (out of 100 total), whereas the red solid triangles are for the case of 36 dependent tests. Parentheses

indicate ± 2 SEM.

https://doi.org/10.1371/journal.pone.0176124.g001
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Fig 2. Average power for different methods purporting to control the FWER at α = 0.05. A can be

thought of as the magnitude of differential abundance for truly differentially abundant features, and ρ is the

true correlation within blocks of dependent tests. The blue solid circles represent the case of 18 dependent

tests (out of 100 total), whereas the red solid triangles are for the case of 36 dependent tests. Parentheses

indicate ± 2 SEM.

https://doi.org/10.1371/journal.pone.0176124.g002
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Fig 3. Average FDR for different methods purporting to control the FDR at α = 0.05. A can be thought of

as the magnitude of differential abundance for truly differentially abundant features, and ρ is the true

correlation within blocks of dependent tests. The blue solid circles represent the case of 120 dependent tests

(out of 2000 total), whereas the red solid triangles are for the case of 360 dependent tests. Parentheses

indicate ± 2 SEM.

https://doi.org/10.1371/journal.pone.0176124.g003
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Fig 4. Average power for different methods purporting to control the FDR at α = 0.05. A can be thought

of as the magnitude of differential abundance for truly differentially abundant features, and ρ is the true

correlation within blocks of dependent tests. The blue solid circles represent the case of 120 dependent tests

(out of 2000 total), whereas the red solid triangles are for the case of 360 dependent tests. Parentheses

indicate ± 2 SEM.

https://doi.org/10.1371/journal.pone.0176124.g004
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not reasonably consider all possible conditions (see the concluding two paragraphs of the

“Methods: simulation analysis” Section above). Nevertheless, these results do provide a con-

crete comparison of multiplicity adjustment methods and give some insight as to the effects of

degree of differential feature abundance (A), degree of dependence among tests (ρ), and sizes

of dependence groups on error rate control and power. In addition, this comparison and all

the panels of Figs 1–4 are completely reproducible using the R code provided in S2 File.

Supporting information

S1 File. Background information on previous literature, including multiple testing adjust-

ment methods and dependence among test results.

(PDF)

S2 File. R code to reproduce the entire simulation, including data analysis and summary

figure panels.

(R)
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